
On the numerical integration of the 
Lorenz-96 model, with scalar additive 
noise, for benchmark twin experiments 

Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Acces 

Grudzien, C., Bocquet, M. and Carrassi, A. (2020) On the 
numerical integration of the Lorenz-96 model, with scalar 
additive noise, for benchmark twin experiments. Geoscientific 
Model Development, 13 (4). pp. 1903-1924. ISSN 1991-9603 
doi: https://doi.org/10.5194/gmd-13-1903-2020 Available at 
http://centaur.reading.ac.uk/90675/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.5194/gmd-13-1903-2020 

Publisher: EGU Publications 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Geosci. Model Dev., 13, 1903–1924, 2020
https://doi.org/10.5194/gmd-13-1903-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the numerical integration of the Lorenz-96 model, with scalar
additive noise, for benchmark twin experiments
Colin Grudzien1,2, Marc Bocquet3, and Alberto Carrassi4,5,2

1Department of Mathematics and Statistics, University of Nevada, Reno, Reno, Nevada, USA
2Nansen Environmental and Remote Sensing Center, Bergen, Norway
3CEREA, joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France
4Department of Meteorology and National Centre for Earth Observations, University of Reading, Reading, UK
5Mathematical Institute, Utrecht University, Utrecht, Netherlands

Correspondence: Colin Grudzien (cgrudzien@unr.edu)

Received: 12 September 2019 – Discussion started: 24 October 2019
Revised: 7 March 2020 – Accepted: 9 March 2020 – Published: 16 April 2020

Abstract. Relatively little attention has been given to the
impact of discretization error on twin experiments in the
stochastic form of the Lorenz-96 equations when the dy-
namics are fully resolved but random. We study a sim-
ple form of the stochastically forced Lorenz-96 equations
that is amenable to higher-order time-discretization schemes
in order to investigate these effects. We provide numeri-
cal benchmarks for the overall discretization error, in the
strong and weak sense, for several commonly used inte-
gration schemes and compare these methods for biases in-
troduced into ensemble-based statistics and filtering perfor-
mance. The distinction between strong and weak conver-
gence of the numerical schemes is focused on, highlighting
which of the two concepts is relevant based on the problem at
hand. Using the above analysis, we suggest a mathematically
consistent framework for the treatment of these discretization
errors in ensemble forecasting and data assimilation twin ex-
periments for unbiased and computationally efficient bench-
mark studies. Pursuant to this, we provide a novel derivation
of the order 2.0 strong Taylor scheme for numerically gener-
ating the truth twin in the stochastically perturbed Lorenz-96
equations.

1 Introduction

1.1 Twin experiments with geophysical models

Data assimilation and ensemble-based forecasting have to-
gether become the prevailing modes of prediction and un-
certainty quantification in geophysical modeling. Data as-
similation (DA) broadly refers to techniques used to com-
bine numerical model simulations and real-world observa-
tions in order to produce an estimate of a posterior proba-
bility density for the modeled state or some statistic of it. In
this Bayesian framework, an ensemble-based forecast repre-
sents a sampling procedure for the probability density of the
forecast prior. The process of sequentially and recursively es-
timating the distribution for the state of the system by com-
bining model forecasts and streaming observations is known
as filtering. Due to the large dimensionality and complexity
of operational geophysical models, an accurate representa-
tion of the true Bayesian posterior is infeasible. Therefore,
DA cycles typically estimate the first two moments of the
posterior or its mode – see, e.g, the recent review of DA by
Carrassi et al. (2018).

Many simplifying assumptions are used to produce these
posterior estimates, and “toy” models are commonly used to
assess the accuracy and robustness of approximations made
with a DA scheme in a controlled environment. Toy models
are small-scale analogues to full-scale geophysical dynam-
ics that are transparent in their design and computationally
simple to resolve. In this setting it is possible to run rig-
orous twin experiments in which artificial observations are
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generated from a “true” trajectory of the toy model, while
ensemble-based forecasts are generated and recalibrated by
the observation–analysis–forecast cycle of the DA scheme.
Using the known true system state, techniques for state es-
timation and uncertainty quantification can be assessed ob-
jectively under a variety of model and observational config-
urations. In the case that: (i) a toy model is entirely deter-
ministic; (ii) both the truth twin and model twin are evolved
with respect to identical system parameters; and (iii) both
the truth twin and model twin are resolved with the same
discretization; the only uncertainty in a twin experiment lies
in the initialization of the model and the observations of the
true state. The model dynamics which generate the ensemble
forecast are effectively a “perfect” representation of the true
dynamics which generate the observations (Leutbecher and
Palmer, 2008).

The development of toy models and twin experiments has
greatly influenced the theory of DA and predictability (Ghil,
2018), and the above perfect–deterministic model configura-
tion has largely driven early results. Lorenz’s seminal paper
showed that a small loss in the numerical precision of the dis-
cretization of the governing equations is sufficient to produce
a loss of long-term predictability in deterministic, chaotic
systems (Lorenz, 1963). Understanding that perturbations to
a trajectory, tantamount to numerical noise, could lead to
rapid divergence significantly influenced the introduction of
ensemble-based forecasting in operational settings (Lewis,
2005). In the perfect–deterministic model setting, the asymp-
totic filter performance can likewise be understood princi-
pally in terms of the dynamical properties of the model. Par-
ticularly, the statistics are determined by the ability of the fil-
ter to correct for the dynamical instabilities of perturbations
along the truth-twin trajectory with respect to the sensitiv-
ity of the filter to its observations (Gurumoorthy et al., 2017;
Bocquet et al., 2017; Bocquet and Carrassi, 2017; Frank and
Zhuk, 2018; Maclean and Van Vleck, 2019; Tranninger et al.,
2019).

However, the theory for DA and predictability is increas-
ingly concerned with model errors, as studied in, e.g., the
recent works of Kang and Harlim (2012), Mitchell and
Gottwald (2012), Gottwald and Harlim (2013), Berry and
Harlim (2014), Raanes et al. (2015), Carrassi and Vannit-
sem (2016), and Raanes et al. (2018). Model deficiencies in
terms of physics which is not fully understood or which is
poorly represented prove to be difficult to quantify with an
ensemble-based forecast and to correct with a standard DA
cycle. Indeed, when the model is fundamentally biased, in-
creasing the spatial resolution or numerical precision may not
generally improve the accuracy of an ensemble-based fore-
cast. It has recently been shown in a deterministic biased-
model setting that the numerical precision of the discretiza-
tion of the ensemble forecast can be significantly reduced
without a major deterioration of the (relative) predictive per-
formance of the DA cycle (Hatfield et al., 2018). In this set-
ting, the model bias overwhelms the errors that are intro-

duced due to precision loss when the model twin is resolved
with a low order of accuracy; it may be preferable, thus, to
exchange lower-precision numerics for an increased number
of samples in the ensemble-based forecast in order to better
capture the overall spread.

On the other hand, many aspects of geophysical model un-
certainty and variability become tractable in a random and
non-autonomous dynamical systems framework, in which
certain deficiencies of deterministic models can be mitigated
with stochastic forcing (Ghil et al., 2008; Chekroun et al.,
2011; Dijkstra, 2013; Franzke et al., 2015; Ghil, 2017; Boers
et al., 2017). In this way, the theory of random dynami-
cal systems offers a natural step forward from the perfect–
deterministic framework in toy models to the development of
a novel theory for predictability and DA. As in the perfect–
deterministic setting, the DA cycle has recently been given
a dynamics-based interpretation in random models in order
to develop new DA methodology (Grudzien et al., 2018a, b).
However, unlike the case of the deterministic biased model
above, important differences in the statistical properties of
model forecasts of stochastic dynamical systems have been
observed due to the discretization errors of certain low-order
schemes. For example, Frank and Gottwald (2018) develop
an order 2.0 Taylor scheme to correct the bias in the drift
term induced by the Euler–Maruyama scheme in their study
system.

