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Abstract 

 

A review of loading arrangements for lateral buckling tests on pultruded glass fibre reinforced polymer (GFRP) 

beams is presented. It is suggested that the Gravity Load Simulator (GLS), used for similar tests on steel beams 

could also be used for lateral buckling tests on GFRP beams and, moreover, it could be analysed and designed 

using exact calculations rather than the iterative method used more than 50 years ago. This conclusion is 

demonstrated by re-analysing the old iteratively designed GLS. The exact analysis is then used to analyse and 

design a new GLS for lateral buckling tests on pultruded GFRP beams. The new GLS was fabricated from 

aluminium bar and plate and details of its overall dimensions and layout and the types of bearings used in its pin 

joints are described. Thereafter, the test arrangement and instrumentation used to demonstrate the GLS’s 

accuracy, i.e. maintaining the horizontal translation of the jack’s base as the GLS sways in the lateral buckling 

plane, is presented. It is shown that the GLS performs extremely well and its use in laboratory testing is 

illustrated.  
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Introduction 

 

Awareness of the advantages of fibre reinforced polymer (FRP) composites, e.g. low self-weight, durability etc., 

for infrastructure applications has been increasing amongst the civil and structural engineering community, 

especially since the advent of code-like design guidance such as [1 – 3]. These circumstances have led to 

increasing interest in static load testing of FRP structural members (beams, columns etc.) and sub-/full-scale 

structures in order to determine their stiffness and strength characteristics and demonstrate their compliance 

with these code-like documents. Although static load testing of steel, aluminium, concrete, and timber structural 

members has a long history, testing of glass and carbon fibre-reinforced polymer (GFRP) and (CFRP) structural 

components is much less extensive. In fact, compliance testing of FRP components has been (and in many cases 

still is) undertaken with modifications to reference standards developed for steel and aluminium materials. 

 

Unlike in aerospace, GFRP composites tend to dominate in infrastructure applications, because CFRP 

composites are much more expensive. Moreover, compliance for flexural design of GFRP composites requires 

satisfaction of serviceability rather than ultimate limit state criteria, i.e. deflections must not become excessive 

or buckling must not arise before the ultimate limit state of collapse is reached. In consequence, there has been 

considerable research on modelling the deformation and buckling behaviour of beams and columns taking 

account of the anisotropic nature of these materials. By contrast, the quantity of complementary test work, 

particularly for lateral buckling of GFRP beams, is small. This is largely due to the difficulty of ensuring that the 

load maintains its gravitational orientation as the beam cross-section transitions from a vertical displacement 

state to a combined vertical, horizontal and rotational displacement state. Nevertheless, a number of lateral 

buckling tests on three-point flexure of single-span GFRP beams and tip-loaded GFRP cantilevers have been 

reported [4 – 13] and will now be briefly reviewed. 

 

Amongst the earliest lateral buckling tests are those described in [4] and [5] on 1.5 m span pultruded GFRP I-

section beams subjected to a vertical point load at mid-span. The simply supported ends of the beams were 

stabilised to prevent lateral deflection, lateral bending, warping and twisting.  A transverse slider on top of a 

steel ball joint transmitted the load from the upper platten of the test machine to the beam’s top flange. This 
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system allowed the beam to translate laterally as well as rotate. The buckling load was considered to correspond 

to the value recorded by the test machine when the lateral displacement was 2 mm. 

 

Amongst the earliest cantilever lateral buckling tests on rectangular- and I-section pultruded GFRP beams are 

those reported in [6] and [7]. Figure 1 shows a rectangular-section cantilever buckled laterally by a tip load 

acting at the mid-depth of the free end [6]. The connection between the load hanger and the cantilever’s free end 

is a lightweight diamond-shaped self-equilibrating structure. The horizontal steel compression rod preserves the 

tensile steel wire’s diamond shape, so that end of the cantilever may rotate unhindered. A protractor attached to 

the end of the cantilever together with a theodolite (aligned with the unloaded axis of the cantilever) recorded 

the end rotation and horizontal translation. In [7] a modified version of the load arrangement was used in lateral 

buckling tests with the load at different heights above/below the mid-depth of the end cross-section. Other 

researchers (see [8] – [11]) have used variations of the aforementioned loading arrangements to carry out similar 

lateral buckling tests on mid-span point loaded simply supported I-section beams and tip loaded I- and channel-

section cantilevers. In the channel-section cantilever tests a simple slider attached to the free end was used to 

position the load at the shear centre of the cross-section. 

 

 

 

  Figure 1: Lateral buckling tests on a tip-loaded pultruded GFRP cantilever beams. 

