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Abstract. In this paper, we aim to develop an effective combining al-
gorithm for ensemble learning systems. The Decision Template method,
one of the most popular combining algorithms for ensemble systems, does
not perform well when working on certain datasets like those having im-
balanced data. Moreover, point estimation by computing the average
value on the outputs of base classifiers in the Decision Template method
is sometimes not a good representation, especially for skewed datasets.
Here we propose to search for an optimal decision template in the combin-
ing algorithm for a heterogeneous ensemble. To do this, we first generate
the base classifier by training the pre-selected learning algorithms on the
given training set. The meta-data of the training set is then generated
via cross validation. Using the Artificial Bee Colony algorithm, we search
for the optimal template that minimizes the empirical 0-1 loss function
on the training set. The class label is assigned to the unlabeled sample
based on the maximum of the similarity between the optimal decision
template and the sample’s meta-data. Experiments conducted on the
UCI datasets demonstrated the superiority of the proposed method over
several benchmark algorithms.

Keywords: Ensemble method · Combining classifiers · Multiple classi-
fiers · Classifier fusion · Artificial Bee Colony.

1 Introduction

In recent years, there has been an intense research activity focusing on ensemble
learning [13, 11]. The interest emerges from the fact that ensemble methods can
achieve higher performance than using single learners in many learning tasks
such as supervised (i.e. classification and prediction) and unsupervised learning
(i.e. clustering). Until now, ensemble methods have been applied to many areas
such as bioinformatics, computer vision, and software engineering [18].

In this paper, we focus on the heterogeneous ensemble in which several learn-
ing algorithms train base classifiers on a given training set. A combining algo-
rithm is then used to aggregate the output of these base classifiers to obtain the
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* dtj(k,m) is defined in Section 2.2

Fig. 1. Decision templates for class labels computed on Fertility and Hayes-Roth
datasets

final prediction. The research here is to develop new combiners to obtain high
accuracy [13, 11, 14, 12].

Among the combining algorithms developed for heterogeneous ensemble sys-
tems, Decision Template is one of the most popular methods [11]. In this method,
we group the outputs of base classifiers on the training observations (called meta-
data) based on their class labels. The decision template for each class label is
computed as the mean i.e. average of the meta-data of the observations in the as-
sociated group. It is noted that Decision Template method may perform poorly
if it does not provide a good enough representation for a class. When data dis-
tribution is skewed for example, the mean loses its ability to provide the best
central location. Moreover, the base classifiers will tend to predict the domi-
nant class on some imbalanced datasets. Fig. 1 shows the decision templates
computed on the outputs of an example of ensemble with 3 base classifiers, i.e.
Linear Discriminative Analysis (denoted by LDA), Näıve Bayes, and k Nearest
Neighbor (k set to 5, denoted by KNN5), on the two imbalanced datasets: 2-class
Fertility and 3-class Hayes-Roth. In Fertility dataset, 80% of the observations
belongs to the first class label. Clearly, the Decision Templates of the 2 classes
are very similar and consequently have low discriminative ability. On Hayes-Roth
dataset, the decision templates of the first two classes have the same values. This
makes Decision Template method poor on these datasets.

In this paper, we aim to search for the optimal decision template for a het-
erogeneous ensemble. To do this, we first generate the base classifiers by training
the pre-selected learning algorithms on the given training set. The meta-data of
the training set is then generated via a cross validation procedure. By using the
Artificial Bee Colony algorithm [4, 5], we search for the optimal decision tem-
plate which minimizes the empirical 0-1 loss on the training set. In detail, for
each candidate template, we measure the similarity between it and the meta-
data of each training observations. The class label is assigned to the observations
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based on the maximum similarity. The optimal decision template is the candi-
date that minimizes the loss function. During classification, the class label that
maximizes the similarity between the meta-data of the unlabeled sample and the
optimal decision template of a class is returned. Experiment conducted on the 31
datasets demonstrated that the proposed method is better than the benchmark
algorithms we compared.

