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Abstract: Simulations of landslide generated waves (LGWs) are prone to high levels of uncertainty.
Here we present a probabilistic sensitivity analysis of an LGW model. The LGW model was
realised through a smooth particle hydrodynamics (SPH) simulator, which is capable of modelling
fluids with complex rheologies and includes flexible boundary conditions. This LGW model has
parameters defining the landslide, including its rheology, that contribute to uncertainty in the
simulated wave characteristics. Given the computational expense of this simulator, we made use of
the extensive uncertainty quantification functionality of the Dakota toolkit to train a Gaussian process
emulator (GPE) using a dataset derived from SPH simulations. Using the emulator we conducted a
variance-based decomposition to quantify how much each input parameter to the SPH simulation
contributed to the uncertainty in the simulated wave characteristics. Our results indicate that the
landslide’s volume and initial submergence depth contribute the most to uncertainty in the wave
characteristics, while the landslide rheological parameters have a much smaller influence. When
estimated run-up is used as the indicator for LGW hazard, the slope angle of the shore being inundated
is shown to be an additional influential parameter. This study facilitates probabilistic hazard analysis
of LGWs, because it reveals which source characteristics contribute most to uncertainty in terms of
how hazardous a wave will be, thereby allowing computational resources to be focused on better
understanding that uncertainty.

Keywords: submarine landslide; waves; uncertainty quantification; Gaussian process emulation;
variance-based sensitivity; smooth particle hydrodynamics

1. Introduction

Landslide generated waves (LGWs) can be extremely hazardous [1,2], and it is difficult to predict
their location, time, and severity [3]. The severity of the hazard posed by an LGW depends on various
wave characteristics which are closely linked to landslide’s dynamics and location [4]. Lab scale
submarine landslide experiments show that initial landslide submergence and the angle of the slope
down which it slides strongly affect the energy conversion between the sliding mass and the wave [5].
The characteristics of the landslide that likewise have a key effect on the wave characteristics are
volume and initial acceleration [6]. Landslide rheology, slope angle, and the interaction between the
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slide and the seafloor, all tie in to the initial acceleration and deformation of the landslide, and therefore
also affect wave generation.

An ideal LGW hazard analysis would incorporate all these landslide characteristics and geometric
input parameters because they contribute to uncertainty in the simulation results. However, it is
computationally prohibitive to include all those parameters in a numerical modelling investigation
capable of producing a full probabilistic hazard assessment. Determining the extent to which each of
the input parameters contributes to variance in the simulated wave characteristics is beneficial, since
computational resources can then be focused on examining those parameters that cause the greatest
variability in the outcome.

Our study aims to quantify the relative importance of the input parameters to the level of
hazard posed by an LGW through probabilistic sensitivity analysis (PSA). Ideally, this will make the
probabilistic hazard assessment process computationally cheaper in the future, because the parameters
that have a relatively small contribution to variance of the simulated wave characteristics can be
discounted, and uncertainty analyses can focus on the parameters that contribute more to uncertainty.
For a review of the benefits of global sensitivity analyses such as this, for investigating uncertainty in
earth system models, see [7].

Here we use Smooth Particle Hydrodynamics (SPH), which is a meshless Lagrangian numerical
modelling technique [8], to simulate LGWs and investigate their associated sources of uncertainty.
Our chosen SPH simulator [9] is able to represent complex landslide rheology and flexible boundary
conditions. We use an idealised geometry and model the slide as a fluid with a Herschel-Bulkley
rheology (i.e., a dense fluid with viscosity, yield strength, and an exponent to define shear thinning or
thickening behaviour).

A probabilistic sensitivity analysis requires extensive sampling of the entire parameter space. This
is infeasible using only the SPH simulator due to its high computational cost. To facilitate a richer
sampling of the input parameter space we use Dakota [10], an extensive uncertainty quantification
and optimisation toolkit, to train a Gaussian process emulator (GPE) with a training dataset of SPH
simulation inputs and results. GPEs have been used previously both for LGW studies [11] and in
other fields such as materials science [12] and climate modelling [13]. The Gaussian process emulator
is tested against additional SPH simulation results to ensure that it is able to predict the simulated
outcomes to a satisfactory degree of accuracy. We then use the emulator to extensively sample the
input parameter space and quantify the uncertainty in the simulated wave characteristics. We use the
samples from the emulator to calculate Sobol’ indices, which quantify the extent to which each input
parameter is responsible for the variance in the output.

