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• High purity okadaic acid produced in-
house from P. lima by simple reversed-
phase flash chromatography.

• UV/TiO2 applied to the degradation of
the marine toxin, okadaic acid.

• Okadaic acid was degraded by UV/TiO2

in 30 min in seawater.
• Transformation products were charac-
terized by UPLC-QTOF-MSE.

• Reduction in toxicity after UV/TiO2 was
demonstrated by protein phosphatase
inhibition assay.
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The consumption of contaminated shellfish with marine toxins causes adverse socioeconomical, environmental
and health impacts. Themarine toxin okadaic acid (OA) provokes diarrhetic shellfish poisoning (DSP) syndrome
characterized by severe gastrointestinal symptoms. Therefore, there is increasing interest in removing these
toxins from the marine environment to protect shellfish harvesting sites. Photocatalysis is proposed as an effi-
cient method to detoxify the marine environment.
In this study, Prorocentrum lima was used to produce high purity DSP toxins, in particular OA, for degradation
studies. The profiling, characterization and quantification of DSP toxins in the culture of P. lima were achieved
by ultrahigh performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry
(UPLC-QTOF-MSE) for accurate-mass full spectrum acquisition data. The effectiveness of UV/TiO2 system to de-
grade OA in seawater was assessed in lab-scale experiments and identification of transformation products was
proposed based on the data obtained during analysis by UPLC-QTOF-MSE. The detoxification potential of the
UV/TiO2 system was investigated using the phosphatase inhibition assay.
Sufficient amount of high-purityOA (25mg, N90% purity)was produced in-house for use in photocatalysis exper-
iments by simple reversed-phase flash chromatography. Complete degradation of OA was observed in seawater
after 30 min and 7.5 min in deionized water. The rate constants fitted with the pseudo-first order kinetic model
(R2 N 0.96). High-resolution mass spectrometry analysis of the photocatalyzed OA allowed tentative identifica-
tion of four transformation products. Detoxificationwas achieved in parallelwith the degradation of OA in deion-
ized water and artificial ocean water (≤20 min) but not for seawater. Overall, results suggest that UV/TiO2

photocatalysis can be an effective approach for degrading OA and their TPs in the marine environment.
To the best of our knowledge, this is the first report on the use of photocatalysis to degrademarine toxins and its
promising potential to protect shellfish harvesting sites.
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1. Introduction
Marine toxins are produced by natural phytoplankton and can be ac-
cumulated by filter feeding shellfish, meaning that they may enter the
food chain and cause toxic episodes in human health. Marine toxins
are responsible for N60,000 intoxications per year, with overall mortal-
ity of around 1.5% (Kantiani et al., 2010). Based on their resultant illness,
marine toxins can be classified in diarrheic shellfish poisoning (DSP)
toxins, paralytic shellfish poisoning (PSP) toxins, amnesic shellfish poi-
soning (ASP) toxic, neurotoxic shellfish poisoning (NSP) toxins, cigua-
tera fish poisoning (CFP) and clupeotoxin fish poisoning (CLP) toxins
(Farabegoli et al., 2018; Gerssen et al., 2010).

The dinoflagellates Prorocentrum (P. fortii, P. lima, P. concavum and
P. minimum) and Dinophysis (D. fortii, D. acuminate, D. acuta) are the
main producers of DSP toxins (Aquino-Cruz et al., 2018; Bravo et al.,
2001; Lee et al., 2016; Luo et al., 2017; Nishimura et al., 2019; Pan
et al., 2017; Uchida et al., 2018). Okadaic acid (OA) and dinophysistoxin
1 and 2 (DTX1, DTX2) are the original DSP toxins. Later on,DTX3 and the
7-O-acylated derivatives of OA and DTX were included as DSP toxins.
These analogues are not produced by the dinoflagellates but they are
formed in the bivalves (Rossignoli et al., 2011; Suzuki et al., 1999;
Vale, 2010). OA has also been widely used in biochemistry research be-
cause it is an effective specific inhibitor of Ser/Thr protein phosphatase
and consequently, cause cell cycle alterations, apoptosis and cytoskele-
ton disruption. In addition, OA exhibits tumour promoting activity,
embryotoxicity and neurotoxicity (Cohen et al., 1990; Dounay and
Forsyth, 2002; Munday, 2013).

