
Noname manuscript No.
(will be inserted by the editor)

An All–optical Soliton FFT Computational Arrangement
in the 3NLSE–domain

Anastasios G. Bakaoukas

Received: date / Accepted: date

Abstract In this paper an all–optical soliton method for calculating the FFT
(Fast Fourier Transform) algorithm is presented. The method comes as an ex-
tension of the calculation methods (soliton gates) as they become possible in the
Cubic Non–linear Schrödinger Equation (3NLSE) domain, and provides a further
proof of the computational abilities of the scheme. The method involves collisions
entirely between first order solitons in optical fibers whose propagation evolution is
described by the Cubic Non–linear Schrödinger Equation. The main building block
of the arrangement is the half–adder processor. Expanding around the half–adder
processor, the “Butterfly” calculation process is demonstrated using first order
solitons, leading eventually to the realisation of an equivalent to a full Radix–2
FFT calculation algorithm.

Keywords Solitons, 3NLSE domain, All–optical FFT, Cubic Non–linear Schrödinger
Equation, Soliton collisions, Soliton computational schemes.

1 Introduction

Computational systems based on soliton collisions for transferring and processing
data continues to be a topic which stands at the forefront of scientific research
(Jakubowski, Steiglitz, & Squier, 2001), (Jakubowski, Steiglitz, & Squier, 1996),
(Bakaoukas & Edwards, 2009b), (Jakubowski, Steiglitz, & Squier, 1997), (Steiglitz,
2000).

Within this framework, an earlier version of this paper originally appeared in
(Bakaoukas, 2016). The current paper has augmented this original work by includ-
ing an extensive discussion of the optical solitons background theory as presented
in the remainder of this section, a full explanation of all the basic concepts and
parameters involved in the formulation of the computational system proposed for

Anastasios G. Bakaoukas
Computing & Immersive Technologies Department,
University of Northampton, St. Georges Avenue, Northampton, NN2 6JB, UK.
E-mail: Anastasios.Bakaoukas@northampton.ac.uk

Manuscript brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NECTAR

https://core.ac.uk/display/322487659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.editorialmanager.com/naco/download.aspx?id=39808&guid=246de02f-4898-475e-8c6e-cc4d7cb812e6&scheme=1
http://www.editorialmanager.com/naco/download.aspx?id=39808&guid=246de02f-4898-475e-8c6e-cc4d7cb812e6&scheme=1
http://www.editorialmanager.com/naco/viewRCResults.aspx?pdf=1&docID=1581&rev=1&fileID=39808&msid={0D8A5EE6-C5B4-4441-BEDE-25089ECC9608}

2 A. G. Bakaoukas

the 3NLSE–domain (section 2), and a detailed analysis of all the numerical meth-
ods currently available for the simulation of optical solitons propagation down an
optical fibre when the propagation parameters applicable to the system are those
of the 3NLSE–domain (section 3). The Half–adder Processor Scheme proposed and
discussed in the remainder of the paper, as well as individual soliton arrangements
in the overall computational system, have been extensively tested and successfully
verified using all these numerical methods.

Generally there are two different types of solitons, delineating the areas of
general interest to create computational systems from. The, so called, “Spatial
Solitons” and the “Temporal Solitons”, respectively defining the “Spatial Solitons
Computational Systems” and the “Temporal Solitons Computational Systems”.
Solitons owe their existence to the physical alignment between a phenomenon
known as “Kerr Non–linearity” (Self–phase Modulation) and the phenomenon of
“Chromatic Dispersion” in optical fibres, which is the primary material allowing
for solitons generation and propagation.

Temporal Solitons in optical fibres can be described very accurately by the
“Cubic Non–linear Schrödinger Equation” or “3NLS Equation” for sort, while
Spatial Solitons can be described very accurately by the “General NLS Equation”
which, although describing a system which is not generally integrable, never the
less enables us to calculate more accurately more complex phenomena. Solitons in
both the Temporal and the Spatial domain can either “Interact” with each other
(Soliton Interactions) or “Collide” with each other (Soliton Collisions).

Soliton systems which are using fast digital logic gates and carry and pro-
cess information through soliton collisions have been proposed for some time now
(Jakubowski et al., 2001), (Jakubowski et al., 1996), (Bakaoukas & Edwards,
2009a), (Jakubowski et al., 1997), (Steiglitz, 2000), (Blair, 1998). The logic gates
arrangements used by these systems take advantage of the phase difference or the
frequency difference emerging after each collision between orthogonally polarised
solitons to represent a bit as we know it from classical computational theory. Other
systems of logic gates arrangements have also been proposed, which make use of
the time difference (“Soliton Trapping”) or of the position difference (“Soliton
Dragging”) emerging between the solitons involved after they have clash. Parti-
cle machines, which perform calculations using soliton collisions, have been also
proposed (Steiglitz, 2000) and extensive theoretical research on finding a universal
computer system in all these domains which to conform to the standard Turing sys-
tem (“Computationally Universal System”) is currently underway. The goal here
is to create a global computational system, which will generally use logic gates
of the type initially introduced by Toffoli in (Toffoli, 1980) or alternatively of the
type initially introduced by Fredkin in (Fredkin & Toffoli, 1981) for processing
and storing data very close to the classical.