We also conduct a further investigation of the output parameter. Maximum wave amplitude is a
widely-used metric of near-field wave hazard; however, alternative metrics may provide better hazard
measures far from the source (e.g., after propagation across an ocean basin) [14]. Transoceanic tsunamis
are especially hazardous because of their very long wavelength and the large volumes of water that
spill on to the coast as a result. We therefore also investigate two other simulated output metrics:
the positive displaced volume of the wave and an analytical approximation for the run-up height,
which we refer to here as the run-up approximation. The latter adds two more input parameters to
the sensitivity analysis beyond those investigated at the source. The results of the sensitivity analyses
using different output metrics are then compared.

2. Methods

To summarise, a training data set was constructed using an idealised LGW scenario (Figure 1) and
our chosen SPH simulator. The relevant input parameters and the bounds between which we drew
samples were selected based on a literature review and previous work. The first simulated output
parameter we chose to quantify how hazardous the LGW could be was the maximum wave amplitude.
The GPE and variance-based decomposition were undertaken using Dakota [10]. The second output
parameter we investigated, positive displaced volume in the wave, was also drawn from the results
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of the SPH simulations. The third output parameter was an approximation of run-up (Section 2.5.2),
which was calculated based on the waves simulated in SPH and additional input parameters defining
the geometry of the run-up region. The GPE and variance-based decomposition were repeated for the
displaced volume and run-up approximation output parameters.

Figure 1. Geometry for training dataset. The variables D, θ, d, and β shown in the sketch are described
in Table 1. The distance from the left hand side of the Smooth Particle Hydrodynamics (SPH) domain to
the mid-point of the slide averages 582 m is shown, but varies slightly with the slope angle θ. The SPH
simulation domain is shown along with a sketch of the idealised geometry assumed for our run-up
approximation (Section 2.5.2).

Table 1. Input parameter bounds. The first eight parameters pertain to the SPH simulations. The final
two are used in the run-up approximation calculation described in Section 2.5.2.

Parameter Lower Bound Upper Bound

Submergence depth (D) 146.0 m 196.0 m
Viscosity (µ) 1.0 Pa s 1000.0 Pa s
Yield stress (τ) 0.0 Pa 20 000.0 Pa
Shear thinning exponent (N) 0.33 1.0
Density (ρ) 1800.0 kg m−3 2300.0 kg m−3

Slope angle - source (θ) 0.5◦ 8.0◦

Boundary layer viscosity/length scale ( µ
l ) 0.2 kg m−2 s−1 20 000.0 kg m−2 s−1

Volume (V) 1839.75 m3 7347.25 m3

Open ocean water depth (d) 100 m 500 m
Slope angle - inundation (β) 0.5◦ 8.0◦

2.1. SPH Modelling of LGWs

Our LGW simulations were performed using a Smooth Particle Hydrodynamics (SPH)
simulator [9,15]. The SPH numerical method discretises a fluid domain using evenly spaced free
moving particles, and has been used in previous LGW studies [16–19]. Our chosen SPH simulator
includes models for three rheology types:

• Newtonian: linear viscosity;
• Bingham: linear viscosity plus yield stress;
• Herschel-Bulkley: non-linear viscosity relationship plus yield stress.

Submarine landslides exhibit shear-thinning behaviour [20,21]. We, therefore, modelled the
landslide rheology as a Herschel-Bulkley fluid in this work, which means there are four rheological
parameters defining the landslide to consider during the PSA: density, viscosity, yield stress,
and shear-thinning exponent.

Our SPH simulator also has a flexible boundary condition setting, which can be used to simulate
the interaction of the base of the slide with the slope beneath. A single parameter is used to represent
the viscosity of the boundary layer at the base of the slide and can span the range of boundary
conditions between the extreme cases of no-slip and full-slip [15].

