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ABSTRACT
Nitrogen deposition (Ndep) is considered a significant threat to plant diversity in
grassland ecosystems around the world. The evidence supporting this conclusion comes
from both observational and experimental research, with ‘‘space-for-time’’ substitution
surveys of pollutant gradients a significant portion of the former. However, estimates
of regression coefficients for Ndep impacts on species richness, derived with a focus
on causal inference, are hard to locate in the observational literature. Some influential
observational studies have presented estimates from univariate models, overlooking
the effects of omitted variable bias, and/or have used P-value-based stepwise variable
selection (PSVS) to infer impacts, a strategy known to be poorly suited to the accurate
estimation of regression coefficients. Broad-scale spatial autocorrelation has also
generally been unaccounted for. We re-examine two UK observational datasets that
have previously been used to investigate the relationship between Ndep and plant
species richness in acid grasslands, a much-researched habitat in this context. One of
these studies (Stevens et al., 2004, Science, 303: 1876–1879) estimated a large negative
impact of Ndep on richness through the use of PSVS; the other reported smaller impacts
(Maskell et al., 2010, Global Change Biology, 16: 671–679), but did not explicitly report
regression coefficients or partial effects, making the actual size of the estimated Ndep
impact difficult to assess. We reanalyse both datasets using a spatial Bayesian linear
model estimated using integrated nested Laplace approximation (INLA). Contrary to
previous results, we found similar-sized estimates of the Ndep impact on plant richness
between studies, both with andwithout bryophytes, albeit with some disagreement over
themost likely direction of this effect. Our analyses suggest that some previous estimates
of Ndep impacts on richness from space-for-time substitution studies are likely to
have been over-estimated, and that the evidence from observational studies could be
fragile when confronted with alternative model specifications, although further work is
required to investigate potentially nonlinear responses. Given the growing literature on
the use of observational data to estimate the impacts of pollutants on biodiversity, we
suggest that a greater focus on clearly reporting important outcomes with associated
uncertainty, the use of techniques to account for spatial autocorrelation, and a clearer
focus on the aims of a study, whether explanatory or predictive, are all required.
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INTRODUCTION
Nitrogen deposition (Ndep) is a significant threat to the plant diversity of various habitat
types, both in north-western Europe (UK National Ecosystem Assessment, 2011) and around
the world (Phoenix et al., 2006). The evidence for this position comes from a variety of
sources, including correlative analyses of observational data (e.g., Maskell et al., 2010),
typically conducted across relatively large areas as ‘‘space-for-time’’ gradient studies, and
small scale experiments (e.g., Van der Eerden et al., 1991), although the latter have also
frequently been pooled across larger areas through meta-analyses or other approaches to
evidence synthesis (Clark et al., 2007; Phoenix et al., 2012; Soons et al., 2017). Reviews of
Ndep impacts on plant biodiversity have typically drawn on all of this evidence (Bobbink et
al., 2010;UK National Ecosystem Assessment, 2011; Stevens et al., 2011c; RoTAP, 2012; Rowe
et al., 2017), in addition to other types of studies, such as Before-After surveys of historic
plots (e.g., Britton et al., 2009). Observational and experimental studies are therefore both
generally considered useful ways of understanding pollutant-driven biodiversity change in
terrestrial ecosystems.

Different inferential approaches are often considered complementary, with large-scale,
observational methods potentially allowing access to ‘‘treatment’’ effects across pre-existing
gradients, with levels of replication that would likely be challenging to resource via an
experimental route (but see Fraser et al., 2013). One cost of this approach is that the
effect of interest is likely to be crossed in various complex ways with numerous other
variables, including historic drivers for which data are likely to be inaccessible, leaving one
with a large choice of covariates that could potentially be included in a model, including
some which will be unknown, or suspected to be of importance but impossible to access.
Furthermore, spatially autocorrelated variables that are not captured by the covariates
included, or other processes causing spatial structure such as dispersal, may also need
to be accounted for to ensure accurate estimation of regression coefficients (Beale et al.,
2010; Crase et al., 2014). The ultimate purpose of a statistical model must also be taken
into account in making analytical decisions: does one primarily wish to make predictions,
or is the focus on unbiased effect estimation to develop causal understanding (Mac Nally,
2000; Stephens, Buskirk & Del Rio, 2007; Shmueli, 2010)? Although causal inference may
imply predictive success, models that are constructed using methods that solely seek to
maximise predictive accuracy will not necessarily capture causal processes accurately.
Even when explicitly aiming for causal explanations through regression modelling in
non-experimental situations, estimated coefficients may still only have a weak claim to
be viewed as causal effects (Gelman & Hill, 2007; Young, 2018). Statistical issues then, in
addition to domain-specific understanding, must also be at the forefront when attempting
to make statements about cause and effect from observational data (Rubin, 2004; Young,
2018).
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The work on Ndep presented here arose from a desire to use information from existing
studies to inform the analysis of new data through the use of informative priors in a
Bayesian framework (Lemoine, 2019). However, causality-focused estimates of regression
coefficients from observational studies of Ndep impacts on plant richness proved hard
to find in the current literature. For example, several studies have presented ‘‘headline’’
estimates from univariate models after multiple regression modelling (Stevens et al., 2004;
Maskell et al., 2010; Field et al., 2014), implying regression coefficient values for Ndep that
do not necessarily have any causal meaning, and/or have used P-value-based stepwise
variable selection (PSVS) to derive final models, a strategy long known to be poorly suited
to the accurate estimation of regression coefficients for inferential purposes (Greenland
& Neutra, 1980; Mac Nally, 2000; Whittingham et al., 2006; Faraway, 2014; Harrell, 2015;
Heinze, Wallisch & Dunkler, 2018). Re-analysis of existing studies with the primary aim of
developing models that focus on causal inference should therefore be valuable in exploring
the dependence of earlier conclusions on modelling choices. Fortunately, data focusing on
UK acid grasslands from two such studies (Stevens et al., 2004; Maskell et al., 2010) were
available for re-analysis; but note also that very similar work has been done across other
habitats (e.g., Maskell et al., 2010; Field et al., 2014), and across larger areas (e.g., Dupré et
al., 2010).