2 BACKGROUND

2.1 Heterogeneous ensemble method

Let {ym}m=1,...,M denotes the set of M labels, N denotes the number of training
observations, and K denotes the number of learning algorithms. For an obser-
vation x, Pk(ym|x) is the probability that x belongs to the class with label
ym given by the kth classifier. In this study, we focus on the soft label output:
Pk(ym|x) ∈ [0, 1] and

∑
m Pk(ym|x) = 1. In heterogeneous ensemble learning,

the soft labels output by the base classifiers for the training set become the
meta-data of the training set, which is given by the N ×KM matrix :

L =

P1(y1|x1) . . . PK(y1|x1) . . . PK(yM |x1)
...

. . .
...

P1(y1|xN ) . . . PK(y1|xN ) . . . PK(yM |xN )

 (1)

Meanwhile, the meta-data of an observation xi is given by:

L(xi) =

P1(y1|xi) . . . P1(yM |xi)
. . .

PK(y1|xi) . . . PK(yM |xi)

 (2)

There are two combining approaches for the heterogeneous ensemble: fixed
combining method and trainable combining method [13]. For fixed combining
method, the combiner works directly on the meta-data of a test sample to assign
the class label and does not exploit the meta-data of the training set. It therefore
has fast training time. There are some popular fixed combining methods such
as fixed combining rules [14, 6] and fixed combining based on Ordered Weighted
Averaging operator (OWA) [7]. Among these methods, the Sum Rule is the most
popular [6].

For the trainable combining method, two well-known strategies to obtain the
discriminative decision model are weighted classifiers combining methods and
methods based on meta-data representation. In weighted classifiers combining
methods, each classifier is assumed to differently contribute to the combining
result i.e. putting a different weight on each class. The combining algorithm is
based on the M linear combinations of posterior probabilities and the associated
weights for the M classes. There are several approaches in this category such
as the Multi-Response Linear Regression (MLR) method [17] and MLR with
hinge loss [15]. On the other hand, the meta-data representation approach aims



4 T.T. Nguyen et al.

to find the representation for the meta-data associated with each class label.
The class label is assigned to a test sample based on the similarity between its
meta-data and the representation. Some examples of meta-data representation
methods are the Decision Template method [8], the Bayesian-based method [13],
and granular-based prototype [12].

Heuristic search based approaches have also been proposed to enhance the
heterogeneous ensemble. These approaches aim to search for the optimal sub-
set of base classifiers, of meta-classifier, the input features, and the meta-data
features, to boost the performance of the ensemble system. In detail, Nguyen et
al. [10] encoded the base classifiers and the features in a single chromosome and
used Genetic Algorithm to simultaneously search for the optimal set of classi-
fiers and associated features. Nguyen et al. [9] also proposed a new encoding for
meta-data feature and used Genetic Algorithm to search for the optimal set of
meta-data features for the Decision Tree meta-classifiers. Shunmugapriya and
Kanmani [16] used Artificial Bee Colony (ABC) to find the optimal set of base
classifiers and the meta-classifiers. Chen et al. [2] used Ant Colony Optimization
(ACO) to find the optimal set of base classifiers in an ensemble system with the
Decision Tree as the meta-classifier.

2.2 Decision Template method

In this section, we briefly introduce the Decision Template method [8] which is
the basis for our approach. In this method, after obtaining the base classifiers by
learning the learning algorithms on the training set, the meta-data L is obtained
via a cross validation procedure. The decision template DT = {DTj} where
DTj is the decision template for jth class, computed on the meta-data is given
by:

DTj =

 dtj(1, 1) . . . dtj(1,M)

. . .
. . . . . .

dtj(K, 1) . . . dtj(K,M)

 (3)

where each element is computed by:

dtj(k,m) =

∑N
i=1 I[yj = ŷi]Pk(ym|xi)∑N

i=1 I[yj = ŷi]
(4)

for k = 1, ...,K; m = 1, ...,M ; j = 1, ...,M
in which ŷi is the true class label of xi, I[·] is the indicator function which returns
1 if the condition is true and 0 otherwise. In (4), the dtj(k,m) is the average value
of the meta-data of the observations belonging to the jth class (the condition
yj = ŷi is true for observations that belong to class yj) associated with the kth

classifier and class label ym.
In the classification stage, the distance between the meta-data of a test sam-

ple x and DTj(j = 1, ...,M) are computed. The class label is assigned to x
based on the maximum similarity or the minimum dissimilarity between L(x)
and DTj .
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As mentioned in Section 1, the Decision Template method has some limi-
tations when modelling skewed data or working with imbalance datasets. We
address these disadvantages in our proposed method.

