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Detecting Activities of Daily Living and Routine 

Behaviours in Dementia Patients Living Alone Using 

Smart Meter Load Disaggregation 

C. Chalmers, P.Fergus, C. Aday Curbelo Montanez, S.Sikdar, F.Ball and B. Kendall

 
Abstract— The emergence of an ageing population is a 

significant public health concern. This has led to an increase in 

the number of people living with progressive neurodegenerative 

disorders. The strain this places on services means providing 24-

hour monitoring is not sustainable. No solution exists to non-

intrusively monitor the wellbeing of patients with dementia, 

resulting in delayed intervention. Using machine learning and 

signal processing, domestic energy supplies can be disaggregated 

to detect appliance usage.  This enables Activities of Daily Living 

(ADLs) to be assessed. The aim is to facilitate early intervention 

and enable patients to stay in their homes for longer. A Support 

Vector Machine (SVM) and Random Decision Forest classifier 

are modelled using data from three test homes. The trained 

models are then used to monitor two patients with dementia 

during a six-month clinical trial undertaken in partnership with 

Mersey Care NHS Foundation Trust. In the case of load 

disaggregation, the SVM achieved (AUC=0.86074, Sen=0.756 and 

Spec=0.92838). While the Decision Forest achieved 

(AUC=0.9429, Sen=0.9634 and Spec=0.9634). ADLs are also 

analysed to identify the behavioural patterns of the occupant 

while detecting alterations in routine. The approach is sensitive 

in identifying behavioural routines and detecting anomalies in 

patient behaviour. 

Index Terms— Smart meter and Smart Grid; Data Science and 

Analytics; Remote Monitoring and Machine Learning; Assisted 

Living 

I.INTRODUCTION 

ssistive technology covers a wide range of tools and 

techniques to support independent living in domiciliary 

settings [1]. Particular interest, in recent years, has focused on 

monitoring technologies for early intervention services and 

out-patient condition management [1]. Typical solutions 

include physical aids and remote surveillance. Both 

approaches are designed to help patients perform daily tasks 

and support their healthcare needs, automatically alerting 

healthcare staff and relatives as and when required [2]. Many 

existing approaches depend on multi-sensor deployment in 

homes and on patients themselves [2]. These include motion 

sensors, cameras, fall detectors and communication hubs, 

which all need patient interaction.   

In healthcare settings, these assistive technologies are also 

proprietary and often tailored to specific application scenarios. 

They are rarely personalised to meet the specific needs of a 

patient and rarely identify normal and abnormal trends in 

behaviour. This is due to the fact assisted living technologies 

have limited utility in unobtrusively detecting Activities of 

Daily Living (ADLs). Consequently, adherence in both 

patients and healthcare professionals is low resulting in most 

telehealth solutions never being used [3]. The smart meter 

rollout has the potential to change this. In this paper, we 

propose a system that allows a person with dementia to go 

about their day-to-day life and retain their independence, 

while monitoring their habits to provide greater peace of mind 

for the person’s family and carers. This system does not 

require direct interaction from the patient. Instead, data is 

collected about an individual’s habits and routines through 

their normal interaction with electrical devices, i.e. putting the 

kettle on or heating a meal in the microwave. This allows the 

patient’s ADLs to be assessed; any changes observed will 

trigger an early intervention to help reduce excessive 

deterioration with the aim of supporting independent living 

and enabling the patient to stay in their home for longer.    

The approach is foundational and builds on worldwide, 

government financed, Smart Meter rollout programs - 55% of 

installations are expected to be complete by the end of 2020 

[4]. The Smart Meter infrastructure provides a unique 

opportunity to deliver healthcare solutions to patients living 

alone with dementia. This will provide support and care 

packages that are tailored to the individual needs of a patient, 

ensuring a much closer relationship between patients and 

those who care for them. The approach is novel and 

significantly superior to any other telehealth solution proposed 

worldwide in dementia care. The results are significant and we 

argue in this paper that the approach warrants wider 

discussion with national healthcare services and relevant 

governmental departments. 

The remainder of the paper is structured as follows. A 

background discussion on current AAL solutions and their 

associated limitations is introduced in Section 2. Section 3 

discusses smart meters, the concept of Non-Intrusive Load 

Monitoring (NILM) and the challenges involved in processing 

smart meter data for the purpose of load disaggregation. 

Section 4 describes the proposed approach and presents the 

results obtained from a clinical trial conducted in partnership 

with Mersey Care NHS Foundation Trust in the UK. The 

results are discussed in Section 5 before the paper is 

concluded and future work is presented in Section 6. 

II.CURRENT AMBIENT ASSISTIVE LIVING TECHNOLOGIES 

Several clinical trials in Ambient Assistive Living (AAL) 

have been conducted to assess the feasibility using technology 

in healthcare practices [5], [6]. AAL utilises technology (i.e. 

A 



sensors, computing etc.) within and across different domains 

(i.e. computer science, engineering, medicine and social 

sciences) to identify human activities and provide medical 

insights; commonly referred to as telehealth. 

 Telehealth has undoubtedly helped patients to live 

independently which, according to Mordor Intelligence, will 

be worth $66 billion by the end of 20211. However, there are 

numerous examples where telehealth solutions were 

anticipated to transform healthcare but failed to deliver. In 

many instances their use in healthcare increases overall care 

plan costs by 10%, yet a recent study showed that many 

solutions only provide minimal gains in a patient’s quality of 

life [7]. Quality Adjusted Life Year (QALY) is a generic 

measurement of disease burden, which ascertains and 

quantifies both the quality and quantity of life. It is utilised to 

establish the overall effectiveness of an intervention metric. In 

[7] the QALY achieved between intervention and non-

intervention groups equates to 0.012 QALYs (only a few 

additional days of quality health). This is below the cost-

effective threshold recommended by The National Institute for 

Health and Care Excellence (NICE) [7]. 