This work similarly studies the effects of the bias on
ensemble-based forecasts and the DA cycle due to time-
discretization error in twin experiments in the stochastically
perturbed Lorenz-96 system. In the following, we perform
an intercomparison of several commonly used discretization
schemes, studying the path-based convergence properties as
well as the convergence in distribution of ensemble-based
forecasts. The former (strong convergence) determines the
ability of the integration scheme to produce observations
of the truth twin consistently with the governing equations;
the latter (weak convergence) describes the accuracy of the
empirically derived sample statistics of the ensemble-based
forecast, approximating the fully resolved evolution of the
prior under the Fokker–Planck equations. Using these two
criteria, we propose a standard benchmark configuration for
the numerical integration of the Lorenz-96 model, with addi-
tive noise, for ensemble-based forecasting and DA twin ex-
periments. In doing so, we provide a means to control the bias
in benchmark studies intended for environments that have in-
herent stochasticity in the dynamics but do not fundamentally
misrepresent the physical process. This scenario corresponds
to, e.g., an ideal, stochastically reduced model for a multi-
scale dynamical system, as is discussed in the following.

1.2 Stochastic dynamics from multiscale systems

It is a typical (and classical) simplification in filtering liter-
ature to represent model error in terms of stochastic forc-
ing in the form of additive or multiplicative noise (Jazwin-
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ski, 1970). For many realistic geophysical models, this is
actually a reasonable representation of model-reduction er-
rors. Empirically, errors due to coarse-grained simulation in
probabilistic forecasting are often ameliorated by stochastic
parametrization (Palmer et al., 2005). For example, there is
evidence that sub-grid-scale convection in oceanic and at-
mospheric models cannot be accurately parameterized de-
terministically in terms of the macro-observables of the sys-
tem. Deterministic parametrizations can faithfully represent
the mean response but typically fail to capture its fast-scale
variability and thus lead to an overall misrepresentation of
the large-scale variability in the climate system; see e.g.,
Gottwald et al. (2016) and references therein.

Stochastic parametrizations thus offer a physically intu-
itive approach to rectify these issues; many realistic physical
processes can be considered as noise-perturbed realizations
of classical deterministic approximations from which they
are modeled. Theoretically, the effect of unresolved scales
can furthermore be reduced to additive Gaussian noise in the
asymptotic limit of scale separation due to the central limit
theorem (Gottwald et al., 2015). Several mathematically rig-
orous frameworks have been developed to model and sim-
ulate the stochastic forcing on the large-scale dynamics, in-
cluding averaging methods, perturbation methods and com-
binations of the two – see, e.g., the survey of approaches by
Demaeyer and Vannitsem (2018). In this way, it is possible
to derive exact reductions of deterministic multiscale systems
into coarsely resolved stochastic models.

Mathematically rigorous reductions generally provide an
implicit form for the reduced model equations as a mix of de-
terministic terms, stochastic noise terms and non-Markovian
memory terms, all present in the equations of the reduced
model. This exact, implicit reduction is derived in, e.g.,
Mori–Zwanzig formalism. In the asymptotic separation of
scales, this formulation reduces to a mean field ordinary dif-
ferential equation (ODE) system with additive noise, elimi-
nating the memory terms, describing the system consistently
with homogenization theory. Additionally, empirically based
techniques, such as autoregressive methods, have success-
fully parameterized model reduction errors (Wilks, 2005;
Crommelin and Vanden-Eijnden, 2008). At the state of the
art, novel learning techniques are furthermore being devel-
oped to construct empirically derived stochastic models that
are consistent with mathematical theory for stochastic model
reduction, with the goal preserving the underlying model
physics (Chorin and Lu, 2015; Vissio and Lucarini, 2018;
Cotter et al., 2019).

In this work, we will make a simplifying assumption for
the form of the stochasticity, as follows: we take a classi-
cal filtering framework in which noise is additive, Gaussian,
white-in-time and distributed according to a known scalar co-
variance matrix. Within the stochastic differential equation
(SDE) literature, this is sometimes referred to as scalar addi-
tive noise, which is a term we will use hereafter. In principle
our results can be extended to the Lorenz-96 system with any

form of additive, Gaussian, white-in-time noise, though the
version of the Taylor scheme presented in this work depends
strongly on the assumption of scalar noise. This scheme is
derived from the more general form of the strong order 2.0
Taylor scheme for systems with additive noise (Kloeden and
Platen, 2013, p. 359), and other forms of additive noise could
be examined. However, we note that the derivations of this
scheme will become increasingly complex with, e.g., diago-
nal or circulant matrices of diffusion coefficients.

Both the truth twin and the model twin will be evolved
with respect to the same form for the governing equations but
with respect to (almost surely) different noise realizations.
Conceptually, this represents a perfect–random model; this
corresponds physically to an idealized model for the asymp-
totic separation of timescales between the fast and slow lay-
ers in the two-layer Lorenz-96 model.

1.3 The single-layer Lorenz-96 model with scalar
additive noise

The Lorenz-96 model (Lorenz, 1996) is commonly used in
DA literature as a toy model for twin experiments; see, e.g.,
Carrassi et al. (2018, and references therein). This is particu-
larly due to the fact that it (i) is extremely scalable, with the
potential to exhibit spatially extended chaos in high dimen-
sions (Herrera et al., 2011); (ii) mimics fundamental features
of geophysical fluid dynamics, including conservative con-
vection, external forcing and linear dissipation (Lorenz and
Emanuel, 1998); and (iii) can be used in its two-layer form to
describe multiscale dynamics, with a layer of fast variables
corresponding to atmospheric dynamics, coupled with a slow
layer corresponding to oceanic dynamics (Lorenz, 2005).
The two-layer form of the Lorenz-96 equations has been of
particular interest for developing stochastic parametrizations
of sub-grid-scale dynamics (see, e.g., Wilks, 2005; Arnold
et al., 2013; Chorin and Lu, 2015; Lu et al., 2017; Vissio
and Lucarini, 2018). Likewise, the stochastic reduction in
the two-layer model to a one-layer model has been used to
demonstrate techniques for adaptive DA designs in the pres-
ence of model uncertainty (Pulido et al., 2018).

In the present study, we consider the single-layer form
of the Lorenz-96 equations perturbed by additive noise, for
which the matrix of diffusion coefficients is a scalar ma-
trix. The classical form for the Lorenz-96 equations (Lorenz,
1996) are defined as dx

dt ,f (x), where for each state compo-
nent i ∈ {1, · · ·,n},

f i(x)=−xi−2xi−1
+ xi−1xi+1

− xi +F (1)

such that the components of the vector x are given by the
variables xi with periodic boundary conditions, x0

= xn,
x−1
= xn−1 and xn+1

= x1. The term F in the Lorenz-96
system, Eq. (1), is the forcing parameter that injects energy to
the model. With the above definition for the classical Lorenz-
96 equations, we define the toy model under our considera-
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tion to be

dx
dt

,f (x)+ s(t)InW (t), (2)

where f is defined as in Eq. (1), In is the n× n iden-
tity matrix, W (t) is an n-dimensional Wiener process and
s(t) : R→ R is a measurable function of (possibly) time-
varying diffusion coefficients. In the remainder of this work,
the system in Eq. (2) will be denoted the L96-s model. In
contrast to studies in which the objective is to obtain a suit-
able parametrization of the fast-variable layer of the two-
layer Lorenz-96 model and perform a model reduction, we
use the L96-s system as a perfect model of the known but
random dynamical system of interest. The L96-s model is
one particularly simple form for the stochastic Lorenz-96
equations that (i) expresses the essential randomness, (ii) is
a commonly used formulation for filter benchmarks in twin
experiments and (iii) remains amenable to higher-order inte-
gration schemes for stochastic differential equations.

