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Abstract—Trilateration and multilateration are important
location estimation techniques used in a diverse range of
networks and applications. The system of equations yielded
by multilateration can be reduced to simpler linear equations
which can be solved to arrive at a closed form analytic solution.
Exploiting this solution technique, we develop a novel and
unique analytical model for the localization error resulting from
trilateration. The analytical model can be used for the analysis of
the localization error in all applications wherever multilateration
is used for position estimation including internet of things,
wireless sensor networks and global navigation satellite system
thereby increasing reliability and quality of localization. As an
example, we use the analytical model to corroborate the fact that
localization error is a function of topology of reference positions
in addition to distance estimation errors. The analytical model
is verified using simulation experiments.

I. INTRODUCTION

Location information is important in many disciplines of
science and engineering. For example, in many applications
of Internet of things (IoT) and wireless sensor networks
(WSN), data are ascribed to the locations from where these are
gathered. For this to be possible, a randomly deployed sensor
or IoT node should be able to estimate its position [1], [2]
using a localization algorithm [3]. Location information can
also be used to improve quality of service and reliability in
communication systems. For example, spectrum sensing is an
important technique and enabling factor for dynamic spectrum
sharing in future 5G communications. Location estimation
of the primary user results in reliable spectrum sensing and
cognitive enhancement [4]. Likewise, location information can
be used for subcarrier and power allocation in a cognitive
radio network [5] for better and efficient communication.
Due to its significance, location awareness is included in the
six important cognitive abilities of a cognitive radio network
identified by Federal Communication Commission (FCC) [6].
In context aware and pervasive computing, context or location
information of a user is used for the adaption and provision
of computing services without explicit intervention of the user
[7]. In space and moon exploration missions, an unmanned
rover should be able to estimate its position so that it can
continue towards its desired destination [8].

Within the localization domain, trilateration and
multilateration are important techniques to estimate position
of an object given its distances to known positions. For
estimation of position in two dimensions, distances to three
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or more known locations are required. In the case of three
dimensional position estimation, distance estimates to four or
more locations with known position coordinates are required.
In the literature, the terms, trilateration and multilateration
have been used in various contexts. In our work, we use the
term trilateration when the distance estimates to only three
known positions in two dimensions or four known positions
in three dimensions are used. For estimation of position using
distance estimates to higher number of reference positions,
we use the term multilateration.

Main contribution of our work is the development of
an analytical model of trilateration localization error. Using
the multilateration solution, we give an exact, analytic and
deterministic model of localization error as a function of
distance estimation errors and positions of reference nodes.

e The model establishes the relationship between
localization error, the distance estimation errors
and the topology of the beacon nodes.

e Furthermore, it isolates the localization error from
the estimated position and decomposes it into various
components. This allows treatment of localization error
by using various mathematical techniques and tools.

o The analytical model can be used for all the applications
wherever multilateration and trilateration are used for the
estimation of position.

o The model can be used for the analysis and reduction of
trilateration localization error in these applications.

To the best of our knowledge, this paper is the first attempt
to present an exact, analytic and deterministic model of
trilateration localization error. It provides a novel avenue to
explore localization error and hence advances state of the art.
We perform a number of simulation experiments to test the
analytical model." The results verify our proposed model.

II. MULTILATERATION SOLUTION

In this section, we provide background information
and describe the multilateration solution approach that we
subsequently exploit to develop our analytical model of
trilateration localization error.

To explain position estimation and to investigate
multilateration solution, consider an unknown node with
actual position coordinates (z,,y,) having k neighbor beacon
nodes with position coordinates (z1,y1), (Z2,y2),s -+ (T, Yi)-
If estimated position of the unknown node is (z,y), then a set

IThe complete data set resulting from the simulation experiments is
available at IEEE DataPort at http://dx.doi.org/10.21227/9bk9-y425
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of the following equations of circles around the beacon nodes
can be obtained by using the position coordinates of the
beacon nodes as centers and the range estimates 71,79, ..., 7'k
between the unknown node and the beacon nodes as radii:

(z—x1)* + (y —)? i
(. —x2)? + (y — y2)? r3

) =|. (D
(2 — 21)2 + (y — )2 7

This can be manipulated, rearranged and written in matrix
form as below,
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As matrix A is not necessarily square, we cannot use
z = A"'R to determine z. However, solution to (2) can be
arrived at using either least squares approximation or by an
alternate algebraic method. For example, multiplying both
sides of (2) by AT, we get