Most of the major studies been carried out so far in the direction of comput-
ing with solitons are mostly at a purely theoretical level, especially considering
collisions between first order solitons. Independent and more or less equally ef-
fective numerical methods like: the “Finite Difference Runge–Kutta Technique”
(FDRKT), the “Split–Step Fourier Transform” (SSFT), the “Fourier Series Anal-
ysis Technique” (FSAT), and the “ Fuzzy Mesh Analysis Technique” (FMAT) have
been successfully applied to provide simulations of solitons propagation down the
optical fibre in the 3NLS Equation domain and in general have been extensively
used in theoretical research on colliding solitons. These methods give the possi-

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 3

bility not only of theoretical analysis and simulation of collisions between solitons
but also of monitoring the stability and the general dynamics of Non–integrable
and Non–linear models alike.

There is a number of studies in which the use of solitonic optical pulses for the
purposes of carrying out computations has been investigated (Jakubowski et al.,
2001), (Jakubowski et al., 1996), (Bakaoukas & Edwards, 2009a), (Blair, 1998). In
this present paper only temporal solitons (involving a balance between Kerr type
Non–linearities and Dispersive effects in glass fibres) are concerned. At this early
point the fact that the interactions between solitons of this type can be a relatively
long–range phenomenon need to be emphasised, because the Kerr Non–linearity
is a relatively weak effect.

In what follows in this introduction section, the discussion is focusing on the
3NLS Equation domain. For a more extensive and thorough discussion the reader
is referred to (Bakaoukas & Edwards, 2009b), (Bakaoukas, 2013), (Bakaoukas &
Edwards, 2013), (Bakaoukas, 2014) and (Bakaoukas, 2015) where the application
of first order and second order solitons, following the Toffoli gates prototype as well
as others, has been presented and verified regarding their computational abilities
in terms of logic gates formations.

A positive value for “Dispersion” parameter describes the formation of bright
optical solitons whilst a negative value leads to the formation of dark solitons.
The 3NLS Equation in general, describes a modulated wave packet propagating
through a non–linear dispersive medium with a constant velocity. For certain initial
pulse shapes (the “Reflectionless Potentials”), the 3NLS Equation is completely
integrable and the evolution of a soliton can be found in closed form by means
of the Inverse Scattering Transform (IST) (Ablowitz & Segur, Philadephia, 1981).
Solitons arising out of a balance between Dispersive and Kerr Non–linearity ef-
fects possess dominant characteristic features one of which is the elastic collisions
between them. Solutions described by Non–integrable Non–linear Wave Equations
on the other hand are usually referred to as “Solitary Waves” and collisions be-
tween solitary waves are inelastic and more complex in character. A solution of
the integrable 3NLS Equation applicable to pulse propagation in optical fibres is
the Hyperbolic Secant where an arbitrary positive number representing the soli-
ton order, the distance along the fibre, and time, all in normalised dimensionless
units, are the main parameters forming the initial soliton propagation envelope.
By coupling pulses in and out of a fibre at appropriate points (of distance and
time), useful computation could be possible based on collisions between solitons
within the fibre.

The material presented in (Bakaoukas & Edwards, 2009b), in particular, shows
that in situations where optical solitons are formed within optical fibres (simula-
tions have been carried out using all the above mentioned numerical techniques),
with appropriate practical arrangements, computationally universal systems based
on collisions between first order solitons are possible using logical gates based on
the “Controlled” type of gates originally proposed by Toffoli and Fredkin (Toffoli,
1980), (Fredkin & Toffoli, 1981). As an extension to what presented in the above
mentioned papers, in this present paper, the numerical study of collisions between
first order solitons is expanded leading towards an all–optical FFT (Fast Fourier
Transform) calculation. The CN and CCN soliton gates continue to be the essential
ingredient of the computational model.

4 A. G. Bakaoukas

2 Soliton Collisions And Computational Scheme In The 3NLS Equation

Domain

To be able to present and analyse the properties and the basic features of a soliton
computational system in a domain described by the 3NLS Equation (1), we need to
present first the basic requirements for computation, which include: cascadability,
fanout, and Boolean completeness. In general terms, cascadability requires that
the output of one device can serve as input to another; fanout refers to the ability
of a logic gate to drive at least two similar gates; and Boolean completeness makes
it possible to perform arbitrary computation. The 3NLS Equation domain system
can be characterised as an “oblivious” system (one that is governed by totally
elastic collisions). As we are about to see in what follows, “oblivious” soliton
systems under certain conditions, can perform useful computations by a direct
simulation of Toffoli logic gates.

∂u

∂z
= − j

2
sgn(β2)

∂2u

∂T 2
+B

∂3u

∂T 3
+ jγ|u2|u− Γu (1)

Mathematically, a couple of solitonic pulses, which commences propagating down
an optical fibre and possesses all the properties required to end up in a collision,
can be described by the following equation:

u(0, τ) = r sech(r(τ − q0))ejθejvτ+

+ r sech(r(τ + q0))ejθejvτ (2)

where, r represents the amplitude of the solitons, θ is the relative phase value, and
q0 is the initial displacement between the two solitonic pulses.

(a) (b)

Fig. 1 (a) Solitonic pulse carrier (the soliton velocity is equal to 0.3) and, (b) Solitonic pulse
carrier (the soliton velocity is equal to 1.5).

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 5

By solving the basic soliton equation using the IST we come to know that the
speed of a solitonic pulse depends on the frequency of the modulated carrier. So
if we vary the frequency of the carrier we simultaneously alter the speed of the
solitonic pulse itself. The second exponential term in (2) does just that; alters the
frequency of the carrier by a rate corresponding to the value given to its variable,
and simultaneously alters that way the speed of the pulse itself by the desired
amount (Fig. 1).