In Appendix A we provide a novel derivation of the strong
order 2.0 Taylor method for additive noise (Kloeden and
Platen, 2013, p. 359) in the context of the L96-s model.
This is a nontrivial derivation of the explicit discretization
rule that has not previously appeared in the literature, to the
knowledge of the authors. We furthermore evaluate the com-
putational efficiency and rates of convergence for each of
the following: (i) Euler–Maruyama/Milstein methods, (ii) the
strong order 1.0 Runge–Kutta method and (iii) the strong or-
der 2.0 Taylor rule. In Sect. 2 we briefly outline each of the
different discretization schemes and discuss their modes of
convergence. In Sect. 3 we provide our numerical bench-
marks of each scheme for convergence and for bias intro-
duced into ensemble-based forecasts and the DA cycle. In
Sect. 3.4 we provide a discussion of each of the methods and
propose a computationally efficient framework for statisti-
cally robust twin experiments. Section 4 concludes with a fi-
nal discussion of results and open questions for future work.

2 Numerical simulation of stochastic dynamics for twin
experiments

2.1 Modes of convergence for stochastic differential
equations

Unlike with deterministic models, even when the initial con-
dition of a stochastic dynamical system is precisely known,
the evolution of the state must inherently be understood in
a probabilistic sense. This precise initial information repre-
sents a Dirac-delta distribution for the prior that is instanta-
neously spread out due to the unknown realizations of the
true noise process. In particular, the solution to the initial
value problem is not represented by a single sample path but
rather by a distribution derived by the forward evolution with
respect to the Fokker–Planck equation. Due to the high nu-
merical complexity of resolving the Fokker–Planck equation

in systems with state dimensions greater than 3 (Pichler et al.,
2013), a Monte Carlo ensemble-based approach is an appeal-
ing alternative and is used to derive empirical statistics of the
forward distribution.

However, when the noise realizations are themselves
known (as is the case for twin experiments) the path of
the delta distribution representing the true system state can
be approximately reconstructed using a discretization of the
appropriate stochastic calculus. This sample path solution
explicitly depends on a particular random outcome, and
thereby, we will be interested in criteria for evaluating the
discretization error for SDEs that take into account the ran-
dom variation. For the numerical integration of the L96-s
model, we will consider two standard descriptions of the con-
vergence of solutions to the approximate discretized evolu-
tion to the continuous-time exact solution – we adapt the def-
initions from pp. 61–62 of Iacus (2009). In each of the below
definitions, we refer to the standard Euclidean norm.

Definition 1 Let xSP(t) be a sample path of an SDE and x(t)
be an approximation of xSP(t) based upon a discretiza-
tion with a maximum time step of 1. Suppose there ex-
ists a10 > 0 such that for any fixed time horizon T and
any 0<1<10,

E [‖x(T )− xSP(T )‖]≤ C1γ , (3)

where E denotes the expectation over all possible real-
izations of the stochastic process and C is a constant in-
dependent of 1. Then x(t) is said to converge strongly
to xSP(t) on the order of γ > 0.

We note that in the above definition, x and xSP are both
subject to the same outcomes of the random process, and the
expectation is taken over all possible outcomes.
Strong convergence is the analogue of the discretization of
a non-stochastic trajectory and is used to judge the accuracy
(on average) of reconstructing a specific sample path based
upon a known realization of a Brownian motion. We may
also consider, however, whether a discretization rule is able
to accurately represent a statistic of the forward-evolved dis-
tribution when estimated over many sample paths with re-
spect to different realizations of Brownian a motion – this is
the motivation for weak convergence.

Definition 2 Let xSP(t) be a sample path of an SDE and x(t)
be an approximation of xSP(t) based upon a discretiza-
tion with a maximum time step of 1. Suppose there ex-
ists a 10 > 0 such that for any fixed time horizon T ,
any 2(γ + 1) continuously differentiable function g of
at most polynomial growth and any 0<1<10,∥∥E[g(x(T ))− g(xSP(T ))

]∥∥≤ C1γ , (4)

where E denotes the expectation over all possible real-
izations of the stochastic process and C is a constant
independent of1. Then x(t) is said to converge weakly
to xSP(t) on the order of γ > 0.
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The distinction between strong and weak convergence can
be thought of as follows: (i) strong convergence measures the
mean of the path-discretization errors over all sample paths,
whereas (ii) weak convergence can measure the error when
representing the mean of all sample paths from an empiri-
cal distribution. When studying the empirical statistics of a
stochastic dynamical system or of an ensemble-based fore-
cast, weak convergence is an appropriate criterion for the
discretization error. However, when we study the root-mean-
square error (RMSE) of a filter in a twin experiment, we as-
sume that we have realizations of an observation process de-
pending on a specific sample path of the governing equations.
Therefore, while the accuracy of the ensemble-based forecast
may be benchmarked with weak convergence, strong conver-
gence is the appropriate criterion to determine the consis-
tency of the truth twin with the governing equations (Hansen
and Penland, 2006).

We will now introduce several commonly studied meth-
ods of simulation of stochastic dynamics and discuss their
strengths and their weaknesses. To limit the scope of the
current work, we will focus only on strong discretization
schemes; while a strong discretization scheme will converge
in both a strong and weak sense, weak discretizations do not
always guarantee convergence in the strong sense. We note
here, however, that it may be of interest to study weak dis-
cretization schemes solely for the purpose of the efficient
generation of ensemble-based forecasts – this may be the
subject of a future work and will be discussed further in
Sect. 4. We will introduce the discretization rules in a gen-
eral form whenever appropriate. In this section, however, we
will only discuss the strong order 2.0 Taylor scheme in a
reduced form derived specifically for the Lorenz-96 system
with scalar additive noise (L96-s). A more general formula-
tion for additive noise and its reduction to our model is the
content of Appendix A.

2.2 A general form of stochastic differential equations

Consider a generic SDE of the form

dx = f (x, t)dt +S(x, t)dW (t), (5)

where f is a vector-valued map in C2 (Rn×R,Rn), W (t) is
an n-dimensional Wiener process and S is a matrix-valued
map of diffusion coefficients in C2 (Rn×R,Rn×n

)
, equal

to a square root of the covariance function of the Gaussian
stochastic process S(x, t)W (t). In general, the diffusion co-
efficients S(x, t) can depend on both the state of the random
process and time. We note, however, that in the case of addi-
tive noise – when S(x, t)≡ S(t) – the derivative of the dif-
fusion coefficients with respect to x is zero and the Itô and
Stratonovich drift coefficients are equal, due to the zero ad-
justment term (Kloeden and Platen, 2013; see p. 109). In the
following discussions we will denote xk,x(tk) and assume
that uniform time steps are taken such that tk+1,tk +1.

2.3 Euler–Maruyama and Milstein schemes

The Euler–Maruyama scheme is among the simplest exten-
sions of deterministic integration rules to discretize systems
of SDEs such as Eq. (5). Like the standard deterministic
order 1.0 Euler scheme, the Euler–Maruyama scheme
approximates the evolution of a sample path by a functional
relationship expressed by Eq. (5).