A. Current Smart Home Solutions 

AAL technology provides two main types of monitoring: 

preventative and responsive. The preventative model 

minimises patient risks using ADLs, by supporting tasks such 

as taking medications, eating and drinking. Responsive 

models on the other hand react to events like falls, alarms and 

patients leaving their home. Often responsive technologies 

only work well when predefined protocols are defined [8]. 

The medical profession is interested in both approaches and 

their application in delivering home healthcare services. The 

rationale being that if smart homes can be used to deliver 

healthcare services, then it would be possible to monitor 

patients and detect relapse indicators to support early 

intervention practices [9]. This model fits well with patients 

and carers alike as over 80% would prefer to stay in their own 

home in the later years of life2.  

The fact is, monitoring patients remotely provides new and 

interesting ways of supporting patients during their dementia 

journey. Currently, there are several ways to achieve this. 

Table 1 provides a brief summary of common solutions [9]. 

TABLE 1  

SENSORS DEPLOYED IN A SMART ENVIRONMENT 

Sensor Type Measurement Limitations 

Passive 

Infrared 

Movement 

around the 

Multiple sensors are required. 

Typically one for each room in a 

 
1 https://www.forbes.com/sites/quora/2018/07/31/what-are-

the-latest-trends-in-telemedicine-in-2018/#5db0b96e6b9e 

[Accessed on 25/09/19] 
2 http://www.raeng.org.uk/publications/reports/designing-cost-

effective-care-for-older-people [Accessed on 25/09/19] 

Motion 
Sensor (PIR) 

 

living 
environment. 

persons living environment. PIR 
solutions often fail to detect key 

ADLS, as they can only verify 

location and not the occupant’s 
activity. Sensors can have poor 

battery life, which requires ongoing 

maintenance and accurate detection 
of failing batteries. 

Radio 

Frequency 
Identification 

(RFID) 

 

Movement 

around the 
living 

environment. 

Multiple sensors are required, which 

are distributed throughout the living 
environment. RFID often suffers 

from reduced accuracy due to 

interference from neighbouring 
sensors [10]. It is common for RFID 

solutions to experience contact 

sensing difficulties. For example, 
when a sensor is within the range of 

an antenna but is not detected. 

Pressure 
Sensors / 

Smart Tiles 

 

Detects the 
presence of 

pressure on 

multiple items 
such as flooring, 

mats, beds and 

chairs.   

Often inaccurate (sensing motion not 
presence) [11]. Equipment 

positioning often requires important 

consideration to obtain the best 
results. In addition, they are often 

used in conjunction with other 

sensors [12]. 

Magnetic 
Switches 

 

Detection of 
door / cabinet 

opening and 

closing.   

Multiple sensors required. Switches 
can be wired or wireless and are 

often used in conjunction with other 

sensors. 

Cameras 

 

Tracks activity 

within the living 

environment. 

Often considered unacceptable due 

to legal, privacy and ethical issues. 

Additionally, the deployment of 
camera technology within the living 

environment is both expensive and 

intrusive [13]. 

Microphone 
 

Used to record 
and identify 

particular noises 
within the home. 

Microphones can be deployed 
throughout the living environment 

and can be used to identify 
significant sounds. Noises can be 

utilised for the detection of ADLS or 

identifying if the patient is in 
trouble. 

Physical 

Alarms 

 

Devices, which 

are worn by the 

patient and can 
be triggered in 

the event of an 

emergency. 

Systems that are solely reliant on a 

person’s interaction to function pose 

many safety concerns. Dementia 
patients in particular may forget to 

activate the device or fail to identify 

if they are at risk. 

Consumer 

Devices 

Devices such as 

smart watches, 

smart 
wristbands and 

smart phones 

used for 
detecting ADLs. 

Smart devices can be used to 

accurately determine significant 

ADLs. However, these introduce 
additional costs and require the user 

to learn how to use them. Using 

them to monitor patients with 
cognitive disorders is often 

impractical due to patients forgetting 

to charge or wear them.   

 

B. Limitations  

There are no agreed standards for AAL and concerns 

surrounding high costs and complex installations impede their 

adoption [14]. In many instances, they are too rigid and 

therefore simply fail to meet the unique requirements needed 

by patients and their home environments to facilitate 

independent living [15]. State-of-the-art products are propriety 

configurations that do not interoperate with other solutions 



and services, or facilitate Early Intervention Practice (EIP) 

and unobtrusive ADL detection.  

They are often considered intrusive and incapable of being 

personalised to the individual. There are no mechanisms to 

learn the unique characteristics of patients and their conditions; 

this limits their effectiveness in most home healthcare services. 

Consequently, large scale adoption within National Health 

Service (NHS) trusts, councils and social services is not 

feasible. 

III.APPROACH 

The proposed solution utilises the smart meter 

infrastructure to deliver dementia care support.  This system 

does not require direct interaction from the patient. Instead, 

data is collected about an individual’s habits and routines 

through their normal interaction with electrical devices. The 

system addresses three fundamental limitations associated 

with existing AAL technologies: unobtrusive ADL detection, 

EIP support, and per patient personalisation. This is achieved 

using data obtained from the smart metering infrastructure to 

better understand an individual’s habits and routines through 

interactions with electrical devices. This allows a patients 

ADLs to be assessed; changes in normal routines are used to 

trigger an early intervention. This study is focused on single 

occupants where there is absence of an immediate support 

network.   

Smart meters generate large amounts of energy usage data 

[15]. Utilising this data facilitates applications outside of 

typical energy management scenarios. By utilising an 

integrated system of smart meters, communication networks 

and data management systems, two-way communications 

between energy suppliers and consumers is possible. This 

section discusses the fundamental components that make up 

the infrastructure and the functionality provided before the 

details of the proposed solution are presented. 

A. Smart Meter Infrastructure 

The main objective of the smart grid is to balance energy 

load effectively through a network of connected smart meters 

[16]. According to the International Energy Agency (IEA), 

smart grid technologies are essential to meet future energy 

requirements [17]. The IEA expects worldwide energy 

demands to increase at an annual rate of 2.2%, eventually 

doubling the global energy demand by 20403. In the smart 

grid architecture, all energy consumption data is acquired 

directly from individual smart meters. This data is stored, 

managed and analysed in the Meter Data Management System 

(MDMS) [18]. Figure 1 provides an overview of a typical 

MDMS. 