3 PROPOSED METHOD

3.1 Problem formulation

In this study, we focus on searching for the optimal decision template on the
meta-data of the training observations for the combining classifiers. For an ob-
servation x and an arbitrary decision template DT = {DTj}, we compute the
similarity between its meta-data L(x) and DTj as:

S(L(x),DTj) =
C{L(x) ∩DTj}
C{L(x) ∪DTj}

(5)

where the relative cardinality C{·} is given by:

C{L(x) ∩DTj} =
1

MK

K∑
k=1

M∑
m=1

min
(
Pk(ym|x), dtj(k,m)

)
(6)

and

C{L(x) ∪DTj} =
1

MK

K∑
k=1

M∑
m=1

max
(
Pk(ym|x), dtj(k,m)

)
(7)

The class label is assigned to x by selecting the one that has the maximum
similarity among the M decision templates:

x ∈ yt if yt = argmaxyj ,j=1,...,mS{L(x),DTj} (8)

The empirical loss function L0−1 computed on the training set is given by:

L0−1(DT ) =
1

N

N∑
i=1

I
[

argmax
yj ,j=1,...,M

S{L(xi),DTj} 6= ŷi

]
(9)

where xi is the training observation with true label ŷi.
We can simply show that 0 ≤ dtj(k,m) ≤ 1. It is straightforward that: 0 ≤
Pk(ym|xi) ≤ 1.. For each xi ∈ D, we have: 0 ≤ I[yj = ŷi]Pk(ym|xi) ≤ I[yj = ŷi].
Hence:

0 ≤
N∑
i=1

I[yi = ŷi]Pk(ym|xi) ≤
N∑
i=1

I[yj = ŷi]

Therefore:
0 ≤ dtj(k,m) ≤ 1 ut (10)

To find the optimal decision template for the ensemble, we minimize the loss
function (9) subject to the constraints (10).
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3.2 The algorithm

The training phase of the proposed method is given in Algorithm 1 and 2. We
first generate the base classifiers {BCk} by learning K learning algorithms on
the training set D. The meta-data from the training set is then obtained by
the cross validation procedure in the form of matrix L (1) [13]. Meanwhile, the
meta-data of xi ∈ D,L(xi) is obtained from L in form of (2).

In this study, we applied the Artificial Bee Colony (ABC) algorithm [4] to
find the optimal decision template ODT that minimize L0−1 on the training
set D. The ABC algorithm, proposed by Karaboga [4], is a meta-heuristic search
algorithm inspired by the intelligent foraging behavior of honey bee swarms. This
algorithm provides a simple but powerful tool to search for the optimal solution
with fewer control parameters [16]. In ABC, there are three types of bees in the
swarm: employed bee, onlooker bee, and scout. The number of employed bee
and onlooker bee is equal to the number of solution in the swarm (denoted by
nPop). Employed bees exploit the food sources and share the information of
nectar amount (the fitness of the solutions) to the onlooker bees. The onlooker
bees tend to select good food sources. A food source becomes exhausted if it does
not improve through a predetermined number of cycles (denoted by maxC).
The employed bees of exhausted food sources then become scouts, which start
to search for new food sources.

