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Abstract Specialized control of pests and diseases have been a 
high-priority issue for agriculture industry in many countries. 
On account of automation and cost-effectiveness, image analytic 
based pest recognition systems are widely utilized in practical 
crops prevention applications. But due to powerless handcrafted 
features, current image analytic approaches achieve low 
accuracy and poor robustness in practical large-scale multi-class 
pest detection and recognition. To tackle this problem, this paper 
proposes a novel deep learning based automatic approach using 
hybrid and local activated features for pest monitoring solution. 
In the presented method, we exploit the global information from 
feature maps to build our Global activated Feature Pyramid 
Network (GaFPN) to extract pests highly discriminative features 
across various scales over both depth and position levels. It 
makes changes of depth or spatial sensitive features in pest 
images more visible during downsampling. Next, an improved 
pest localization module named Local activated Region Proposal 
Network (LaRPN) is proposed to find the precise pest objects 
positions by augmenting contextualized and attentional 
information for feature completion and enhancement in local 
level. The approach is evaluated on our 7-year large-scale pest 
dataset containing 88.6K images (16 types of pests) with 582.1K 
manually labelled pest objects. The experimental results show 
that our solution performs over 74.24% mAP in industrial 
circumstances, which outweighs two other state-of-the-art 
methods: Faster R-CNN [12] with mAP up to 70% and FPN [13] 
mAP up to 72%. Our code and dataset will be made publicly 
available.

Keywords Convolutional Neural Network, Pest Monitoring, 
Global Activated Feature Pyramid Network, Local Activated 
Region Proposal Network

I. INTRODUCTION

pecialized and effective pest control and monitoring in 
agricultural is becoming an increasingly serious issue all 

around the world. [1]. The urgent demand for efficiently 
controlling and inspecting the occurrence of agricultural pests 
in fields has driven the rapid development of industrial pest 
prevention solutions and intelligent pest monitoring systems, 
such as chemical pesticides [2], image analytic systems [3], 
automatic adjustable spraying device [4], status estimation of 
wheat plants [5], remote sensing [6], etc. On account of 
automation and cost-effectiveness, image analytic based pest 
recognition and monitoring systems are widely utilized in 
practical crops prevention applications. Typically, these 
systems install some stationary pest trap devices or facilities in 
the wild fields for real-time acquisition and transmission of 

trap images, and then employ advanced image analytic 
techniques [7-10] into these images for identification and 
extraction of pest-associated data in support of intelligent 
prediction and prevention.

Above advanced image analytic techniques enable abundant 
success in effective pest detection and recognition of certain 
types of pest. Yet, utilizing these techniques in designing as 
well as developing practically useful and robust pest 
monitoring system is still unsatisfied. The first reason for this 
problem is that extracted features as pest descriptors are short 
of sufficient details for tiny and blurred pest objects in 2D 
static images captured by stationary devices. These pose a 
fundamental dilemma that it is hard to distinguish small object 
from the generic clutter in the background. Also, traditional 
approaches have been suffering from many limitations such as 
powerless hand-crafted features and the lack of expert 
consensus. In addition, most of current systems focus on 
whole pest image classification rather than detection, where 
the detection aims to localize and identify each pest instance in 
the image that is necessary for high-level pest analysis towards 
more efficient pest monitoring in the wild. Therefore, towards 
more effective large-scale multi-class pest monitoring, it is 
highly necessary to develop a novel automatic approach by 
mining more valuable information as highly discriminative 
features for pest detection.

Recently, advances in deep learning techniques have led to 
significantly promising progress in the field of object 
detection, like SSD [11], Faster R-CNN [12], Feature Pyramid 
Network (FPN) [13] and other extended variants of these 
networks [14-15]. Among these approaches, two-stage object 
detection frameworks are the most popular in dealing with 
practical problems due to higher detection accuracy. In 
terms of convolutional neural network (CNN) backbone 
for feature extraction, feature pyramid structure has 
become a wide selection as it covers low-level object 
features and high-level semantic features together. In [12], 
Region-of-Interest (RoI) pooling is used to extract features 
on a single-scale feature map. But targeting at small object 
detection, [13] is a better state-of-the-art technique over 
COCO dataset [16] with mAP up to 56.9%. By building up 
a multi-scale image pyramid, FPN enables a model to detect 
all objects across a large range of scales over both positions 
and pyramid levels. This property is particularly useful to 
tiny object detection like pest detection.