 

 
3 https://www.ctc-n.org/sites/www.ctc-

n.org/files/resources/technologyroadmaphow2guideforsmartgr

idsindistributionnetworks.pdf [Accessed on 25/09/19] 

The MDMS sits within the data and communications layer 

of the Advanced Metering Infrastructure (AMI) and is a 

scalable software platform that provides data analytic services 

for AMI applications. Applications include, managing 

metered consumption data, outage management, demand and 

response, remote connect/disconnect, smart meter events and 

billing [19]. The information generated can be shared with 

consumers, partners, market operators and regulators. 

 

 

Fig. 1: An Example Meter Data Management System for Processing 
Home Energy and Automated Billing 

Data processing within the AMI is a significant challenge. 

Smart meters in the UK collect and transmit energy usage 

information to the MDMS every 30 minutes [20]. Higher 

sampling rates are possible, but managing increases in data 

throughput has a significant financial impact on utility 

companies. Table 2 provides a summary of typical data 

sources found in the smart grid infrastructure.  

TABLE 2 

SMART GRID DATA SOURCES 

Data Type Technology Description 

AMI Smart Meters Consumption data that is generated 

from smart meters at a predefined 
frequency. This contains aggregated 

energy data in watts (W). Unix 

date/time stamp and the meter 
personal identification number (PID).  

Distribution 

and 

Automation 

Grid 

Equipment 

The distribution and automation 

system, that collects data from the 

various sensors distributed 

throughout the entire grid. These 

sensors can generate up to 30 
readings per second per sensor. 

Readings include voltage and 

equipment health monitoring, outage 
voltage and reactive power 

management.  

Third - Party External Data 
Sets 

The integration of 3rd party data, 
such as demand and response. 

Asset 

Management 

OS / Firmware Communication between the MDMS 

and smart technologies. 
Geographical aggregated load 

readings are analysed to ensure 

efficient grid management. 
OS/firmware version patching and 

updating.  

https://www.ctc-n.org/sites/www.ctc-n.org/files/resources/technologyroadmaphow2guideforsmartgridsindistributionnetworks.pdf
https://www.ctc-n.org/sites/www.ctc-n.org/files/resources/technologyroadmaphow2guideforsmartgridsindistributionnetworks.pdf
https://www.ctc-n.org/sites/www.ctc-n.org/files/resources/technologyroadmaphow2guideforsmartgridsindistributionnetworks.pdf


The collection and accessibility of data does not provide 

any real value without software tools and expertise to exploit 

it. Consequently, data science has become a major focus for 

smart grid research [21]. The primary interest is to extract 

meaningful information from selected datasets for decision-

making and service provisioning directly on top of the smart 

meter infrastructure.   

B. Load Disaggregation 

Smart meter data opens up new opportunities to exploit 

smart meter energy readings to identify individual electrical 

devices and the habitual usage patterns of people in their 

home. Appliance Load Monitoring (ALM) for example is 

already being analysed to identify different appliance types 

[22]. ALM is divided into two categories: Non-Intrusive Load 

Monitoring (NILM) and Intrusive Load Monitoring (ILM). 

NILM is a single point sensor, such as a smart meter. In 

contrast, ILM is a distributed sensing method that uses 

multiple sensors – one for each electrical device being 

monitored [23].  

ILM is a more accurate method given that readings are 

obtained directly from the device [24]. However, this 

approach has a financial implication and is complex to set up. 

Within an ILM platform sensors can be moved between 

different devices and this can skew identification and 

classification results. While NILM is regarded as less accurate 

and more challenging, it mitigates this issue as appliances are 

identified from aggregated energy readings obtained for the 

whole property [25]. This nonetheless requires algorithms to 

identify appliance power signatures from aggregated load 

readings that correlate with individual appliance states. In the 

approach presented in this paper data is obtained from the 

smart meter directly and is defined as: 

𝑃𝑡 =  𝑝1𝑡  +  𝑝2𝑡 +  … +  𝑝𝑛𝑡  (1) 

 
where p is the power consumption of individual devices 

that contribute to the total aggregated measurement, and n is 
the total number of devices within the time period t.  

In a typical NILM environment, simple hardware is 
deployed such as a Current Transformer Clip (CT) removing 
the need for distributed sensors such as smart plugs. However, 
this requires more complex software tools such as machine 
learning to identify different appliances. NILM comprises four 
key stages, data acquisition, event detection, appliance feature 
extraction and device classification. The overall accuracy of 
appliance detection in NILM is significantly influenced by the 
sample rate [26]. Low sampling increases the number of errors 
in device identification due to event triggers being overlooked. 
Therefore, there are two common sampling rates used: those 
greater than 60Hz, and those less than 60Hz. Alternative 
configurations can be adopted where more advanced features 
are required, for example, voltage, current, real power, power 
factor, phase angle and reactive power. 

Researchers have utilised a variety of different machine 
learning and statistical pattern recognition techniques to 

archive NILM. Such research typically focuses on the 
harmonic frequency domain [27]. However, these approaches 
are often impractical on smart meter data. 

C. Electrical Device Types 

Electrical appliances run in multiple modes, alongside their 

normal on-off states. For example, many devices have low 

power requirements or standby modes. While appliances like 

ovens can operate using several control functions. 

Understanding different device categories is vital for NILM, 

as they provide different information on electrical usage 

characteristics. Device categories include: 

• Type 1 devices: operate in two states either on or off. 

Examples include kettles, toasters and lighting. Figure 2 

shows a power reading for a kettle - (a) highlights a series 

of devices being used in conjunction or in close 

succession; while (b) presents evenly distributed single 

device interactions. 