For the purposes of this paper only collision situations between two and three
solitons (Fig. 2 & Fig. 3) will be discussed and presented in details, since these
are the fundamental building blocks out of which the 3NLS Equation domain
computational system is consisting of (interactions between solitons have been
proved unable to offer computationally useful properties and soliton arrangements
(Bakaoukas, 2014)). In this scheme, two situations can be distinguished: a) the
solitons collide and are in phase, or b) the solitons collide and are out of phase.
In physical terms this can be translated as between the two solitons emerging an
attractive or a repulsive force, respectively (Fig. 2). The presence and the strength
of the repulsive or attractive force depends on the relative phase values of the two
pulses.

(a) (b)

Fig. 2 Collision between two first order solitons: (a) the solitons are out of phase and the
repulsive force causes them to change their propagation direction (the soliton speeds are +0.3
and -0.3) and, (b) the solitons are in phase and the attractive force causes them to pass through
each other maintaining their propagation directions (the soliton speeds are again +0.3 and -
0.3). Maximum magnitude for the soliton envelope exactly at the point of collision is typical
for this type of collision.

As a first step into starting describing the fundamentals of the computational
system itself now, the encoding rules for representing bits into the computation
system will be set by initially admitting the existence of only two solitons in it.
One soliton with a phase value of π and one soliton with a phase value of 0. This

6 A. G. Bakaoukas

(a) (b)

Fig. 3 Collision between three first order solitons: (a) the first and the third soliton possess
the same phase value, while the second soliton has a phase difference of π in relation to the
other two and, (b) all three solitons possess the same phase value.

way there can only strictly exist two types of collisions between solitons in the
computational system: a) two solitons collide and are in phase or, b) two solitons
collide and are out of phase (Fig. 2). Now the solitons can be directly used as input
values to a solitons defined type of logic gate. The most important fact of all is
that these two types of collisions inherently possess the property of sequencing, so
they can be cascaded.

By using these rules things can be stretched a bit further and into safely con-
sidering collisions between solitons as the inner process of a solitons defined logic
gate, with the initial solitons formulating the input to the logic gate values and
the two solitons recovered with their original state intact after the collision, as
formulating the output values of the logic gate. So, basically, we split the whole
process of a collision into two important parts: a) the logic gate length, bounded
between the point at which solitons begin to propagate through the medium and
that at which the two solitons emerge intact from the collision with time positions
in reverse order, and b) the point at which the two solitons collide, creating a
characteristic for their phase values “Collision Envelope” (Fig. 3 & Fig. 4). Intro-
ducing a third soliton into the arrangement, to which we refer to as “Time–Gated”
soliton (Fig. 5) and is a generated by the system soliton with a phase value also
determined accordingly by it. Effectively what is achieved here is within a system
using three instead of two solitons per collision (logic gate), and by using appro-
priate combinations of phase values, the input solitons to be converted to Control
Specific solitons and Data Specific solitons, achieving performing that way useful
calculations.

Let us now see how we can use this three solitons arrangement and its proper-
ties as a full computational element (logic gate). In order to achieve this we assign
to each soliton participating in the arrangement either the binary value 0 or the

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 7

(a) The collision envelope for two solitons in
phase.

(b) The collision envelope for two solitons out
of phase.

Fig. 4 The collision envelope for two solitons in and out of phase.

(a) (b)

Fig. 5 (a) A collision between two solitons. The second soliton is a “Time–Gated” input
soliton and, (b) Collision between three solitons. The third soliton taking part in the collision
is a “Time–Gated” soliton in phase with the initial two.

binary value 1, the way previously explained. The next step is to assume that the
third soliton is a “Time–Gated” soliton with a phase value determined accord-
ingly by the system as the process progresses. This practically means that the
“Time–Gated” soliton does not take part in the calculation process from the start
but is created and begins to propagate down the fibre at another specific point
in time as a result of a decision (command) initiated by the system. The right
point in time for this “Time–Gated” soliton to start propagating is defined as the

8 A. G. Bakaoukas

one immediately following the collision between the two initial to the logic gate
arrangement solitons. This forces the third (“Time–Gated”) soliton to play the
role of the “Controlled” by the system soliton. Within the boundaries of the com-
putational system presented here, the phase value of the created (“Time–Gated”)
soliton and its propagation timing are decided dynamically by the system after
certain conditions have been taken into consideration, which in our case are the
phase values of the two initial solitons. Now the arrangement can successfully
simulate the CN and CCN Toffoli logic gates.

In setting the rules under which the system will be able to distinguish between
conditions calling for the generation of a “Time–Gated” soliton with a phase value
of 0 and those calling for the generation of a “Time–Gated” soliton with a phase
value of pi, we assign a Boolean value to each one of the two envelope types
resulting after a collision has taken place, and located at exactly the midpoint
of the whole collision length (Fig. 4). The collision envelope occurring when two
solitons collide and are in phase, is assigned the binary value 0, while the collision
envelope occurring when two solitons collide and are out of phase is assigned
the binary value 1. Thus, a system able to “read” the collision envelope within
the mathematically determined collision point of the two initial solitons (input
solitons to the logic gate arrangement), is also capable of recognising the nature of
the collision, i.e. to recognise immediately whether the two solitons participating
in the collision were in phase or out of phase. Finally, using these assumptions, in
conjunction with the “Time–Gated” solitons concept, we can successfully simulate
the operation of a CN Toffoli logic gate in the 3NLS Equation domain and build
a truth table for this type of gates (Bakaoukas & Edwards, 2009a).