In this context, this paper targets at finding out a practically 
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effective and robust pest monitoring solution by studying the 
state-of-the-art deep learning methods to solve the problems in 
current large-scale multi-class pest detection task. As shown in 
Fig.1, in our presented method, we firstly construct a CNN 
based feature pyramid architecture to ensure the pests across 
various scales could be found, and then propose a Global 
activated Feature Pyramid Network (GaFPN) for retrieving 
depth and spatial attention over different levels in the pyramid 
network. Compared to [12] and [13], this approach, the 
adjusted network will enable variance or changes of spatial or 
depth sensitive features in images more visible in the pooling 
layers. This property will allow some missing features of tiny 
pests in pooling layers in one level to be redetected by many 
pyramid levels. Next, an improved pest localization module 
named Local activated Region Proposal Network (LaRPN) is 
proposed to find the precise pest ob ositions by 
augmenting contextualized and attentional information for 
feature completion and enhancement in local level. Following 
this idea, we integrate GaFPN and LaRPN into a two-stage 
convolutional neural network (CNN) approach. It is evaluated 
over our newly published large-scale pest detection specific 
image dataset containing 88.6K raw images with 582.1K 
manually labelled pest objects. The image data were collected 
in the wild field using mobile camera over 7 years. The 
experimental results show that our approach achieves over 
mAP of 72%, which outweighs two other state-of-the-art 
methods [12] with mAP of 70% and [13] mAP of 72%.

The major contributions of this paper are as follows: 
1) A novel two-stage CNN based pest monitoring approach

using hybrid global and local activated feature is designed for
large-scale multi-class pest dataset. It is implemented as a 
practically automatic pest monitoring system, which enables
accurately and effectively detect 16 types pest in fields.

2) The proposed approach introduces two novel global and
local activation branches: GaFPN and LaRPN for automatic 
multi-scale feature extraction and efficient region providing
and fine-tuning respectively. Our approach could help 
recognize and extract discriminative features of tiny objects 
and accommodate large variations and changes of distribution 
of tinny objects over images. It benefits the precise measure 
and prediction of pest in complex circumstances with 
multi-class insect.

3) A comprehensive and in-depth experimental evaluation
on practical industry level large-scale pest dataset (88.6K 
images) is provided for verifying the usefulness and 
robustness of proposed system and approaches. The results 
show that our approach deliver a mAP of 74.24% over 16 
types of pest detection, which outweighs two other 
state-of-the-art methods: Faster R-CNN [12] with mAP up to 
70% and FPN [13] mAP up to 72%.

The rest of the paper is organized as follows. Section II 
presents related work. Section III gives an overview to our pest 
monitoring system; and technical details of our system are 
introduced in Section IV. Then Section V describes the system 
settings and discuss the experimental results. Finally, we 
conclude this paper in Section VI.

II. RELATED WORK

Typical image analytics techniques for pest monitoring focus 
on the study of object identification, including feature 
extraction and model training. Early works on insect 
classification include RGB multispectral analysis [8] and 
Principle Component Analysis (PCA) algorithm [17]. Then, 
more valuable and representative features are mined for 
precise pest recognition such as size, color [18], shape and 
texture [19]. But these features were too weak to be insensitive 
to rotation, scale and translation. Thus, Scale-invariant feature 
transform (SIFT) in modern computer vision techniques are 
popular to realize rotational variance for pest classification 
[20]. On the other hand, classifiers are key to achieve better 
model training performance, such as support vector machine 
(SVM) [12], k-nearest neighbors (KNN) [21], linear 
discriminate analysis (LDA) [22] and Artificial Neural 
Network (ANN) [23]. While aforementioned approaches 
achieved success to some extent, their results rely too much on 
quality of handcrafted features selection. Towards large-scale 
multi-class insect dataset, one consequence is that within 
species, extracted descriptors show strong similarity to others. 
Feature vectors with different species are highly close in 
feature space to relative variability of their texture, color, 
shape and so on. It is hard to utilize these approaches in 
practical pest monitoring applications, since the process of 
selecting and designing features is laborious and insufficient to 
represent all aspects of the insects. 