• Type 2 devices: are known as Multi-State Devices (MSD) 

or finite state appliances. They operate in multiple states 

with more complex behaviours than simple on-off states. 

Devices include washing machines, dryers and 

dishwashers.  

• Type 3 devices: are known as Continuously Variable 

Devices (CVD). Their power draw has no fixed state. 

There is no repeatability in their characteristics and as 

such they are problematic in NILM. Example devices 

include power tools such as drill or electric saw. 

• Type 4 devices: are fairly new in terms of device category. 

These devices are active for long periods and consume 

electricity at a constant rate [28]. Type 4 devices are 

always on. Therefore, there are no major events to detect 

other than small fluctuations. Such devices include smoke 

detectors and intruder alarms. 

 (a)  (b) 

Fig. 2: Aggregated Load Readings Highlighting Unique Device 
Signatures 

NILM appliance state detection is defined by Parson et al., 
where z is the appliance state [26]: 

𝑍𝑛  =  𝑧1
𝑛 , … , 𝑧𝑡

𝑛 (2) 



 

Understanding these differences is important in any load 

disaggregation system, as devices are often used in 

combination, typically when preparing meals. This can affect 

the performance in classification tasks due the boundaries that 

exist between device classes, making them difficult to identify. 

The natural boundaries between different device classes are 

illustrated in Figure 3, using Yifan Hu clustering [29]. 

Specific device types are grouped based on an association, 

defined by their electricity consumption patterns. Each device 

class in figure 3 is represented by a unique colour as 

highlighted in the figure key:  

 

Fig. 3: Cluster Visualisation of the Five Home Appliances Used in 

the Study for Measuring Activities of Daily Living 

Yifan Hu is a force-directed algorithm [29] that calculates 

attraction and repulsion forces. This visually demonstrates the 

similarity of device types through a clustering process. The 

repulsion Fr formula is defined as: 

𝐹𝑟 =
𝑘

𝑑^2
 

(3) 

 

while the attraction Fa formula is expressed as: 

𝐹𝑎 =  −𝑘 ∙ 𝑑 
(4) 

 

where d represents the distance between the two nodes. 

One of the main benefits is that specific structure in the data 

can be calculated using information contained within the 

graph itself. This removes the need for domain-specific 

knowledge [29]. The algorithm uses the repulsive forces on 

one node from a cluster of distant nodes. In this case, nodes 

correspond to electrical device readings. These are 

approximated by a Barnes-Hut calculation scheme for 

grouping together bodies that are sufficiently nearby [29]. It 

uses a multilevel approach to find globally optimal layouts, 

and the Barnes-Hut octree technique to approximate short and 

long range forces [29]. Typically, this multilevel approach has 

three phases, as shown in Algorithm 1 [29]. The starting point 

is the original graph, G0 = G and ni = |Vi | are the coefficients 

for the number of vertices in the ith level graph, represented as 

Gi. xi is defined as the coordinate vector for the vertices in Vi. 

Gi is represented by a symmetric matrix Gi, where all entries 

of the matrix act as the edge weights. Gi+1 to Gi is the 

continuation operator, also represented by a matrix Pi, of 

dimension ni * ni+1. 

 

Algorithm 1 Three Phase Descriptors 

1: Coarsest Graph Layout: 
 

    𝐢𝐟 (ni+1 < MinSize or
ni+1

ni
> p){ 

          ∗  xi ≔ random initial layout 

         ∗  xi = ForceDirectedAlgorithm(Gi, xi, tol) 

     ∗ 𝐫𝐞𝐭𝐮𝐫𝐧 xi} 

2: The Coarsening Phase: 

     set up the ni × ni+1prolongation matrix Pi 

     Gi+1 =  PiT
GiPi 

     xi+1 = MultilevelLayout(Gi+1, tol) 

 
3: The Prolongation and Refinement Phase: 

     prolongate to get initial layout: 𝑥1 = 𝑃𝑖  𝑥𝑖+1 

     refinement: xi = ForceDirectedAlgorithm(Gi, xi, tol) 

     𝐫𝐞𝐭𝐮𝐫𝐧 xi 
 

 

The graph displays a visualisation of raw data collected 

from smart meters which is the total watts consumed by each 

appliance. The boundaries between classes provide guidance 

on what classifiers to use (i.e. linear, quadratic or polynomial) 

within the same feature space. For example, overlapping data 

shows that a linear division of the raw data is not possible. As 

such, both quadratic and axis aligned algorithms are utilised in 

our NILM approach. In the case of the SVM using a more 

complex kernel could result in overfitting. Avoiding 

overfitting in this approach is of particular importance given 

the variance in device signatures contained in a given class 

(device models and different brands). 

D. Condition Monitoring 

Condition monitoring in dementia patients is challenging 

due to different levels of memory impairment and social 

disengagement. There is however a common set of features 

for Alzheimer's disease (and some other dementias), these 

include changes in physical health such as falls, Urinary Tract 

Infection (UTI), dehydration, sleep disorder, depression, 

apathy and appetite disturbances, that could potentially be 

detected through ongoing interactions with home appliances. 

The severity of each symptom differs at various stages of the 

disease so systems need to be adaptable to these changes, as 

patients progress through different stages of the illness.  



Behavioural problems, such as agitation, become more 

pronounced in the later stages of the disease. For example, 

during periods of severe depression, the patient may interact 

less with their electrical devices, they may stay in bed for 

longer periods of time (insomnia or hypersomnia) or not cook 

meals (change in appetite). Changes in sleep behaviours and 

appetite are all reflected through energy usage. Such 

behaviours can be identified and investigated further where 

appropriate. Likewise, alterations in appliance usage, i.e. 

operating appliances during abnormal times of the day, 

provide key indicators that patients may be experiencing 

difficulties. Many of these symptoms can be detected by 

analysing electricity usage patterns. 

Of the various cognitive screening tests used in diagnosing 

and staging severity of dementia, the Mini Mental State 

Examination (MMSE) is one that is commonly used by 

clinicians. After a patient’s initial diagnosis, ongoing 

evaluation is required but systems vary throughout the UK. 