3 Numerical Methods For Soliton Propagation Simulation

In this section, the numerical techniques used for obtaining the simulation results
are briefly described and example outputs are presented of using them. The recog-
nition that the mathematical complexity of soliton solutions arises only because of
the dependency of the Refractive Index n on spatially varying intensity could erad-
icate the complexity if, instead, n could be defined as depended not on a spatially
varying intensity but on the total beam power. This can be achieved in a heuristic
model by assuming that the medium has a non–local response with a correlation
length much larger than the beam diameter. The non–linear wave equation then
becomes linear and readily solvable, but the solution for solitons still contains
the essential characteristic features. Physically, the model transforms the prob-
lem into a simple case of linear propagation of thin beams in a waveguide. With
the assumption that the beams always stay close to the axis, the refractive index
makes the wave equation identical to the Time–Dependent Schrödinger Equation
(TDSE) for a linear harmonic oscillator, the solution of which is well known to all
physicists. The physics of solitons can then be readily appreciated.

3.1 Finite Difference Runge–Kutta Technique (FDRKT)

Despite the complicated mathematical analysis and the advanced mathematical
techniques (such as IST) someone can employ numerical techniques as well in

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 9

order to analytically obtain solutions to the 3NLS Equation. The equation itself
is but a Partial Differential Equation, which, by applying appropriate initial and
boundary conditions can be solved by one of the available numerical techniques.
The most popular, mainly because of the high accuracy of the Runge–Kutta Tech-
nique involved, is the Finite Difference Runge–Kutta Technique. To apply the
Finite Difference Runge–Kutta Technique we need first to express the derivatives
as a set of values representative of the continuous function:{

f(x+∆x) = f(x) + ∆x
1!

∂f(x)
∂x + ∆x2

2!
∂2f(x)
∂x2

f(x−∆x) = f(x)− ∆x
1!

∂f(x)
∂x + ∆x2

2!
∂2f(x)
∂x2

}
⇒

⇒ ∂2f(x)

∂x2
=
f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
(3)

In the Cubic Non–Linear Schrödinger Equation we substitute the second–order
Dispersion driven second derivative (and/or the third–order Dispersion driven
third derivative) with its Finite Difference equivalent and we obtain a form of
the equation directly solvable by means of the Runge–Kutta Technique (Fig.6).

Fig. 6 Third–order soliton propagating down a length of fibre (Finite Difference Runge–Kutta
Method).

3.2 Split–Step Fourier Transform (SSFT)

The Split–Step Fourier Transform (SSFT) is considered, well up to these days, the
technique of choice for solving the 3NLS Equation and simulating the propagation
of optical solutions for a variety of physical parameters and conditions. However,
needs to be emphasised that the SSFT Method will not work well for simulating
situations where there exists a forward and backward propagating wave.

A closer look in (1) reveals that the Dispersion and the Non–linearity are
decomposed. Taking advantage of this fact the 3NLS Equation can be solved rela-
tively easily through the SSFT Method. In fact, the technique has taken its name

10 A. G. Bakaoukas

exactly because of this separation between Dispersion and Non–linearity. The first
step is to make use of the operators D̂ and N̂ to correspond to the dispersive and
non–linear terms respectively, so (1) can take the form:

∂U

∂z
= (D̂ + N̂)U (4)

Assuming now that only each one of them operating we can obtain:

D̂ = U1(z, t) =

= IFFT (exp((
j

2
β2ω

2 − j

6
β3ω

3 − a

2
)z) FFT (U(0, t))) (5)

N̂ = U(z, t) = U1(z, t)exp(jγP0|U1(z, t)|2z) (6)

At this point we need to note that the N̂ operator multiplies the field solution
and is a function of the solution U(z, t), while the operator D̂ is a differential op-
erator expressed in terms of time derivatives that operate on U(z, t). In order to
make the computation more efficient the calculation of D̂ is performed in the fre-
quency domain with the result of transforming the derivatives in the time domain
to a simple multiplication in the frequency domain.

Fig. 7 The SSFT Method for one iteration (the length of every step is h).

The SSFT Method is an iterative method that determines the field solution for
special steps of h. This is performed in a step–by–step approach and lasts for the
entire length of the fibre. A length of optical fibre L is broken down into SL = L

h
steps of length h (Fig. 7). So, applying the SSFT Method requires the following
iterative procedure:

1. The total fibre length is divided into a number of segments of length h.
2. At the beginning of each of them we compute the FFT of the every

time initial condition U(0, t).
3. The pulse is propagated in the frequency domain for a distance h

2 under
the effect of Dispersion only.

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 11

4. At the middle of the segment, the IFFT is applied in order to come back
to the time domain and calculate the contribution of Non–Linearity
(and if desired fibre loss) in the whole segment.

5. In the last step another FFT is evaluated to return to the frequency
domain and propagate the field through the remaining distance h

2 , with
Dispersion only.

6. The results obtained are used as the initial condition for the following
segment and the process is repeated until the total fibre distance is
achieved.

The initial condition or pulse shape is necessary to start the calculation. After
propagation over a distance of h in both the linear and non–linear parts, the results
can be used as the initial condition for a further propagation distance of h. This
process is repeated until the required overall propagation distance is achieved.

Considering the initial fundamental optical fibre parameters: h = 0.01Km,

β2 = −3 ps2

Km , γ = 2 1
W
Km

, Full Soliton Width (FSW) = 10ps, Soliton order = 1,

soliton propagation down the fibre using the SSFT Method is achieved (Fig. 8).

Fig. 8 A first–order soliton pulse in the 3NLS Equation domain. The Chromatic Dispersion
effect blends perfectly with the Kerr Non–linearity effect and the result is the creation and
propagation of a solitonic pulse. For simulating the soliton propagation the SSFT Method was
used.