The other input parameters of importance in the LGW simulations are the slide volume, the initial
submergence depth of the slide, and the slope angle.
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2.2. Building the Training Dataset

In this work an idealised geometry is considered, as shown in Figure 1. The scale is based on
landslide generated wave case studies from Alaskan bays [22,23]. Selecting the upper and lower
bounds of each of the input parameters was achieved through a combination of model sensitivity tests
and a literature review [11,20,23–29]. Parameter bounds are shown in Table 1.

The minimum submergence depth, D, was chosen so that the largest volume slide, at the
shallowest slope angle, would not breach the water’s surface. The maximum submergence depth
was this minimum submergence depth plus an additional water column of double the maximum
slide thickness.

The bounds for viscosity were selected based on bounds considered in other numerical modelling
studies [11,23,28]. The bounds for yield stress were likewise based on a literature review [11,27,29]
and sensitivity tests run on our SPH simulator. These sensitivity tests revealed that yield strengths
corresponding to plug flow layer thicknesses of 25% or more of the total landslide thickness resulted in
minimal change in wave amplitude. "Plug flow" here refers to the layer in a Bingham style fluid that
was not shearing because its yield stress had not been exceeded [29]. The upper bound of yield stress
therefore corresponds to 25% of the thickest possible slide being unyielding on the steepest possible
slope. The lower bound for the shear thinning exponent, N, was based on the work of [20,26]. The upper
bound was set at unity so that purely Bingham fluids would be represented in the analysis. The bounds
for density were taken from [25]. The upper bound for slope angle was based on the maximum slopes
seen in the Alaskan case studies previously mentioned. The lower bounds relates to the shallowest
angles seen on continental slopes where submarine mass failures have been observed [24,27].

The bounds for the boundary layer viscosity were chosen to span, substantially, either side of
the bounds for slide viscosity, thereby simulating physical situations in which the boundary layer
lubricated and retarded the slide motion. We performed sensitivity tests on several example simulations
with different slide rheologies and slope angles to check that this boundary layer viscosity range
spanned the space between extremes of no-slip to full-slip boundary conditions (Figure 2). The lower
and upper bounds are equivalent to viscosities of 0.1 Pa s and 10,000 Pa s in the boundary layer.
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Figure 2. Test case for the range of boundary layer viscosities. The two extreme values coincide well
with the no- and full-slip cases.

To set the volume bounds, the slides were defined as isosceles triangles, symmetrical about an
axis extending perpendicularly from the slope so that their geometry was dependent on the slope
angle. The maximum slide volume corresponds to a slide with base length 1127 m, which is the
distance between the point where the seafloor slopes downwards and the deeper inflection point (this
is the case depicted in Figure 1). The maximum slide thickness was set at 27 m. Scaling the length
of the base of the slide and the slide thickness by the same factor yields a range of slide volumes,
the smallest of which corresponds to a scaling factor of 0.5. While the angle of the slope beneath the
slide varies between the bounds of θ, the angle at the bottom right hand corner of the simulation
domain is adjusted so that the length of the whole domain is kept consistent at 1380 m.
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To build the training dataset, we took 120 samples of the input parameter space in a Sobol’
sequence [30] and ran an SPH simulation for each set of input parameters to build a training dataset of
120 points. The input parameters were assumed to have a uniform distribution between their upper
and lower bounds, and the use of a Sobol’ sequence ensured good coverage across all dimensions of
the parameter space, much like a Latin hypercube sampling method. The first eight parameters listed
in Table 1 are the relevant parameters for the SPH simulations. Each simulation utilised 84 processing
cores, and was run at a resolution of 0.5 m. The maximum simulation time was capped at 40 s, which
was long enough for the LGW to reach a maximum peak before beginning to decay. We extracted
the maximum height of the wave propagating in the direction of the slide motion as a measure of
how hazardous that LGW could be. The values of the eight input parameters and the corresponding
maximum wave heights formed the training dataset for our Gaussian process emulation.