Typically, a patient is reassessed three months after diagnosis 

and twice a year thereafter. Such sporadic monitoring does not 

provide sufficient granularity to adequately care for patients 

and so by consistently monitoring their ADLs through smart 

meter data, disease progression can be identified much earlier. 

Figure 4 highlights the MMSE, showing the need for changes 

in the monitoring techniques as the severity of the disease 

increases. 

To achieve effective monitoring, it is important to identify 

significant behavioural traits within the target group. The 

identification of expected behaviour and potential relapse 

indicators aids in the selection of appropriate analytical 

techniques. Establishing routines (mapping appliance usage to 

specific observation periods) facilitates the detection of 

abnormal behaviour.     

Changes in Energy Characteristics

 

Fig. 4. Mini Mental State Examination (MMSE) Framework used for 

Assessing the Cognitive Functioning of Patients 

IV.IMPLEMENTATION & CLINICAL TRIAL 

The system presented in this paper has been tested in a 

clinical trial with two people living with dementia over a 6 

month period, cared for by Mersey Care NHS Foundation 

Trust4. In line with NHS Research Ethics Committee (REC) 

recommendations, participants were recruited who had the 

capacity to consent to the study and who lived alone. 

During the clinical trial an energy monitor was installed in 

each patient’s home. This was undertaken to identify 

interactions with electrical appliances while establishing 

behavioural routines. Figure 5 provides an overview of the 

electricity monitoring system. 

           

(a) Energy monitor 

configured to smart 

meter sensing 

specifications 

(b) Energy 

monitor installed 

in a patients home 

(c) Current 

transformer clip (red 

circle) fastened 
around the live cable 

Fig. 5: Electricity Monitor used for Acquiring the Aggregated 

Energy Values from an Electricity Meter 

Note that at the time of the trial none of the participants had 

a smart meter. Therefore, the system illustrated in 5 was 

configured to simulate the smart meter and an associated 

Consumer Access Device (CAD) to obtain 10 second data 

(this is the default reading frequency when a smart meter is 

paired with a CAD). The solution shown in Fig. 5(a) is 

connected to a home’s live cable using a current sensor 

transformer clip (CT) shown in Fig. 5(b) to measure the 

electrical load every 10 seconds. A second Optical Pulse 

sensor, shown in Fig. 5(c), works by sensing the LED pulse 

output from the utility meter. The data obtained is logged to a 

cloud database using the patient’s WIFI. This configuration, 

when a SMETS II smart meter is installed with a CAD, would 

not be required – this is only used in the case where smart 

meters and a CAD are not installed. Typically, data would be 

redirected from the CAD to the cloud database using cellular 

communications.    

A. System Functionality 

Once installed, the unique energy signatures are identified 

for each device and used to establish ADL routines. The 

framework operates in three specific modes; device training 

mode, behavioural training mode and prediction mode. 

• Mode 1 (device training): power readings are obtained 

from the patient’s smart meter and recorded in a data 

store. Readings are used to train the system to identify 

device signatures from aggregated load readings. The 

 
4 http://www.merseycare.nhs.uk/knowledge-hub/mental-

health-articles/smart-meters-study/ [Accessed on 25/09/19] 



training process achieves this using machine learning 

classifiers. 

• Mode 2 (behavioural training): data features are extracted 

to identify normal and abnormal patterns in behaviour. 

The features allow the system to recognise the daily 

routines performed by patients, including their particular 

habits and behavioural trends.  

• Mode 3 (prediction mode): the detection of both normal 

and abnormal patient behaviours is conducted in real-time. 

The framework uses web services to facilitate machine-

to-machine communication using a collection of open 

protocols, API’s and standards. During this process, the 

monitoring application interfaces with web services to 

receive real-time monitoring alerts about the patient’s 

wellbeing. Figure 6 shows an electric kettle being 

detected in a patient’s home during the clinical trial. Here 

the real-time energy readings are shown along with the 

device classification. 

 

Fig. 6: Portal Showing the Real-time Classification of a Kettle 

in a Patients Home 

The completed end-to-end system is shown in Figure 7. 

 

Fig. 7: System Framework Showing the end-to-end components 

Used in the Clinical Trail 

B. Data Collection 

The training dataset for device classification was 

constructed using energy monitors installed in three separate 

homes (not part of the clinical trial). Using device specific 

signal signatures, five distinct classes are generated; kettle, 

toaster, microwave, washing machine and electric oven 

(appliances sufficient enough to detect ADLs). The occupants 

in each test home where given an app to record induvial 

appliance usage. This information was used to tag the training 

data. The data set contains 25 individual samples from each 

property totalling 75 for each device class. As the aggregated 

readings are sampled at each 10 second interval there are 450 

individual data points for each class and 2250 for the entire 

dataset. Empirically this provided sufficient data points to 

accurately detect each of the five appliances. 

C. Load Disaggregation Fast Fourier Transform 

The time series readings obtained during data collected are 

filtered and transformed before data processing tasks are 

performed. A highpass filter is applied to background noise 

below 300 watts – signals below this threshold typically 

represent type 4 electrical appliances. Using an adapted Fast 

Fourier Transform (FFT) the filtered time series signals are 

converted to the frequency domain and the range of frequency 

values for different appliances of the same class are extracted 

and used to train the machine learning algorithms for 

appliance classification tasks. This is an import aspect of the 

approach as their will be variance within appliance classes 

(different wattage values), machine learning allows us to use 

these variant values to generalise across different 

manufactured devices, i.e. different types of kettle or 

microwave. Using an FFT approach allows us to detect any 

number of devices that are simultaneously on as they occupy 

distinctly different frequency groups.  

D. Data Processing 

In this study the data processing pipeline includes the key steps 
shown in figure 8.  