As a final remark the FFT algorithm imposes restrictions on the sample array
format of a nature that cannot be ignored. The sample array of U(z, t) for each
value of z must have N = 2n points as required by the FFT algorithm. The initial
array U(0, t) must sample the initial pulse ∆t with adequate temporal resolution
and be temporally wide enough to prevent aliasing and wrapping errors. Of course,
as is the case for all similar situations the sampling rate is to be given by the
Nyquist Theorem.

In contrast to what said above in regards to ∆t, there is no strict mathematical
restriction on the step–size h for the SSFT Method other than choosing a very
small h will result in a very accurate but very computationally time demanding

12 A. G. Bakaoukas

simulation. Also, we need to have in mind that choosing h smaller than the carrier
wavelength λ0 is physically meaningless. On the other hand choosing h to be too
large does not conserve spectral energy. The maximum choice of the step–size
depends on the specific dispersive and non–linear properties.

3.3 Fourier Series Analysis Technique (FSAT)

One of the commonly used set of techniques for solving Partial Differential Equa-
tion (PDE) systems is the “Separation of Variables” set, of which the “Eigenfunc-
tion Expansion” technique is the most representative example, in which a solution
of the following form is assumed:

u(x, t) =
∑∞

n=1
an(t)φn(x) (7)

where, φn(x) are an orthogonal set of eigenfunctions and we have assumed that the
PDE is now described by a scalar quantity u(x, t). The φn(x) can be any orthogonal
set of functions in which δjk is the Dirac function and (φj , φk) =

∫
φjφ
∗
k∂x gives

the inner product.

(a) A second–order soliton propagating down
a length of fibre (FSAT using the MATLABTM

ODE45() function).

(b) Third–order soliton propagating down a
length of fibre (FSAT using the Runge–Kutta
Method).

Fig. 9 Second–order and Third-order solitons as simulated using the FSAT numerical method.

Depending on the physical problem at hand, the two most common eigenfunc-
tions used are the Fourier series and the Chebyshev polynomials, mainly because
of their good correlation with the majority of physical phenomena, their spectral
accuracy properties, and computational speed.

In order to solve the 3NLS Equation computationally, a Fourier Series expan-
sion is used, thus, use can be made of the standard FFT technique. The Fourier
Series Analysis Technique initially expresses the pulse envelope function in terms

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 13

of a Fourier series in which ûn(x) is the Fourier amplitude coefficient, and ε the
fundamental frequency. This procedure yields:

∂ûn(x)

∂x
= [−jσ(n)− Γ]ûn(x) + jN2

∑
∀µ−ν+λ=n

ûµ(x)û∗ν(x)ûλ(x) (8)

where n is an integer −M ≤ n ≤ M and σ(n) = n2 ε
2

2 +Bn3ε3. The equation
represents a set of 2M + 1 First-order Partial Differential Equations (FPDE) of
complex variable, which can be separated into its real and imaginary parts, and
solved by a Fourth-order Runge-Kutta Method. The 2M + 1 initial conditions
can be obtained for x = 0. The final solution is in the time domain. Significant
parameters of this method include the time window ∆T , within which the signal is
sampled for the Fourier series representation, the step length for integration ∆x,
and the integer M , related to the total number of samples (2M + 1).

3.4 Fuzzy Mesh Analysis Technique (FMAT)

The main advantage of this technique is its ability to allow for variation of the mesh
size with the shape of the soliton pulse along the propagation distance, such that:
a) the calculation efficiency can be enhanced, and b) the number of sampling points
required can be greatly reduced. This technique requires for the soliton equation
to be solved by first splitting it into two simpler parts which can be calculated
easily, either analytically or numerically, in the time domain. In addition to that,
the mesh size is controlled by the shape of the soliton pulse such that the number
of sampling points used is in every propagation step minimised.

(a) Second–order soliton intial envelope. (b) Second–order soliton envelope after prop-
agating a quarter period down the length of
fibre.

Fig. 10 The two initial stages of the soliton envelope as simulated using the FMAT method.

14 A. G. Bakaoukas

In order to implement the Fuzzy Mesh Analysis Technique, equation (1) is
split into two parts, the Linear and Non–linear parts. It is obvious that any error
arising as a result of the splitting operator is proportional to the choice of ∆(x),
the propagation step. The Non–linear part can be solved analytically in the time
domain, and the Linear part can be calculated by means of the Finite–Element
Analysis Technique (Shum & Yu, 1998). Summarising, the technique in separate
computational steps can be arranged as follows:

1. The initial input pulse shape is set for computation.
2. The Non–linear part is solved analytically in the time domain for a

propagation distance of ∆(x)
2 .

3. u(x+ ∆(x)
2 , T) as obtained from step (2) is used as the initial condition

for solving the Linear part for another propagation distance of ∆(x)
2 .

4. Mesh control is adopted each time after the calculation of the Linear
part such that the sampling profile can be optimised for the next cal-
culation.

5. u(x+∆(x), T) as obtained from step (3) is used as the initial condition
for solving the Non–linear part of another propagation distance provided
that the propagation distance is not reached.

6. Steps (2) to (5) are repeated until the required propagation distance is
reached.

(a) Second–order soliton envelope after prop-
agating half a period down the length of fibre
(FMAT Method).

(b) Second–order soliton envelope after propa-
gating for a full period down the length of fibre
(FMAT Method).

Fig. 11 The two final stages of the soliton envelope as simulated using the FMAT method.

The computational procedure of the algorithm for the mesh control, in indi-
vidual steps is as follows:

1. Using cubic shape functions, the temporal soliton pulse shape at a par-
ticular propagation distance is deduced as a function of T .