The main focus of the current work is on deriving estimates of the effect sizes of nitrogen
deposition on plant species richness, rather than on their statistical significance (Amrhein,
Greenland & McShane, 2019), whilst accounting for previously unmodelled broad-scale
spatial autocorrelation. The model forms investigated were specified a priori; in general
these were delimited by the full sets of covariates previously investigated by the original
studies, given that these all have good ecological reasons for inclusion. We do not make
the (unprovable) claim that our ‘‘full’’ models are fully correct with respect to reality,
merely that the inclusion of as many plausible ‘‘pre-treatment’’ covariates as possible is
likely to help avoid omitted variable bias, given that the ignorability assumption (i.e., all
confounders are measured) is more likely to be satisfied (Gelman & Hill, 2007; Young,
2018), and that even our worst case ratio of response data points to predictors meets rules
of thumb put forward by statisticians to help ensure that coefficients can be estimated
accurately (Harrell, 2015, p. 72; Heinze, Wallisch & Dunkler, 2018). In addition, we also
include a model for the Stevens et al. (2004) data that focuses on a reduced set of covariates
chosen for their expected similarity to the ecological impacts of the covariates used by
Maskell et al. (2010) for comparative purposes. Two additional models for the Maskell et
al. (2010) data were specified post hoc, due to a desire to investigate differences between
our results and those of the original paper.

Note that some covariates of interest (e.g., the topsoil variables pH, Al, C:N, and %N)
could themselves be influenced by Ndep, but will also have independent impacts on the
dependent variable (species richness). These types of partly intermediate variables are
sometimes distinguished from fully post-treatment variables as ‘‘proxy variables’’ (Angrist
& Pischke, 2009, pp. 64–68) whose inclusion is often better than their omission when a
causal interpretation is desired.We assume here that, due to their pre-treatment importance
for richness, adjusting for these covariates is more likely to result in accurate estimates of
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the effect of Ndep than not adjusting for them (Angrist & Pischke, 2009); indeed, in some
cases, their inclusion will be essential for avoiding bias (Rosenbaum, 1984). Ultimately, we
assume that these potential post-treatment (or proxy) variables are ‘‘plausible surrogate[s]
for . . . clearly relevant but unobserved pretreatment variable[s]’’ (Rosenbaum, 1984).

MATERIALS AND METHODS
Datasets
These are discussed chronologically by date of the field survey that created the original
dataset, rather than the date of publication of the analysis. The data analysed byMaskell et
al. (2010), ‘‘MEA10’’ hereafter, are described in that paper, and were originally collected as
a part of the 1998 UK Countryside Survey (UKCS; http://www.countrysidesurvey.org.uk).
Briefly, the data analysed by MEA10 were selected from the 1998 UKCS on the basis of
matches between plant communities in 2 × 2 m plots and particular National Vegetation
Classification syntaxa; for acid grasslands, the chosen plots had a best fit to the acid grassland
types U1-9 (Rodwell, 1992). For more details on the UKCS sampling strategy seeMaskell et
al. (2010) and Smart et al. (2003a); we only note here that the UKCS is a stratified sample
of so-called UK land classes (Firbank et al., 2003), with systematic random sampling within
strata. We take the opportunity here to clarify some points relating to the datasets used in
MEA10: the number of acid grassland plots used in analyses was 883, not 895 as reported;
total nitrogen deposition from the modelled dataset of Smith et al. (2000) was specifically
the estimated deposition over moorland, where moorland was defined according to the
Land Cover Map 1990 (Fuller et al., 1993), and so is generally considered a better match to
acid grassland than the grassland category of Smith et al. (2000); and, finally, the sulphur
dioxide deposition covariate was not absolute deposition for a particular year, but the
difference between the modelled values over moorland for 1998 and the modelled peak
in 1970 at a 5 × 5 km resolution (all LC Maskell & SM Smart, pers. comm., July 2019).
This approach attempts to ensure that the covariate effectively measures the recent and
substantial reduction in acidifying sulphur deposition across Britain.