 

A more sophisticated setup for conducting lateral buckling tests on one size of I-section and three sizes of 

channel-section GFRP beams with two sets of end conditions and a vertical point load applied at mid-span is 

presented in [12] and [13]. The setup uses two pulley wheels connected by a wire loop. The load hanger is 

supported from the smaller lower pulley and the beams pass through a rectangular cut-out in the larger pulley 

wheel, so that their centroidal axes or shear centres coincide with the pulley’s axis of rotation. 

 

Another system, which was investigated some time ago by the second Author, involves supporting the jack load 

on an air-bearing, so that it may follow the beam without imposing any restraints as its cross-section undergoes 

vertical, horizontal and rotational displacements (see Figure 2). This system has the advantage that it can 

maintain the load’s verticality in the presence of horizontal and rotational displacements even when the local 

plane of flexure and rotation is not normal to the beam’s initial plane of flexure. Hence, the system is able to 

function when the load is applied anywhere along the length of the beam. Nevertheless, supporting the jack load 

on an air-bearing has its limitations. The setup, shown in Figure 2, only allows the jack to apply a vertical 

compressive load. If a tensile vertical load is required, a modified base plate has to be used, i.e. the pressurised 

air has to act on the upper surface of the jack’s baseplate and this requires a cover plate with a central circular 

hole to accommodate the jack. The air pressure is reacted by the outer part of the plate. Furthermore, the size of 

the hole limits the jack’s horizontal movement, which is usually less than that of the compressive loading 

arrangement. A potentially more serious shortcoming with the air-bearing setup is that, for very high pressures, 

the cushion of air supporting the jack can become unstable, i.e. the pressurised air does not exit uniformly 

around the edge of the jack’s baseplate. The consequence is that the jack vibrates and applies a fluctuating rather 

than a static load to the beam. The system shown in Figure 2 was explored some years ago in the Engineering 

Department to carry out lateral buckling tests on GFRP cantilever beams.  However, it was abandoned in favour 

of an alternative loading system – the Gravity Load Simulator (GLS) – developed by Yarimci et al. [14] more 

than half a century ago.                

 

Laterally buckled tip-loaded 

rectangular cross-section 
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 Load hanger allowing both 

lateral translation and cross-

section rotation 

Slotted circular steel masses  
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Figure 2: Jack supported on an air bearing 

   

The GLS is based on Robert’s three-bar mechanism (see Figure 3) which allows the lowest apex of an inverted 

rigid isosceles triangle to follow a fixed-height horizontal path as the mechanism moves to the right (or left) in 

the sway plane. By attaching the jack to the lowest apex of the triangle, the system enables the beam to be 

subjected to gravitational (vertical) loading as its cross-section translates and rotates in the same plane. As with 

any loading mechanism, there are limitations (drawbacks) with the GLS. The size of the sway is limited by the 

size of the mechanism and the members of the mechanism have to be designed to support the required 

maximum jack load. Furthermore, as discussed later, the jack attached to the mechanism is only truly vertical in 

the initial symmetric (no side-sway) configuration and at the designed half-sway limits. Furthermore, the jack’s 

base deviates from the truly horizontal as the mechanism sways. However, in both instances, these deviations 

are very small, as demonstrated later.    

 

 
 

Figure 3: Schematic diagram of the sway translation of the GLS – based on Robert’s three-bar mechanism 

 

The design analysis of the sway mechanism presented by Yarimci et al. in [14] uses an iterative procedure to 

define each position of the mechanism as the jack load translates horizontally with the beam. In consequence, 

the possibility of using a simple closed-form analysis has been over-looked. Recently, the Authors have 

developed a closed-form exact analysis of the GLS mechanism. The subsequent sections of the paper describe 

the analysis and present comparisons with the design presented in [14]. They also tabulate general formulae for 

the forces in the members of the mechanism as it sways (see Figure 3). In addition, details are provided of the 

analysis and design of an aluminium GLS, which has been tested to determine how well it performs in practice. 

Finally, its use in conducting lateral buckling tests on a pultruded GFRP WF beam is illustrated. 

 

Exact Analysis of the GLS 
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Calculation of the GLS’s sway co-ordinates  
 

In any experimental setup involving the use of a GLS to apply loads to a beam, the initial configuration of the 

GLS is symmetric with the vertical jack load aligned with its axis of symmetry (see Figure 4). 