Euler–Maruyama:

xk+1 = xk +f (xk, tk)1︸ ︷︷ ︸
a

+S(xk, tk)W1︸ ︷︷ ︸
b

, (6)

where the term in Eq. (6a) is the deterministic Euler scheme
and the term in Eq. (6b) is the matrix of diffusion coefficients
S multiplied by the noiseW1, a mean zero Gaussian random
vector of covariance 1In.

The Euler–Maruyama scheme benefits from its simple
functional form, adaptability to different types of noise and
intuitive representation of the SDE. However, with the Def-
initions 1 and 2 in mind, it is important to note that Euler–
Maruyama generally has a weak order of convergence of 1.0
but a strong order of convergence only of 0.5 (discussed by,
e.g., Kloeden and Platen (2013) in Theorem 10.2.2). The loss
of one-half order of convergence from the deterministic Eu-
ler scheme arises from the differences between deterministic
calculus and Itô calculus.

The Milstein scheme includes a correction to the rule in
Eq. (6), adjusting the discretization of the stochastic terms to
match the first-order Itô–Taylor expansion. In the case that
the matrix of diffusion coefficients S(x, t) is diagonal, let us
denote the ith diagonal element as Si(x, t); then the Milstein
scheme takes the component-wise form.

Milstein scheme for diagonal noise:

xik+1 = x
i
k + f

i(xk, tk)1+ S
i(xk, tk)W

i
1 (7a)

+
1
2
Si(xk, tk)

∂Si

∂xi

[(
W i
1

)2
−1

]
(7b)

for the ith state component, where the partial derivative is
evaluated at (xk, tk). This and the general multidimensional
form for the Milstein scheme can be found on pp. 345–348
of Kloeden and Platen (2013). We note that, in the case of ad-
ditive noise, the partial derivatives ∂Si

∂xi
vanish and the Euler–

Maruyama and Milstein schemes are equivalent; thus in our
example the Euler–Maruyama scheme achieves a strong or-
der of convergence of 1.0.

Although the Euler–Maruyama scheme is simple to im-
plement, we shall see in the following sections that the cost
of achieving mathematically consistent simulations quickly
becomes prohibitive. Despite the fact that it achieves both
a strong and weak convergence of order 1.0 in the L96-s
model, the overall discretization error is significantly higher
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than even other order 1.0 strong convergence methods – the
difference between the Euler–Maruyama scheme and other
methods lies in the constant C in the bounds in Definitions 1
and 2.

2.4 Runge–Kutta methods

The convergence issues for the Euler–Maruyama scheme
are well understood, and there are many rigorous meth-
ods used to overcome its limitations (Kloeden and Platen,
2013, pp. xxiii–xxxvi and references therein). However, gen-
eral higher-order methods can become quite complex due to
(i) the presence of higher-order Itô–Taylor expansions in Itô
forms of SDEs and/or (ii) the approximation of multiple Itô
or Stratonovich integrals necessary to resolve higher-order
schemes. Stochastic Runge–Kutta methods can at least elim-
inate the higher-order Itô–Taylor expansions, though they
do not automatically deal with the issues around multiple
stochastic integrals; for a discussion on the limits of higher-
order Runge–Kutta schemes see, e.g., Burrage and Burrage
(1996, 1998).

Given a system of SDEs as in Eq. (5), the straightforward
extension of the classical four-stage Runge–Kutta method,
proven by Rüemelin (1982), is given below.

Strong order 1.0 Runge–Kutta:

κ1,f (xk, tk)1+S(xk, tk)W1 (8a)

κ2,f

(
xk +

κ1

2
, tk +

1

2

)
1

+S
(
xk +

κ1

2
, tk +

1

2

)
W1 (8b)

κ3,f

(
xk +

κ2

2
, tk +

1

2

)
1

+S
(
xk +

κ2

2
, tk +

1

2

)
W1 (8c)

κ4,f (xk + κ3, tk +1)1

+S(xk + κ3, tk+1+1)W1 (8d)

xk+1,xk +
1
6
(κ1+ 2κ2+ 2κ3+ κ4) . (8e)

The straightforward extension of the four-stage Runge–Kutta
scheme to stochastic systems in Eq. (8) has the benefits that
(i) it is an intuitive extension of the commonly used four-
stage deterministic rule, making the implementation simple;
(ii) it makes few assumptions about the structure of the gov-
erning equations; and (iii) in the small noise limit, the rule
will be compatible with the deterministic order 4.0 imple-
mentation. However, as a trade-off with generality, by not
exploiting the dynamical system structure, the discretization
in Eq. (8) has strong order of convergence of 1.0 (Hansen
and Penland, 2006). Alternatively, we may consider using,
e.g., the strong order 2.0 Runge–Kutta method for scalar ad-
ditive noise (Kloeden and Platen, 2013, p. 411); the form of

the L96-s equations indeed satisfies this condition. However,
this is an implicit method, coming with the additional cost
of, e.g., Newton–Raphson iterations to solve each step for-
ward. While this is a necessary measure for stiff equations,
the L96-s equations do not demand this type of precision.

2.5 Strong order 2.0 Taylor scheme

As a generic out-of-the-box method for numerical simu-
lation, the four-stage Runge–Kutta method in Eq. (8) has
many advantages over Euler–Maruyama and is a good
choice when the noise is nonadditive or the deterministic
part of the system lacks a structure that leads to simplifi-
cation. On the other hand, the combination of (i) constant
and vanishing second derivatives of the Lorenz-96 model,
(ii) the rotational symmetry of the system in its spatial
index and (iii) the condition of scalar additive noise together
allow us to present the strong order 2.0 Taylor rule as follows.

Strong order 2.0 Taylor: define the constants ρp and
αp as

ρp =
1
12
−

1
2π2 ; αp =

π2

180
−

1
2π2 . (9)

For each step of size 1,

1. Randomly select the vectors ξ , ζ , η, φ, and µ∼

N(0,In), independently and identically distributed (iid).

2. Compute the random vectors

a =−2
√
1ρpµ−

√
21
π

ζ , (10a)

b =
√
1αpφ+

√
1

2π2 η. (10b)

3. For ξ , a and b defined as above and for each entry of
the random vectors indexed by l and j , define the coef-
ficients

9
p

(l,j),
12

3
ξlξj +

1
3
2

4

(
ξlaj + ξjal

)
+
1

2
alaj

−
1

3
2

2π

(
ξlbj + ξjbl

)
, (11)

which are used to define the random vectors,

9
p
+,

 9
p

(n,2)
...

9
p

(n−1,1)

 ,9p−,
 9

p

(n−1,n)
...

9
p

(n−2,n−1)

 (12)

and

J
p
1,


1
2

(√
1ξ1+ a1

)
...

1
2

(√
1ξn+ an

)
 . (13)
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Then, in matrix form, the integration rule from time tk to tk+1
is given as

xk+1 = xk +f1+
12

2
∇f ·f (14a)

+ sk
√
1ξ + sk∇f ·J

p
1+ s

2
k

(
9
p
+−9

p
−

)
, (14b)

where the term in Eq. (14a) is the deterministic order 2.0 Tay-
lor scheme, the term in Eq. (14b) is the stochastic component
of the rule and sk,s(tk). Deriving this relatively simple form
for the strong order 2.0 Taylor rule for the L96-s system is
nontrivial and this is explained in detail in Appendix A.