2.3. Gaussian Process Emulation

Probabilistic sensitivity analysis relies on extensive sampling of a parameter space. Computationally
speaking, this is not feasible when using expensive numerical models. So, instead of running the “truth”
model (here the SPH simulations) thousands of times, we used a less expensive version of the simulator,
an emulator. Gaussian process emulation (GPE) was used, expressed as:

η(x) = h(x)T B + Z(x), (1)

where η(x) is the simulator output as a function of the input parameters, x, h(x)T is a vector of basis
functions of the inputs, B is a vector of corresponding regression coefficients, and Z(x) is a Gaussian
process with zero mean and covariance [10,12].

h(x) and B define the overall form and trend of the emulator output. The lengths of h and B
depend on the chosen order of the trend function. In Dakota the trend can be set as either constant,
linear, reduced quadratic, or quadratic. It is common to select a constant trend and leave the Gaussian
process (Z(x)) to capture higher order complexity in the η function [12]. The parameters that define
the Gaussian process are called hyperparameters to prevent confusion with model input parameters.

Dakota used the training dataset we built to optimise the Gaussian process hyperparameters,
specifically the trend and correlation function, through maximum likelihood estimation [10]. At an
unobserved set of input parameter values, the emulator can predict an output based on the Gaussian
process it has found to be optimal. The emulator is computationally very cheap to run so can be
sampled extensively for the purposes of a sensitivity analysis.

The recommended number of training points for an emulator is approximately ten times the
number of input parameters. We ran a total of 120 truth simulations, using a random sample of 80 of
them to build the emulator. We then used that emulator to predict the outputs from the remaining 40
sets of input variables, and compared those results to the results of the truth model (Figure 3).
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Figure 3. Wave heights calculated from the truth model (SPH) compared to emulated wave heights
from the GPE, for the same 40 sets of input parameters. Red line shows the 1:1 trend.
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The emulator building process was repeated 1000 times, with different random samples of
80 training points used to build the emulator, and the remaining 40 in each case used to test it.
We performed an RMS error calculation on each set of 40 samples used to test the emulator. The 100
emulators with the lowest RMS error were used for the variance-based sensitivity analysis.

2.4. Variance-Based Sensitivity Analysis

A global sensitivity analysis relies on a number of points scattered evenly through the input
parameter space. If a simulator is deterministic, the variance of the output variable is solely the result
of uncertainty in the input variables [12]. In an ideal world, the exact values of the input parameters
would all be measurable, and the variance of Y (the output) could be reduced to zero. This is not
possible here, so we decompose the variance in the output according to the input parameters.

Dakota possesses a variance-based decomposition function which calculates Sobol’ indices [10,31].
The derivation for the Sobol’ indices is as follows. If we fix one parameter Xi at a given value (xi) and
rerun the simulator, Y will have a lower overall variance. Suppose the variance is taken over all ranges
of input parameters while excepting Xi, which is kept fixed. This conditional variance shows how
influential the variable Xi is on the variance of Y. However, this method of variance calculation could
be strongly affected by the location of the point xi. We can resolve this by taking the average of all
these conditional variances over all values of xi [12]. That is:

Ei[V∼i[Y|Xi]]. (2)

Then we have an expectation of the variance of Y given Xi is fixed, or, put another way, the
variance of Y minus the contribution of variance from Xi. From probability theory, the variance of a
random variable such as Y can be decomposed as follows [12]:

V[Y] = Ei[V∼i[Y|Xi]] +Vi[E∼i[Y|Xi]]. (3)

This gives us Vi[E∼i[Y|Xi]], which is the first order effect of Xi on Y. Another way to see this is
that if we subtract the expectation of the variance of Y given Xi is fixed from the total variance of Y,
we are left with the contribution from Xi only. In this way we can see how influential the input Xi is
on the variance in our output Y. We can then normalise this contribution using the total variance of Y.
This normalised sensitivity measure is known as a main Sobol’ index [31]:

Si =
Vi[E∼i[Y|Xi]]

V[Y] . (4)

A high Sobol’ index means that if that input parameter is fixed there will be a significant reduction
in the variance of Y. In hazard analysis terms, if we can estimate this kind of input parameter to a high
degree of accuracy, then there will be less spread between the predicted best and worst case scenarios.