ATAz = ATR, (5)
We can represent (5) in simplified form as below:
Hz =T, (6)

where H= ATA and T = ATR. It is to be noted that the
matrix A has an order of (k —1) x 2 if the unknown node has
k neighbor beacon nodes. Consequently, the order of matrix
AT is 2 x (k — 1). Hence, the order of the resultant matrix
H = ATA is 2 x 2. Order of the column matrix z is 2 x 1.
Hence matrices H and z are conformable for multiplication.
Similarly, the matrix T = ATR has an order of 2 x 1. In other
words, (6) represents a system of two linear equations which
can be solved simultaneously using conventional techniques.
We choose to localize an unknown node only when it has
three or more neighbor beacon nodes. Therefore, £k — 1 > 2
i.e. number of rows in matrix A is always equal to or greater
than the number of columns. This gives us an exact solution
if it exists and an approximate solution otherwise. The matrix
A is singular and the solution does not exist when all the
neighbor beacon nodes of an unknown node are collinear.

III. ANALYTICAL MODEL

Let the estimated distances between the unknown node
and the k£ neighbor beacon nodes be ri,7s,...,7; and the
actual distances be 741,742, ..., 7qk. The estimated distances
may have errors ey, es, ..., e;, due to factors, such as channel
impairments if the positions are estimated using signal strength
measurements. Therefore,
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Let us now consider a simple case where an unknown node
has three neighbor beacon nodes so that £ = 3 and for this
specific case (8) becomes:
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As explained in Section II, this can be solved using
conventional techniques. Let
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1
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From (10) and (11), the estimated value of the = coordinate
is given by
1
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This can be represented as
r=ux,+ F, - E, =z —x,, (14)

where x, is the x-coordinate of the actual position of the
unknown node and is given by

1
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and E, is the  component of the localization error:
1
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C, and (5 are constants because these depend upon known

fixed values. However, F/; and FE5 are variable and are

functions of distance estimation errors e1, eo and es.
Similarly, using (10) and (12), we get

y:ya+Ey = Ey:y_yav (25)

where y, is the y-coordinate of the actual position of the
unknown node and is given by

1
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k1, ko, k3 and k4 are localization constants whose values
depend upon the known fixed position coordinates of beacon
nodes. It is to be noted that the error variables e, e2 and e3
appear only in the numerators A; and As. There are no error
terms in the denominator A. It is further to be noted that the
distance estimation error e; can be either positive or negative.
As r; = rq; + €;, €; 1s positive when r; > rg; i.e. the estimated
distance is greater than the actual distance. Similarly, e; is
negative when r; < r,; i.e. the estimated distance is smaller
than the actual distance. Likewise, as is evident from (14) and
(25), E, and E, can be either positive or negative. The sign
gives direction of the z and y components of localization error.

The localization error e;, which is only an absolute value,
and is the distance between the actual (z,,y,) and estimated
(z,y) positions, can now be calculated as

1
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Likewise, the direction of the localization error e; can be
determined as in (33).

A. Applications of Analytical Model

The major advantage provided by the analytical model is
the isolation of localization error from the estimated location
and its decomposition in its various components. As a result,
the localization error and its components can be analyzed
and treated using various mathematical tools which constitutes



separate and future work. Below, we give only a few examples,
where we draw important results based upon analyses of the
localization error as given by the analytical model.

Corollary 1. The localization error is a function of both the
distance estimation errors and the geometry of placement or
topology of the reference nodes.

Proof. From (18) and (29), we infer that both E, and E, are
functions of not only the distance estimation errors reflected in
F4 and E» but also topology of the beacon nodes as reflected
in the constants ki, ko, k3 and k4. As these constants depend
upon the fixed and known positions of beacon nodes, the E,
and E, components of localization error also depend upon
the geometry of placement or topology of the beacon nodes.
Hence, the localization error is a function of both the distance
estimation errors and topology of reference nodes. O

We point out, it is already known that geometry of reference
positions with respect to unknown node affects localization
error and is described using geometric dilution of precision
(GDOP) [9] in navigation. Corollary 1 corroborates this fact.
This corroboration implies the correctness and usefulness
of the analytical model. The model can be used to show
that geometry of reference positions is significant only in
the presence of distance estimation errors. If there are no
distance estimation errors, there is no localization error and
the topology does not have any significance.

Corollary 2. The E, and E, components of localization error
are always unequal except when the neighbor beacon nodes
are collinear.