For the candidate generated by the ABC algorithm, DT =
{
DTj = {dtj(1, 1),

dtj(1, 2), ..., dtj(K,M)}
}
, we compute the fitness associated with DT and the

probabilistic selection for the candidate by (11) and (12)

fitness(DT ) = exp
( −L0−1(DT )

(
∑
L0−1(DT ))/nPop

)
(11)

P(DT ) =
fitness∑

j

fitnessj
(12)

The value of the loss function L0−1(DT ) associated with the candidate DT is
computed in Algorithm 2. It is the average of the 0-1 loss function of all training
observations xi ∈ D

L0−1(DT ) =
1

N

N∑
i=1

L0−1(xi) (13)

In the ABC algorithm, the new candidate solution is generated from DT by
searching for its neighborhood. If the solution cannot be improved over the pre-
defined number of cycles maxC, the food source is abandoned and the employed
bee of the abandoned food source becomes a scout. We also follow the original
ABC algorithm [4, 5] to find the new food source with the note that dtj(k,m) is
bounded in [0,1].
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Algorithm 1 Training phase

Input: Training set D, K learning algorithms {Kk}, maximum number of iter-
ation: maxT , population size: nPop, abandonment limit parameter: maxC

Output: The optimal Decision Template of ODT and {BCk}
(Generate the base classifier)

1: Learn K classifiers {BCk} on D using Kk, k = 1, ...,K
(Generate the meta-data)

2: Meta-data L = ∅
3: for each Di do
4: D−i = D −Di

5: Learn ensemble of classifiers on D−i using {Kk}
6: Classify samples of Di by these classifiers
7: Add outputs on samples in Di to L (1)
8: end for
9: Use ABC method: for each DT , compute the loss value using Algorithm 2

10: Select the optimal ODT with the smallest loss at the end of ABC
11: Return ODT and {BCk}

Algorithm 2 Compute the loss value for each candidate generated in ABC
algorithm

Input: Candidate DT
Output: The loss value for DT
1: for each xi ∈ D do
2: for each DTj in DT do
3: Compute cardinality between L(xi) and DTj (6) (7)
4: Compute the similarity S(L(xi),DTj) (5)
5: end for
6: Assign the class label y for xi by using (8)
7: L0−1(xi) = I[y 6= ŷi]
8: end for
9: Compute L0−1(DT ) by (13)

10: Return L0−1(DT )

4 EXPERIMENTAL STUDIES

4.1 Datasets and Experimental Settings

We conducted experiments on 31 datasets selected from the UCI data depository
to compare the performance of the proposed method and the benchmark algo-
rithms (Table 1). We chose 3 learning algorithms: LDA, Näıve Bayes, and KNN5

to construct the ensemble system [13]. These algorithms were chosen because
they perform significantly different strategies to train the base classifier therefore
they ensure the generation of diverse outputs. For the ABC algorithm, we set the
maximum number of iterations maxT to 100, the number of food source nPop
to 50, and the abandonment limit parameter maxC to round(0.6×K × nPop).

The benchmark algorithms we used are:

– Decision Template [8] and Sum Rule [6]: We used similar settings as in the
proposed method.
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Algorithm 3 Classification phase

Input: Unlabeled sample x, the optimal Decision Template {ODT j} and
{BCk}

Output: Predicted class label for x

1: Obtain the meta-data L(x) by using BCk (2)
2: for each ODT j do
3: Compute cardinality between L(x) and ODT j (6) (7)
4: Compute the similarity S(L(x),ODT j) (5)
5: end for
6: Assign the class label by using (8)

Table 1. Datasets in the experimental studies

Dataset name
# of

observations
# of
classes

# of
dimensions

Abalone 4174 3 8
Appendicitis 106 2 7
Australian 690 2 14
Balance 625 3 4
Banana 5300 2 2
Biodeg 1055 2 41
Breast-Cancer 683 2 9
Bupa 345 2 6
Cleveland 297 5 13
Fertility 100 2 9
Haberman 306 2 3
Hayes-Roth 160 3 4
Heart 270 2 13
Iris 150 3 4
Isolet 7797 26 617
Madelon 2000 2 500
Magic 19020 2 10
Musk1 476 2 166
Musk2 6598 2 166
Newthyroid 215 3 5
Page-Blocks 5472 5 10
Phoneme 5404 2 5
Pima 768 2 8
Ring 7400 2 20
Skin NonSkin 245057 2 3
Spambase 4601 2 57
Vehicle 846 4 18
Vertebral 310 3 6
Waveform w Noise 5000 3 40
Waveform wo Noise 5000 3 21
Wdbc 569 2 30

– ACO1 and ACO2 [2]: The methods aim to search for optimal subset of base
classifiers with Decision Tree as meta-classifier (ACO1) or with the optimal
meta-classifier (ACO2) for the heterogeneous ensemble. We used the same
three learning algorithms as in the proposed method. For ACO2, one of the
three learning algorithms was randomly chosen to train the meta-classifier
according to the uniform distribution like in [2].
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Fig. 2. The Optimal Decision Templates of Fertility and Hayes-Roth datasets

– Random Subspace [1]: We used Decision Tree as the learning algorithm to
train 200 base classifiers.