 

For the purposes of the analysis, it is convenient to locate the origin of co-ordinates x, y at the pin joint A. The 

other three pin joints are located at B, C and D. The trapezoidal shape CZDYX represents a rigid area (plate or 

frame) connected to the GLS at the hinges C and D. The base of the vertical jack is pinned to the vertical axis of 

symmetry of the rigid shape at E.  

 

The principal dimensions of the GLS are the lengths L of the two inclined arms AC and BD, the bases of which, 

A and D, are a distance H apart. The distance between the two upper hinges C and D is r. The other significant 

dimension is EZ of length d. In [14] d is defined as the load height. 

 

The GLS is a one-degree of freedom mechanism, which, for the convenience of analysis and design, may be 

defined as the x – co-ordinate of the pin joint at C or the angle α between the x-axis and the arm AC, 

respectively.   

 

α 
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Direction of jack load

Pin at base
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d

Z

 
 

Figure 4: Initial loading set up of a GLS  

 

 

In order to analyse the in-plane sway of the GLS, it is necessary to define the co-ordinates of the joints for an 

arbitrary transverse sway position (see Figure 5). In Figure 5 the dashed line extensions of the two arms AC and 

BD intersect at the point F, which is the centre of rotation. In order for the jack to be able to apply a vertical load 

to the beam under test it is necessary for its pinned base support at E to be vertically below the centre of rotation 

at F. In addition, the point E should remain at the same height above the level of the pins at A and B irrespective 

of the sway translation of the GLS. The extent to which the latter requirement is satisfied is explained after the 

exact analysis of the mechanism has been presented. 
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Figure 5: Arbitrary sway position of the GLS (Note: Line EF is inclined at a very small angle 
EF  to the 

vertical) 

 

If it is assumed that 
Cx  is the known single degree of freedom of the GLS, then it remains to establish how the 

other co-ordinates , ,C D Dy x y  are related to
Cx in order to completely determine the sway configuration of the 

GLS.  This is explained as follows, 
Cy  and Dy may be expressed as, 

2 2

C Cy L x        (1) 

 

 
22

D Dy L H x         (2) 

 

Now, from Eqs. (1) and (2), 
2L  may be expressed as, 

 

         
22 2 2 2

C C D DL x y H x y             (3) 

 

Furthermore, the square of the length of the line CD is, 

 

           
2 22

D C D Cr x x y y            (4) 

 

After some manipulation and substitution, the following expression for 
Dx  is obtained as, 

 

                                          
2 2

22 2 2 21

2
D C D C C

C

H r
x x r x x L x

H x

 
      

  
                          (5) 

 

In [14] Yarimci et al. did not progress their analysis any further. Instead, they solved Eq.(5) iteratively and in so 

doing did not identify the exact solution for 
Dx . However, after some further manipulation and substitution the 

following alternative equation is obtained:- 

 

                                          
2 2 2

22 2 21 2

2
D C D

C

H r L
x L x L H x

H x

  
     

  
                       (5a) 
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In order to simplify Eq.(5a) it is convenient to introduce the following substitutions, 

 

Ca H x           (6) 

 
2 2 22

2

H r L
b

 
         (7) 

 

and                   
2 2

Cc L x           (8) 

 

After substituting Eqs.(6) – (8) into Eq,(5a) and squaring, the following quadratic equation for 
Dx  is obtained:- 

 

                                                                        
2 0D Dex fx g                                                                        (9) 

 

where the coefficients of the variables
2

Dx  and
Dx are:- 

 

 2 2e a c         (10) 

 

 22f ab c H         (11) 

 

 2 2 2 2g b c H L         (12) 

Hence, the solution for 
Dx  may be defined explicitly as, 

 

2 4

2
D

f f eg
x

e

  
       (13) 

 

Therefore, once 
Cx  has been defined, 

Dx  can be determined from Eq.(13) and then 
Cy and Dy  may be 

determined from Eqs.(1) and (2) respectively, so that the spatial position of the GLS becomes fully defined.  

 

Calculation of the co-ordinates  ,F Fx y of the instantaneous centre of rotation 

 

The instantaneous centre F with co-ordinates  ,F Fx y  in Figure 5 is at the intersection of the dashed line 

extensions of the GLS’s arms, AC and BD. The equations of the lines AC and BD are respectively, 

 

C

C

y
y x

x
         (14) 

 

and                                 D

D

y
y x H

x H
 


      (15) 

 

Hence, substituting 
Fx into the right hand sides of Eqs. (14) and (15), and equating and re-arranging them gives 

the 
Fx co-ordinate as, 

 

                  
 

C D
F

C D C D

x y H
x

y H x x y


 
                  (16) 
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and Fy is then obtained from Eq.(14). 