Fortunately, the emergence of deep learning techniques has 
led to significantly promising progress in the field of object 
detection. CNN has exhibited superior capacities in learning 
invariance in multiple object categories from large amounts of 
training data [24]. It enables suggesting object proposal 
regions in detection process; and extract more discriminative 
features than hand-engineered features. By detecting locations 
[14] and fine-tuning [25] general representation to a specific 
object category, CNNs perform well in object detection. Some 
two-stages approaches [12] utilizes dense sliding window to 
find out the possible object regions with low-level cues. They 
can detect the better proposals and share the weights of 
convolutional layers with other of detectors. They perform 
even better than one-stage CNN based approaches with higher 
accuracy of object detection. The above deep learning methods 
[11-15] have showed great accuracies in many general object 
detection applications beyond what can be achieved by 
previous methods [21-23], but they are often intractable for 
pest monitoring applications.

Towards large-scale multi-class pest monitoring, deep 
learning methods need to integrate with other techniques like 
feature pyramids [13] for improved performance. The 
experiment results on the Microsoft COCO dataset [16] shows 
that two-stage object detection framework such as Faster 
R-CNN is an effective region-based object detector towards 
general object detection with a mean Average Precision (mAP) 
up to 42.7% because of region proposals are computed at first 
stage. But for small object detection, FPN is a better 
state-of-the-art technique over COCO dataset with mAP up to 
56.9% due to the fused low-level object features and 
high-level semantic features. Despite the fact that Faster 
RCNN have showed great accuracies in generic object



detection applications, they are often intractable for use in 
practical real-world small object detection. Taking our 
targeted pest detection in the wild as an example, designing an
effective deep learning approach is extremely difficult due to 
many constraints: 1) The intuitive features of pest like texture, 
shape or color, are easily confused with background 
information 2). Features of tiny pest like rotation, scale and
translation, are too weak and insensitive to be recognized. 3). 
Many deep learning approaches focus on solving classification 
of different pests, rather than pest detection (localization and 
counting). 4). Large variations of density distribution and sizes 
of tiny pests make the activation of some objects even smaller 
and insensitive with each pooling layer through a deep 
learning architecture. In order to overcome above obstacles, 
we attempt to propose a new effective deep learning approach 
towards large-scale multi-class pest monitoring by using 
hybrid global and local activated features. 

III. APPROACH OVERVIEW

Our proposed approach is a two-stage CNN based pest 
detection and classification workflow shown in Fig. 1. Two 
major stages in this approach are GaFPN for automatic 
multi-scale feature extraction and LaRPN for generated boxes 
classification and regression. The output of this approach
contains three levels: low-level region features, mid-level pest 
detection and high-level sematic analysis.

In the first stage of feature extraction, it relies on traditional 
CNN backbone by with a new global activation feature 
pyramid network (GaFPN) which is aggregated on each 
convolutional block for screening and activating depth and 
spatial information from feature maps outputted by each block.
Multi-scale image features extracted from GaFPN are used to 
re-build the feature maps. This design has two considerations: 
1) Sufficient shallow layers enables mining more valuable
semantic features for classification. 2) The bottom layers with
high spatial information are fully utilized for avoiding some
features vanish in deep block.

In the second stage of pest localization, according to feature 
maps extracted from stage one, an improved local activated 
region proposal network (LaRPN) is proposed for providing 
region proposals and fully connected layers, which are adopted 
for pest classification and position regression. Different from 
the standard Region Proposal Network (RPN), we augment 
local contextualized and attentional information into region 
proposals for providing more efficient and precise regions. 

Finally, we adopt several fully connected layers for the final 
pest localization and classification results including mid-level 
pest detection outputs for localization and classification in 
addition to high-level sematic analysis outputs for pest
severity estimation including counting and severity prediction.
The entire training and inference phase run automatically to 
achieve effective pest recognition and classification without 
any human intervention so our method is an end-to-end
system.

IV. MATERIALS AND METHODS

A. Dataset Setup for Large-scale Multi-Class Pest

To our best knowledge, while there exist some open insect

Fig.1. Workflow of our two-stage CNN based approach

TABLE 1. Statistics on Two Subsets for our dataset with training
subset and validation subset. For each class, the number of images and
objects are shown in this table. Note that because single image may 
contain objects of several classes, the tota
columns are not simply the sum of the corresponding columns. (CM: 
Cnaphalocrocis medinalis, CMw: Cnaphalocrocis medinalis (Walker),
MS: Mythimna separate, HA: Helicoverpa armigera, OF: Ostrinia 
furnacalis, PL: Proxenus lepigone, SL: Spodoptera litura, SE: 
Spodoptera exigua, SI: Sesamia inferens, AI: Agrotis ipsilon, MB:
Mamestra brassicae, HT: Hadula trifolii, HP: Holotrichia parallela,
AC: Anomala corpulenta, GO: Gryllotalpa orientalis, AS:
Agriotes subrittatus)