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 15

2. Based on the calculated cubic shape functions, both the temporal pulse
shape and slope of u(x, T) are obtained. Hence, the turning points

(∂u(x,T)
∂T = 0) can be located by comparing the variation of the slope of

u(x, T).
3. The distribution of sampling points is defined within a sampling window

along the axis. The left and right boundaries of this sampling window
are defined as the magnitude of u(x, T) just below 10−3. Based on the
location of turning points, new values of mesh sizes as well as ai are
assigned.

4. The procedures of assignment of mesh sizes can be described as follows:
a) The number of turning points Ntp is counted within the sampling
window, b) The sampling window is subdivided into Ntp + 1 regions
with the turning points as the boundaries of each subdivided region, c)
The sampling points within each subdivided region are equally spaced,
but the number of sampling points Nj can be different between subdi-
vided regions, d) If upj and utj are the boundaries of u(x, T) within a
subdivided region, Nj can be defined as Nj = Rj(upjutj), where Rj is
a tuning factor. Rj is adjusted such that the summation of sampling
points within each subdivided region is equal to Ntp, and e) If the total
number of sampling points assigned to each subdivided region is more
(or less) than the available sampling points of the sampling window,
the above procedures are repeated for a different Rj until the optimal
mesh size is achieved.

5. Hence, new values of u(x, T) can be calculated using the optimised node
distribution ai.

Using this mesh control, more information of the soliton pulse can be obtained
but without increasing the total number of sampling points (Fig. 10 & Fig. 11).

4 The Half–Adder Processor Scheme

The half–adder processor scheme, first introduced in (Bakaoukas & Edwards,
2009b), forms the essential central building block on which the overall FFT soliton
computational scheme is wrapped around. The system reads the collision envelopes
at distance and time specified points and uses this information to generate solitons
with an appropriate phase value to represent the output of each “gate”. The phase
values of two of the output solitons determine the “sum” and “carry” outputs at
the end of the computation process whilst all other solitons are superfluous to this
calculation. By definition the half–adder (the sum implementation) is given by:

(X · Ȳ) · (X̄ · Y) (9)

In Fig. 12 the equivalent soliton scheme, originally presented in (Bakaoukas &
Edwards, 2009b), is reproduced here for convenience. The points highlighted in
this schematic representation by means of a bold circle indicate functional points
at which a soliton collision, part of a gate, takes place; while, X and Y denote the
initial input data. Full “gate” arrangements have been named and numbered (e.g.
NAND (*), indicates the first NAND in the computational arrangement, NAND
(**) the second, etc.).

16 A. G. Bakaoukas

In Figs 13 through to 16, the schematic representation of Fig. 12 is reflected on
actual soliton collision simulations. Each individual gate–soliton collision is pre-
sented in a separate figure for clarity and comparison purposes. The simulation
figures are to be followed in a top–to–bottom approach in the schematic represen-
tation of Fig. 12.

Fig. 12 The half–adder processor.

In all the figures the input–output “gate” sequence follows the soliton propa-
gation direction. The point at which the soliton propagation begins (point 0 in the
propagation scale across the depth of the figure) also reflects the input side of the
“gate” and respectively, the point at which the soliton propagation ends (point
100 in the propagation scale across the depth of the figure) reflects the output side
of the “gate”.

At this point and for the approach used for the presentation of the material
to follow in this paper to become clear, we need to stretch–out the fact that
the computational complexities involved are extensively simplified if can become

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 17

apparent that the scheme is flexible enough to be gradually get “packed” in fixed–
purpose calculation lengths. This approach doesn’t suppress the system from its
generalisation properties, as the fixed reading points (as these have been identified
and introduced in (Bakaoukas & Edwards, 2009b) and (Bakaoukas & Edwards,
2009a)) still hold their properties and continue to provide the system with all the
capabilities initially identified as inherently characteristic of the computational
system at hand.

(a) (b)

Fig. 13 a) The soliton “gate” NOT(*). The number in the brackets next to each soliton
description is the bit value carried by the soliton and b) The soliton “gate” NAND(*). The
number in the brackets next to each soliton description is the bit value carried by the soliton.

(a) (b)

Fig. 14 a) The soliton “gate” NOT(**). The number in the brackets next to each soliton
description is the bit value carried by the soliton and b) The soliton “gate” NAND(**). The
number in the brackets next to each soliton description is the bit value carried by the soliton.

18 A. G. Bakaoukas

(a) (b)

Fig. 15 a) The soliton “gate” NOT(***). The number in the brackets next to each soliton
description is the bit value carried by the soliton and b) The soliton “gate” NAND(***). The
number in the brackets next to each soliton description is the bit value carried by the soliton.

Fig. 16 The soliton “gate” NAND(****). The number in the brackets next to each soliton
description is the bit value carried by the soliton.

5 The Two 2-bit Numbers Multiplier

In this section we present the “Two 2–bit Numbers Multiplier”, which involves a
half–adder as its lying–in–its–heart functional unit (“Three–bit Adder Arrange-
ment”). The particular arrangement forms the compact small–scale equivalent
of the “Two maximum–number–of–bits Numbers Multiplier”, which for general
purpose calculations must involve full–adders as well as half–adders in its arrange-

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 19

ment. The reason behind choosing the Two 2–bit Numbers Multiplier is only the
fact that the particular arrangement possesses all the functionalities and proper-
ties need to be demonstrated, while at the same time gives us the ability to keep
the material presented at a minimum of extension and complexity in this paper.