In the following section we will illustrate several numeri-
cal benchmarks of each of the methods, describing explicitly
their rates of strong and weak convergence. We note that the
order 2.0 Taylor scheme takes a very different practical form
in the following numerical benchmarks versus in a twin ex-
periment. When simulating a sample path for a twin exper-
iment, one can simply use the steps described above to dis-
cretize the trajectory. Particularly, the simulation of a sample
path by the above converges to some sample path, consis-
tent with the governing equations. We detail the experimental
setup for consistently discretizing a known reference sample
path in Appendix B.

3 Numerical benchmarks

3.1 Benchmarks for strong and weak convergence

We begin with benchmarks of strong and weak convergence
for each method. Subsequently, we will evaluate the dif-
ferences in the ensemble-based forecast statistics of each
method, as well as biases introduced in DA twin experi-
ments. Using these numerical benchmarks, we will formu-
late a computationally efficient framework for controlling the
discretization errors in twin experiments.

In each of the strong and weak convergence benchmarks
we use the same experimental setup. As a matter of compu-
tational convenience, we set the system dimension at n= 10.
This allows us to study the asymptotic filtering statistics, both
in number of samples in ensemble-based forecasts as well as
in the temporal limit and the number of analyses. We begin
by generating a long climatological trajectory of the L96-s
model, using the order 2.0 Taylor scheme with a time step
of 1= 10−3. This solution is spun onto the climatological
statistics, using 5× 106 integration steps, and subsequently
evenly sampled at an interval of δt = 2, generating M = 500
unique initial conditions. We denote this collection of ini-
tial conditions {vm(s)}Mm=1. The parameter s is a fixed diffu-
sion coefficient for Eq. (2), fixed for each experiment with
s ∈ {0.1,0.25,0.5,0.75,1.0}.

For each initial condition vm(s) above, we will gener-
ate an ensemble size N = 102 of finely discretized refer-
ence trajectories. Each member of the ensemble is forward
evolved to time T = 0.125 such that the evolution is weakly

nonlinear in the ensemble dynamics, but each trajectory is
fully nonlinear. We also generate an ensemble of N coarsely
discretized solutions, defined by each of the (i) Euler–
Maruyama, (ii) Runge–Kutta and (iii) Taylor schemes, de-
fined via the same Brownian motion realizations as the fine
trajectories.

Suppressing indices, we denote the reference trajectories
xSP; these solutions are generated by the Euler–Maruyama
scheme as a simple-to-implement benchmark discretization.
The reference solutions use a step size defined as 1SP =

2−23. Notice that 1SP is of order O
(
10−7) so that the dis-

cretization error of xSP is of order O
(
10−7). We take the

coarse step sizes as {1q = 2−q}9q=5 such that the coarse time
steps range from order O

(
10−2) to O

(
10−3). Moreover,

each of T
1SP

, T
1q

and 1SP
1q

is integer valued for all q. This setup
ensures that the Brownian motion realization defined over the
coarse time steps, size 1q , can be defined consistently with
the finely discretized Brownian motion realization with steps
of size 1SP within the coarsely discretized time interval.

Explicitly, for each initial condition we generate a unique
ensemble ofN = 102 realizations of a 10-dimensional Brow-
nian motion process; each Brownian motion realization, in-
dexed by b = 1, . . .,N , is defined by a matrix Wb

m(s) ∈

Rn×
T
1SP . Each component of the matrix Wb

m(s) is drawn iid
from N (0,1SP) representing the realized Brownian motion
over the interval [0,T ], discretized with steps of size 1SP.
To obtain the equivalent Brownian motion realizations dis-
cretized over the coarse time steps, we take the component-
wise sum of the finely discretized Brownian increments
in between the coarse steps. For the Euler–Maruyama and
Runge–Kutta schemes, this is sufficient to guarantee the con-
sistency of Brownian motion realization over the coarse and
fine discretizations. However, there is an additional consid-
eration with the Taylor scheme, which is outlined in Ap-
pendix B.

Note that the L96-s model is spatially homogeneous, and
the Euclidean norm of its state depends on the dimension of
the system n. Therefore, we estimate the strong and weak
convergence of the discretization schemes component-wise,
independently of the state dimension of the model. Let xi and
xj denote the ith and j th component of the vector x ∈ Rn
respectively. Suppressing indices, for each initial condition
vm(s), we approximate the following expected values for an
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Figure 1. Strong convergence benchmark. Vertical axis – discretiza-
tion error, log scale. Horizontal axis – step size, log scale. Diffusion
level s. Length of time T = 0.125.

arbitrary component j as follows:

E
[∣∣∣xj (T )− xjSP(T )

∣∣∣]≈ 1
N

N∑
b=1

√√√√ n∑
i=1

[
xi(T )− xiSP(T )

]2
n

,

(15)

∣∣∣E[xj (T )− xjSP(T )
]∣∣∣≈

√√√√√ n∑
i=1

[
1
N

∑N
b=1x

i(T )− xiSP(T )
]2

n
,

(16)

where T = 0.125. It is to be understood in the above that, de-
spite the suppressed indices, the difference between the ref-
erence solution xSP and the coarsely discretized solution x
depends on the same value s for the diffusion, the same ini-
tial condition m and the same realized Brownian motion b.
Thus the above equations make an approximation of Eq. (15)
– strong convergence with the ensemble average root-mean-
square error (RMSE) of the coarsely discretized solution ver-
sus the reference – and Eq. (16) – weak convergence with the
RMSE of the ensemble mean of the coarsely discretized so-
lutions versus the ensemble mean of the reference solutions.

It is known that the ensemble average error on the right-
hand side of Eqs. (15)–(16) is Gaussian distributed around
the true expected value, on the left-hand side, for ensembles
of Brownian motions with N > 15. Computing these ensem-
ble mean errors over the batch of M = 500 different initial
conditions, we can compute the sample-based estimate of
the expected value (the mean over all batches) and the stan-
dard deviation of the batch of realizations in order to compute
confidence intervals for the expectation (Kloeden and Platen,
2013; see Sect. 9.3).

For each coarse discretization, with step size {1q =
2−q}9q=5, we compute the point estimate for each expected
value on the left-hand side of Eqs. (15)–(16) with the av-
erage of the righthand side of Eqs. (15)–(16) taken over the
M = 500 initial conditions. The average of the righthand side
of Eqs. (15)–(16) over all batches will be denoted as the point
estimate ε1q . Then, within a log–log scale, base 10, we com-

pute the best-fit line between the points
{(
1q ,ε1q

)}9
q=5 us-

Figure 2. Weak convergence benchmark. Vertical axis – discretiza-
tion error, log scale. Horizontal axis – step size, log scale. Diffusion
level s. Length of time T = 0.125.

ing weighted least squares, with weights proportionate to the
inverse of the batch standard deviation of the Eqs. (15)–(16).
The slope of the line estimated as above is our approxima-
tion of the order of convergence γ , and the intercept is the
constant C.

In Fig. 1, we plot the point estimates for the discretization
error, measured in strong convergence, for each of the dis-
cretization methods: (i) Euler–Maruyama, (ii) Runge–Kutta
and (iii) Taylor, as compared with the finely discretized ref-
erence solution. It is immediately notable in this plot that,
while each order of strong convergence is empirically veri-
fied, the lines for Runge–Kutta and Taylor schemes actually
cross. Indeed, the estimated slope γ matches the theoretical
value within a 10−2 decimal approximation for each scheme
(γ = 1.0 for each Euler–Maruyama and Runge–Kutta; γ =
2.0 for Taylor), but the constants in the order analysis play a
major role in the overall discretization error in this system;
the Taylor rule has convergence of order 2.0 in the size of the
discretization steps, but the constant C associated with the
Taylor rule penalizes this scheme heavily, raising the over-
all discretization error by about an order of magnitude. The
constant C for the Runge–Kutta scheme, however, reduces
the overall discretization error by about an order of magni-
tude for each diffusion level (see Table 1).