In order to minimize economical loss and to protect human health
caused by annual DSP outbreaks, monitoring systems have been imple-
mented by local governments. They include the analysis of toxin con-
tent in shellfish, the concentration/presence of toxic algae in the water
body and the evaluation of hydrographic/meteorological data
(Anderson et al., 2019; Campbell et al., 2011; Shen et al., 2012). A cur-
rent European regulatory limit of 160 μg of OA equivalents per kg of ed-
ible shellfish must not be exceed and this limit is currently accepted in
several other countries (e.g.: USA, China, Brazil) (EU, 2002/225/EC). Liq-
uid chromatography coupled with mass spectrometry detection (LC-
MS) is the technique of choice for the analysis of DSP at trace levels in
complex matrices (Dell'Aversano and Tartaglione, 2017). Although
major advances have been made in the development of multi-residue
analytical methods, unavailability of suitable standards, the high cost
of the commercial standards, the presence of several toxin analogues
and unknown toxic compounds are an additional challenge.

OA has been detected in nearshore seawater across the globe at con-
centrations in the ng/L range (Bosch-Orea et al., 2017; Fux et al., 2009;
Hattenrath-Lehmann et al., 2018; He et al., 2020; Reguera et al., 2014).
Even high concentrations of OA up to 1.78 μg/L in seawater and up to
560 μg/g in particulate matter were reported (Bosch-Orea et al., 2017).
OA proved to be very stable in seawater, interstitial water and sediment
(Blanco et al., 2018; Pizarro et al., 2009), thereby seriously threatening
aquaculture industry and human health. Because of this, it was hypoth-
esized that high concentrations of OA in seawater would indicate recent
or past blooms that could last even a year (Blanco et al., 2018).

There has been an increased interest in finding suitable techniques
to remove these toxins from the marine environment. Advanced oxida-
tion processes (AOPs) are widely used to degrade organic pollutants
through free radicals as reviewed by (Ibhadon and Fitzpatrick, 2013;
Matafonova and Batoev, 2018). Of different AOPs, heterogeneous
photocatalysis with TiO2 has been demonstrated to be an efficient
method to remove freshwater toxins (e.g. cyanotoxins) (Antoniou
et al., 2018; Liu et al., 2009; Pestana et al., 2015; Pinho et al., 2015).
Major improvements have overcome the barriers to the application of
this technology to complex matrices. For example, the feasibility of
UV-LEDs as an alternative low energy source in complex environments
(Schneider et al., 2019), the use of solar light activated materials to re-
duce application costs (Kinley et al., 2018), the addition of oxidants to
reduce energy requirements (Antoniou et al., 2018) or the form of the
catalyticmaterial to recover it after treatment (e.g.fixed to afilm, coated
surfaces) (Kinley et al., 2018; Pestana et al., 2015; Shephard et al., 2002).
However, this is still an understudied area regarding marine toxins
(Djaoued et al., 2008; Khan et al., 2010).

This work aimed i) to produce cost effective amounts of high-purity
DSP toxins from P. lima for photocatalysis experiments; ii) to evaluate
the performance of a UV/TiO2 system to degrade/mineralize OA in sea-
water; iii) to identify possible transformation products (TPs) generated
during photocatalysis; iv) to evaluate the detoxification efficiency of
UV/TiO2 system for OA in seawater.
2. Materials and methods

2.1. Chemicals and reagents

LC-MS grade acetonitrile, methanol and formic acid were purchased
from Sigma-Aldrich (Irvine, UK). Deionized water (DW) was provided
by a Milli-Q system (Millipore, Watford, UK). TiO2-P25 from Degussa
(Germany) was used as catalyst. It is a mixed phase containing ≈90%
anatase and ≈10% rutile with a specific surface area of 50 m2/g. OA
(4.2 μg in 0.5 mL ampoule) and DTX1 (4.2 μg in 0.5 mL ampoule) stan-
dards for confirmation purposes were obtained from National Research
Council Canada (Ontario, Canada) (Fig. S1). Instant ocean salt was ob-
tained from Aquarium systems (France). SNAP C18 120 g cartridges
were bought from Biotage (Hengoed, UK). Cellulose acetate centrifuge
tube filters (0.45 μm), p-nitrophenyl phosphate (pNPP) and the protein
phosphatase-1 catalytic subunit (PP1c) from rabbit (specific activity
5000–15,000 U/mg protein) were supplied by Sigma-Aldrich (Irvine,
UK).
2.2. Extraction and purification of DSP compounds from P. lima