 

Fig. 8: Complete Data Processing Pipeline 

All data is normalisation to eliminate bias due to 
differences in data scaling, Min-Max is used in this study, 
where data is scaled between 0-1 as defined by: 

𝑥′ =
(𝑥 − 𝑚𝑖𝑛(𝑥))

(𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥))
 

(6) 

Two feature selection techniques are evaluated in this study 

- Fisher Linear Discriminant Analysis (FLDA) and Spearman 

Correlation (SC) [30]. FLDA is used as a supervised learning 

technique to generate a set of scores to rank the 14 original 

features. The top three features were selected for subsequent 

classification tasks which included min, max and standard 

deviation. FLDA works well when the variance between 

groups is similar and data is normally distributed. FLDA 

obtains a linear combination of features that determines the 

direction the classes are separated most accurately. When 

considering various classes, the distance between the means is 

calculated to find a linear combination of features: 



𝑓(𝑦) =  𝑊^𝑇 𝑋 +  𝛼 
(7) 

Where α is the bias, W is calculated using Fishers LDA, 

and X is the training data without class labels. For a multiclass 

approach, a one-verse-all method is employed based on [31] 

and defined as: 

∑ =
𝑊

∑ ∑ (𝑥𝑘 − 𝜇𝑖)(

𝑥𝑘∈𝑋𝑖

𝐶

𝑖=1

𝑥𝑘 − 𝜇𝑖)
𝑡 

(8) 

Where C refers to the quantity of classes, Xi the set of 

points in class i, μi the mean of class i, and Xk the kth point of 

Xi. where 𝐵  is the between class scatter matrix. The 

subsequent scatter matrix is the correlation of class means [31] 

and is defined as: 

∑ =
𝐵

1

𝐶
∑(𝜇𝑖 − 𝜇)(

𝐶

𝑖=1

𝜇𝑖 − 𝜇)𝑡 

(9) 

Where C-1 is the principal eigenvalue, Ni the values that 

belong to Class i, μi the mean of Class i, and μ the overall 

mean. Spearman Correlation utilises a non-parametric test to 

ascertain the statistical dependence between observational 

stochastic sequences. It assesses the relationship among the 

sequences in which the coefficient can be depicted using a 

monotonic function: 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

 

(10) 

 

Where ρ denotes the Spearman rank correlation coefficient, 

d is the difference between the sequences, and n is the number 

of sequences. Here a subset of features is generated with the 

highest degree of predictive power. Consequently, each 

column is scored and later utilised to build the predictive 

model.  

Figure 9 highlights the distribution of the training data 

using a Quantile – Quantile Q – Q plot. As shown, none of the 

device signatures follow a normal distribution. Understanding 

the data distribution informs both the feature selection 

techniques required and the classifiers that are likely to 

provide the best performance. 

 

Fig. 9: Distribution of Device Training Data for the Five Appliances 

used in the Study for Measuring Activities of Daily Living 

E. Machine Learning as a Cloud Service 

Machine learning classifiers are utilised to generalise 

device detection from aggregate load. Two classifiers are 

considered in this study – a Two Class SVM and a Multiclass 

Decision Forest. Whilst there are many other algorithms the 

initial empirical analysis of the Decision Forest and SVM 

showed that they provide good decision boundary separation 

between classes while incurring minimal computational 

overheads. Note that these two aspects are important for 

managing within and between class variance and supporting 

scalability.  

The SVM is adapted to support a multiclass operation 

through a one verse all approach. The SVM is trained using a 

distribution-free learning process [32] and is defined as: 

D =  {(X𝑖 , 𝑌𝑖) ∈ 𝑋 𝑥 𝑌}, 𝑖 = 1, 𝑙 (11) 

Where l is the number of training data pairs equal to the 

size of the training data set D and Yi the desired target output 

[32].  

A Multiclass Decision Forest is built from multiple 

decision trees and a ‘voting’ function to determine the most 

popular class. Each tree in a decision forest outputs a non-

normalised frequency histogram of labels. The aggregation 

process sums these histograms and normalises the result to get 

the probabilities for each label. Multiclass Decision Forests 

support several configurable parameters. The Randomness 

parameter is introduced to trees during the training phase 

using bootstrap aggregation or bagging [33]. Bagging belongs 

to an ensemble method, which combines multiple predictions 

to generate an accurate model, such that: 

𝑓 =  
1

𝐵
 ∑ 𝑓𝑏

𝐵

𝑏=1

(𝑥′) 

 

(12) 

 

Where, fb is the decision tree, B is the number of times 

bagging takes place and x is the training set. Each tree is 

trained on a new sample, which is generated by randomly 

sampling the training data; essentially each tree utilises a 

different training subset. Each output (prediction) is combined 

to generate an accurate prediction by majority voting or by 

averaging the results in order to obtain the best outcome. 

Bagging increases training speed and efficiency, while 

decreasing model variance, and managing bias.  

F. Vectors for Behavioural Analysis 

Individual device detections from classifiers are stored as 

feature vectors for behavioural analysis. The predicted class is 

assigned a unique device ID for each appliance class detected. 

The observation window can be adjusted to a patient’s 

needs and the medical condition under investigation to 

identify abnormal behaviours. This allows the system to 

construct a personalised representation of the patient, as 

device usage can be assigned to specific observation windows. 

This approach uncovers routines and alterations in 

behavioural. The system uses 7 distinct observation windows 

in a 24-hour period to achieve this as highlighted in figure 10. 



 

Fig. 10: Device Assignment for Identifying Key Activities within 

Significant Observation Periods   

Device classifications are assigned to a specific observation 

window, depending on the time of day. These are then used to 

map aspects of the patient’s routine. The order of device 

interaction is not necessarily important unless there is a clear 

deviation from normal routine behaviour. To identify the 

degree of correlation between appliance usage and the hour-

of-day a Sankey Diagram is used as illustrated in Figure 10. 

Sankey diagrams provide quantitative information relating to 

flows, including relationships and transformations [34]. To 

identify anomalies in device usage, the Z-score technique is 

employed. Here the Z-score describes a data point in terms of 

its relationship to the mean and standard deviation of a group 

of points.  