Many models are non-additive, which means that the effects individual input parameters have
on the variance of the output cannot be separated because interactions between individual inputs or
sets of inputs play an important role. Therefore, we construct higher order Sobol’ indices [12]:

Sp =
Vp[E∼p[Y|Xi]]

V[Y] . (5)

where p ⊂ {1, . . . , d} is a subset of indices corresponding to all the inputs that contribute to uncertainty
in the output. Full analysis of the effects of all model inputs and their respective interactions will
result in the sum of Sobol’ indices having 2d − 1 terms, which becomes computationally unmanageable
quickly. Homma and Saltelli [32] introduced the Total Sobol’ index to summarise these effects:
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STi = 1−
VX∼i [EX i [Y|X∼i]]

V[Y] , (6)

where VX∼i denotes the conditional variance taken over all variables except X i. This captures the
variance contribution of the i-th input parameter and all its interactions. In a perfectly additive model,
Si = STi . It has been argued that a good characterization of the input influences is given by the set of
first order and total Sobol’ indices [12].

As described previously, we took the 100 emulators, from a set of 1000 options, with the lowest
RMS error between the truth model output and the emulated output. This subset of 100 emulators was
selected to confirm how consistent the results of the sensitivity analysis were across different emulator
builds. We rebuilt the 100 emulators in this subset using all 120 truth samples in the training data
set, but fixing the correlation lengths, which control how rapidly the GPE spreads from the training
points, as those optimised by Dakota to the original selection of 80 points. In this way the emulators
were validated by the RMS process, but could be trained using all the available training data. We
sampled the retrained emulators to perform the variance-based decomposition and obtained main and
total Sobol’ indices. For each emulator, we took Latin hypercube samples, using Dakota’s sampling
functionality of 8, 80, 800, 8000, and 80, 000 points in the parameter space, as a convergence test for the
Sobol’ index results.

2.5. Alternative Output Metrics

In order to test the robustness of the variance-based decomposition conclusions, the above method
was repeated for two alternative metrics to represent the hazard potential of the LGW. The chosen
alternative metrics were the positive displaced volume of water in the wave and an approximation for
the run-up of the LGW on an opposite shore.

2.5.1. Volume

The displaced positive volume was chosen as a metric for the hazardousness of the LGW because
this value is used as an estimate for inundation volume in tsunami studies [33]. We calculated the
maximum volume of water displaced in the positive direction during the simulation for each wave in
the training dataset. Then we repeated the emulator construction and variance-based decomposition
approaches described in Sections 2.3 and 2.4.

2.5.2. Run-Up

The run-up was chosen as another output metric to incorporate some investigation of the
interaction of the LGW with an opposite shore into our analysis. Run-up is complex to directly
simulate; hence, we estimated the run-up based on the analytical relation [34]:

R = 2.831H0

(H0

d

) 1
4√

cot β, (7)

where H0 is the maximum wave height in the open ocean, d is the open ocean water depth, and β is
the slope angle of the beach. We assumed the wave generated in our SPH simulations propagated in
the same direction as the slide motion until it reached a shore where the run-up could be estimated.
We used the values of maximum wave height extracted from our SPH simulations as the values of H0.
This approximation for run-up is not dependent on the distance the wave propagates. Calculating
run-up by Equation (7), therefore, introduced just two additional input parameters to our sensitivity
analysis: the open ocean water depth, d, and the beach slope angle, β (shown in Figure 1). These
variables were also sampled 120 times using a Sobol’ sequence so that they could be included in the
emulation and VBD process. The bounds for d were chosen as 100 m and 500 m, and the bounds for
β were set as 0.5◦ and 8.0◦, in keeping with our Alaskan bay scale scenario. Once values for R had
been calculated for each of the 120 sets of ten input parameters, 1000 emulators were built and tested.
The 100 that performed best were used for the VBD analysis.
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2.6. Analysis of Parameter Interactions

As mentioned in Section 2.4, a variance-based decomposition can calculate both main and total
Sobol’ indices (Equations (4) and (6)). The total Sobol’ indices provide insight into interaction between
parameters, which could potentially augment the output or complicate its prediction. We therefore
investigated some of these parameter interactions.