– GA Meta-data [9]: The method searches for the optimal subset of meta-data
for heterogeneous ensemble.

We performed 10-fold cross validation and run the test 3 times to obtain 30 test
results for each dataset. We used the Wilcoxon signed rank test [3] to compare the
classification results of the proposed method and each benchmark algorithm on
each dataset. The performance scores of two methods are treated as significantly
different if the p-value of the test is smaller than a given significance level. For
all tests, the level of significance was set to 0.05. The details of these tests can
be found in [3].

4.2 Results and Discussions

Comparison of benchmark algorithms: Table 2 shows the mean and stan-
dard deviation of classification error rate computed on 30 runs on each experi-
mental dataset. Because of the singularity property of the covariance matrix of
the meta-data [13], some learning methods such as LDA cannot be used as a
meta-classifier. This explains why ACO2 cannot be run on the Iris dataset in
the experiment. Therefore ACO2 and the proposed method were compared on
30 datasets. The proposed method is developed to work on diverse datasets, not
only handling imbalanced ones. Therefore we did not use an appropriate metric
to evaluate imbalanced data.

From the Wilcoxon test results in Table 2, we can see that the proposed
method is better than the benchmark algorithms on the experimental datasets.
Compared to Random Subspace, the proposed method wins on 14 datasets and
loses on 6 datasets. Our method also performs better than Sum Rule (the pro-
posed method wins in 21 cases and loses in only 1 case) and Decision Template
(the proposed method wins in 21 cases).

In comparison to GA Meta-data, the proposed method wins on 14 datasets
while does not lose on any dataset. The pattern is nearly similar when comparing



10 T.T. Nguyen et al.

T
a
b
le

2
.

C
la

ss
ifi

ca
ti

o
n

er
ro

r
ra

te
s

o
f

th
e

b
en

ch
m

a
rk

a
lg

o
ri

th
m

s
a
n
d

th
e

p
ro

p
o
se

d
m

et
h
o
d

D
a
ta

se
t

S
u
m

R
u
le

R
a
n
d
o
m

S
u
b
sp

a
c
e
D
e
c
is
io
n

T
e
m
p
la
te

G
A

M
e
ta

-d
a
ta

A
C
O
1

A
C
O
2

P
ro

p
o
se
d

M
e
th

o
d

A
b

a
lo

n
e

0.
46

81
±

0.
01

83
0.

46
79
±

0.
02

55
0.

48
67
±

0.
01

97
0.

4
73

6±
0
.0

23
3

0.
47

2
0±

0.
0
28

3
0.

45
31
±

0.
01

78
0.

45
53
±

0.
0
19

8
A

p
p

en
d

ic
it

is
0.

11
97
±

0.
09

40
0.

13
85
±

0.
08

61
0.

1
17

3
±

0.
0
84

6
0.

16
0
0±

0.
10

18
0
.1

82
7±

0.
12

2
9

0.
1
48

8±
0.

0
94

0
0.

13
58
±

0.
09

3
4

A
u

st
ra

li
an

0.
14

11
±

0.
03

55
0.

15
22
±

0.
03

30
0.

13
8
2
±

0.
03

1
7

0
.1

80
7±

0.
03

60
0.

18
16
±

0
.0

48
8

0.
12

8
0±

0.
03

6
7

0.
1
31

4
±

0
.0

33
9

B
al

an
ce

0.
10

99
±

0.
02

21
0.

21
29
±

0.
03

55
0
.0

97
6
±

0
.0

31
2

0.
08

52
±

0.
0
33

1
0.