P. lima CCAP 1136/11 (Culture Collection for algae and Protozoa,
Oban, Scotland) was grown on seawater enriched with f2-Si medium
(10 × 4 L medium in 10 L round Pyrex flasks; Guillard and Ryther,
1962) at 22 ± 1 °C with continuous light at 20 μmol/m2/s. Cultures
were sparged with sterile air at 2.3 L/min and grown for 35 days
(Praptiwi, 2014). Harvesting was achieved by sedimentation of cells
and removal of the supernatant, concentrated cells were stored at
−20 °C. Concentrated frozen cells obtained from240 L cultures (approx.
5 × 104 cells/mL) were defrosted and combined to give a concentrated
cell slurry (2 L). This cell slurrywas combinedwithmethanol andwater
at a ratio 1:1:3 (v/v/v) (culture-methanol-water) and loaded onto a
SNAP C18 120 g cartridge (Biotage) to concentrate the toxins after tan-
gential flow filtration (Biotage, Hengoed, UK). This process was re-
peated twice with the cell residue. Toxins were fractionated using a
Biotage Selekt Flash Purification System (Biotage, Hengoed, UK). The
mobile phase had a flow rate of 30 mL/min and a linear gradient from
10 to 100% MeOH over 90 min. Fractions (100 mL) were automatically
collected using UV detection (220–254 nm). DSP content in each frac-
tion was analysed by ultrahigh performance liquid chromatography
coupled to quadrupole-time of flight mass spectrometry (UPLC-QTOF-
MSE). OA containing fractions were pooled, dried down in a centrifugal
evaporator (Genevac, Ipswich, UK) and stored at−20 °C.
2.3. Stability study

Aliquots of OA (10 μg/mL), isolated from the P. lima culture, were
prepared in methanol and in methanol/water (1:1, v/v) and kept at
−20 °C, 4 °C and room temperature (20–22 °C). Effect of high tempera-
ture (45 °C) and evaporation was also tested in an additional aliquot of
OA (10 μg/mL). Samples were analysed by UPLC-QTOF-MSE at day 0, 7,
14, 21, 28, 35 and 42.
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2.4. Photocatalysis study

Photocatalysis experiments were conducted in a lab-scale
photoreactor (Fig. 1) equipped with 4 UV lamps (Philips PL-L 36W/09/
4P UVA; wavelength 315–380 nm). 10 mL of filtered deionized water
(DW), artificial ocean water (AOW) and seawater (SW) (collected in
May 2019 from Stonehaven, Aberdeenshire, UK) spiked with OA (10
μg/mL prepared in DW), isolated from the P. lima culture, were main-
tained under magnetic stirring at 20–22 °C for 60 min. Experiments
were run in triplicate in the dark and under UV irradiation in the pres-
ence and absence of the catalyst TiO2 (0.1%, w/v). The experiments
were performed at pH6.9 inDW, 7.3 in AOWand7.8 in SW. The suspen-
sion was kept in the dark under stirring during 5 min (adsorption-de-
sorption phase) and afterwards the UV lamps were switched on. At
selected time intervals (5 min before UV, 0, 2.5, 5, 7.5, 10, 12.5, 15, 20,
30 and 60 min) samples (0.5 mL) were collected and filtered through
a 0.45 μm filter before UPLC-QTOF-MSE analysis.

2.5. Analysis by UPLC-QTOF-MSE

OA and related compounds were quantified by UPLC-QTOF-MSE

(Waters, UK) equipped with an electrospray ionization (ESI) source.
Separation was carried out on a C18 BEH column (100 × 2.1 mm, 1.7
μm particle size) at 40 °C. Mobile phase was acetonitrile with 0.1% FA
(B) and water with 0.1% FA (A) at a flow rate of 0.2 mL/min. Gradient
elution was as follows: 20% B initial conditions rising to 70% B at
9.50 min, increasing further to 100% B at 10 min, holding until 11 min,
dropping back to 20% B at 12 min and holding until 15 min. Injection
volume was 5 μL. Samples were kept at 5 °C.