Pest name ID
Training Subset Validation Subset

#images #objects #images #objects
CM 1 6663 11663 768 1332

CMw 2 2956 7548 367 914
MS 3 11280 23055 1222 2471
HA 4 22854 67426 2510 7343
OF 5 17586 39126 1950 4190
PL 6 21675 110309 2366 12200
SL 7 7301 9857 782 1079
SE 8 13212 25589 1403 2544
SI 9 5136 7645 583 830
AI 10 8952 13844 992 1553

MB 11 6389 9345 719 1065
HT 12 11827 21051 1287 2251
HP 13 8905 30792 963 3460
AC 14 13765 108112 1606 12141
GO 15 9632 17432 1038 2056
AS 16 4756 21768 546 2219
total 79800 524562 8870 57648

databases released, no existing large-scale datasets that cover
multiclass pests in the wild or nature environments are
released for study yet. We establish our own dataset for
large-scale multi-class pest monitoring by designing an 
industrial pest capture equipment shown in Fig. 2. This device
uses multispectral light trap for attracting various types of 
pests, where the wavelengths vary with time according to the 
habit of pests in the day. Meanwhile, HD camera above the 
tray of this device is set to take pictures at 2592 × 1944
resolution periodically at 15-second intervals. Pests in the
trays were swept away after photographing to avoid images 
containing 582,170 pests of 16 different types after manual 



Fig. 2. Pest monitoring equipment in our work

screening to deleting obscure and over-occulted images are
used to build our dataset.

Hereafter, images are labeled by agricultural experts with 
pest categories, localizations and severity. we randomly split 
entire collected images into 2 subsets for model training and 
validation respectively at ratio of 9:1, in which training subset 

cause of
labels with expert consensus and validation subset is used to 
evaluate o . The statistics of our 
dataset are provided in Table 1.

B. Convolutional Neural Network (CNN) Framework

The approach built on a standard CNN framework is 
composed of three parts: convolutional layer, activation 
function and pooling layer. Typically, many combinations of 
these layers are adopted to extract 3D image features, in which 
images are input into convolutional layers computed with 
several convolutional kernels for feature extraction.

Standard convolutional layer takes a set of called 
convolutional kernels to the input and the output feature map 
in each subsequent layer are regarded as abstract 
transformations of image. Generally, for each kernel 
convolutional kernel k, the forward propagation process of 
convolution in layer l could be represented by:

1( ) ( )l l l l l
k k ka z a W b  (1)

kwhere the aland al 1 are output of kernel k from layer l and 

l-1. ( ) is ReLU function for non-linear transformation in our

approach. indicate the convolution operation. l
k kW and bl

represent the convolution kernel and bias in layer l 
respectively. Therefore, the output convolutional layer could 
be computed as the sum of outputs from the filterbank:

1 1

( ) ( ) ( ( ) )
M M

l l l l l l
k k k

k k

a z z a W b (2)

C. Global activated Feature Pyramid Network (GaFPN)

Based on standard CNN architecture, we design our feature
extraction network named Global Activated Feature Pyramid 
Network (GaFPN) whose structure is show in Fig. 3. The 
motivation of designing feature pyramid is the observation that 
recognizing pests at vastly different scales in images is 
challengeable for detectors in single feature map. Thus, we 
exploit the inherent multi-scale hierarchy of CNN to achieve 
feature map extraction at various scales to ensure that pests 
with different sizes are recognized with enough information 
and avoid missing features of some tiny pests in 
down-sampling operations. In GaFPN, the powerfully
representative information from all convolutional blocks, 
including high-resolution levels and high-semantic levels, 

could be futurized to produce a multi-scale pest feature 
descriptor.

Different from the popular object detection framework FPN 
[23], our GaFPN makes full use of global information between 
each convolution block to avoid information loss during 
downsampling operation. As it is well known, feature maps 
outputted from CNN layers could be a result of convolutional 
operation with many kernels consisting of set of kernels. The 
number of kernels corresponds to be the feature depth and 
each kernel is learned to extract the specific type of feature 
such as shape and texture. Therefore, we attempt to make the 
model to automatically mine the depth activation vector while 
ignoring the effect of spatial information that could weigh the 
different kernels so influence the weights of feature maps 
depth. As for position activation, the motivation is that 
limited receptive field of convolution operations lead to 
powerless features in pests positions without appropriate 
supervision. So, we propose a novel supervised mask to 
learn the spatial activation vector that could activate the 
position points of objects. Therefore, our GaFPN is 
proposed to achieve depth and spatial activation in global 
level that could improve the feature discriminating power 
of pest objects.