 

Calculation of the load height d 

  

The load height d is determined from the co-ordinates  ,E Ex y of the jack’s pinned base at E and the equation 

of the line EZ which is the perpendicular bisector of the top member CD of length r of the GLS. 

 

The slope rk of the line CD is, 

 

D C
r

D C

y y
k

x x





       (17) 

 

Therefore, as the line EZ is the perpendicular bisector of the line CD its slope dk  is equal to the negative 

reciprocal of the slope rk of the line EZ. Furthermore, the perpendicular bisector EZ passes through the mid-

point of the line CD. Hence, the equation of the line EZ is, 

                        

             
2 2 2

C D D C C D C D
d

D C

y y x x x x x x
y x k x

y y

      
        

    
  (18) 

 

Now as point E lies on this line and is also on the vertical dashed line drawn from the instantaneous centre F, 

then E Fx x x   and Ey y , so that Eq.(18) becomes,            

 

2 2

C D C D
E d F

x x y y
y k x

  
   

 
                  (19) 

Hence, the square of the length EZ, i.e. 
2d , is, 

 

 
22 2 2 2

2 21
2 2 2 2

C D C D C D C D
F E F d F

D C

x x y y x x x x r
d x y x k x

y y

           
                 

         
  

            (20) 

so that, 

 

2

C D
F

D C

x xr
d x

y y

 
  

  
       (21) 

 

Calculation of the inclination of the jack load to the vertical   
  

Eq.(21) determines the load height d for the value of 
Fx , the x co-ordinate of the instantaneous centre, F. The 

significance of this is that when there is no side sway and the GLS’s configuration is symmetrical, as shown in 

Figure 4, the jack load is vertical. Likewise, when the side sway is equal to 
Fx , the jack’s pin joint at E is also 

directly below the instantaneous centre F, so that the jack is vertical. Only at these specific side-sway positions 

will the jack be vertical. At all other positions between the symmetrical position and 
Fx  the jack will be 

slightly out of vertical alignment and, as a result, will apply a small horizontal force to the beam. The magnitude 

of the horizontal force is determined from the slope of the jack and the jack’s load. 

 

The co-ordinates of the jack’s pinned base E and the instantaneous centre of rotation F are 

 ,E Ex y and  ,F Fx y , respectively. Furthermore, E lies on the perpendicular bisector of the GLS’s top width 

CD, i.e. the line of length r . Hence, the equation of the perpendicular bisector is, 
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2 2

C D C D
E d E

y y x x
y k x

  
   

 
                  (22) 

 

Now the distance between the base E and the centre of the top width CD is equal to d and 
2d may be expressed 

as, 

 

               

2 2

2

2 2

C D C D
E E

x x y y
d x y

    
      
   

                 (23) 

 

Hence, substituting Eq.(22) into Eq.(23) and taking the square root gives, 

 

          
22 1

C D
E

d

x x d
x

k


 


                    (24) 

 

                  

 

and substituting Eq.(24) into Eq.(22) and re-arranging gives, 

 

 

            
22 1

C D d
E

d

y y k d
y

k


 


     (25) 

 

Therefore, the inclination of the jack load to the vertical is, 

 

E F
EF

E F

x x

y y






                    (26) 

 

Checking the displacements of the GLS and the verticality of the jack 
 

In order to carry out these tasks, it is more convenient to change the single degree of freedom
Cx , i.e. the x -co-

ordinate of the pin joint C, to the angle  subtended by the GLS’s arm AC to the horizontal. The following 

procedure may be adopted. 

 

1. Choose the basic dimensions of the GLS, i.e. the lengths ,H L and r . 

 

2. Hence, evaluate the co-ordinates  ,C Cx y and  ,D Dx y of the pin joints C and D for the initial 

symmetrical configuration of the GLS. 

 

3. Then evaluate the initial value of the angle  for the initial configuration, i.e. 0  , as follows, 

 

1

0 cos
2

H r

L
   

  
 

      (27) 

 

4. Hence, evaluate the GLS’s minimum angle
min , i.e. when the left hand arm AC and the top width CD 

are collinear and the GLS defines a triangle with vertices at A, D and B. In this situation, the slopes of 

AC and CD are equal so that 
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         C D

C D

y y

x x
                       (28) 

 

5. The initial angle 
0  may then be reduced successively by n  small decrements   to 

min  where, 

 

  
 0 min

n

 



       (29) 

 

6. Calculate the co-ordinates  ,E Ex y of the jack’s pinned base E and the co-ordinates of the 

instantaneous centre  ,F Fx y as the angle 
0  reduces to 

min  using Eqs.(24) and (25). 