Descriptions of the data collected by Stevens et al. (2004), ‘‘SEA04’’ hereafter, can be
found in that paper, and several others (e.g., Stevens et al., 2011b). The dataset reanalysed
here was archived by Stevens et al. (2011a; Ecological Archives deposit E092-128). Briefly,
SEA04 surveyed a random sample of 68 sites (after applying size and accessibility filters)
from a larger database of acid grasslands collated by British national conservation agencies
(note that the grasslands in this database may not be representative of the total national
habitat resource). The random sample was stratified across a nitrogen deposition gradient,
the gradient being again the deposition model of Smith et al. (2000), as for MEA10. Within
sites, five 2 × 2 m plots were recorded (i.e., n= 68× 5= 340) within a larger 100 ×
100 m area chosen to contain at least 50% of NVC type U4 (Festuca ovina—Agrostis
capillaris—Galium saxatile; (Rodwell, 1992) acid grassland (Stevens et al., 2004). Note,
however, that Stevens et al. (2011a) archived data for 320 of the plots from Stevens et al.
(2004), and it is this dataset that we reanalyse here.
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Data preparation
Within each dataset, some covariates were re-scaled to allow for more direct comparisons
between regression coefficients, and to allow for their more intuitive ecological
interpretation (Gelman & Hill, 2007). For example, altitude, scaled in metres in the original
datasets, was divided by 100 to produce regression coefficients that estimated the change
in richness per 100 m. This produces a range of 9.75 (0.00–9.75) for MEA10, comparable
to the other covariates, and a more ecologically-interpretable regression coefficient (see
Table 1 for all covariates used and their ranges). Although standardisation to unit variance
is also often recommended for improving the comparability of coefficients in regression
modelling (Gelman & Hill, 2007), it can also make direct comparisons between studies
more difficult (Baguley, 2009), and so we focus here on models estimated using our
rescaled covariates (where deemed necessary; see Table 1). MEA10 reported little difference
in conclusions with respect to the analysis of vascular plant richness only or vascular plant
plus bryophyte richness. SEA04 included bryophytes in their analyses. We focus primarily
on vascular plant richness responses only (given that they are more likely to be accurately
estimated; for example, MEA10 note that UKCS surveys only include ‘‘a selected range of
the more easily identifiable bryophytes’’), but we also report results from analyses including
bryophytes in Supplementary Information 2.

SEA04 considered a larger number of covariates than MEA10, therefore we present two
reanalyses of the SEA04 dataset here: model 1, using a smaller set of covariates chosen
to match those of MEA10 in terms of their likely ecological effects; and model 2, using a
larger set of covariates, matching those considered by SEA04 as closely as possible. Note
that the full set of covariates considered by SEA04 contains some that are perfect linear
combinations of each other (e.g., total acid deposition is given by SEA04 as total N plus
total S; likewise, total N is normally calculated as reduced N plus oxidised N), for this
reason, we only consider total N deposition and total S deposition as pollutant covariates
in our models (Table 1).

For SEA04 model 2, four of the available climate variables chosen to match the analysis
of Stevens et al. (2004) had very high pairwise linear correlations (all with r ≥ 0.78); these
variables (mean annual potential evapotranspiration (PET), mean annual daily maximum
and minimum temperatures, 1996–2006, all from the MARS dataset (see Stevens et al.,
2011b); and mean annual potential evapotranspiration from Tanguy et al. (2018)) were
combined using PCA and the first two principle components of this ordination used in
their place (Table 1). PET data were unavailable for 3 sites (15 plots) in SEA04 (all on
Lundy Island, England, 51◦10′57.82′′N, 4◦40′11.46′′W), and these values were imputed as
the mean PET value across the remainder of the SEA04 dataset prior to PCA. Imputation of
the missing values by predicting the missing values of PET using the other highly correlated
climate variables changed the imputed value of the missing data (all 15 plots had the same
values for the predictive climate variables), but did not result in any substantive change
to the final regression coefficients of the two climate principle components in the spatial
Bayesian models described in the next section, nor to those of other variables.

All other pairwise correlations in the SEA04 dataset were ≤ |0.57|, except for total Ndep
and total Sdep, which were also highly correlated (r = 0.83); a similar situation applied to
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Table 1 Summary information for all covariates used in our reanalyses. All covariates with their original spatial grain sizes, original ranges, and
re-scalings as used in the reanalyses ofMaskell et al. (2010) (MEA10) and Stevens et al. (2004) (SEA04) presented here.

Covariate Supporting refs or
sources

Original data
grain size

Original
range

Original
units

Rescaled
range where
relevant

Rescaled
units where
relevant

Relevant
reanalysis

Total Ndep estimated
over moorland

Maskell et al.
(2010) and Smith
et al. (2000)

5× 5 km 4.9–40.0 kg ha−1yr−1 – –

Change (1970 to
1998) from peak Sdep
estimated over moor-
land

Smith et al. (2000)
and L Maskell
(pers. comm.,
2019)

5× 5 km −5.36–0.00 1 kg S
ha−1yr−1

– –

Max. altitude Maskell et al.
(2010)

1× 1 km 0–975 m 0.00–9.75 100 m

Mean min. Jan. temp
(1961–1999)

Maskell et al.
(2010)

5× 5 km −8.16–0.08 ◦C – –

Mean max. Jul. temp
(1961–1999)