The Q-TOFwas operated in positive ESI mode usingMSE acquisition,
that allows both precursor and product ions to be acquired simulta-
neously. Parameters were: 3.2 kV capillary voltage, 40 V cone voltage,
80 °C source temperature, 350 °C desolvation temperature, 50 L/h
cone gas flow, 600 L/h desolvation gas flow. Argon was used as the col-
lision gas. MSE consisted in 3 functions: the first function used low col-
lision energy 6 V, the second function used a collision energy ramp of
20–50 eV and the third function acquired the lock mass data for online
mass calibration. Sodium formate was used as calibration solution over
a mass range of m/z 50–2000. Leucine enkephalin (m/z 556.2771 for
positive electrospray mode) was infused at a flow rate of 20 μL/min at
10 s intervals to correct for mass drifts. Acquisition and processing of
MS data was done using MassLynx v 4.1 software (Waters).
UV light source

OA solution 
+ catalyst

Magnetic stirrer

Magnetic 
stirrer rod

Fan

Fig. 1. Schematic diagram of the photocatalytic reactor used in this study. UV light source
at the front is not shown in the diagram for better visualization.
2.6. Protein phosphatase inhibition assay

Phosphatase enzymes are able to hydrolyze pNPP into p-
nitrophenol that can be measured by absorbance detection. The col-
orimetric assay was performed as described in Sotoud et al. (2013)
with some modifications. Briefly, a stock solution of 5 mM pNPP
was prepared freshly in a buffer (pH 8.0) containing 50 mM Tris-
HCl, 20 mM MgC2 and 0.2 mM MnCl2. The PP1c from rabbit (specific
activity 5000–15,000 U/mg protein) was prepared in a buffer
(pH 7.4) containing 50mM Tris-HCl, 1 mg/mL bovine serum albumin
(BSA), 1 mM MnCl2 and 2 mM dithiothreitol. One unit hydrolyses
1 nmol of pNPP per minute at pH 7.4 at 30 °C according to the man-
ufacturer's instructions (Sigma-Aldrich, UK). The assay was con-
ducted in flat-bottom 96-well plates. Ten μL of OA
(0.05–50,000 nM) or 10 μL of each sample was placed in each well
in triplicate and 10 μL of PP1 solution was added. After 4 min incuba-
tion time at room temperature the reaction was initiated by addition
of 180 uL of pNPP stock solution. The plate was incubated at 37 °C im-
mediately. PP1 activity was determined by measuring the absor-
bance at 405 nm at 4 min intervals for 40 min using a microplate
reader (Epoch, BioTek, UK) and the Gen5 software for data acquisi-
tion (BioTek, UK). IC50 determinations were calculated using four-
parameter, variable slope, non-linear regression analysis (GraphPad
Prism, USA).

2.7. Toxicity prediction

The toxicity of OA and its TPs was predicted by using the Toxicity Es-
timation software Tool (TEST, v. 4.2.1) from the US Environmental Pro-
tection Agency (USEPA, 2012). This software predicts toxicity values
using mathematical models of Quantitative Structure Activity Relation-
ship (QSAR) (Martin, 2016). In this work, the 96 h fatheadminnow 50%
lethal concentration (LC50), the 48 h Daphnia magna LC50, the bioaccu-
mulation factor and the developmental toxicity were chosen as toxico-
logical endpoints. Consensus method was selected as toxicity is
estimated by taking an average of the predicted toxicities from five dif-
ferent QSAR methodologies (Hierarchical clustering, Single Model,
Group Contribution, the Food and Drug Administration (FDA) and
Nearest Neighbor).

3. Results and discussion

3.1. Screening and identification of DSP compounds in Prorocentrum lima
culture

Manymarine toxins have very complex structures that cannot or are
prohibitively expensive to be synthesised. On the other hand, the high
cost of commercially available toxin standards (naturally produced)
make lab-scale studies requiring high amounts (≈3–5 mg) of toxin un-
feasible. Several benthic species of the genus Prorocentrum have been
confirmed to produce DSPs. Therefore, the culture P. lima was assessed
as a viable source of DSP toxins, in particular OA, for the photocatalysis
experiments.

As a preliminary screening, extract of P. lima culture was analysed
using high resolution mass spectrometry in positive mode (Fig. 2). Pos-
itivemodeMSE fragmentation showed the presence of OA (Rt 9.20min)
and DTX1 (Rt 11.15 min) in the culture of P. lima. Identification was
done by comparison of retention time and fragmentation patterns of
commercially available standards of OA and DTX1 (Fig. S2) with the
samples. The low energy (LE) spectrum (Rt 9.20 min) of OA in the
P. lima culture (Fig. 2) shows the characteristic ions m/z 805.4772 [M
+ H]+, m/z 827.4556 [M + Na]+, 1631.9358 [2M + Na]+, 787.4647
[M + H-H2O]+. The high energy (HE) spectrum (Rt 9.21 min) shows
an abundant ion at m/z 827.4575 [M + Na]+, the characteristics losses
of water atm/z 787.4630, 769.4552, 751.4434, 733.4316 and 715.4200
and the specific fragments at m/z 429.2278, 305.2069 and 287.1950
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Fig. 2. Identification of OA, DTX1 and DTX1 analogue in a P. lima culture. Extracted ion chromatogram [M+ H]+ at 0.05 Da mass window in LE (top) and HE (bottom) for OA (A), DTX1
(D) and DTX1 analogue (G). LE (top) and HE (bottom) TOF mass spectra obtained for OA (B), DTX1 (E) and DTX1 analogue (H). Close up mass spectra of OA (C), DTX1 (F) and DTX1
analogue (I).
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(Paz et al., 2007; Quilliam, 1995). The LE spectrum of DTX1 (Rt