 

7. The vertical angle of the jack’s base is then determined from Eq.(26).  

 

Verification of the exact analysis by comparison with Yarimci et al.’s GLS design 
 

As mentioned earlier Yarimci et al. [14] used an iterative procedure to determine the displacements of the pin 

joints at C and D as the GLS sways. It is, therefore, convenient to re-analyse their mechanism to verify the 

Authors’ exact analysis. 

 

The basic dimensions of Yarimci et al’s GLS are given in Table 1. 

 

Table 1 
 

Dimensional and non-dimensional details of Yarimci et al’s [14] GLS 

 

GLS Components and Sways Component and Sway 

Dimensions 

[m] 

Dimensionless Components and 

Sways 

(w.r.t. H)  

Base Length (H) 3.3528 1.0000 

Arm Length (L) 1.63076 0.4864 

Top Width (r) 0.9906 0.2954 

Full-Sway (S) 0.4064 0.1212 

Half -Sway (S/2) 0.2032 0.0606 

Load Height (d) 0.93147 0.27781 

 

In order to verify the exact analysis and compare its performance with Yarimci et al’s. iteration-based design, it 

is convenient to non-dimensionalise these dimensions with respect to the base length H. 

 

The exact analysis has been carried out using the dimensionless values taken from Table 1. According to this 

analysis for the jack to be truly vertical, i.e. 0EF  , the value of the non-dimensional load height 

is 0.27799
d

H
 . Thus, the exact analysis gives a load height 0.07% lower than Yarimci et al’s value. 

 

The exact analysis has been used to evaluate the jack’s inclination to the vertical
EF  for both 

d

H
 values for a 

range of the dimensionless side-sways 0.5 0.6212Ex

H
  . The two sets of results are shown in Figure 6. It 

is evident that the Author’s results are more accurate than Yarimci et al’s results, obtained just over 50 years 

ago, since the curve of their graph intersects the abscissa at the half-sway point. 
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Figure 6: Inclination of the jack load to the vertical 
EF  versus side-sway Ex

H
 

 

It is also evident from Figure 6 that for side-sway values between the symmetric configuration 0.5Ex

H
  and 

the half side-sway value 0.5606Ex

H
  the jack’s inclination 

EF is positive. This implies that a small 

horizontal load will be applied to the component under test in the direction of sway in addition to the vertical 

component of the load. The maximum value of this horizontal load component is about 0.02% of the vertical 

load component. However, when the GLS sways beyond the half-side-sway point, Figure 6 shows that the jack’s 

inclination 
EF  changes to negative values. This implies that there is a horizontal load component, which tends 

to restrain the side-sway. Again, Figure 6 shows that at the full-sway position the horizontal load component 

amounts to 0.24% of the vertical load component. In most practical situations, this value may be disregarded. 

 

It is also of interest to consider the dimensionless vertical movement of the jack’s base, i.e. 
Ey

H
, as the GLS 

sways to the full extent. The results of these calculations are shown in Figure 7. 
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Figure 7: Vertical jack movement Ey

H
 versus side-sway Ex

H
 

 

It is evident that for most of the dimensionless sway range, i.e. 0.5 0.58Ex

H
  , the dimensionless vertical 

movement of the jack’s base, i.e. 0.00001Ey

H
 , which indicates that the base can be considered to be 

moving along a horizontal line. 

 

The aforementioned results in Figures 6 and 7 demonstrate that within the half-sway range the GLS is able to 

provide a very accurate simulation of true gravity loading on any structure or component to which it is 

connected. 

 

Calculation of the loads in the members of the GLS 

 

Once the geometry of the GLS is determined, the magnitudes of the internal forces in its members may be 

calculated. Figure 8 represents an arbitrary sway position of the GLS with its members labelled 1 – 5. 
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Figure 8: Diagram showing the member numbers and lengths of the GLS for an arbitrary sway angle   

 

 

Assuming that the vertical jack load at the joint E  is F and the forces in the members are ( 1 5)iF i   and 

their corresponding orientations to the horizontal are  1 5i i   , equilibrium equations may be set up for 

each of the joints E, C and D to determine the values of iF  and i . The relevant equations for these quantities 

are given in Table 2. 