Maskell et al.
(2010)

5× 5 km 14.11–26.67 ◦C – –

Mean annual precipi-
tation (1961–1999)

Maskell et al.
(2010)

5× 5 km 554.33–
3305.80

mm 2.22–13.22 250 mm

Change in sheep
numbers

Maskell et al.
(2010)

2× 2 km −11.19–
88.47

1 sheep per
year (1969 to
2000)

−1.12–8.85 1 10 sheep
per year
(1969 to
2000)

MEA10

Mean annual precipi-
tation (1996–2006)

Stevens et al.
(2011a)

25× 25 km 604.9–1773.3 mm 0.42–7.09 250 mm

Mean annual daily
max. temp. (1996–
2006)

Stevens et al.
(2011a)

25× 25 km 11.5–14.6 ◦C – –

Mean annual daily
min. temp. (1996–
2006)

Stevens et al.
(2011a)

25× 25 km 4.2–8.1 ◦C – –

Topsoil aluminium Stevens et al.
(2011b)

Empirical
plot data

11.60–
1318.75

mg kg−1 dry
soil

0.06–6.59 200 mg kg−1

dry soil

SEA04:
Model 1

Total Sdep estimated
over grassland

Stevens et al. (2004)
and Smith et al.
(2000)

5× 5 km 3.20–13.44 kg ha−1yr−1 – –

Total Ndep estimated
over grassland

Stevens et al. (2004)
and Smith et al.
(2000)

5× 5 km 7.70–40.86 kg ha−1yr−1 – –

Topsoil pH Stevens et al. (2004)
and Stevens et al.
(2011b)

Empirical
plot data

3.69–5.37 pH unit 7.38–10.74 0.5 pH unit

Max. altitude Stevens et al. (2004)
and Stevens et al.
(2011b)

Empirical
plot data

15–500 m 0.15–5.00 100 m

Grazing intensity Stevens et al. (2004)
and Stevens et al.
(2011b)

Empirical
plot data

Coded as
low/medi-
um/high

– – –

SEA04:
Models 1
& 2

(continued on next page)
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Table 1 (continued)

Covariate Supporting refs or
sources

Original data
grain size

Original
range

Original
units

Rescaled
range where
relevant

Rescaled
units where
relevant

Relevant
reanalysis

Climate PC1 See methods See methods −4.90–3.43 – – –
Climate PC2 See methods See methods −1.47–1.20 – – –
C:N Stevens et al. (2004)

and Stevens et al.
(2011b)

Empirical
plot data

13.34–30.58 topsoil mass
ratio

– –

Slope Stevens et al. (2004)
and Stevens et al.
(2011b)

Empirical
plot data

0–60 ◦ 0–6 10◦

Soil %N Stevens et al. (2004)
and Stevens et al.
(2011b)

Empirical
plot data

0.12–1.57 topsoil %N – –

Soil moisture
deficit (SMD)

Stevens et al. (2004)
and Hough & Jones
(1997)

40× 40 km 1.66–48.94 mm 0.17–4.89 10 mm

SEA04:
Model 2
only

the MEA10 data, where total Ndep and Sdep change had a correlation of r =−0.70 (all
others were ≤ |0.68|). However, in both cases these pollutant variables were retained in
our models due to their intrinsic interest to our causal question. Collinearity should not
bias regression coefficient estimates, but can lead to higher variance (Harrell, 2015; Fox,
2016); variance inflation factors (VIFs) calculated for both datasets using standard Poisson
generalised linear mixed effects models (with a random intercept for each 1 kilometre
square containing plots; see below) indicated that all VIFs were below 5.4. The square-root
of this VIF is 2.3, below the range that Fox (2016, p. 343) indicates can present serious
issues for the precision with which regression coefficients are estimated.

Statistical models
As discussed by Blangiardo & Cameletti (2015), models for point-referenced data (i.e.,
those with measurements of some outcome across a set of specific locations, where the
locations are indexed by a two (or three) dimensional vector) are one type of spatial data
that can be modelled within a Bayesian framework (such point-referenced data are also
known as geostatistical data). Hierarchical approaches to regression modelling, where
unstructured random effects are incorporated within the model, are often implemented
using a Bayesian approach (Gelman & Hill, 2007; Blangiardo & Cameletti, 2015). Such
models can be extended to include structured random effects that allow analysts to account
for similarities based on temporal or spatial neighbourhoods. The integrated nested
Laplace approximation (INLA) method of approximate Bayesian inference is particularly
well-suited to this area of modelling given its speed and relative ease of implementation
(Blangiardo & Cameletti, 2015).