The total Sobol’ indices do not indicate which parameters interact with each other, but simply the
amount each parameter contributes to the total variance through interactions. We took the parameters
that showed the highest interactions and compared them pairwise using the emulator and Dakota’s
Latin hypercube sampling routine. For each comparison, all other parameters were kept constant at
their mean values by default. The purpose of this analysis was to seek regimes in which parameters
showed interesting interactions and where those interactions have important implications for larger
scale LGWs.

3. Results

3.1. Wave Height Results

The results of the training data from the truth (SPH) model are shown in Figure 4 as scatter plots
between each input parameter and the value of the maximum surface elevation for that truth run.
If one input parameter had far and away the greatest influence on the variance of the output, a trend
would be clear in one of these panels. As Figure 4 shows, the landslide volume has a strong influence,
because a positive trend emerges between it and the wave height. The variance-based decomposition
and calculation of Sobol’ indices quantify trends like this.
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Figure 4. Scatter of simulated wave heights from all the truth model runs against each of the input
parameters. Plots where the input parameter has a strong influence on the simulated wave height
should show a trend, despite the variation in all the other input parameters across different truth runs.

The results of the VBD convergence test are shown in Figure 5. These results show the mean error
at each sample size, taken over the 100 emulators that had the lowest RMS errors between the 40 truth
and emulated test values. Satisfactory convergence towards zero error was achieved for the values of
the Sobol’ indices for all input parameters by taking 8000 emulator samples. Volume, depth, and slope
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angle showed fairly rapid convergence, while the rheological parameters (µ, τ, and N) showed the
slowest convergence.
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Figure 5. Convergence of values of main Sobol’ indices with increasing samples of the emulator (8, 80,
800, 8000, 80, 000). Reasonable convergence was achieved for indices corresponding to each parameter
input by 8000 samples.

The mean values of the main and total Sobol’ indices, calculated from the 100 emulators with the
lowest RMS values, are shown in Figure 6. Shown also are the differences between the main and total
indices, which demonstrate which input parameters strongly interact.
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Figure 6. Mean values of the main and total Sobol’ indices obtained by 80, 000 LHS samples of the 100
emulators with lowest RMS errors. Shown also are the differences between the main and total Sobol’
indices for each input parameter. Error bars show standard deviations about the mean. The input
parameters, as shown along the x axis, are: submergence depth, D(m); viscosity, µ(Pa s); yield stress,
τ(Pa); shear thinning exponent, N; density, ρ(kg m−3); slope angle, θ◦; boundary layer parameter,
µ
l (kg m−2 s−1); and volume, V(m−3).

3.2. Alternative Output Metric Results

We repeated the GPE and VBD method for the two additional output metrics: positive displaced
water volume and approximated run-up. The average Sobol’ indices calculated from 100 of the best
performing emulators in each case are shown in Figures 7 and 8. In addition to the 8 original input
parameters, the VBD using run-up as a metric includes the maximum water depth offshore (d) and the
slope angle of the inundated shore (β).
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Figure 7. Sobol’ indices calculated from positive displaced volume of waves. The input parameters, as
shown along the x axis, are: submergence depth, D(m); viscosity, µ(Pa s); yield stress, τ(Pa); shear
thinning exponent, N; density, ρ(kg m−3); slope angle, θ◦; boundary layer parameter, µ

l (kg m−2 s−1);
and volume, V(m−3).
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Figure 8. Sobol’ indices calculated from run-up, approximated using Equation (7). The input
parameters as shown along the x axis are: submergence depth, D(m); viscosity, µ(Pa s); yield stress,
τ(Pa); shear thinning exponent, N; density, ρ(kg m−3); slope angle, θ◦, boundary layer parameter;
µ
l (kg m−2 s−1); volume, V(m−3); inundated slope angle, β◦; and maximum offshore water depth,
d(m).