Fig. 4 shows our intuitive overview of GaFPN structure, in 
which Global Activation Module (GAM) contains two 
branches for depth and spatial activation respectively. In the 
upper branch of depth activation, the 3D feature map with 
shape of W H C output from corresponding CNN block is 
firstly processed by a global pooling layer that averages all the 
pixels in each channel (depth) and generates a lower 
dimensional (1D) feature vector (1 1 C ) so the effect of 
spatial information is eliminated. By taking global pooling, the 
averaged feature vector describes the global feature in depth 
level. Next, we apply two sets of fully connected layers with 
non-linear activation ReLU [26] and Sigmoid following 
respectively, in which the latter aims to map the feature vector 
into (0,1). So, the output 1D vector could be learned as depth 
activation factor in training phase and the final output of depth 
activation module is the broadcast element-wise product of the 
input 3D feature maps (W H C ) and 1D depth activation 
factor (1 1 C ). In this way, the feature maps are activated in 
depth.

The second branch of GAM in Fig. 4 is used for activating 
spatial position that introduces a novel supervised mask to 
learn a spatial activation vector. Specifically, the spatial 
activation branch is a segmentation-like branch, in which the 
supervised mask is obtained by fulfilling 1 into the ground 
truth positions and 0 into the background areas. In this part, 
the input feature map with shape of W H C is input 
into a 
global convolution operation that takes 1 1kernel to reduce 

the number of channels to 1 so the output is a W H 1 
feature vector, which could ensure the spatial activation vector 
is learned in spatial level by supervised attention loss. In this 
method, we adopt pixel-wise sigmoid across entropy as the 
attention loss. Next, we employ two set of dilated convolution 
operations [27] with various kernel sizes (i.e. 5 5 and 7 7 ) 
that could relieve the drawback of limited receptive field. 
Similar to depth activation branch, the ReLU and Sigmoid are 
followed and the output spatial activation factor is learned to 
be a 2D feature vector whose values are in (0,1). At last, the



Fig. 3. Structure of Global activated Feature Pyramid Network (GaFPN)

Fig. 4. Structure of Local activated Region Proposal Network (LaRPN)
learned spatial activation factor is fed into exponential 
operation and then dot with the input 3D feature maps in each 
position rather than naïve multiplication. In this way, it could 
maintain more context information while highlight the object 
information. Thus, our spatial activation could enhance the 
feature maps in pest objects area and diminish the opposition. 
Finally, the output of each block in GaFPN is the sum of two 
activated feature maps and all of the outputs from blocks will 
be processed by LaRPN for pest region searching.

D. Local activated Region Proposal Network (LaRPN)

Our proposed system is an improvement on the Region
Proposal Network by enhancing the region information in 
local level during box fine-tuning phase. We called our 
approach Local activated Region Proposal Network (LaRPN). 
The first motivation of local activated is that part of region 
proposals provided by standard RPN might not cover complete 
information of target objects. This would result in inaccurate 
box regression with insufficient features because RoI Align 
[28] is used to crop the regions into local level from feature 
maps. To solve this problem, we augment some extra 
contextual information [15] to ensure enough object features 
could be considered into box regression. Secondly, the local 
spatial positions contribute to the pest regions classification 
because the key feature for precise region might be the 
fine-grained characteristics such as colors or sha
wings. Besides, rotational invariance should be ensured when 
our model is able to be sensitive to local spatial positions of 
pests.

Motivated by these observations, we propose an 
improvement of standard RPN named LaRPN to take 
contextual and attentional information into consideration to 
locally activate region proposals derived from RPN, whose 
structure is shown in Fig.4. There are three steps in our 
LaRPN. Firstly, apply the standard RPN referenced by [12] 
in each output from GAM in GaFPN with our assigned 
anchors associated with every specific scale of feature 
pyramid structure. The aspect ratio for our anchors is set to 
be 1:1.5 because most of pests in our dataset are 
approximately square. During training phase, the 
anchors with 

Intersection-over-Union (IoU) to ground truth more than 0.7 
are regarded as preliminary pest regions. Next, we expand 
these positive regions to be 1.5 times larger in four different 
directions to ensure the contextual regions could cover more 
complete information. And the enriched pest regions are 
mapped to feature maps and processed by RoI Align to be 
3 3 features. Thirdly, we introduce self-attention mechanism 
[29] with softmax activation function to obtain the local 
attention vector in spatial level. Therefore, the relationships 
among different positions of pests could be learned and the 
output is multiplication of regions and spatial activated map. 
Finally, the output is used for pest classification and box 
fine-tuning.