We modelled both datasets using hierarchical Poisson regressions in R-INLA (Rue,
Martino & Chopin, 2009; http://www.r-inla.org). All models included a set of covariates
and an additional random spatial field, to account for broad-scale spatial autocorrelation,
as independent variables. The spatial field was evaluated using the stochastic partial
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differential equation (SPDE) approach developed by Lindgren, Rue & Lindström (2011),
and was specified as a mesh constructed using a triangulation based on the 1× 1 kilometre
squares of the British national grid (EPSG identifier 27700). Our models also included
a random effect for the 1 kilometre squares containing the plots (as per Maskell et al.,
2010), because in both datasets there were instances of multiple plots being recorded
within a single square. Therefore the random spatial field models broader scale spatial
autocorrelation between squares, whilst the 1 km square random effect captures smaller
scale autocorrelation between plots within squares (Maskell et al., 2010). For the MEA10
dataset, such models had considerably lower values of the Deviance Information Criterion
(DIC) thanmodels omitting a random effect of 1 km square (1DIC= 54.6 or 31.8, without
and with bryophyte data respectively); for SEA04 models 1 and 2 the inclusion of the 1 km
square random effect was less important, but still generally improved the model (model 1:
1DIC = 1.3 or −3.7; model 2: 1DIC = 2.6 or 2.0; both without and with bryophyte data
respectively). The 1 km square random effect was therefore included for all models. The
same check was made on the inclusion of the random spatial field based on excluding this
term from a model including the 1 km square random effect. The results indicated that the
spatial random field was required in five out of six models (MEA10: 1DIC = 7.4 or 10.8,
without and with bryophyte data respectively; for SEA04: model 1: 1DIC = 7.4 or −1.1;
model 2:1DIC= 11.1 or 10.6; again, both without and with bryophyte data respectively).
The form of our final model can therefore be described as follows:

yij ∼Poisson(λij)

λij = exp

(
β0+

M∑
m=1

βmXmij+βjQj[i]+ωij

)
.

where yij is an observation of plant species richness in any plot/square combination, i
is a unique plot identifier, j is a unique 1 km square identifier, β0 is a global intercept,
βm is the regression coefficient for covariate Xm (m= 1,...,M ) and βj is the hierarchical
coefficient for each 1 km square, with βj ∼N (0,θ2) and Qj[i] indicates the association of
the ith observation with the jth square (Gelman & Hill, 2007). The ωij term represents an
additional spatial effect assumed to be a zero mean Matern Gaussian Markov random field
(GMRF) evaluated by the SPDE solution estimated over the specified triangulated mesh
(Supplementary Information 1; Fig. A1.7). A detailed overview of geostatistical models
estimated using SPDEs and GMRFs can be found in Blangiardo & Cameletti (2015). Priors
for all parameters were left at the INLA defaults (see http://www.r-inla.org).

RESULTS
The inclusion of both the 1 km square random effect and the spatial random field improved
almost all themodels of the effects ofNdeposition on plant species richness in acid grassland
explored here (as judged by DIC, see ‘‘Statistical models’’ above). The one model (SEA04
model 1 with bryophyte data) where 1DIC was negative when either the 1 km square
random effect or the spatial random field was dropped (indicating that the simplified
model was preferred) still required a spatial random effect at some scale: dropping both
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Table 2 Estimated regression coefficients for total nitrogen deposition across models. Exponentiated total nitrogen deposition regression coeffi-
cient medians, 2.5 and 97.5% quantiles for all models (all given to 2 decimal places). For example, for model MEA10, vascular plants only, a median
value of 1.01 implies that a 1% gain of species richness per kg ha−1 yr−1 of total N deposition is highly compatible with the data; however, the 2.5%
quantile value of 0.99 for this model also suggests that losses up to and around 1% are plausible (all values being conditional on model assumptions
and data accuracy).

Model, dependent richness variable Spatial error
structure

2.5%
quantile

Median 97.5%
quantile

Model
location

MEA10, vascular plants only Mesh+ square 0.99 1.01 1.03 Fig. 1A
MEA10, vascular plants and bryophytes Mesh+ square 0.99 1.00 1.02 SI2: Fig. A2.1
SEA04 model 1, vascular plants only Mesh+ square 0.98 0.99 1.00 Fig. 1B
SEA04 model 2, vascular plants only Mesh+ square 0.98 0.99 1.01 Fig. 1C
SEA04 model 1, vascular plants and bryophytes Mesh+ square 0.98 0.99 1.01 SI2: Fig. A2.2
SEA04 model 2, vascular plants and bryophytes Mesh+ square 0.98 0.99 1.01 SI2: Fig. A2.3
MEA10, vascular plants only Square only 0.97 0.98 1.00 SI3: Fig. A3.1
MEA10, vascular plants only Mesh only 0.98 0.99 1.01 SI3: Fig. A3.2

random effects gave a DIC value of 1732.7 compared to a value of 1712.7 for the full model;
the preferred model in this case was that with the spatial random field only (DIC= 1709.0).
Estimates of the overall random effects variance explained by the structured spatial field
varied between 87.4% (MEA10, vascular plants only) to 99.7% (SEA04 Model 1, vascular
plant and bryophyte richness combined) across the models including both random effects.
All estimated spatial random fields can be viewed in Supplementary Information 1.