11.15 min) shows the protonated ion m/z 819.4935, the Na+ adduct at
m/z 841.4717, the first loss of H2O at m/z 801.4843 and the multimer
Na+ adduct at m/z 1660.9813. The HE (Rt 11.16 min) spectrum shows
the Na+ adduct the consecutives losses of H2O at m/z 801.4865,
783.4685, 765.4592 and 747.4487, and the fragments 267.1255,
301.2088, 401.2854, 445.3135, 489.3397, 533.3653, 577.3853,
621.4148. In addition, a peak coeluted 0.3 min later than DTX1. The LE
spectrum (Rt 11.20 min) of the coeluting peak showed a signal at m/z
1057.7203 and 819.4976. No standard was available for comparison
but the mass spectra suggested that the coeluting compound is an ana-
logue derived from DTX-1 and maybe a novel diol ester. The LE and HE
spectrum showed the following ions m/z: 819.4938 [DTX1 + H]+,
841.4723 [DTX1 + Na]+, 801.4844 [DTX1 + H-H2O]+, 783.4653
[DTX1 + H-2H2O]+, 765.4743 [DTX1 + H-3H2O]+, 1659.9741 [2DTX1
+ Na]+ and the fragments at m/z 401.2881, 445.3150, 489.3403,
533.3678, 577.3889 (corresponding to losses of -CO2) (Carey et al.,
2012; Paz et al., 2007; Quilliam, 1995).

Overall, 2 L of concentrated cells contained≈84 mg of OA,≈23 mg
of DTX1 and ≈17 mg of the analogue derived from DTX1. Toxins were
fractionated using a Biotage Selekt Flash Purification System and 28
fractions were obtained. OA was identified by UPLC-QTOF-MSE in
fractions 16–19 (60–70% MeOH content), DTX1 in fractions 18–21
(67–77% MeOH content) and DTX1 analogue in fractions 21–23
(77–83% MeOH content). Fraction with the highest purity and content
of OA was 17 (N90%, 25.3 mg), for DTX1 fraction 19 (N35%, 11.6 mg)
and for DTX1 analogue fraction 22 (N45%, 13.2 mg). Prorocentrum spe-
cies produce different DSP content depending on the species and/or
strains (An et al., 2010; Aquino-Cruz et al., 2018; Ben-Gharbia et al.,
2016; Lee et al., 2016; Luo et al., 2017; Nishimura et al., 2019;
Nishimura et al., 2020; Pan et al., 2017). Previous studies on large-
scale culture of P. lima and separation and purification of OA and DTX1
were published. For example, Wang et al. (2015) developed a vertical
flat plate photobioreactor in which they obtained 15.2 mg/g of OA and
21.6 mg/g of DTX1 from a 60 L culture (3.2 g dry weight) of P. lima.
Next, Chen et al. (2017) purified these toxins to obtain milligrams of
OA and DTX1 of N80% purity using a macroporous resin column and
high-speed counter-current chromatography-MS. Further purification
with semi-preparative HPLC-MS achieved N98% purity. Although im-
proved purity is obtainable as described by Chen et al. (2017), in our
study, the culture of P. lima fit the purpose of producing sufficient
amounts of OA (≈84 mg) that can be easily isolated and purified
(N90%) to be used in photocatalysis studies using a more simple extrac-
tion and purification process.
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3.2. Photocatalytic degradation

3.2.1. Degradation of OA by UV/TiO2

OA showed little change in methanolic solutions or deionized water
at different temperatures (−20 °C, 4 °C, 20–22 °C) over time (42 days)
(Fig. S3). Heating to 45 °C also resulted in no losses of the toxin. OA was
found to be very stable. A similar outcome was reported in previous
studies. Blanco et al. (2018) reported the high stability of OA in seawa-
ter, interstitialwater and sediments over a 23-day period. They said that
even assuming the highest degradation rate, half of the toxin would re-
main in water after more than one year after a Dinophysis bloom.