09
60
±

0.
02

85
0
.0

95
9±

0
.0

57
7

0.
08

5
3
±

0.
03

25
B

a
n

a
n

a
0.

10
98
±

0.
00

97
0.

37
46
±

0.
04

69
0.

11
17
±

0.
01

17
0.

11
16
±

0.
01

1
1

0.
1
12

9±
0.

01
52

0.
11

22
±

0.
01

17
0
.1

09
3
±

0.
01

09
B

io
d

eg
0.

14
25
±

0.
03

13
0.

13
52
±

0.
02

51
0.

13
87
±

0.
03

03
0.

1
83

6±
0
.0

35
0

0.
18

0
0±

0.
0
34

8
0.

13
68
±

0.
03

86
0.

12
86
±

0.
0
23

0
B

re
as

t-
C

an
ce

r
0.

04
64
±

0.
02

60
0.

02
83
±

0.
02

20
0.

0
45

9
±

0.
0
26

7
0.

04
2
0±

0.
02

85
0
.0

40
5±

0.
02

6
4

0.
0
34

7±
0.

0
24

0
0.

03
61
±

0.
02

4
8

B
u

p
a

0.
28

99
±

0.
05

32
0.

34
20
±

0.
07

62
0.

33
2
4
±

0.
07

9
0

0
.3

80
4±

0.
09

25
0.

35
48
±

0
.0

73
7

0.
32

0
9±

0.
07

4
3

0.
2
96

7
±

0
.0

62
5

C
le

ve
la

n
d

0.
42

18
±

0.
05

61
0.

41
84
±

0.
03

80
0
.4

45
4
±

0
.0

61
5

0.
44

33
±

0.
0
63

7
0.

46
42
±

0.
07

81
0
.4

04
1±

0
.0

70
6

0.
41

4
1
±

0.
06

88
F

er
ti

li
ty

0.
13

33
±

0.
05

37
0.

12
00
±

0.
04

00
0.

41
67
±

0.
16

55
0.

19
00
±

0.
11

3
6

0.
1
46

7±
0.

05
62

0.
13

00
±

0.
05

26
0
.1

53
3
±

0.
06

70
H

ab
er

m
an

0.
25

95
±

0.
04

70
0.

29
61
±

0.
05

48
0.

31
03
±

0.
05

74
0.

2
96

4±
0
.0

47
6

0.
29

8
4±

0.
0
41

5
0.

28
01
±

0.
05

07
0.

28
22
±

0.
0
51

8
H

ay
es

-R
o
th

0.
34

17
±

0.
14

50
0.

34
58
±

0.
13

95
0.

4
29

2
±

0.
1
27

8
0.

29
1
7±

0.
09

59
0
.2

70
8±

0.
11

4
5

0.
2
83

3±
0.

1
07

9
0.

30
00
±

0.
09

1
9

H
ea

rt
0.

17
04
±

0.
06

09
0.

18
77
±

0.
07

65
0.

17
4
1
±

0.
05

5
9

0
.2

39
5±

0.
08

32
0.

21
85
±

0
.0

90
9

0.
18

1
5±

0.
06

9
2

0.
1
69

1
±

0
.0

63
9

Ir
is

0.
03

33
±

0.
03

75
0.

05
11
±

0.
05

36
0
.0

33
3
±

0
.0

37
5

0.
03

33
±

0.
0
41

3
0.

04
00
±

0.
04

42
-

0
.0

28
9
±

0.
0
33

0
Is

ol
et

0.
06

56
±

0.
00

97
0.

05
88
±

0.
00

78
0.

0
58

3
±

0.
0
09

3
0.

06
2
3±

0.
00

81
0
.0

65
0±

0.
00

81
0
.0

49
1±

0
.0

07
6

0.
05

6
1
±

0.
00

85
M

ad
el

on
0.

36
80
±

0.
03

31
0.

38
00
±

0.
03

25
0.

28
68
±

0.
02

90
0.

28
70
±

0.
02

6
4

0.
2
87

0±
0.

02
64

0.
28

82
±

0.
02

54
0
.2

83
2
±

0.
02

32
M

ag
ic

0.
19

09
±

0.
00

61
0.