Starting from the half–adder arrangement, if we now take a closer look in Fig.
12 we will notice that all the output solitons need to be ignored after reading and
only the output soliton representing the “carry” value is to be allowed to propagate
further on and enter the cascading second half–adder arrangement. Is exactly this
soliton–bit that is required for the arrangement to complete the Three–bit Adder
Arrangement output calculation as presented in a conventional block diagram in
Fig. 17.

Fig. 17 The three-bit adder.

This “Soliton Suppression” requirement at the very end of a computational ar-
rangement is not characteristic only of the computational scheme here presented
but rather a common characteristic requirement in soliton computational arrange-
ments as, for example, of the one introduced in (Rand & Steiglitz, 2007), where
the additional property of not intersecting (solitons crossing paths but not col-
liding) is also a vital system characteristic requirement. The usual formal term
coined for such kind of solitons is “Garbage Solitons” and is chosen to emphasise
the fact that these solitons are to play no active role in the cascading calculations
following the output of an arrangement. The way this “Soliton Suppression” can
be physically achieved is, in general terms, a technicality, requiring some hands–on
experimental work, in order for different methods and their corresponding effects
on the overall computational arrangement to be properly studied. For these rea-
sons we postpone, at this point, the explanation of how this “Soliton Suppression”
can be accomplished.

In order to present a complete picture of the soliton arrangements as well as
the almost unlimited flexibility possessed by the computational system (another
reason is that in the view of the author the concept of “Garbage Solitons” is nei-
ther entirely satisfactory nor properly defined in its physical terms), in Fig. 18 an
alternative soliton arrangement is presented which doesn’t need “Soliton Suppres-
sion” any more in order for the cascading half–adder arrangement to commence
calculation. In this new arrangement the general soliton pattern remains the same
as in the original version, with the only difference that now the third control soli-
ton is starting propagation at a time position shifted to the left (top) by four
time slots (in Fig. 18 the original third control soliton propagation route has been
maintained as well for comparison purposes). The order in which the individual
gates are presenting their results is slightly changed as well. Shifting the third
control soliton by four time slots to the left (top) of the arrangement has as a

20 A. G. Bakaoukas

Fig. 18 The alternative half-adder arrangement. [Logic gates: (1) NOT, (2) NOT, (3) NAND,
(4) NAND, (5) NAND, (6) NAND, (7) NOT].

Fig. 19 The “Two 2-bit Numbers Multiplier”.

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 21

result for the soliton carrying the “carry” value to appear at the end (bottom) of
the output soliton order. So, this soliton can now be taken as the first input soliton
of the new half–adder arrangement (literally, as it possesses the same propagation
angle as the original input solitons to the half–adder arrangement) which, by use
of a second appropriate input soliton and three control solitons, as required by the
scheme, can provide us with the final computational result, without the need to
include any kind of “Soliton Suppression” procedure.

Fig. 20 Part of the “Two 2-bit Numbers Multiplier” (including two of the initial AND gates
and the half-adder arrangement without the corresponding generated solitons). [Logic gates:
(1) NAND, (2) NOT, (3) NAND, (4) NOT].

Having established and demonstrated the Three–bit Adder Arrangement, we
can now build around it the full Two 2–bit Numbers Multiplier. The overall ar-
rangement requires the addition of another four AND gates, to accommodate initial
bit multiplications. The conventional diagram arrangement for the multiplier is as
presented in Fig. 19.

22 A. G. Bakaoukas

In Fig. 20 part of the Two 2–bit Numbers Multiplier is presented. For illus-
tration purposes Generated Solitons in Fig. 20 are shown to be closer together
than they should be in an actual computational arrangement without loosing in
computational properties or upsetting the result. Circular soliton collision points
indicate collisions taking place during the initial AND gates calculations, while
square soliton collision points indicate collisions taking place as part of the half–
adder calculation process. The arrangement in Fig. 20 illustrates a certain degree
of parallelism in the calculation process, which contributes significantly in increas-
ing the overall computational speed of the arrangement. It comes without saying
that the Two 2–bit Numbers Multiplier arrangement illustrated can be extended
to cover any bit length required for the multiplication between two individual
numbers. Again, the purpose here was to keep the length of the illustration to a
minimum.

6 The “Butterfly” Soliton Arrangement

For the remaining part of the “Butterfly” calculation process, we need a soliton
arrangement to convert a positive bit–number to a negative one. In order to achieve
this we adopt the method of complementing each digit in a bit–number in turn
(change 1 for 0 and 0 for 1) and then add 1 to the result. That way, the bit–number
taken out of the procedure corresponds to a bit–number representing the negative
equivalent of the initial bit–number.

Fig. 21 The full-adder (conventional logic arrangement).

A series of collisions between the solitons carrying the bit–number values and
a single control soliton with a phase value opposite to the one possessed by the
control soliton that generated the initial bit–number, is enough to produce the bit–
number complement. Since all the control solitons used so far in the computational
arrangements presented had a phase value of π, corresponding to a bit value of 1,
the appropriate control soliton to achieve the complement calculation must possess
a phase value of 0, in turn corresponding to a bit value of 0. The addition of 1
to the complement can be easily achieved by means of full–adder arrangements
internally consisting of two interconnecting half–adder arrangements and an OR
gate, according to the conventional logic scheme presented in Fig. 21.

After the complement of a bit–number has been calculated, subtracting it from
another bit–number requires the addition between the complement calculated and

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 23

Fig. 22 Basic “Butterfly” computation in the decimation–in–time FFT algorithm.

Fig. 23 The “Butterfly” soliton arrangement. [(1) Multiplier arrangement, (2) Negation ar-
rangement, (3) Addition arrangement, (4) Addition arrangement].