The addition of an extra kilogram of total N deposition on plant species richness per
hectare per year was consistently amongst the smallest effect estimated by our models,
with low uncertainty in comparison to other covariates (Figs. 1A–1C; Supplementary
Information 2: Figs. A2.1, A2.2, A2.3). Exponentiating the fixed effects indicated that the
impact of increasing total N deposition is equivocal across these datasets andmodels (Table
2): six models estimated a drop of around 1% in species richness as the most likely impact
(Figs. 1B–1C; Supplementary Information 2: Figs. A2.2, A2.3; Supplementary Information
3: Figs. A3.1, A3.2), although two of these models (Supplementary Information 3) were
formulated post hoc and were not favoured as the best models for the dataset by their DIC
estimates. Two models, estimated from MEA10 using the DIC-favoured model, suggested
that an increase in species richness had more support (Fig. 1A; Supplementary Information
2: Fig. A2.1; Table 2). The reduced covariate set used for the SEA04 data (model 1) for
closer comparison to the covariate set used in the MEA10 analysis made no difference to
the estimated effect of N deposition calculated from the larger set of covariates from SEA04
(model 2; Figs. 1B–1C; Supplementary Information 2: Figs. A2.2, A2.3; Table 2). Figure 2
illustrates the estimated partial effect of N deposition (with other covariates set to zero)
on vascular plant species richness for two of our models (MEA10 and SEA04 model 1);
these demonstrate both the relatively small predicted mean impact on species richness, the
disagreement in impact direction between the datasets, and the uncertainty attached to
these predictions.

The results presented in SI3 were included as exploratory, post hoc, analyses after it was
found that our DIC-favoured models of the MEA10 dataset indicated that the most likely
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Figure 1 Regression coefficient plots. (A) Estimated regression coefficients for the reanalysis ofMaskell et al. (2010); (B) estimated regression coefficients for the reanal-
ysis of Stevens et al. (2004) using a reduced set of covariates chosen for their similar ecological status to the covariates used byMaskell et al. (2010), referred to in this pa-
per as SEA04 model 1; (C) estimated regression coefficients for the reanalysis of Stevens et al. (2004) using a set of covariates designed to match the original analysis of that
paper as closely as possible, referred to in this paper as SEA04 model 2. The dependent variable was vascular plant species richness in all cases. White circles represent the
posterior median estimate, black bars the posterior 50% credible interval, grey bars the posterior 95% credible interval. All covariates are described in Table 1.

Full-size DOI: 10.7717/peerj.9070/fig-1
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Figure 2 Total nitrogen deposition partial effect predictions. INLA model predictions of the partial ef-
fect of total nitrogen deposition (Ndep; kg ha−1 yr−1) on acid grassland species richness estimated for (A)
MEA10 and (B) SEA04 model 1; both the models used for these predictions used vascular plant richness
only as the dependent variable. Predictions were estimated for each 10th-percentile of the respective Ndep
ranges covered by each study using the linear combinations option of INLA. Linear combinations were es-
timated for each point in the Ndep range with other covariates set to zero, hence the low values of the pre-
dicted richnesses for different levels of total Ndep.

Full-size DOI: 10.7717/peerj.9070/fig-2

overall influence of Ndep on species richness was more likely to be positive, contrary to
the conclusions of Maskell et al. (2010). Our additional analyses (SI3), each with only one
of the spatial random effects used in the full model, did show a reversal of average sign,
with the analysis matching that of Maskell et al. (2010), i.e., using a 1 km square random
effect, indicating the strongest negative effect of N deposition on vascular plant richness
(a mean of a 2% loss of species richness per kg ha−1 yr−1 of total N deposition; Table 2;
Supplementary Information 3: Fig. A3.1). However, this model had a DIC value 7.4 units
higher than the favoured model.

DISCUSSION
Previous work on the estimation of the effects of nitrogen deposition on plant species
richness from space-for-time substitution studies is likely to have had a significant impact
on both science and policy (assuming that the number of citations received can be used as
an index to this). Therefore being clear about the reliability and accuracy of estimates from
observational work is important, not only for fundamental reasons of improving ecological
understanding and analysis, but also because policy decisions must be made concerning the
utility of funding work in this area relative to other ways of assessing environmental change
(although field experimental work may have issues of its own; Peters, 1991; Phoenix et al.,
2012). Clear and accurate estimates of the likely sizes of effects are invaluable for informing
future studies, for example, through power analyses, or the use of informative priors for
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Bayesian approaches. Our results suggest that only small effects of nitrogen deposition on
species richness may be detectable in these observational datasets.

The headline result of Stevens et al. (2004) reported ‘‘a reduction of one species per
4-m2 quadrat for every 2.5 kg N ha−1 yr−1 of chronic nitrogen deposition’’. An estimated
reduction in species richness of 23% (based on a change fromdeposition of 5 kgNha−1 yr−1