The effect of this constant C is even more prominent for
the case of weak convergence, pictured in Fig. 2. In partic-
ular, for the weaker diffusion levels of s = 0.1 and 0.25, al-
though the order of weak convergence is 1.0 in the size of
discretization step, the order 2.0 Taylor rule fails to achieve a
superior discretization error than the Runge–Kutta scheme
in this regime. Here, the constant C for the Runge–Kutta
scheme is extremely small, lowering the overall order of dis-
cretization error by 2 orders of magnitude, despite the order
1.0 weak convergence (see Table 1).

Most interestingly, as the diffusion level s approaches
zero, it appears that the behavior of the Runge–Kutta scheme
converges in some sense to the four-stage (order 4.0) deter-
ministic Runge–Kutta scheme, but the difference in their or-
ders is reflected in the constant C. Analytically the stochas-
tic Runge–Kutta rule coincides with the deterministic rule in
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the zero-noise limit. This analytical convergence is also true
for the Taylor scheme, where the zero-noise limit is the de-
terministic Taylor scheme, but the order of convergence for
both the stochastic and deterministic Taylor schemes is 2.0,
and the overall error does not change so dramatically.

3.2 Ensemble forecast statistics

The estimated performance of the order 2.0 Taylor scheme
using a step size of 1= 10−3 is of order O

(
10−4), in both

the strong and weak sense, over all diffusion regimes. There-
fore, we will use this configuration as a benchmark setting to
evaluate the other methods. While the Runge–Kutta scheme
often has better performance than the Taylor scheme in the
overall weak-discretization error, the level of discretization
error also varies by 1 order of magnitude between different
diffusion settings. Therefore, in the following experiments
we will consider how the different levels of discretization er-
ror and diffusion affect the empirically generated, ensemble-
based forecast statistics in the L96-s model with respect to a
consistent reference point.

We sample once again the initial conditions {vm(s)}Mm=1
as described in Sect. 3.1. For each initial condition, we
generate a unique ensemble of N = 102 realizations of a
10-dimensional Brownian motion process. Once again, the
Brownian motion realizations are indexed by b = 1, . . .,N
but where each realization is defined by a matrix, Wb

q(s) ∈

Rn×2·105
. Each component of the matrix Wb

m(s) is drawn iid
from N

(
0,10−3); this represents a Brownian motion real-

ized over the interval [0,20], discretized at an interval of1=
10−3. For g ∈ {e, r, t} let the matrix Xg(t) ∈ Rn×N be defined
as the ensemble matrix. Let the vector xg(t), 1

N

∑N
i=1X

b
g(t)

be defined as the ensemble mean at time t , averaged over all
realized Brownian motions

{
Wb
m(s)

}N
b=1, where the ensem-

ble is generated by the Euler–Maruyama (g = e), Runge–
Kutta (g = r) or Taylor (g = t) scheme respectively. Then,
for an arbitrary ensemble g ∈ {e, r, t}, we define the spread at
time t to be

spreadg(t),√√√√√ 1
N − 1

N∑
b=1

(
xg(t)−X

b
g(t)

)T(
xg(t)−X

b
g(t)

)
n

, (17)

i.e., defined by the sample-based estimate of the standard
deviation of the mean-square deviation of the anomalies
(Whitaker and Loughe, 1998).

For each of the Euler–Maruyama and Runge–Kutta
schemes (g ∈ {e, r}), we measure the following: (i) the
root-mean-square deviation of the ensemble mean from the
benchmark,

RMSDg(t),

√√√√√ n∑
i=1

(
xig(t)− x

i
t (t)

)2

n
, (18)

Figure 3. Ensemble forecast statistics deviation over time – fine
discretization. Euler–Maruyama and Runge–Kutta discretized with
time step 1= 10−3. Top: RMSD. Bottom: ratio of spread. Median
– solid. Inner 80 % – shaded. Min/max – dashed.

and (ii) the ratio of the ensemble spread with that of the
benchmark, spreadg(t)/spreadt(t); each is on an interval of
δt = 0.01 over the forecast t ∈ [0,20]. The integration step
size for the Euler–Maruyama and the Runge–Kutta schemes
are varied over {1q = 10−q}3q=2, and the diffusion level is
varied, s ∈ {0.1,0.25,0.5,0.75,1.0}.

In Figs. 3–4, we plot (i) the median as a solid line, (ii) the
inner 80th percentile as a shaded region, and (iii) the mini-
mum and maximum values attained as dashed lines, where
each summary statistic is computed over the M = 500 initial
conditions. In each of the figures we plot the RMSD of the
ensemble mean versus the benchmark and the ratio of the en-
semble spread only over the interval [0,10]; we find that the
statistics are stable in the interval [10,20], and we neglect the
longer time series, which remain approximately at the same
values as those shown at the end of the pictured time series.

In Fig. 3 we note immediately that there are no major dif-
ferences between the ensemble mean or spread of the finely
discretized Runge–Kutta scheme and the benchmark Tay-
lor scheme for forecasts up to length T ∈ [0,3]. Indeed, in
all diffusion regimes, the RMSD of the ensemble means is
bounded by 0.11 for forecasts up to length T = 3 and be-
low 0.1 for forecasts up to length T = 2.8. In the higher-
diffusion regimes, in which the weak-discretization error of
the Runge–Kutta scheme becomes slightly higher than the
benchmark system, we notice a slight change in the perfor-
mance in which the ensemble means begin to deviate earlier;
however, the difference occurs well beyond what would be
considered a practical upper limit of a forecast length, around
T = 2. Asymptotically as the forecast length T →∞, the
RMSD of the means settles to small variations around the
median value of 0.5, indicating that by T = 10 the Runge–
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Table 1. Estimated discretization error constant C. The constant corresponds to the expected bound of the discretization error, C1γ , where
1 is the maximum time step of the discretization and is sufficiently small. γ equals 1.0 for Euler–Maruyama and Runge–Kutta and 2.0 for
Taylor. Values of C are rounded to O

(
10−2

)
.

Diffusion s = 0.1 s = 0.25 s = 0.5 s = 0.75 s = 1.0

Scheme/mode Strong Weak Strong Weak Strong Weak Strong Weak Strong Weak

Euler–Maruyama 9.93 9.93 9.43 9.42 9.81 9.77 10.31 10.22 11.20 11.06
Runge–Kutta 0.08 0.01 0.19 0.02 0.38 0.04 0.56 0.06 0.76 0.07
Taylor 37.12 37.11 34.75 34.71 36.35 36.16 38.65 38.27 42.97 42.27

Kutta and benchmark Taylor ensembles have become close to
their climatological distributions. This is indicated likewise
by the ratio of the ensemble spreads where, beyond T = 10,
the width of the percentiles around the median ratio, at 1.0,
becomes steady.

The relatively slow divergence of the ensembles under
Runge–Kutta and Taylor discretizations, finally reaching
similar climatological distributions, stands in contrast to the
ensemble statistics of the Euler–Maruyama scheme. No-
tably, the ensemble mean of the Euler–Maruyama scheme
quickly diverges. Moreover, at low-diffusion values, the
short-timescale divergence is also consistently greater than
the deviation of the climatological means. This indicates
that, unlike with the Runge–Kutta scheme, a strong bias is
present in the empirical forecast statistics with respect to the
Euler–Maruyama scheme. The ensemble-based climatologi-
cal mean generated with the Euler–Maruyama scheme is sim-
ilar to that under the Taylor scheme; however, the spread of
the climatological statistics is consistently greater than that of
the benchmark system. After the short period of divergence,
the median ratio of the spread of the Euler–Maruyama en-
semble versus the Taylor ensemble is actually consistently
above 1.0.