Proof. From (18) and (29),

E, — E, = (k1 — ks)Ey + (ka — k4)Eo. (34)

We observe that £, = I if By = Fy =0 or if k; = k3 and
ko = k4. However, E; = E5 = 0 only if there are no errors
in the distance estimations i.e. e; = e; = ez = 0. In this case,
E, = FE, =0 and the localization error does not exist. On
the other hand, when k1 = k3 and ko = k4, then under these
conditions y3 — ys = x5 — x3 and y; — y3 = x3 — x1 so that
the beacon nodes are collinear and position estimation using
either (5) or (6) may not be possible as the resultant matrix
A is singular. In other words, the x and y components of
localization error are always unequal except when the neighbor
beacon nodes are collinear. O

The analytical model of multilateration localization error
developed in this section can be applied for the analysis and
reduction of localization error in all engineering applications
wherever multilateration is used for position estimation.
This includes wireless networks, such as wireless local
area networks, wireless sensor networks, Internet of things,

the GNSS such as GPS and other miscellaneous industrial
applications discussed in Section I. For the purpose of
numerical verification of our results in the next section, we
consider trilateration in wireless networks such as short range
wireless sensor networks (WSN) and internet of things (IoT).
It is to note that the statistical models, such as those which
use regression analysis or mean square error, are used for
estimation and prediction of parameters. On the other hand,
the analytical models provide their closed form expressions.

IV. NUMERICAL RESULTS
A. Sensor Field

We conduct a number of simulation experiments to verify
the analytical model. We use a two dimensional square sensor
field of size 50 x 50 for this purpose. In the experiments, an
unknown node estimates its position with the help of three
neighbor beacon nodes using trilateration. We assume that the
unknown node can estimate its range r; from a beacon node
B; with distance estimation error e;.

B. Experiments

To verify the analytical model of localization error
developed in Section III, we run two types of simulation
experiments. The experiments use an unknown node Uj
positioned at (30,20) with three neighbor beacon nodes B,
B> and Bs. Five experiments of each of these two types
are carried out. We choose this simple configuration as the
multilateration solution and the model are analytical, closed
form and deterministic.

1) Type I Experiments: In the first set of experiments, the
positions of the three beacon nodes and hence their actual
distances from the unknown node remain fixed and these test
settings are recorded in Table I. In this way, the topology of the
nodes remains unchanged with each experiment in the first set.
However, we introduce a variable range estimation error with
each experiment so that the estimated distances are different
for each experiment in the first set of experiments. Summary
of results of first type of experiments is given in Table III.

2) Type Il Experiments: In the second set of the
experiments, we change the positions of nodes and hence
the resulting topology with each experiment but use the same
set of distance estimation errors and estimated distances. For
this purpose, we vary the positions of the beacon nodes such
that magnitudes of their distances from the unknown node
remain unchanged. In each experiment in the second set of
experiments, we pick new position of a beacon node along
the circumference of the circle with unknown node as the
center and its fixed distance from the beacon node as radius.
In this way, the topology of nodes changes with each new
experiment in the second set. However, the estimated distances
and the distance estimation errors remain unchanged. These

0; = tan™

1 —(x3 —x2){2rq1e1 + ef — 2r43e3 — eg} + (z3 — x1){2rq2e2 + eg — 2r43e3 — e%}

(y3 — y2){2rare1 + €3 — 2rqzes — 2} — (y3s — y1){2raze2 + €2 — 2razez — 2}

(33)
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Fig. 1. Localization constants when the positions of beacon nodes are fixed
with variable distance estimation errors.

TABLE I
POSITIONS AND DISTANCES OF BEACON NODES IN A FIXED TOPOLOGY.

Beacon Position Actual Distance
Node from Unknown Node
By (30,34) 14.00
B (40,15) 11.18
B3 (16, 8) 18.44
TABLE II

FIXED DISTANCES OF BEACON NODES IN A VARIABLE TOPOLOGY.

Beacon Actual Distance Distance Estimated
Node from Unknown Node  Estimation Error Distance
B 14.00 0.13 14.13
B 11.18 —0.40 10.79
Bs 18.44 —1.50 16.94

test settings are given in Table II. Summary of results of
second type of experiments is given in Table IV.

C. Localization Constants

Localization constants are plotted in Fig. 1 when distance
estimation errors are varied while the positions and hence
topology of the beacon nodes is fixed. These constants are
again plotted in Fig. 2 when the positions of beacon nodes are
changed while the distance estimation errors are kept constant.
It is evident from Fig. 1 and Fig. 2 that the localization
constants remain the same for a given topology of beacon
nodes and only vary with positions and hence topology of the
beacon nodes. Moreover, these are unaffected by the distance
estimation errors. In other words, any change in topology of
beacon nodes is reflected by a change in localization constants.
Furthermore, the localization constants are only functions of
topology of beacon nodes and are independent of distance
estimation errors.
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Fig. 2. Localization constants when the positions of beacon nodes are varied
with fixed distance estimation errors.
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Fig. 3. Localization error e; when the positions of beacon nodes are fixed
with variable distance estimation errors.
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Fig. 4. Localization error e; when the positions of beacon nodes are varied
while keeping fixed distance estimation errors.