E. Training and Evaluation

We use large-scale pest dataset for training and validating 
our proposed approach. Different loss functions are selected as 
supervisory indicators for pest localization, classification and 
estimation training. A number of evaluation metrics were built 
to access performance of our system on these tasks.

Pest Localization: Pest localization is a task to predict 
bounding boxes for each input image. To measure the 
performance of localization, we pay more attention on the 
positioning accuracy rather than categories of boxes. 
Therefore, we employ box regression loss as the 
criterion for pest localization task during training phase. 
Among various regression losses, we select smooth L1 loss as 
the loss function which is the combination of L1 and L2 norm 
so the gradient near 0 is smoother:

2

( , , , )

( ) ,  

,

i i i i

L i x y w h
i i

t t if t t
Loss

t t otherwise
(3)

Where is usually set to 0.5. In this loss function, a region
could be characterized by { , , , }x y w ht t t t in which { , }x yt t are the 

upper-left coordinates of boxes and { , }w ht t are the width and

height. Thus, it and it represent the ground truth and 

localized bounding boxes respectively.



In terms of metrics, binary precision and recall are chosen to 
evaluate the pest localization performance. During testing 
phase, the regions are predicted into two categories: 
non-background and background, in which non-background 
(positive) samples are the regions with overlap more than 0.7 
with the ground truth bounding boxes while the other regions 
are background (negative). The Precision and Recall are 
calculated by:

# ( ) # ( )
Precision( ) , Recall( )

# ( ) # ( ) # ( ) # ( )

TP c TP c
c c

TP c FP c TP c FN c
(4)

in which TP , FP and FN represent True Positive, False 
Positive and False Negative samples respectively so the 
Precision measures the samples that are incorrectly detected
while higher Recall indicates the lower misdetection rate.

Furthermore, Average Precision (AP) for binary pest 
localization is applied as a comprehensive evaluation metric to 
fuse the Precision and Recall together. In localization task, the 
AP is computed by the integration of Precision-Recall (PR) 
curve:

1

0
Precision  RecallLAP d (5)

Pest Classification: while localizing pest objects in images, 
we classify each bounding box into the corresponding 
category. Different from binary classification in LaRPN 
(foreground or background), the bounding boxes are classified 
into 16 types that are the major categories of pests we target 
to monitor in our approach. In this task, we use multi-class 
cross-entropy loss for this pest classification problem:

1
log( )

N

C i ii
Loss y y  (6)

Where iy and iy indicate the truth label and predicted 
category respectively. From the perspective of evaluation 
metrics for pest classification, AP value [16] is updated for 
different categories and we combine localization and 
classification validation methods together. Thus, in our system, 
we calculate APs for 16 categories based on the corresponding 
PR curve as:

1

0
( ) Prcision(c)  Recall(c)AP c d  (7)

In addition, the final metric for pest classification task, mAP 
is obtained by taking the mean of APs with all the classes: 

1
m ( )

cls

AP AP c
N

 (8)

where Ncls represents the number of pest categories (in our task, 
Ncls = 16).

Pest severity estimation: the high-level task, pest severity 
estimation targets at predicting the severity of pest occurrence 
from the input image. According to agricultural 
consensus, the severities are divided into 5 levels from
general to serious that describes the occurrence of pests in 

the field, so the images are labeled to I-V by experts after 
image acquisition. In the process of pest severity prediction, 

the input features are the combined results from localization 
and classification tasks above. In terms of encoding method, 
we adopt a variant of one-hot encoder to transform the pest 
detection results into Ncls-dimensional vector, where each 
element in this vector indicates the number of detected pests 
with corresponding category. In this input vector, we only 
focus on the quantity of detected pests from each category 
rather than their positions.