17
30
±

0.
00

68
0.

19
01
±

0.
00

79
0.

1
92

0±
0
.0

11
7

0.
19

0
2±

0.
0
06

9
0.

19
18
±

0.
03

02
0.

18
52
±

0.
0
06

8
M

u
sk

1
0.

14
71
±

0.
04

26
0.

08
05
±

0.
03

56
0.

1
30

8
±

0.
0
45

2
0.

13
4
4±

0.
04

01
0
.1

24
5±

0.
04

2
0

0.
1
20

5±
0.

0
47

0
0.

10
92
±

0.
04

0
6

M
u

sk
2

0.
04

97
±

0.
00

78
0.

02
09
±

0.
00

35
0.

04
6
3
±

0.
00

6
8

0
.0

35
0±

0.
00

59
0.

03
55
±

0
.0

05
9

0.
03

9
9±

0.
02

2
6

0.
0
34

9
±

0
.0

05
5

N
ew

th
y
ro

id
0.

09
48
±

0.
05

07
0.

04
20
±

0.
03

90
0
.0

68
4
±

0
.0

49
2

0.
03

71
±

0.
0
35

0
0.

04
18
±

0.
03

69
0
.0

66
8±

0
.0

46
5

0.
05

7
3
±

0.
04

44
P

ag
e-

B
lo

ck
s

0.
04

97
±

0.
00

69
0.

03
19
±

0.
00

55
0.

05
04
±

0.
00

82
0.

04
20
±

0.
00

6
6

0.
0
46

2±
0.

00
85

0.
04

22
±

0.
00

77
0
.0

43
1
±

0.
00

71
P

h
on

em
e

0.
17

47
±

0.
01

73
0.

16
27
±

0.
01

83
0.

17
80
±

0.
02

78
0.

1
14

9±
0
.0

14
5

0.
11

4
9±

0.
0
14

5
0.

11
63
±

0.
01

61
0.

11
53
±

0.
0
13

7
P

im
a

0.
24

65
±

0.
04

37
0.

25
70
±

0.
04

77
0.

2
46

5
±

0.
0
42

7
0.

30
5
6±

0.
04

84
0
.3

07
8±

0.
04

8
5

0.
2
30

9±
0.

0
49

0
0.

22
88
±

0.
04

7
7

R
in

g
0.

20
88
±

0.
01

10
0.

02
98
±

0.
00

51
0.

19
3
0
±

0.
01

2
8

0
.1

23
1±

0.
01

35
0.

12
11
±

0
.0

11
4

0.
11

4
0±

0.
01

2
6

0.
1
06

8
±

0
.0

12
5

S
k
in

N
on

S
k
in

4.
12

E
-0

2±
1.

10
E

-0
3

2.
62

E
-0

3±
2.

74
E

-0
4

3.
3
0E

-0
2
±

1.
07

E
-0

3
4.

31
E

-0
4±

1
.1

9E
-0

4
4
.3

4E
-0

4±
1.

1
3E

-0
4

4.
3
9E

-0
4±

1.
09

E
-0

4
4.

15
E

-0
4
±

1.
2
0E

-0
4

S
p

am
b

a
se

0.
09

69
±

0.
01

16
0.

09
60
±

0.
01

35
0.

0
92

0
±

0.
0
10

9
0.

11
8
5±

0.
01

40
0
.1

22
4±

0.
01

7
2

0.
0
94

2±
0.

0
13

1
0.

09
09
±

0.
01

1
6

V
eh

ic
le

0.
26

05
±

0.
04

27
0.

26
00
±

0.
03

61
0.

21
5
1
±

0.
03

3
7

0
.2

62
7±

0.
04

35
0.

25
97
±

0
.0

37
9

0.
21

8
7±

0.
03

6
2

0.
2
18

6
±

0
.0

36
0

V
er

te
b

ra
l

0.
20

54
±

0.
06

03
0.

28
93
±

0.
05

68
0
.1

92
5
±

0
.0

64
8

0.
18

93
±

0.
0
58

1
0.