Increasing the step size of the Euler–Maruyama and
Runge–Kutta ensembles to 1= 10−2, we see in Fig. 4 some
similar patterns and some differences. With the large step
size the divergence of the ensemble means has a faster on-
set. However, particularly for the Euler–Maruyama scheme
we see the presence of a bias, indicated by the large short-
timescale deviation, substantially greater than the climato-
logical deviation of means. For both the Euler–Maruyama
and the Runge–Kutta scheme, increased diffusion shortens
the initial period of the divergence of the ensemble means,
bringing each ensemble closer to the climatological statis-
tics more rapidly. With the increased discretization error, the
Runge–Kutta scheme has more variability in its ensemble
spread but remains unbiased with the median ratio of spreads
centered at one. For the Euler–Maruyama scheme, however,
we see the artificial increase in the ensemble spread is even
more pronounced, with the minimum value for the ratio of
spreads generally exceeding 1.0.

Figure 4. Ensemble forecast statistics deviation over time – coarse
discretization. Euler–Maruyama and Runge–Kutta discretized with
time step 1= 10−2. Top: RMSD. Bottom: ratio of spread. Median
– solid. Inner 80 % – shaded. Min/max – dashed.

Given the above results, we can surmise that the
Runge–Kutta scheme will be largely unbiased in producing
ensemble-based forecast statistics, with maximum time dis-
cretization of 1 ∈ (0,0.01]. At the upper endpoint of this
interval, divergence of the means occurs more rapidly, and
there is more variation in the ensemble spread versus a finer
step size. However, the result is that it settles more quickly
onto the climatological statistics, close to the benchmark
Taylor system. The short-term and climatological statistics
of the Euler–Maruyama scheme, however, suffer from biases
especially in low-diffusion regimes or for a maximal time
discretization of order O

(
10−2). In the following section,

we will explore how these observed differences in ensemble-
based statistics of these schemes affect the asymptotic filter-
ing statistics.

3.3 Data assimilation twin experiments

Here we study the RMSE and the spread of the analysis en-
semble of a simple stochastic (perturbed observation) ensem-
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Figure 5. Truth: Taylor 1t = 10−3. Ensemble: Taylor 1e = 10−3.
Asymptotic-average analysis for ensemble RMSE and spread of
benchmark configuration. Vertical axis – level of diffusion s ∈

{0.1,0.25,0.5,0.75,1.0}. Horizontal axis – variance of observation
error r ∈ {0.1,0.25,0.5,0.75,1.0}.

ble Kalman filter (EnKF) (Evensen, 2003). We fix the num-
ber of ensemble members at N = 100 and set the L96-s sys-
tem state to be fully observed (with Gaussian noise) for all
experiments such that no additional techniques are necessary
to ensure filter stability for the benchmark system. Particu-
larly, in this configuration, neither inflation nor localization
is necessary to ensure stability – this is preferable because
inflation and localization techniques typically require some
form of tuning of parameters to overcome the usual rank defi-
ciency, the associated spurious correlations and the over con-
fidence in the ensemble-based covariance estimates (Carrassi
et al., 2018). The benchmark system uses the order 2.0 Tay-
lor scheme with a time discretization of (i) the truth twin with
1t = 10−3 and (ii) the ensemble with 1e = 10−3.

In Fig. 5, we plot the asymptotic-average EnKF analysis
RMSE and ensemble spread for our benchmark system over
a range of diffusion levels s and a range of observational error
variance r , where s,r ∈ {0.1,0.25,0.5,0.75,1.0}. The anal-
ysis RMSE of the filter is evaluated in terms of the analysis
ensemble mean estimate versus the truth twin, with observa-
tions given at length T = 0.1 between analyses. The average
RMSE and spread are calculated over 2.5× 104 analysis cy-
cles, with an initial 5×103 analysis cycles precomputed, not
contributing to the average, as a spin-up for the filter to reach
its stable statistics. We see, in all combinations of the model
and observational error parameters, that the filter is perform-
ing well when compared with the standard deviation of the
observation errors. The spread also consistently has compa-
rable values to the RMSE, indicating that the performance
of the EnKF is stable in this regime (Whitaker and Loughe,
1998).

3.3.1 Varying the ensemble integration method for
data assimilation

In this section, we will compare several different DA twin
experiment configurations with the benchmark system, in
which the Taylor scheme generates the truth twin and model
forecast with a fine time step. The configuration which is
compared to the benchmark system will be referred to as the

“test” system. We fix the truth twin to be generated in all
cases by the order 2.0 Taylor scheme, with time step 1t =
10−3. We will vary, on the other hand, the method of gen-
erating the forecast ensemble for the test system with differ-
ent choices of discretization schemes and the associated time
step. For each choice of ensemble integration scheme, we
once again compute the asymptotic-average analysis RMSE
and spread over 2.5× 104 analyses, with a 5× 103 analysis
spin-up so as to reach stable statistics.

We drop the phrase “asymptotic-average analysis” in the
remaining portions of Sect. 3 and instead refer to these sim-
ply as the RMSE and spread. In each of the following fig-
ures, we plot (i) the RMSE of the EnKF generated in the test
system, minus the RMSE of the benchmark system; (ii) the
ratio of the spread of the EnKF generated with the test sys-
tem compared with that of the benchmark configuration. All
filters are supplied identical Brownian motion realizations
for the model errors, which are used to propagate the en-
semble members with their associated integration schemes.
Likewise, identical observations (including randomly gener-
ated errors) and observation perturbations in the stochastic
EnKF analysis are used for each filter at corresponding anal-
ysis times.

As was suggested by the results in Sect. 3.2, the difference
between the RMSE and the ratio of the spreads for the con-
figuration in which the ensemble is generated by the Runge–
Kutta scheme with step size 1e = 10−3 and the benchmark
DA configuration is nominal; the RMSE difference is of or-
der O

(
10−6), with a mean value and standard deviation of

order O
(
10−7) across the configurations; the ratio of the

spread differs from 1.0 by an order of O
(
10−6), with a mean

value of order O
(
10−6) and a standard deviation of order

O
(
10−7). For these reasons, we do not plot the compari-

son of the ensemble generated with the Runge–Kutta scheme
with step size 1e = 10−3 and the benchmark configuration.
The next question is whether increasing the time step of the
Runge–Kutta scheme to1e = 10−2 will impact the filter per-
formance, especially in terms of causing bias in the results of
the filter.

In Fig. 6, the test system uses the Runge–Kutta scheme
with coarse time step 1e = 10−2. We find what appears to
be small, random variation in the difference, where in some
cases the coarse time step scheme slightly outperforms the
benchmark system in terms of the RMSE. These RMSE dif-
ferences, however, appear to be effectively unstructured in
sign or magnitude with regard to the diffusion level s and the
observational error variance r , indicating that this amounts to
random numerical fluctuation and is mostly unbiased; this is
likewise the case for the ratio of the spread.