As a result of the persistence of the free OA toxin in water bodies,
lab-scale photocatalysis (UV-TiO2) experiments were performed to ex-
plore the effectiveness of this technique to degrade the toxin and subse-
quently its potential application in the marine environment.

Changes in concentration of OA with different exposure times were
plotted in Fig. 3A–B. Results for dark (Fig. 3A) and photolysis (UV irradi-
ation only) (Fig. 3B) indicate that there was little to no reductions in
concentrations under experimental conditions after 60min,which indi-
cates that OA was not adsorbed onto the catalyst or the reactor vessel
and that OA is resistant to UV degradation (OA removal: ˂5% in AOW
and ˂15% in DW and SW). pH greatly affects the ionization of OA and
the surface charge of TiO2 which result in a higher or lower adsorption
capacity. Within the pH range of the samples here used (6.9–7.8) both
OA (pKa 3.87) and the TiO2 surface (point of zero charge is pH 6.5)
carry negative charges and adsorption on the catalyst surface is sup-
pressed. On the other hand, it was found that OA was completely re-
moved after 7.5 min, 12.5 min and 30 min in DW, AOW and SW,
respectively using UV/TiO2 0.1% w/v (Fig. 3C).

The kinetics of the OA degradation in AOWand SW fitted well to the
pseudo-first-ordermodel (R2 N 0.96) (Fig. 3D): ln(Co/Ct)= k t; where Co
and Ct are the concentrations of OA in the solution at time 0 and t (min),
Fig. 3. Degradation of OA in deionized water (DW), artificial ocean water (AOW) and seawate
Pseudo-first order kinetic model fit (D). C0: concentration at initial time; C: concentration at sp
respectively, k is the rate constant (min−1). The rate constant was
0.437 min−1 in AOW and five times lower in SW (0.088 min−1). In
the case of DW, due to the fast degradation of OA, there was only
three time points to calculate the rate constant so the uncertainty of
the results is high. The rate constant in DW was 0.498 min−1 at with
this pseudo-first-order model but the R2 was 0.70 (Fig. 3D). Similar re-
sults were obtained when the initial concentration of OA was 10 times
lower (1 μg/mL) in DW (0.568 min−1, R2 N 0.72). Interestingly DW
and AOW showed similar rate constants, despite the amount of salts
present in AOW. In photocatalytic processes the presence of ions has
been reported as a negative effect, at concentrations as low as 10−3 M,
due to competitive adsorption at the active sites of the catalyst (Mills
and Le Hunte, 1997) or acting as radical scavengers (Bennedsen et al.,
2012). However, this effect was not observed in this study. There are
no previous reports about the photocatalysis effectiveness of UV/TiO2

on OA in seawater for comparison. The slower rate constant in SW com-
pared toAOWmight be due to the presence of organicmatter in thema-
trix. As it has been reported previously, the nature and concentration of
organicmatter in thematrix can inhibit or promote photocatalytic reac-
tions (Li andHu, 2016). In the study ofMuff et al. (2017) the influence of
the seawatermatrix on the photolytic and photocatalytic degradation of
an organotin pesticide (tributyltin) was evaluated. They observed a re-
duction of 41% in seawater compared to demineralized water. More-
over, the photocatalytic TiO2 surface was inactivated and produced
radicalswere scavenged by the relatively high salinity and content of or-
ganic matter in the water.

Barriers to real-life application of this technology remain but recent
improvements are overcoming them (e.g. UV-LED and solar irradiation
as energy sources, new catalyst supporters, modifications of the catalyst
to increase the photocatalytic activity). Pestana et al. (2014, 2020) dem-
onstrated the feasibility of the technology in the field. A packed-bed
flow-through UV photocatalytic reactor with pelletised TiO2
r (SW) under dark conditions (A), UV irradiation (B) and UV/TiO2 (0.1% w/v) system (C).
ecific time. Data is presented as mean values and SD of n = 3.
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successfully removed freshwater cyanotoxins and improved overall
quality of waste lagoon water (Pestana et al., 2020) as well as it re-
moved trace water contaminants (geosmin and 2-methylisoborneol)
from water in a fish-farm raceway (Pestana et al., 2014).