 

Table 2 

Equations for the member forces and their orientations at joints E, C and D 

          of the GLS 

Pin 

Joint 

Mechanism’s Member Forces 

in Terms of the Vertical Jack 

Force F at Joint E 

Inclinations of  the 

Member Forces to the 

Horizontal 

 

E 

4
3

3 4 3 4

cos

cos sin sin cos

F
F



   



 

3 3
4

4

cos

cos

F
F




  

3tan C E

E C

y y

x x






 

4tan D E

D E

y y

x x






 

 

C 

5 5 3 3
1

1

cos cos

cos

F F
F

 




  

3 1 3 1
5 3

5 1 5 1

sin cos cos sin

sin cos cos sin
F F

   

   





 

1tan C

C

y

x
   

5tan D C

D C

y y

x x






 

 

D 

4 4 5 5
2

5

cos cos

cos

F F
F

 




  

3tan D

D

y

H x
 


 

 

 

As already mentioned, the GLS is a single-degree of freedom system in terms of the angle   (see Figure 8). 

Based on the dimensions of Yarimci’s GLS (see Table 1) in its initial symmetric position 0 43.6o   . The 

maximum sway of the GLS corresponds to collinearity of the members AC and CD for the sway direction to the 

right, shown in Figure 8. In this position 28.5o  . 

 

If it is assumed that the jack force 1F  , then the forces in the GLS’s pin-jointed members may be evaluated 

using the equations in Table 2. The variation of the member forces is shown in Figure 9 for an angular range of 

about 8o
. 
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Figure 9: Forces in the GLS’s members versus sway angle   

 

A new optimally designed GLS 

 

As is clear from Figure 4, there are three dimensions of the GLS that have to be determined before the structural 

aspects of the design may be progressed. They are the base width H  the arm lengths L  and the top width r . 

The base width H  was determined by the spacing of the holding down bolts on the strong floor of the test 

laboratory. It was decided to set 1219.2H mm  – a length equal to three times the bolt spacing. In order to 

allow the simulator to accommodate the anticipated lateral deformation of the beam(s) to be tested, it was 

decided to fix the arm lengths equal to 0.5 609.6H mm . The maximum side-sway, based on previous 

lateral buckling tests on tip-loaded cantilevers, was determined as150mm , so that the half side-sway 

dimension is 75mm . The third principal dimension, viz. the top width r , is less easy to define precisely. 

Therefore, it was decided to explore its effect on the functioning of the GLS; in particular its ability to ensure 

zero slope at the half side-sway position and to minimise the inclination of the jack load to the vertical 
EF  over 

the half side-sway range. Consequently, the GLS’s sway performance was determined by incrementing the 

dimensionless top width 
r

H
 from 0.2 to 0.4  in steps of 0.02  and determining the corresponding changes in 

the dimensionless load height 
d

H
. The results of these calculations are shown in Table 3. 
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Table 3 
 

Effect of top width on load height 

 

Dimensionless Top Width 

r
r

H
  

Dimensionless Load Height 

d
d

H
  

0.20 0.1864 

0.22 0.2010 

0.24 0.2168 

0.26 0.2341 

0.28 0.2530 

0.30 0.2739 

0.32 0.2972 

0.34 0.3234 

0.36 0.3528 

0.38 0.3862 

0.40 0.4240 

 

For the top three pairs of dimensionless top widths and load heights in Table 3 the inclinations of the jack load 

to the vertical 
EF  have been calculated for the dimensionless sway range Ex

H
. These values are plotted in 

Figure 10. As expected, all three curves intersect the abscissa at the half-sway value, thereby confirming that at 

this position 0EF   and the jack load is vertical. However, between the no-sway and half-sway locations, the 

values of 
EF  differ significantly, with the smallest values over the half-sway range corresponding to a 

dimensionless top-width of 0.24. This outcome, suggests that further reductions in the 
EF  values over the half-

sway range could arise from further refinement of the calculations. 

 

 

Figure 10: Jack load inclination to the vertical 
EF  versus side-sway 

Ex

H
 for three values of the dimensionless 

top-width of the GLS 

 

The calculations of the load-slopes over the half side-sway were repeated by incrementing the dimensionless 

top-widths by 0.002  between 0.22  and 0.24  in order to determine the optimum value of the top-width, i.e. 

the value giving the smallest variation in 
EF  over the half-sway range. Three values of the dimensionless top-
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widths, i.e. 0.23 , 0.234  and 0.238  together with their dimensionless load heights gave the smallest 

variation in 
EF over side-sway range. It is of interest to plot the change in Ey

H
 versus dimensionless side-

sway Ex

H
 for the three dimensionless top-width values. The changes are shown in Figure 11. It is evident that, in 

each case, the dimensionless vertical movement of the pin joint E, where the base of the jack is connected to the 

GLS, is represented by a horizontal straight line over almost the whole sway-range. However, if the load-height 

Ey

H
 is plotted to a finer scale, it is evident that the pin joint E exhibits very small vertical oscillations over the 

half-sway range and only towards the end of the sway-range does it exhibit larger reductions in Ey

H
. Even so, 

converting the dimensionless values in Figure 12 to real values, it is evident that over the full 150mm  sway-

range, the vertical movement of the jack’s pinned base at point E is less than 0.03mm , which is negligible 

from the practical standpoint. 