V.EVALUATION AND DISCUSSION 

In this evaluation the performance of the Decision Forest 

and quadratic SVM are compared. The configurable 

parameters include forest width, depth and splitting criterion, 

and are tuned using 30 iterations [35]. Increasing the tree 

complexity above 32 trees with 128 splits provided no 

improvement in performance but did increase computation 

time. In the case of both the SVM and Decision Forest 

hyperparameter tuning was undertaken using the tune model 

hyperparameter module (grid search) in Azure to find the 

optimal model configuration. The classification process is 

adjusted using SC and FLDA to find both the peak attainable 

results and their optimal efficiency.    

A. Device Classification using feature selection methods 

In this section the classification results using two different 

feature selection techniques are presented. These will be 

compared with a set of results which use the full complement 

of features. The aim is to reduce the device observation period, 

while maintaining a high degree of accuracy. In all 

experiments the Decision Forest is configured to 32 trees with 

128 splits per node. For validation k-fold cross validation is 

adopted. The performance of each model is measured using 

AUC, Sensitivity and Specificity. Tables 3 and 4 feature the 

results for both the Decision Forest and SVM using the full 

complement of features. Tables 5 and 6 highlight the results 

for both the Decision Forest and SVM using FLDA. Although 

the introduction of FLDA with the Decision Forest reduced 

the performance for both the toaster and cooker class the 

overall performance of the remaining classes was improved. 

The improved classed are particularly important for the 

monitoring of dementia patients as they are the most 

commonly used. This is particularly true in the later stages of 

dementia where appliances such as the cooker are 

disconnected for safety reasons.  

TABLE 3 
DECISION FOREST USING ALL FEATURES 

Device Sensitivity Specificity AUC 

Kettle 96.0 97.28 96.99 

Microwave 74.67 93.99 89.94 

Toaster 90.67 97.69 96.12 
Washing Machine 74.67 93.99 89.94 

Cooker 93.33 97.67 96.70 

 TABLE 4 
SVM USING ALL FEATURES 

Device Sensitivity Specificity AUC 

Kettle 89.33 97.18 95.14 

Microwave 42.67 94.53 82.78 

Toaster 64.00 89.33 83.54 
Washing Machine 70.67 85.33 82.04 

Cooker 98.67 92.59 94.16 

TABLE 5 

DECISION FOREST USING FLDA 

Device Sensitivity Specificity AUC 

Kettle 98.67 96.92 97.31 
Microwave 93.33 98.08 97.02 

Toaster 73.68 95.41 90.81 

Washing Machine 86.67 96.31 94.22 

Cooker 81.33 94.98 92.09 

TABLE 6  

SVM USING FLDA 

Device Sensitivity Specificity AUC 

Kettle 98.67 94.59 95.62 

Microwave 88.00 98.64 95.95 
Toaster 52.63 93.49 70.18 

Washing Machine 53.33 95.69 86.06 

Cooker 85.33 81.78 82.56 

Tables 7 and 8 present the results using SC. The results 

show that the Decision Forest obtained slightly better results 

for the kettle and washing machine class. However, a notable 

reduction in performance across the remaining classes is 

observed. The Decision Forest with SC exhibited a more 

consistent performance overall when compared to using the 

full complement of features.  

TABLE 7 

DECISION FOREST USING SC 

Device Sensitivity Specificity AUC 

Kettle 96.00 98.44 97.89 

Microwave 93.33 98.08 93.33 
Toaster 73.68 94.06 89.78 

Washing Machine 85.33 97.03 94.48 

Cooker 84.00 93.91 91.81 



TABLE 8 

SVM USING SC 

Device Sensitivity Specificity AUC 

Kettle 98.67 94.2 95.32 

Microwave 86.67 98.65 95.64 
Toaster 51.32 92.83 83.58 

Washing Machine 60.00 94.86 89.89 

Cooker 82.67 83.83 83.58 

 
In the case of the washing machine and toaster class, the 

SVM produced better results when using SC as shown in 

Table 8. The performance improved for the cooker, toaster 

and washing machine class with a slight reduction for the 

kettle and microwave class. Based on the experimental results 

the Random Decision Forest with FLDA was implemented for 

device classification for the clinical trial as they empirically 

showed the best results across all device classes.  

B. Behavioural Analysis 

Behavioural changes in dementia patients often include 

alterations from normal routine behaviour, for example, sleep 

disturbances. These abnormalities tend to increase in severity 

and frequency as dementia progresses. Occasionally a person 

with dementia will exhibit an increase in certain behaviours in 

the late afternoon or early evening. This condition is often 

referred to as sundowning syndrome. Behavioural alterations 

such as sundowning syndrome can be detected by identifying 

gradual changes in energy usage over long observation 

periods. Figure 11 highlights how data, obtained from the 

clinical trial, can be used to provide insights about significant 

behavioural patterns (depicted by line thickness). 

 

Fig. 11: Sankey Plot Showing the Degree of Correlation between 

Device Usage and Hour 

The lines between appliance and time of day emphasise 

established behavioural routines. Therefore, alterations in 

either link proportionality or association provides indicators 

for disease progression and potential relapses. For example, 

figure 11 shows the routine behaviour of a patient and this 

allows us to define a baseline for anomaly detection, i.e. 

deviations from what is considered normal behaviour for that 

patient. During a longitudinal clinical trial, the Sankey Plot 

could be analysed over a three year period. During this time, 

we would expect to see changes between correlations and 

their associated strengths. Again, using data from our initial 

clinical trial, Figure 12 shows the results for anomaly 

detection. The inliers shown in green represent normal 

appliance interactions. Each cluster represents a specific 

appliance class. The outliers are depicted in red where both 

the kettle and toaster classes reside outside the patient’s 

normal routine behaviour. In total three kettles where used on 

three separate occasions between the hours of 00:00 and 05:00 

while a single interaction with a toaster was detected during 

the same observation period. Throughout the trial a total of 4 

sleep disturbances where observed. This may indicate to 

clinicians important insights into the speed and progression of 

dementia. Note during the clinical trial the Sankey plot and Z-

Score anomaly detection algorithm was used periodically by 

the research team to assess the overall behavioural routines of 

the patients. 