In pest severity estimation task, we build consequent two FC 
layers for feature extraction and softmax predictor for severity 
estimation. As criterion, we employ a weighted multi-class 
cross-entropy loss defined as:

1
log( )

N

E i i ii
Loss y y  (9)

where is parameter to weight the loss function which 
i

measures the risk of different misclassification samples. We 
define the risk parameter as the difference between 

i

predicted severity and truth severity. As for evaluation, we 
consider total accuracy as evaluation metric for pest estimation 
task.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We use Inception [30] and ResNet50 [31] as CNN 
backbones to train our pest monitoring model and also build 

some experiments to evaluate the performance of our system. 
During the training phase, we set the SGD gradient descent 
with momentum 0.9 [32] and initialize learning rate to 0.001 
that will be dropped by 10 at 80k and 160k iterations. In terms 
of weight initialization, we adopt transfer learning that copy 
the CNN backbones weights pre-trained on ImageNet dataset. 
In order to avoid over-fitting problem, we utilize 
early-stopping strategy [33] to select the best training iteration. 
The performance of our approach is evaluated on our built 
dataset across multiple tasks: pest localization, classification 
and severity estimation.

A. Pest Localization Task

For pest localization task, we present the experimental 
results in Table 2, in which we compare our method with two 
state-of-the-art approaches Faster RCNN [12] and FPN [13] 
that are the base detectors we attempt to improve using our 
proposed techniques. Because localization task is evaluated on 
regions accuracy alone, the APL does not take categories into 
consideration. As it can be observed, our proposed method 
could dramatically surpass the localization performance of 
Faster RCNN using different CNN backbones for feature 
extraction, which achieves 4.35% and 3.93% APL 

improvement. Besides, compared with another feature 
pyramid method FPN, our system could also obtain a slight 
improvement in pest localization task. Among these results of 
our method, the best performance occurs in ResNet50 
backbone which achieves localization accuracy with 82.67% 
APL.

It is interesting to note the detailed pest localization 
performance between our approach and other state-of-the-art 
methods in Fig. 5 which shows the PR curve of various 
networks. Obviously, our proposed global and local activated



TABLE 2. Pest Localization Results APL

CNN Backbone Method APL

Inception Faster RCNN 74.99%
FPN 76.65%
Ours 79.34%

ResNet50 Faster RCNN 78.74%
FPN 80.29%
Ours 82.67%

Fig. 5. Precision-Recall curve for pest localization

approach outperforms Faster RCNN by a large margin and 
improves FPN slightly. This improvement could be 
contributed to two reasons. Firstly, our method with GaFPN 
applies a pyramid feature extraction architecture and localize 

ions on multi-level feature maps that could help 
precisely find pests positions on various scales, which is also 
evidence from APL values of our method in Fig. 6. Secondly, 
holding global activation factors by our presented global 
activated features for enhancing the depth and spatial 
information in global level makes it easier to localize pests 
positions because of much more remarkable features between 
foreground and background.

B. Pest Classification Task

For pest classification task, we show the experimental 
results in Table 3 that presents the AP for 16 pest categories 
performed by our method and other state-of-the-art models. 
Observed from Table 3, having pest localization information 
associated with the predicted bounding boxes to pests, our 
method could achieve more accurate pest recognition on these 
classes. It is obvious that our approach could significantly 
outperform Faster RCNN in pest classification over almost all 
the pest categories under Inception as CNN backbone. The 
homologous phenomenon occurs in that using ResNet50 
network with 3.28% mAP improvement. In addition, our 
approach could also largely improve mAP compared to 
another feature pyramid object detection structure FPN. This 
gain is largely due to our LARPN s ability to introduce the 
contextual and local activated information before fully 
connected layers for pest classification, which is helpful to 
sufficiently learn the features of pests in local level.

Apart from mAP results, there are obvious differences 
within classes that can be seen in Table 3. Specifically, pest #8 
seems to be the most difficult to be categorized on these 
pre-calculated regions with lowest AP value while almost all 
the models could classify pest #15 well even using shallow 
CNN backbone. This can be explained by that the pests in the 

ining examples, 

TABLE 3. Pest Classification Task Results AP value (%)

Pest
ID

Inception ResNet50
Faster
RCNN FPN Ours

Faster
RCNN

FPN Ours

1 51.62 60.24 61.41 57.12 62.13 64.60 
2 56.26 61.00 63.15 59.70 62.96 66.01 
3 64.27 67.33 68.22 69.75 70.16 71.74 
4 80.74 82.10 83.48 83.73 82.82 84.97 
5 65.65 69.73 71.44 70.17 71.22 72.07 
6 65.36 68.45 71.61 68.60 68.98 72.07 
7 63.09 63.30 67.35 68.39 69.46 71.25 
8 45.31 49.70 51.04 48.57 53.47 54.50
9 69.93 71.17 73.36 72.56 72.91 76.32 