15
27
±

0.
05

89
0
.1

51
6±

0
.0

50
1

0.
17

8
5
±

0.
06

05
W

av
ef

or
m

w
N

oi
se

0.
16

71
±

0.
01

27
0.

17
55
±

0.
01

71
0.

16
34
±

0.
01

40
0.

1
78

7±
0
.0

14
3

0.
17

7
0±

0.
0
14

9
0.

14
57
±

0.
01

36
0.

14
59
±

0.
0
16

3
W

av
ef

or
m

w
o

N
oi

se
0.

16
46
±

0.
01

86
0.

14
98
±

0.
01

91
0.

15
62
±

0.
01

81
0.

1
73

8±
0
.0

21
1

0.
17

0
5±

0.
0
16

6
0.

13
89
±

0.
01

88
0.

13
89
±

0.
0
16

8
W

d
b

c
0.

03
52
±

0.
01

88
0.

03
81
±

0.
01

87
0.

0
34

6
±

0.
0
19

0
0.

03
5
2±

0.
02

49
0
.0

45
7±

0.
02

9
2

0.
0
30

5±
0.

0
19

7
0.

03
05
±

0.
01

7
5

W
in

:
21

E
q
u

al
:

9
L

os
s:

1

W
in

:
14

E
q
u

al
:

11
L

os
s:

6

W
in

:
21

E
q
u

al
:

10
L

os
s:

0

W
in

:
14

E
q
u

al
:

17
L

os
s:

0

W
in

:
1
8

E
q
u

al
:

1
3

L
os

s:
0

W
in

:
5

E
q
u

al
:

23
L

os
s:

2



Evolving an Optimal Decision Template for Combining Classifiers 11

to ACO1 as ours wins on 18 datasets. The proposed method meanwhile performs
slightly better compared to ACO2 as ours wins in 5 cases and loses in 2 cases.

Discussion: We explain some reasons why the proposed method is better than
the benchmark algorithms. Random Subspace generates the new training sets by
choosing observations with a random subset of features from the original feature
set. On datasets with high dimension like Musk1 and Musk2 (166 features),
Random Subspace can generate the new diverse training sets, resulting in high
classification accuracy. Obviously, the proposed method is significantly better
than Sum Rule because Sum Rule do not train the combiner on the meta-data
of the training set.

GA Meta-data meanwhile uses GA to learn the optimal subset of meta-data
from the training set. Since the dimension of the meta-data depends on the
number of class labels and the number of learning algorithms, for datasets with
a small number of class labels, the subset of meta-data is not diverse enough
to enhance the ensemble performance. ACO1 searches for the optimal subset of
base classifiers for the training set. The limitation of not searching for meta-
classifier makes ACO1 ineffective on many datasets. ACO2 meanwhile performs
well since it searches for not only the base classifiers but also the meta-classifier
for the optimal solution.

Finally, the proposed method is significantly better than the Decision Tem-
plate method. Fig. 2 illustrates the optimal decision templates on the Fertility
and Hayes-Roth datasets. It is clear that for imbalanced datasets like Fertility,
while the decision template is nearly identical among the two class labels, the
optimal decision template from our algorithm can clearly distinguish between
the two class labels. In proposed method, we search for the optimal decision
template that maximizes the discrimination between the different classes and
that strategy does not take into account by the Decision Template method.

5 CONCLUSIONS

In summary, we proposed a combining algorithm for heterogeneous ensemble
systems. Our method is motivated by the observation that Decision Template
method, a popular combining algorithm for heterogeneous ensemble, underper-
forms on imbalanced datasets because of the similar representations for the class
labels. In addition, the average value-based meta-data representation in this
method is not good for data with a skewed distribution. To overcome these lim-
itations, we proposed the method to search for a decision template yielding an
optimal representation for the meta-data. We used ABC algorithm to minimize
the empirical 0-1 loss function on the training set to obtain the optimal solu-
tion. For the classification process, we assigned the label for a sample based on
the maximization of similarity between the optimal templates and the sample’s
meta-data. Experiments on 31 UCI datasets showed that the proposed method
is better than the selected benchmark algorithms.
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