to 17 kg N ha−1 yr−1) was also highlighted as a key message using a regression coefficient
estimated from a model including only Ndep as a covariate. The estimate from our SEA04
model 1 implied a loss of around 1% of richness per kg N ha−1 yr−1; however, this ignores
the uncertainty associated with this particular coefficient estimate, which included an
estimate of no effect at the 97.5% percentile, and the larger uncertainty associated with
alternative model specifications (including ones that we have not explored here). Indeed,
our estimates from the larger, random-stratified national survey of Maskell et al. (2010)
suggested that a small average increase in richness along the total nitrogen deposition
gradient was more plausible under the favoured model for that dataset. Furthermore,
the partial effects calculated from our full models (Fig. 2) indicated that the average
effect on richness across Britain may only approach a difference of around one species
in either direction. This is also notable because previous commentaries (e.g., Tipping et
al., 2013) have suggested that differences in the apparent effect sizes of Ndep between the
two observational studies reanalysed here were likely due to study design, whereas our
work suggests that the differences are actually minimal, and that those found previously
may simply be artefacts of the different statistical modelling procedures adopted by the
original studies. The different median signs found in our analyses could also be due to
differences in the statistical populations targeted, namely the differential sampling of
grassland types, with the greater plant community coverage of the dataset of Maskell et al.
(2010) potentially covering more sites on the left of a net primary productivity/diversity
unimodal curve, resulting in an average increase in richness under fertilisation (see below
for more discussion of the potential impacts of non-linear responses and other issues on
the current work).

Our results should cause others to re-evaluate their approaches to observational data. For
example, Field et al. (2014) also used PSVS, and other P-value based selection techniques,
to formulate models in their space-for-time analyses of Ndep impacts for a number of
semi-natural habitats across Britain, as well as highlighting simple univariate relationships
through scatter plots. These authors, however, did note in their methods section that their
results should be ‘‘interpreted with caution’’, although this statement of uncertainty was
not clearly carried through to other parts of their paper, nor to other research. For example,
Payne et al. (2017) used data from both SEA04 and Field et al. (2014) to forecast the impacts
of Ndep on plant species richness under future nitrogen deposition scenarios. Ndep and its
polynomial transformations were the only covariates in these models. Payne et al. (2017)
noted in their online supplementary material (their Web Panel S1) that such forecasting
makes the strong assumption that covariances between variables remain the same at the
future time point (i.e., the distribution of nitrogen deposition amounts will vary with,
e.g., mean maximum July temperature in the same way in 2030 as it did when originally
modelled). However, they did not clearly acknowledge that the Ndep-only models in
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their forecasting exercise had received no validation in support of their status as the best
predictive (or explanatory, for that matter) models by the original studies or elsewhere.
Ndep may be a useful covariate for producing good predictive models of species richness
in certain habitats, but this should be demonstrated using measures of out-of-sample
predictive ability, and the resulting partial effects of Ndep in such models have no intrinsic
claim to be reliable estimates of its causal relationship with richness (cf. Payne et al., 2017).

These issues from the literature should not detract from the fact that there are also
several ways in which the work presented here could potentially be improved upon. Our
efforts are linear models (as for SEA04, MEA10, Field et al., 2014, among others), but
there is evidence that the response of species richness to Ndep may be better modelled as
unimodal (Tipping et al., 2013; Simkin et al., 2016; Clark et al., 2019). Simkin et al. (2016)
still, however, reported declines in the plant species richness of open habitats above 8.7 kg
N ha−1 yr−1, very similar to the 7.9 kg N ha−1 yr−1 richness decline threshold identified
for acid grassland by Tipping et al. (2013), suggesting that a large part of the gradient
studied by SEA04 and MEA10 may still be well-approximated by a linear relationship
(although we note that the approach of Tipping et al. (2013) also makes the assumption
that there are no omitted linear or non-linear variables correlated with Ndep that might
change their estimated univariate breakpoint relationship). Indeed, the linear component
of a non-linear trend is often considered the most policy-relevant summary by those who
routinely produce ecological indicators (e.g., Soldaat et al., 2017). Different approaches
to accounting for this likely non-linearity in multivariable models, such as the inclusion
of interactions or smoothers, could however be further explored, particularly given that
novel methods focused on causal inference that can account for these issues continue to be
developed (Dorie et al., 2019).

Other uncertainties relating to our conclusions pertain to the fact that the broad-scale
spatial field used here may be accounting for information that, if known, would change
the size of the Ndep impact regression coefficient. This could be in the form of additional
covariates, or more highly resolved estimates of the Ndep load that a location has actually
received. The Ndep estimates used here (and by the original studies) are resolved to a
grain size of 5 × 5 km, and this additional uncertainty could have attenuated our estimate
of the regression coefficient (the measurement error in explanatory variables problem;
e.g., see Fox, 2016), even if there is no systematic bias relating to the association of 5 × 5
km-estimated Ndep levels with particular types of vegetation. This argument is likely to
apply to many of the variables used here and in other studies, particularly given that many
are estimated from other modelling exercises at relatively large spatial grain sizes (Table 1).
Conversely, measurement error coupled with conditioning on statistical significance, as
happens through PSVS (e.g., Stevens et al., 2004; Field et al., 2014), is likely to result in the
overestimation of effects (Gelman & Carlin, 2014; Loken & Gelman, 2017). Whether or not
the potential for these biases is more serious for inference than the absence of covariates
that are unavailable, such as historic land management events (e.g., Rackham, 1986), is
difficult to say.