3.3. Parameter Interactions

For maximum wave height, the parameters which show the highest levels of interaction are V
and D, followed by τ and θ. A three way comparison between V, θ, and τ, revealed the results shown
in Figure 9.
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Figure 9. Volume, slope angle, and yield stress three way comparison. Yield stress is decreasing from
left to right. Volume and slope angle were sampled throughout their ranges, and all other parameters
were fixed at their mean values. (a) Maximum wave height predicted by the emulator for given volume
and slope angle and maximum yield stress. (b) Maximum wave height predicted by the emulator for
given volume and slope angle and minimum yield stress.

When the slide has high yield stress, the effect of volume dominates over slope angle in terms of
maximum wave height. This means that small volume slides do not produce large waves at any slope
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angle. However, as yield stress decreases, this unlocks the potential for small volume slides to produce
waves at high slope angles (Figure 9b).

Interaction between τ and µ
l was also revealed by our analysis. Figure 10 shows the wave heights

predicted by the emulator for values of τ and µ
l throughout their parameter space, with all other input

parameters set at their mean values. Low values of τ and µ
l would be expected to produce large waves.

We do see this, but fairly large waves are also produced at all values of τ for low µ
l and at all values of

µ
l for low τ. In other words, only one of these parameters needs to be small to produce larger waves.

This effect propagated through to the inundation stage.
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Figure 10. Wave height comparison for yield stress and boundary layer viscosity, with all other
parameters at mean values.

3.4. Discussion

For the maximum wave height output metric the parameters that contribute the most to the variance
of the output are the landslide volume, V, and the initial submergence depth, D. The bottom boundary
condition, µ

l , and slope angle, θ, show moderate contributions to variance. The high contributions of
volume and landslide submergence depth to variance in the simulated wave height (Figure 4) match
findings by other studies [5,6,35]. The importance of slope angle and bottom boundary condition follow
from the strong effects these parameters have on the initial acceleration of the landslide.

Interestingly, the yield stress, which might be expected to have a significant effect on initial
acceleration, is not seen to have a very high main Sobol’ index. This may be because the boundary
condition parameter that simulates the interaction between the base of the slide and the slope spans the
full range between no-slip to full-slip. Hence, the contribution of the boundary condition parameter
to variance in the output swamps the contributions of yield stress, viscosity, and shear thinning.
This observation indicates that we could model landslides with fewer rheological input parameters
and simply use the bottom boundary condition as a controlling parameter. However, this boundary
condition does not currently have precise physical constraints. It does span the full range of numerical
modelling choices, i.e., no-slip to full-slip, but as yet there is no way to constrain the value that it
should take in a given scenario. Deriving the appropriate boundary condition parameter via validation
experiments or from full-scale scenario analysis would be grounds for further study.

The Sobol’ indices for the positive displaced volume metric show the same ordering of input
parameters as they do for wave height, with V and D contributing the most to variance. For this
output metric the three secondary parameters (θ, mu

l , ρ) show greater differences in their main Sobol’
indices than they do for the wave height, with the slope angle contributing more to variance than the
other two. The similarity between the Sobol’ indices for wave height and positive displaced volume is
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encouraging, because it implies these represent two equivalent ways to assess the hazard posed by
a LGW.

Wave run-up, calculated using the analytical relation (7), adds two additional input parameters
that contribute to uncertainty. Our results (Figure 8) show that if run-up is used to diagnose the hazard
of an LGW, landslide volume is still the most influential parameter. The slope angle of the inundated
shore (β) is the second largest contributor to variance in the run-up. This implies that characterisation
of the target location is nearly as important as the source characterisation when assessing hazard.
Further investigation of the parameters that contribute to uncertainty in the run-up would therefore be
beneficial. For example, rather than using a run-up approximation, a hydrodynamic model capable of
capturing wave propagation, shoaling, and frictional effects during inundation would likely provide
more insights.