3.2.2. Formation of TPs by UV/TiO2

Transformation products (TPs) were formed and removed during
the photocatalytic degradation of OA using UV/TiO2. Overall, four
peaks were observed at tR 7.2, 7.5, 8.1 and 10.2 min. Time-dependent
evolution profiles of TPs during UV/TiO2 processes are shown in Fig. 4.
The peak area of each TP was normalized to the initial peak area of OA
for semi-quantification due to the lack of analytical standards for their
quantitation. TPs arised at the beginning of irradiation and they were
found at 2.5 min in all three matrices but were removed after 10 min
of irradiation in DW, 20 min in AOW and they were present after
60 min in SW. The peak at 10.2 min was found the most abundant dur-
ing the photocatalytic process, especially in AOWand SW. This peakwas
found at its maximum level at 2.5 min in DW and AOW and was re-
moved after 20 and 10min, respectively. It took longer to reach itsmax-
imum level in SW (10–20 min) and there was still 35% present after
60 min of UV irradiation.

Identification of TPswas based on the use of accuratemassmeasure-
ments andMSE fragmentation (Fig. S4). The peak at 10.2minwith a pro-
tonated m/z of 759.4781 differs in 45 Da with OA (m/z 805.4775). The
tentative identification points to norokadanone generated by the decar-
boxylation of OA. The spectrum (Fig. S4) shows the characteristic losses
of water (m/z 741.4662, 723.4518, 705.4407), the Na+ adduct (m/z
781.4587) and the multimer 2M + NH4

+ (m/z 1534.9861). The peaks
eluting at 7.2, 7.5 and 8.2 min are minor compounds and share the
same spectra (m/z 819.4547 [M + H]+). Although OA methyl ester
and 35S DTX1 are isomers the LE and HE spectra show characteristic
ions of DTX1 (m/z 841.4322, 836.4773, 819.4553, 801.4553, 783.4299)
Fig. 4.Degradation of transformation products (TPs) formedduringUV/TiO2 in deionizedwater
n = 3.
that indicates that they could be isomers of DTX1 (Fig. S4) (Pan et al.,
2017; Paz et al., 2007).

3.2.3. Toxicity evaluation – phosphatase inhibition assay
Finally, it is important to determine if the photocatalytic systemwas

able to detoxify the seawater. OA and DTxs are potent serine/threonine
protein phosphatase inhibitor, for that purpose, the phosphatase inhibi-
tion assay was carried out.

The dose-dependent kinetic activity of PP1 in the presence of pNPP
(5 mM) is shown in Fig. S5. The optical density (OD) increased linearly
with increasing phosphatase concentrations (Fig. S5A) andwith time at
a fixed concentration of PP1 (5 μg/mL) (Fig. S5B). The concentration-
inhibition curve of OA (0–50,000 nM) in the presence of PP1 (5
μg/mL) is shown in Fig. S5C. Under these conditions, the IC50 value of
OA was 1183 nM, which is higher than the ones reported earlier (IC50
3.6–315 nM) (Bialojan and Takai, 1988; Huhn et al., 2009; Twiner
et al., 2016). IC50 values are difficult to compare because they depend,
among others, on the amount of enzyme and the substrate
concentration.

The potential toxicity of the samples before and during the heteroge-
neous photocatalytic degradation of OA was evaluated by the phospha-
tase inhibition assay. Results are presented as percentage of activity of
PP1 in Fig. 5. A 10 μg/mL OA solution exhibited an activity value of
28% in DW, 13% in AOW and 34% in SW. The activity rose as the concen-
tration of OA decreased. It is noteworthy that the highest toxicity was
observed at the beginning of the experiment where OA was present at
its maximum concentration. According to the above, the higher toxicity
at t0 could not be ascribed to the formation of toxic intermediateswhich
appeared afterwards. At 10 and 20 min, complete detoxification of the
irradiated solutionwas achieved in DWand AOW, respectively, demon-
strating the efficiency of heterogeneous photocatalytic oxidation in the
elimination of acute toxicity of OAunder the investigated conditions. On
(A), artificial oceanwater (B) and seawater (C). Data is presented asmean values and SDof



Fig. 5. Toxicity profile of OA based on phosphate inhibition measurements in deionized
water (DW), artificial ocean water (AOW) and seawater (SW). Data is presented as
mean values and SD of n = 3.
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the other hand, at 60 min, PP1 activity was 64% in SWwhen the inves-
tigated compounds were removed after 30 min.