The new observational results presented here are in line with much of the experimental
literature on Ndep impacts. For example, Phoenix et al. (2012) reviewed a group of nine
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experiments conducted across the UK, with N treatments which had been running for
lengths of time between 7 and 22 years at the time of review. These studies aimed to
examine the impacts of ‘‘modest treatment doses and avoid[ed] single dose or solid form
applications’’ (Phoenix et al., 2012) in order to overcome previous criticisms relating to
(potentially unrealistic) very high experimental loadings. These nine studies reported
no effects of their experimental N treatments on higher plant richness (although these
conclusions of no effect were all based on thresholding P-values); two sites indicated
increases in richness using the calculated accumulated Ndep dose over the duration of
an experiment, although these cases were discounted by Phoenix et al. (2012) as being of
either minor ecological significance or transitory. Phoenix et al. (2012) put forward several
reasons why the results from this series of experiments may not reflect the true impact of
chronic Ndep on plant richness: for example, sensitive species might already have been
lost prior to the establishment of an experiment, and/or an experiment might not have
been running long enough for the impacts to have been fully realised. Of course, important
changes in community structure can also occur without species loss (Hillebrand et al.,
2018).

Longer running studies, such as the Park Grass experiment at Rothamsted, England
(1856 to the present day; Silvertown et al., 2006), avoid some of these criticisms. Although
the Park Grass plots that have received experimental N addition have received very high
doses, with annual N fertiliser doses starting at 48 kg N ha−1 yr−1 (Storkey et al., 2015),
control plots having received only atmospheric deposition may be a useful comparator for
some habitats in the wider landscape. Plot 3 of the Park Grass experiment, for example, has
in theory only ever received ambient Ndep (Storkey et al., 2015); Lawes & Gilbert (1880)
reported an average of around 48.5 plant species (including bryophytes) in the 0.5 acre
(∼2,000 m2) neutral grassland plot between 1862 and 1877; the average between 1939
and 1948 was 34 (Brenchley & Warington, 1958), indicating a decline over this period that
preceeded the local increase in Ndep (see the first figure of Storkey et al., 2015 for the local
Ndep trend at this location over the 20th century). Unfortunately, the local increase inNdep
at Rothamsted coincided with the decision to split the plots into different liming treatments
(Williams, 1974; Storkey et al., 2015) meaning that subsequent richness estimates cannot
be unambiguously compared to the earlier numbers (there is confounding of the Ndep
increase with the application of lime, and the area that could be directly compared shrinks
to a quarter of the original plot, introducing the need for species–area adjustments). Over
the period 1991–2012, however, survey data indicate that there may have been a very slight
recovery in richness in Plot 3 (although Storkey et al. present no statistics for this trend),
coinciding with a reduction in the N composition of the plot herbage and increases in
Simpson’s diversity index (Storkey et al., 2015).

Overall, then, experimental data using realistic applications of Ndep appear to support
our finding that richness is a relatively insensitivemetric of such impacts (see alsoHillebrand
et al., 2018). Finally, and to avoid any misunderstanding as to the thesis being presented in
this paper, we note that we are not stating that overall eutrophication from all sources (e.g.,
livestock, local fertiliser drift etc.) is unimportant for the conservation of plant biodiversity.
General signals of eutrophication in plant communities are widespread and beyond doubt
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(e.g., Smart et al., 2003b; Willi, Mountford & Sparks, 2005). We are forced to conclude,
however, that the contribution of Ndep to this phenomenon appears to be smaller, and
more uncertain, than many previous analyses of space-for-time Ndep gradients have
concluded (cf. Stevens et al., 2004; Field et al., 2014; Payne et al., 2017). It is possible that
this is due to the fact that earlier losses of species due to accumulated historic deposition
means that the remaining opportunity to detect effects in recent space-for-time studies is
limited; this suggests, however, that richness should not be used as an indicator of Ndep
impacts, and previous work taking this approach (particularly where highly significant
statistical concerns abound) should no longer be cited in support of general conclusions
regarding these impacts.

CONCLUSIONS
The evidence for large negative impacts of nitrogen deposition on plant species richness
put forward through analyses of observational data appears to have been overstated.
We estimate a possible decline in richness of around 1% per kg ha−1 yr−1 of total N
deposition from two spatially and temporally separated British space-for-time gradient
studies, considerably less than the estimates implied previously by described and/or plotted
relationships from primary studies (Stevens et al., 2004; Maskell et al., 2010). Moreover,
even this estimate appears uncertain, and our favoured model for the acid grassland data
ofMaskell et al. (2010) suggests that an average increase in richness of a similar magnitude
may be more likely. The previous lack of presented regression coefficients derived with
causal inference as their main focus, and of models that account for broad-scale spatial
autocorrelation, is important to note, because scientists wishing to use the estimated effects
of Ndep for the design of future studies, or for the construction of informative priors in
new analyses, may be misled as to the size of effect that is expected to be detectable in
datasets of this type. The various models presented here could be thought of as a small
section of the ‘‘multiverse’’ of potential approaches to these data, an approach that has
been put forward as an additional route to transparency and reproducibility in science,
and which can provide insights into the fragility or robustness of particular conclusions
(Steegen et al., 2016). As such this work is unlikely to be the last word on these datasets,
or in the general area of observational studies of nitrogen deposition impacts. We hope
that our re-analyses inspire further efforts to accurately extract the maximum available
knowledge from these valuable datasets, whether for explanatory or predictive purposes,
and that evidence synthesis in this area takes these uncertainties and methodological issues
into greater account going forwards.
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