10 75.55 76.27 78.73 79.92 80.58 80.65 
11 50.71 51.74 54.28 54.45 57.35 62.36 
12 63.17 66.78 69.06 66.26 69.20 72.03 
13 77.48 83.31 85.45 84.94 85.18 85.95 
14 79.43 86.93 88.21 87.86 88.03 88.08 
15 89.81 89.77 89.82 89.93 89.97 90.21 
16 69.13 72.51 75.09 73.38 74.37 75.05 

mean 66.72 70.02 71.98 70.96 72.42 74.24 

(a) PR Curve for class 2  (b) PR Curve for class 3

(a) PR Curve for class 9               (b) PR Curve for class 16

Fig. 6 illustrates some of PR curves in our experiments.

which help reduce difficulty to classify them comparing Table 
3 and Table 1. Even though, the amount of data might not be 
the main factor affecting performance of our approach, where 
pest #16 still could be categorized with a large AP value (more 
than 80%) even if there are only 4756 training images 
containing pests of this class. Therefore, our method could 
largely overcome the sample limitation and imbalance 
problem with a great improvement.

Fig. 6 illustrates some of PR curves in our experiments. 
Note that only four classes PR curves are shown here due to 
the space limitation. As it is shown, precision could keep a 
high value with the recall increasing in various models.
Especially, our approach using different CNN backbones 
could obtain a larger precision and recall compared to Faster 
RCNN, which indicates that it could effectively reduce false 
positive rate as well as misdetections rate. Concretely speaking,
pest #2 is relatively difficult to classify so the PR curve for this 
class is further away from the point (1,1). In addition, PR curve 
for pest # 16 represents that it is hard to obtain a high recall 
value but could get satisfied precision value so this curve 
signifies that our system could make sure that almost all the 
detected insects of this class are correct but might not detect all 



of the insects. Furthermore, among these illustrated PR curves, 
our system performs best on class #3 that maintains high 
precision in addition to recall simultaneously.

C. Pest severity estimation Task

For pest severity estimation, our method regards this task as 
a classification problem so we achieve severity estimation 
based on the encoded results outputted from previous pest 
localization and classification tasks. So we compare our 
severity estimation predictor with the state-of-the-art CNN 
based models that estimate severity by softmax classifier using 
the whole image as input. Table 4 illustrates the comparable 
results in our experiments. As it is shown, our method could 
beat theses CNN approaches with approximately 2% 
classification accuracy improvement due to the prior 
information from detected pests.

TABLE 4. Pest severity estimation Task Results Accuracy

CNN Backbone Method Accuracy
Inception Softmax 80.5%

Ours 82.8%
ResNet50 Softmax 84.9%

Ours 86.6%

D. Result Visualization

We visualize part of the pest monitoring results in Fig. 7 
that fuses localization, recognition and severity estimation 
tasks together. These results are outputted by our system 
based on ResNet50 backbone. The environments of input 
images from top to bottom are more and more complicated. 
As it can be seen, our method could achieve multi-class 
pest localization and recognition under both simple 
and complicated environments and provide the predicted 
severity estimation, despite the intractable challenges such as 
noisy image and tiny objects. Some feature maps outputted 
from 2 middle blocks with FPN (left) and our method 
(right) using ResNet50 are visualized in Fig. 8. It is found 
that, the feature maps in our system diminish the highlights 
of non-objects and focus more attention on pest regions 
with lighter activation points. Therefore, our method could 
perform better on pest detection and progressively learn the 
pests' features well.

VI. CONCLUSION

This paper proposes a novel deep learning approach using 
hybrid global and local activated features for automatic pest 
monitoring in industrial equipment to simultaneously perform 
three key tasks: localization, classification and severity 
estimation. Our method successfully realizes efficient and 
automatic feature extraction with global activated feature 
pyramid GaFPN structure. Furthermore, we present local 
activation to enhance position-sensitive features of pest boxes 
by LaRPN for powerful regions proposal. Under our enriched 
stationary pest dataset captured by our designed pest 
monitoring equipment, our method has outperformed the 
state-of-the-art methods in pest localization, classification and 
severity estimation tasks. Future work will consider 
developing more efficient deep learning architecture for 
real-time pest monitoring.

Fig. 7. Examples of pest monitoring results demonstration

(a) feature maps from shallow convolutional block

(b) feature maps from deep convolutional block

Fig. 8. Part of feature maps generated by FPN (left) and our method (right) 
using ResNet50 backbone extracted from shallow to deep block.
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