 

 

Figure 11: Coarse scale plot of vertical jack movement 
Ey

H
 versus side-sway 

Ex

H
 

 

 

Figure 12: Fine scale plot of vertical jack movement 
Ey

H
 versus side-sway 

Ex

H
 ( 0.234

r

H
 ) 
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Having determined the geometry of the optimal GLS design, the forces may be determined in each of its 

members for a unit jack load applied at the pin-joint E. The graphs of these forces are shown in Figure 13 for the 

range of sway angles. 

 

 
Figure 13: Member loads versus side-sway angle  (degrees) for a unit vertical load ( 1F  ) applied at the 

pin-joint E of the optimally designed GLS 

 

The maximum load that the new GLS was expected to accommodate when used to investigate the lateral 

buckling of pultruded GFRP beams was 60 kN. Hence, from Figure 13, the maximum dimensionless load ratio 

for each member of the GLS was determined and then multiplied by 60 kN to give the maximum load in each 

member. The values of the maximum load ratios and loads are given in Table 4. 

 

Table 4 

 

Maximum load ratios and loads for each member of the GLS 

 

Member Member Length 

 

[mm] 

Member Forces Maximum Ratio of 

Member Forces to 

Unit Jack Load 

Maximum Member 

Forces 

[kN] 

AC 609.6 F1 0.9108 54.6 

BD 609.6 F2 0.9108 54.6 

CD 285.2928 F5 0.8718 52.3 

CE 295.186 F3 -0.94 56.6 

DE 295.186 F4 -0.94 56.6 

Note: The rigid angle CED = 57.8o in Fig.8 

 

 

Design and fabrication details of the GLS 
 

In order to minimise the weight of the GLS and to ease its movement across the laboratory strong floor, it was 

decided to fabricate it from aluminium rather steel. This also suited the likely maximum loads that would be 

required when testing the lateral buckling responses of pultruded GFRP beams. 

 

As large diameter holes were needed to accommodate the pin bearings, aluminium with an ultimate tensile 

strength of 280 MPa was selected, which complies with BS 5083, and is typical of that used in road, rail and 

shipbuilding applications. The thicknesses of the aluminium flat bar and plate were 15.875 mm). 

 

In order to simplify the design and manufacture of members 3 – 5 (see Figure 8) they were substituted with a 

triangular plate. Likewise, each of the members 1 and 2 comprised of two aluminium flat plates with bearings at 

both ends. The central vertical member, with a large diameter hole near to its base and a smaller one at its upper 

end, also comprised of two aluminium flat plates, as shown in Figure 14. 
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Figure 14: Schematic diagram of the members of the GLS 

 

 

As each of the members 1 and 2 of the GLS comprised of two identical flat aluminium bars, they only had to 

support half of the load determined by the analysis (see Table 4). Thus, for the maximum design jack load of 60 

kN, each of the four bars only experiences a maximum load of 27.3 kN. Hence, the pin bearings at each end of 

the bars must have a basic load rating greater than 27.3 kN. On the other hand, the bearing at the lower end of 

the vertical member (corresponding to Point E in Figure 4) must have a load bearing capacity of 60 kN. 

 

The type of bearing used in the arrangements illustrated in Figure 14 are generally single-row radial ball 

bearings. However, such bearings tend to have relatively low load capacities. In order to be able to 

accommodate loads of 27 – 60 kN, large diameter and thickness single-row bearings are needed. Consequently, 

the widths or thicknesses of the aluminium bars would have to be increased, thereby increasing the overall 

weight of the GLS, which was unacceptable. Therefore, it was decided to use cylindrical roller bearings. Using 

the same diameters and thicknesses, the maximum load capacity of cylindrical roller bearings is typically 50% 

greater than single row radial ball bearings. 

 

RHP bearing types NU206 and NU208ETN were selected for the GLS. NU206 bearings were used at each end 

of the flat bars in Figure 14 (members 1 and 2) and a NU208ETN bearing was used at the lower end of the plate 

member, also shown in Figure 14. Details of the geometries and load capacities of the bearing are given in Table 

5 and their positions within the members 1 and 2 and the trapezoidal plate are shown in Figure 15. 