Findings from Twiner et al. (2016) demonstrated that small varia-
tions at the head region (i.e., C1/C2) of the OA/DTX structures results
in significant changes in the phosphatase inhibitory potency. On the
other hand, changes in methylation at the tail region (C31 and C35)
only havemild effects in toxicological potency. In the present study, tox-
icity was also predicted by using the Toxicity Estimation Software Tool
(TEST, version 4.2.1) from the US Environmental Protection Agency
(USEPA, 2012). Compared to OA, the toxicity of DTX1 and TPs was
lower.

It is important to note that not all theDSP toxins, evenwhen they are
structurally related, show the same biological negative effects and the
mode of action is still not clear. For example, it was reported that phos-
phatase inhibition was responsible for the diarrhetic events (Cohen
et al., 1990). However, other reports showed that other actions, such
as changes in cytoskeletal elements (Creppy et al., 2002) and or neuro-
transmitters (Louzao et al., 2015) might be associated to gastrointesti-
nal effects. Methyl okadaate has a higher potency than OA to disrupt
the cytoskeleton and it is a non-phosphatase inhibitor (Espiña et al.,
2010). Therefore, mechanism of toxicity of DSP toxins must be re-
evaluated (Abal et al., 2018; Botana et al., 2016; Valdiglesias et al., 2013).
4. Conclusions

Prorocentrum lima proved to be a viable source of DSP toxins, in par-
ticular OA. Two liters of concentrated cells contained 84 mg of OA,
23 mg of DTX1 and 17 mg of the analogue derived from DTX1. OA
could be easily isolated and purified. This is the first study that assessed
the effectiveness of UV/TiO2 system to degrade OA. The marine toxin
was completely degraded after 30 min in seawater and even faster in
deionized water (7.5 min). The degradation follows a pseudo-first
order kinetic type. Four TPs, norokadanone and three possible isomers
of DTX1, were identified in the photocatalytic UV/TiO2 system. Detoxifi-
cation was parallel to OA degradation in deionized and artificial ocean
water but not for seawater.

Overall, results suggest that UV/TiO2 photocatalysis can be an effec-
tive approach for degrading OA and their TPs in the marine environ-
ment. Further research should be conducted to look for less energy
demanding system that could be easily scaled up. It would be worthy
to explore: (i) UV-LED as they can provide energy saving, long lifetime,
and environment-friendliness (Hg free); (ii) doped TiO2; (iii) different
supporters for the catalyst; (iv) solar light activated materials;
(v) degradation of intracellular and extracellular toxins.
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Fig. S1. Structures of okadaic acid and dinophysistoxin 1 (DTX1)  
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Figure S2. MS data of OA and DTX1 standards. Extracted ion chromatogram [M+H]+ at 0.05 

Da mass window in LE (top) and HE (bottom) for OA (A) and DTX1 (D). LE (top) and HE 

(bottom) TOF mass spectra obtained for OA (B) and DTX1 (E). Close up mass spectra of OA 

(C) and DTX1 (F). 
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Figure S3. Effect of temperature and nature of solvent in stability of OA.  
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Figure S4. MS data of transformation products generated during UV/TiO2 system. Extracted 

ion chromatogram [M+H]+ at 0.05 Da mass window in LE (top) and HE (bottom) for 

suspected norokadanone (A) and isomers of DTX1 (D). LE (top) and HE (bottom) TOF mass 

spectra obtained for norokadanone (B) and isomers of DTX1 (E). Close up mass spectra of 

norokadanone (C) and isomers of DTX1 (F).  
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Figure S5. Dose dependent kinetic activity of PP1 in the presence of pNPP (5 mM) (A, B). 

Optical density (OD) was measured at 405 nm. Effect of OA concentration on PP1 (5 µg/mL) 

(C). Three-parameter, variable slope, non-linear dose response analysis was performed and 

calculated concentration of inhibition at 50% (IC50). Data is expressed as mean values and 

SD of n=3.  
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Table S1. Toxicological values of okadaic acid (OA), dinophysistoxin 1 (DTX1) and 

norokadanone during photocatalysis predicted by the USEPA TEST 

 Biaccumulation 

factor 

Developmental 

toxicity value 

Daphnia 

magna LC50 

(48 h) (mg/L) 

Fathead 

minnow LC50 

(96 h) (mg/L) 

OA 9.17 0.70 42.1 0.003 

DTX1 4.22 0.74 29.0 0.008 

Norokadanone 1.77 0.52 32.6 - 
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