24 A. G. Bakaoukas

the second bit–number. That way only half–adder and full–adder arrangements
are required for the realisation of all the calculations involved in the “Butterfly”
arrangement. Addition and subtraction calculations appear at the final stages of
the “Butterfly” (Fig. 22), those that actually are giving the result and passing
the values calculated to the next processing stage of the overall FFT calculation
arrangement.

Having completed the presentation of the individual parts out of which the
soliton “Butterfly” arrangement consists of, we can now present the schematic of
the overall arrangement required. Fig. 23 presents the soliton “Butterfly” arrange-
ment to full extend omitting, by means of a “black box” representation, those parts
of the arrangement which have been previously analysed and illustrated. “Adder
Output” (D) and “Adder Output” (E) appear at the end of the arrangement as
required for the cascading “Butterfly” arrangements to continue further process-
ing the data. All the output soliton propagation routes shown are indicative, since
in an actual calculation of bit–numbers more than one solitons will represent the
output bit–number of each block of calculation. As it is the case with the conven-
tional Radix–2 FFT algorithm the first and the second decimation process results
in a “shuffling” of the input data sequence, which has a well–defined order.

7 Conclusions and Further Research Directions

In this paper we surveyed the possibilities of an all–optical soliton FFT calculation
and shown how this can become possible within the boundaries of the optical soli-
ton 3NLSE domain. The outcome of this investigation is leading the way towards
a fast all–optical soliton FFT calculation with the FFT phasors (roots of unity) to
be represented directly by solitons of corresponding phase values, currently under
extensive research by the author. In such a scheme the 8–point FFT phasors, for
example, can be directly represented as:

W 0
8 → Soliton phase value = 2π

W 1
8 → Soliton phase value = π

4

W 2
8 → Soliton phase value = π

2

W 3
8 → Soliton phase value = 3π

4

W 4
8 → Soliton phase value = −2π

W 5
8 → Soliton phase value = 5π

4

W 6
8 → Soliton phase value = 6π

4

W 7
8 → Soliton phase value = 7π

4

W 8
8 → Soliton phase value = 2π

while the soliton phase values of π and 0 remain reserved to represent digit 1
and digit 0 respectively for the control and data solitons involved. This additional
ability, when properly specified, will provide the overall computational scheme with
a separate, well defined, and of a smaller fixed length FFT calculation arrangement
without the need for it to consist of individual calculation arrangements based on
the scheme’s “gates”.

An All–optical Soliton FFT Computational Arrangement in the 3NLSE–domain 25

References

Ablowitz, M. J., & Segur, H. (Philadephia, 1981). Solitons and the inverse scat-
tering transform. SIAM .

Bakaoukas, A. G. (2013). Towards an all–optical soliton fft in the 3nls–domain. Un-

conventional Computation and Natural Computation Conference, 5 (6), 250–251.
(UCNC 2013, LNCS 7956, Milano Italy, Springer–Verlag Berlin Heidelberg)

Bakaoukas, A. G. (2014). Computational capabilities of interactions between
optical solitons. International Journal of Information Science and Intelligent

System, 3 (2), 13–32. (Martin Science Publishing)
Bakaoukas, A. G. (2015). Computational capabilities of collisions between optical

solitons. International Journal of Information Science and Intelligent System,
4 (1). (Martin Science Publishing)

Bakaoukas, A. G. (2016). An all–optical soliton fft computational arrangement
in the 3nlse–domain. Unconventional Computation and Natural Computa-

tion. (15th International Conference, UCNC 2016, Manchester, UK, Pro-
ceedings, DOI: 10.1007/978–3–319–41312–9, Print ISBN: 978–3–319–41311–
2, Springer International Publishing)

Bakaoukas, A. G., & Edwards, J. (2009a). Computation in the 3nls domain
using first and second order solitons. International Journal of Unconventional

Computing (IJUC), 5 (6). (ISSN: 1548–7199)
Bakaoukas, A. G., & Edwards, J. (2009b). Computing in the 3nls domain using

first order solitons. International Journal of Unconventional Computing (IJUC),
5 (6). (ISSN: 1548–7199)

Bakaoukas, A. G., & Edwards, J. (2013). Quantum notation in the analysis of
soliton gates interaction (part i)–the cn/ccn gates paradigm. International

Journal of Information Science and Intelligent System, 2 (2), 1–50. (Martin
Science Publishing)

Blair, S. (1998). Optical soliton–based logic gates. PhD Thesis. (University of
Colorado at Boulder)

Fredkin, E., & Toffoli, T. (1981). Conservative logic. International Journal of

Theoretical Physics, 21 , 219–253.
Jakubowski, M. H., Steiglitz, K., & Squier, R. K. (1996). When can solitons

compute? Complex Systems, 10 (1).
Jakubowski, M. H., Steiglitz, K., & Squier, R. K. (1997). Information transfer

between solitary waves in the saturable schrödinger equation. Physical Review
E , 56 (6).

Jakubowski, M. H., Steiglitz, K., & Squier, R. K. (2001). Computing with solitons
– a review. Multi–valued Logic (Special Issue on Collision Based Computing).

Rand, D., & Steiglitz, K. (2007). Computing with solitons.
(July 1)

Shum, P., & Yu, S. F. (1998). Numerical analysis of non–linear soliton propaga-
tion phenomena using the fuzzy mesh analysis technique. IEEE Journal of

Quantum Electrinics, 34 (10).
Steiglitz, K. (2000). Time–gated manakov spatial solitons are computationally

universal. Physical Review E , 63 .
Toffoli, T. (1980). Reversible computing. automata, languages, and programming.

J. de Bakker, Ed. Springer–Verlag, New York .