 

Table 5 

 

Geometries and load capacities of the NU206 and NU208ETN bearings 

 

Bearing Type Shaft Diameter 

[mm] 

Hole Diameter 

[mm] 

Thickness 

[mm] 

Load Rating 

[kN] 

NU206 30 62 16 33.1 

NU208ETN 40 80 18 63.5 

 

(a)   
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 (b) 

 

Figure 15: Schematic drawings of GLS components: (a) flat aluminium bars and (b) flat aluminium plate 

(dimensions in mm)  

 

Because high stresses were expected around the holes in the flat bars and the flat triangular plate, Finite Element 

(FE) analyses were carried on both components for the maximum load applied to the GLS to establish that the 

stresses would not cause failure. Safe in the knowledge that failure of the GLS was unlikely under maximum 

loading, its manufacture was started and completed in about three weeks. Two images of the finished GLS are 

shown in Figure 16. 

 

 
(a)                                                                              (b) 

 

Figure 16: The finished GLS: (a) front view and (b) bearing connection detail 

 

Checking the performance of the GLS 

 

In an ideal situation, the pin joint of the GLS (see joint E of Figure 4) should move along a straight horizontal 

trajectory as the GLS sways to the left or right over the half-sway range. In order to check this requirement for 

the as manufactured GLS, it was set up with the two bars connected to point E (shown in Figure 16(a)) hanging 

downwards. An LVDT was attached to one of the bars. Due to their significant self-weight, the bars maintain 
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their vertical orientation throughout the sway range. Likewise, the LVDT maintains its initial vertical orientation 

throughout the same range. Hence, the vertical movement (y-direction) of point E is monitored. 

 

In order to measure and record the horizontal movement (x-direction) of point E a wire-pull potentiometer 

(encoder) was used. One end of the string was connected to the centre of the pin joint at the top of one of the 

bars. The string then passed over a pulley and was kept taut by a deadweight. The test set up is shown In Figure 

17. 

 

 
 

Figure 17: Front elevation of the GLS showing the load bars downwards and the instrumentation for recording 

the horizontal and vertical displacement of the pin joint E as the mechanism sways 

 

The GLS was then swayed from its initial symmetrical zero sway position to its full-sway of 150 mm, during 

which the vertical and horizontal (y and x) displacements were recorded. The individual vertical and horizontal 

displacements are shown in Figure 18(a) for the full sway range. Figure 18(a) also shows the polynomial trend 

line for the data points. It is evident that the vertical movement of the pin joint (point E) is less than 0.015 mm. 

However, if the x,y data in Figure 18(a) are plotted for the same magnitude range, then, as shown in Figure 

18(b), the horizontal translation of the pin joint can be regarded as a straight line. 

 

 
(a)                                                                       (b) 

 

Figure 18: (a) Measured (x, y) data and polynomial trend line, (b) Normalised (x,y) data showing that the pin 

joint at point E effectively translates along a straight, horizontal line 

 

 

The measured x and y displacements of point E, normalised to the base length H of the GLS, are also compared 

to the theoretically predicted values in Figure 19. 
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Figure 19: Comparison of the measured polynomial best fit Ey

H
 versus sway displacement Ex

H
 of the pin joint 

E of the GLS mechanism 

 

Based on the good correlation between the actual and predicted displacements shown in Figure 19, the GLS 

mechanism was deemed suitable for investigating the lateral buckling response of pultruded GFRP beams. An 

image of it in use is shown in Figure 20. 

 

 

 
 

 

Figure 20: Image of the aluminium GLS mechanism used to conduct a lateral bucking tests on a simply 

supported pultruded GFRP WF beam 

 

Concluding Remarks 
 

Details of the exact analysis, design, manufacture and test verification of an aluminium GLS are presented. 

GLS’s are used in beam and/or frame lateral buckling tests to overcome lateral restraint due to fixed base jack 

loading. 

 

The exact GLS analysis is simpler to use than Yarimci et al’s [14] iterative analysis and, moreover, is more 

accurate. 

 

The exact analysis was used to develop an optimised GLS design. The load analysis of the GLS has enabled its 

member sizes and joint types/capacities to be determined. 

Pultruded 

GFRP beam 

Gravity load 

simulator 
Hydraulic jack 

Load cell Load frame 

Roller support 
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The designed GLS was manufactured using aluminium bar and plate and two types cylindrical roller bearings. 

Its performance was verified by conducting tests to measure the vertical and horizontal displacements of the pin 

joint E over the full-sway range. These tests confirmed the accuracy of the GLS for lateral buckling tests on 

pultruded GFRP beams. 
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