 

 
Fig. 12: Sleep Disturbances for Patient 1 using Z-Score Anomaly 

Detection 

Over a longitudinal study, we would expect the green data 

points to drop lower as a person progresses with their 

dementia resulting in many more anomalies over time.  

VI.DISCUSSION 

The results in this paper demonstrate how the analysis of 

electricity usage through load disaggregation can be used to 

model behavioural routines. Machine learning algorithms can 

sufficiently identify five appliances which include the kettle, 

microwave, toaster, electric oven and washing machine. The 

results from the clinical trial show that important ADL’s can 

be detected and used to facilitate behavioural analysis, using 

these five devices alone. The AUC values across all appliance 

classes are encouraging and in many cases the random 

decision forest using FLDA is capable of detecting appliances 

from aggregate load with very high sensitivity and specificity 

values. Participants in the trial included patients with mild to 

moderate dementia. Data received from the system was used 

to create a personalised behavioural baseline to continually 

analyse and detect dementia progression or sudden relapses. 

The results from the clinical trial show that the system can 

accurately established patient routines, while detecting 

anomalies in behaviour. Z-score anomaly detection values 

show high sensitivity to abnormal device interactions (4 sleep 

disturbances during the 6-month trial). These results are again 

encouraging and warrant further investigation. The 

identification of recurrent sleep disturbances is a significant 

ADL which highlights important changes in behaviour that 

could signify the progression of dementia (for example 

sundown syndrome). As patients progress with dementia or 

exhibit periods of relapse, an increase in outlier detection will 



be evident where normal behaviour (show in Figure 12) 

slowly begins to drop into regions of abnormal behaviour. Or 

in the case of Figure 11, the correlations between time of day 

and appliance type begin to shift and the thickness of 

connecting lines either shrink or become thicker over time. 

The detection of anomalies in this way will facilitate early 

intervention and provide a never-before-seen objective 

measure for dementia progression with near real-time 

detection. If successful this will allow care packages or 

enhanced support to be provided as and when required, but 

more importantly, much earlier thus mitigating the effects of 

crisis point care. The question is, with the NHS and social 

care already under significant pressure how would we 

facilitate the required interventions that the technology could 

expose. 

VII.CONCLUSION AND FUTURE WORK 

The approach in this paper presents a foundational 

technology, to monitor dementia patients and disease 

progression at home. The solution is different from any other 

telehealth offering whereby patients are not required to 

interact with technology or learn anything new to benefit from 

the services the system provides. Using the data collected 

from electricity readings the technology can accurately 

identify the use of individual electrical devices in the home 

and the routine behaviours of people to detect when anomalies 

occur. This novel approach facilitates the detection of specific 

ADLs in ways that has never been possible before without 

incurring considerable costs or overtaxing the cognitive needs 

of the patient. Therefore, the system contributes significantly 

to the field of Ambient Assistive living (AAL). In the UK, the 

effects of an ever-ageing population are becoming 

increasingly harder to manage. Consequently, a variety of 

challenges for both health and social care providers have been 

introduced. Using this foundational technology will help 

deliver never before seen services to a variety of medical 

domains and support patients in ways that were not possible a 

few years ago. Proposed applications include issuing alerts to 

carers when unusual home appliance activity patterns are 

recognised. This will provide an automated way of identifying 

significant events such as sleep disturbances, inactivity and 

condition monitoring (to inform treatment needs). While the 

dataset in this study is limited the results indicate that our 

system has the ability to identify appliance usage patterns and 

this may help to facilitate a greater understanding of patients 

living at home on their own with life limiting medical 

conditions. In this way, signs of worrying behaviour or events 

in a person’s life could be detected much earlier and 

interventions could be administered much quicker. While the 

clinical trial has helped us to understand some initial 

parameters of smart meter home care monitoring there still 

remains a great deal of work to be done. In order to 

understand how the usage of appliances and the consumption 

of energy changes for dementia patients over time the research 

team are planning to undertake a 2.5 year longitudinal study in 

partnership with Mersey Care NHS Foundation Trust. In total 

50 patients will be recruited where they have a diagnosis of 

mild to moderate stage dementia of any type. During this time 

energy usage will be collected and analysed and the results 

will be compared with regular patient assessment scores. The 

functional ability of each patient in the study will be assessed 

every 6 months using the Bristol Activity of Daily Living 

score and also when abnormal behaviours are detected and 

deemed important to warrant clinical assessment. Cognitive 

functions will be monitored using the MMSE and compared 

with device usage patterns for a set of given observation 

periods. The study will determine if any correlation between 

the two metrics exists and if so to what extent. Examining if 

there is a change in the distribution of energy usage could 

provide a mechanism for tracking the progression of dementia. 

During the study a set of clinical markers will be established 

based on the correlation between appliance interactions and 

the associated cognitive score. These markers will act as a 

trigger for the deployment of appropriate interventions such as 

the introduction of care packages. The markers will be used in 

further case-control clinical trials to measure the overall 

effectiveness of the interventions. During this time, we will 

also investigate the use of association rule mining to identify 

the common correlations that exist between home appliance 

usage. For example, a normal expected behaviour would be a 

kettle being used with a toaster during a morning observation 

(e.g. making breakfast). However, if the patient regularly 

starts using device combinations outside their normal routine 

(kettle with washing machine) in a morning observation this 

could be a good indicator of difficulties with independent 

living and the progression of dementia. Furthermore, as the 

study was not longitudinal seasonal variation was not detected 

during the trial. Therefore, whether this affects a patient’s 

routine will also be investigated further. We expect the types 

of devices used in the study to identify ADL’s will remain the 

same despite seasonal variation as they are required for daily 

living. It would also be interesting to consider additional 

appliances based on the recommendation of the clinicians.   
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