The parameter interactions we presented provide some interesting insight as to the effect of
rheology, specifically yield stress (τ), on the simulated wave characteristics. Although the main Sobol’
index of τ for each of the output metrics was small, its interactions in all three cases were substantial.
We first performed a three-way comparison of volume, slope angle, and yield stress. This showed that
as yield stress decreased it unlocked the potential of small volume landslides to cause waves at steep
slope angles. This is significant for hazard analysis because it is difficult to directly measure the yield
stress of a landslide, and therefore hard to include it in a predictive hazard model. Understanding a
parameter interaction like this allows for more complete understanding of the potential hazard posed
by a small volume landslide, for example, if it had a low yield stress.

The second parameter interaction we presented was between yield stress and the bottom boundary
condition. Our findings here are significant from a modelling perspective, because the interaction
showed that only one of these parameters had to be small for large waves to be generated by a landslide.
In other words, if either parameter is small, a lubricating bottom boundary layer will exist and the
landslide will accelerate faster. From a modelling perspective, this interaction implies that using just
one of these parameters should be sufficient to capture the essential physics, with a boundary layer
either being implicitly modelled by the bottom boundary condition or explicitly resulting from the slide
behaviour near the wall. However, both were included in this study because a physical constraint for
the bottom boundary condition is not available as yet, and observations suggest that landslides exhibit
yield stress even if the value of it is hard to determine. Although yield stress interacted with other
parameters strongly, the bottom boundary condition had a higher main Sobol’ index. This suggests a
future study on better simulating the interaction between slide and slope would be worthwhile.

4. Conclusions

Here we developed a Gaussian process emulator (GPE) of a Smooth Particle Hydrodynamics
(SPH) simulator to assess uncertainty in landslide generated waves (LGWs). The SPH simulator
enabled a detailed exploration of the source parameters that contribute to uncertainty in simulated
LGWs, because it was capable of modelling complex slide rheologies and a variable boundary condition
between the base of the slide and the underlying slope. We used a dataset of SPH simulations that
efficiently represented the input parameter space to train GPEs. These GPEs were then used to perform
a variance-based sensitivity analysis. We considered three separate output metrics to assess the hazard
posed by a given landslide scenario: the maximum wave height, maximum positive displaced volume
of the wave, and approximated run-up.

The variance-based sensitivity analysis revealed the input parameters to our SPH simulator that
were responsible for the most variance in the three output metrics. In the case of maximum wave
height and displaced volume, the volume of the landslide and the landslide submergence depth
contribute the most to the variance, closely followed by the slope angle and the viscosity of the
boundary layer. Current understanding of LGWs indicates landslide volume, submergence depth and
initial acceleration are the major controls on LGW hazard [4–6]. Our findings corroborate this, as the
slope angle and bottom boundary layer viscosity have a direct effect on the initial acceleration of the
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landslide. When wave run-up at the shore was used as the output metric, the slope angle of the shore
was a highly influential parameter, second after landslide volume. This implies that characteristics of
the target area of interest in a hazard analysis should be included along with source characteristics,
and both should be treated jointly in an uncertainty analysis.

Critically, the methodology shown here demonstrates promise for probabilistic hazard analyses
that rely on computationally costly truth models. By establishing the rankings of the contributions
of the input parameters to variance in the output metric, future effort and computational resources
can focus on reducing the uncertainty surrounding input parameters that make larger contributions.
Similarly, input parameters that consistently contribute very little to variance in the output could be
discounted from future analyses.

Our study reveals several areas for future work. Firstly, attempting to constrain the boundary
layer viscosity physically would reduce uncertainty in output predictions and may also preclude the
need for the use of complex rheological models. Secondly, considering parameters that characterise
the propagation and inundation phases of the LGW life cycle, such as propagation distance and the
slope angle of the inundated shore, would be advisable. The use of a run-up approximation revealed
that the slope of the shore was an important parameter, but there are many parameters and processes
that this run-up approximation does not cover. Such processes may include highly nonlinear 3D
and dispersive effects during propagation, wave shoaling, and friction as the wave travels over land.
A study employing hydrodynamic models capable of capturing processes like these and employing
a similar uncertainty quantification method would be valuable. Finally, extending this analysis to
include 3D LGW models could reveal some as-yet-unexplored influences of input parameters or
parameter interactions on the simulated LGW.
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