D. Localization Error (e;)

The localization error e; is plotted against standard deviation
in distance estimation errors in Fig. 3 when the positions of



TABLE III
POSITIONS OF BEACON NODES ARE FIXED BUT DISTANCE ESTIMATION ERRORS ARE VARIABLE.

Exp. Di.stan.ce Estimated Experimental .
No. Estimation Distances Results Analytical Results Common Results
Error

el €2 €3 L T2 T3 (z,y) k1 ko ks ka E; Es E, Ey, ¢

1 0.13 —0.40 —1.50 14.13 10.79 16.94  (29.28,19.30) 0.0067 —0.0247 —0.0228 0.0133  56.56 44.25 —0.72 —0.70 1.00
2 —4.05 —0.66 2.09 9.95 10.52 20.53  (31.18,22.80) 0.0067 —0.0247 —0.0228 0.0133 —178.53 —95.93 1.18 2.80 3.04
3 —3.84 —4.22 —1.31 10.16 6.96 17.13  (30.43,20.66) 0.0067 —0.0247 —0.0228 0.0133 —46.27 —30.03 0.43 0.66 0.79
4 —4.66 —3.08 —0.29 9.34 8.10 18.15 (30.55,21.59) 0.0067 —0.0247 —0.0228 0.0133 —98.35 —48.88 0.55 1.59 1.69
5 —3.55 218 1.62 10.4513.36 20.06 (29.23,23.28) 0.0067 —0.0247 —0.0228 0.0133 —149.07 —8.80 —0.77 3.28 3.37

TABLE IV
POSITIONS OF BEACON NODES ARE VARIABLE BUT DISTANCE ESTIMATION ERRORS ARE FIXED.

I;:\?(E' Be;z(;ﬁgl?de Ex%eerilﬁet:;tal Analytical Results Common Results
B1 B Bs (z,y) k1 ko k3 kg E, Es Ey E, ¢
1 (30.00,34.00) (40.00,15.00) (16.00,8.00) (29.28,19.30) 0.0067 —0.0247 —0.0228 0.0133 56.56 44.25 —0.72 —0.70 1.00
2 (43.82,22.26) (39.83,14.67) (24.39,2.44) (28.65,19.90) 0.0895 —0.1450 —0.1129 0.1421 56.56 44.25 —1.35 —0.10 1.36
3 (16.41,16.63) (21.78,27.58) (47.49,25.83)  (30.87,20.14) 0.0030 0.0158 0.0442 —0.0534 56.56 44.25 0.87 0.14 0.88
4 (43.27,24.46) (36.11,10.63) (14.98,30.69) (29.01,20.07) —0.0230 0.0071 —0.0242 0.0325 56.56 44.25 —0.99 0.07 0.99
5 (17.14,14.48) (26.38,30.58) (30.23,1.56)  (31.62,19.45) 0.0439 —0.0196 0.0058 —0.0198 56.56 44.25 1.62 —0.55 1.71

beacon nodes are kept fixed and it is plotted against standard
deviation in localization constants in Fig. 4 when the distance
estimation errors are fixed. The change in localization error
with each iteration in the former case is contributed by the
distance estimation errors alone and by the change in topology
of reference nodes alone in the latter case. Therefore, change
in the localization error from one iteration to the next is
a function of both the distance estimation errors and the
topology of the reference nodes as is also concluded using
the analytical model in Section III.

V. CONCLUSION

We have presented an accurate analytical model for
trilateration error. The model isolates the localization error
from the estimated position and decomposes it into various
components. This allows treatment of localization error
by using various mathematical techniques. Therefore, the
analytical model can be used for the investigation and analysis
of localization error due to trilateration with inaccurate range
estimates. As an example application, we have used the
analytical model to corroborate the known fact that topology of
beacon nodes along with distance estimation errors affects and
contributes to the localization error. Therefore, the localization
error varies with change in topology of beacon nodes even
when the distance estimation errors remain unchanged. The
proposed model can be used for the analysis and reduction of
localization error in a wide range of engineering applications.
All our analytical results have been verified using simulation.
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