To formalize the visual inspection, we perform the
Shapiro–Wilk test (Shapiro and Wilk, 1965) on the standard-
ized RMSE differences. The result of the Shapiro–Wilk test
is a p value of approximately 0.80 so that we fail to reject the
null of Gaussian-distributed differences in the RMSE. As-
suming that these differences are Gaussian distributed, we
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Figure 6. Truth: Taylor 1t = 10−3. Ensemble: Runge–Kutta 1e =
10−2. Difference in RMSE/ratio spread with benchmark Fig. 5.

apply the t test with null hypothesis that the residuals have a
mean of 0. The result is a p value of approximately 0.77, so
that we fail to reject the null hypothesis that the differences
are distributed according to a mean zero Gaussian distribu-
tion.

The average of these RMSE differences is approximately
−8×10−5, with a standard deviation of approximately 10−3;
the ratio of spreads differs from 1.0 on average by about
4×10−5 with a standard deviation of approximately 8×10−4.
Because this appears to be unbiased, Gaussian numerical er-
ror, we expect that increasing the integration time step for the
Runge–Kutta scheme to 1e = 10−2 will not introduce any
structural biases to twin experiments based on the discretiza-
tion error.

We are secondly interested in seeing how the Euler–
Maruyama scheme generating the ensemble compares with
the benchmark system when using a maximal time step of
1e ∈ {10−2,10−3

}. In Fig. 7, the test system uses the Euler–
Maruyama scheme with time step1e = 10−3. Note, the scale
for the RMSE difference in Fig. 7 matches the scale of the
positive differences in Fig. 6. However, the scale for the
spread ratio in Fig. 7 differs from the scale in Fig. 6 by about
an order of magnitude. We find that in contrast to the coarse-
grained Runge–Kutta scheme, there is indeed structure in
this plot, similar to the results in Sect. 3.2. For low levels
of diffusion, there is a clear bias introduced by the Euler–
Maruyama scheme in which the ensemble is artificially in-
flated and also has a lower overall accuracy (though by a
small measure). However, it is also of interest that the perfor-
mance of the Euler–Maruyama scheme and the benchmark
system are almost indistinguishable for higher levels of dif-
fusion. With a time step of 1= 10−3, the Euler–Maruyama
scheme achieves comparable performance with the bench-
mark approach for high levels of diffusion; however, there is
clearly a bias introduced that systematically affects the accu-
racy of the filter in a low-diffusion regime, in contrast with
the last example.

Next we turn our attention to Fig. 8, where the test sys-
tem uses the Euler–Maruyama scheme with a time step of
1e = 10−2. Here, a log scale is introduced in the measure of
the RMSE difference, and a new linear scale is introduced
for the spread ratio. We see the same structure of the bias in-
troduced to the filter, where for low-diffusion levels there is

Figure 7. Truth: Taylor 1t = 10−3. Ensemble: Euler–Maruyama
1e = 10−3. Difference in RMSE/ratio of spread with benchmark
Fig. 5.

Figure 8. Truth: Taylor 1t = 10−3. Ensemble: Euler–Maruyama
1e = 10−2. Difference in RMSE/ratio of spread with benchmark
Fig. 5.

a strong bias, sufficient to cause filter divergence in this con-
figuration. However, for high-diffusion levels, this bias is less
significant, and the filter performance is roughly comparable
to the benchmark system, with the difference being of order
10−2 for s ≥ 0.5. We again see the artificial effect of the in-
flation due to the Euler–Maruyama scheme in the spread of
the ensemble, with the same structure present as in the last
example. In Fig. 8, the scale for the spread is also about an
order of magnitude larger than in Fig. 7.

3.3.2 Varying the truth-twin accuracy for data
assimilation

Finally, we examine the effect of lowering the accuracy of
the truth twin on the filter performance of the test system
relative to the benchmark configuration. In each of the fol-
lowing figures, we again compare the RMSE and spread of
the benchmark configuration in Fig. 5 – in all cases the test
system will generate the truth twin using the order 2.0 Taylor
scheme, with a coarser time step of 1t = 5× 10−3. In this
case, based on the estimate from Table 1, the discretization
error for the truth twin is close to 10−3.

In Fig. 9, the Runge–Kutta scheme generates the ensem-
ble with a step size of 1e = 10−2. The figure uses identical
scales for both RMSE and spread as in Fig. 6. The filtering
statistics, with reduced accuracy of the truth twin in conjunc-
tion with the reduced accuracy Runge–Kutta scheme for the
ensemble, are very similar to the case of the more accurate
truth twin. The discretization error in the generation of the
ensemble forecast is around 7× 10−4 in the high-diffusion

Geosci. Model Dev., 13, 1903–1924, 2020 www.geosci-model-dev.net/13/1903/2020/



C. Grudzien et al.: Numerical integration of Lorenz-96 1915

Figure 9. Truth: Taylor 1t = 5× 10−3. Ensemble: Runge–Kutta
1e = 10−2. Difference in RMSE/ratio of spread with benchmark
Fig. 5.

regime but is usually lower for the smaller diffusion levels
(see Table 1).

The main distinction lies in that there is a clear separa-
tion of the spread ratio between the low-diffusion and high-
diffusion regimes. For this coarse discretization configura-
tion, there is a trend of higher spread in the low-diffusion,
versus the trend of lower spread in high-diffusion, as com-
pared with the benchmark system. We test for non-Gaussian
structure in the RMSE differences using the Shapiro–Wilk
test, with a resulting p value of approximately 0.87. With-
out significant departures from Gaussianity, we use a t test
with the null hypothesis that the RMSE differences are dis-
tributed with a mean of zero. The result is a p value of or-
der O

(
10−4), indicating that there is significant additional

structure in this regime that was not present when the finely
discretized truth twin was used. The differences no longer
appear to be unbiased, though the differences in this config-
uration from the benchmark configuration remain practically
small for twin experiments; the mean of the RMSE differ-
ences in Fig. 9 is approximately −7× 10−4, while the stan-
dard deviation is approximately −8× 10−4. The difference
in the spread from 1.0 is approximately 3×10−5 on average,
with a standard deviation of approximately 10−3.

As a final comparison with the benchmark system, in
Fig. 10 the test system generates the ensemble using the
Euler–Maruyama scheme with time step 1e = 10−3. The
scale for the RMSE differences is the same as in Fig. 6, while
the scale for the ratio of the spread is the same as in Fig. 7.
We note that the qualitative structure of the differences is
close to that in Fig. 7, with a notable difference. Here, the
difference from the benchmark system at high-diffusion lev-
els is relaxed, and the EnKF generated by the fine-grained
evolution under Euler–Maruyama at times performs better
than the benchmark system, when there is the additional dis-
cretization error of the truth twin. This may correspond to
the fact that the discretization error for the truth twin under
the Taylor scheme is slightly higher with the higher diffusion
levels. However, the overall bias introduced by the Euler–
Maruyama scheme into the twin experiment seems to remain
largely the same. We neglect a plot comparing the system
in which the ensemble is generated by the Euler–Maruyama
scheme with step 1e = 10−2 – this case is largely the same

Figure 10. Truth: Taylor 1t = 5× 10−3. Ensemble: Euler–
Maruyama 1e = 10−3. Difference in RMSE/ratio of spread with
benchmark Fig. 5.

as results in Fig. 8, with a similar pattern of filter divergence
at low diffusion and relaxation at higher diffusion.

3.4 An efficient framework for twin experiments

We briefly consider the computational complexity of the
Euler–Maruyama scheme in Eq. (6), the strong order 1.0
stochastic Runge–Kutta scheme in Eq. (8) and the strong or-
der 2.0 Taylor scheme in Eq. (14). We note that every one of
these methods applied in the L96-s system has a per-iteration
complexity that grows linearly in the system dimension n.
This is easy to see for the Euler–Maruyama scheme and is
verified by, e.g., Hansen and Penland (2006) for the stochas-
tic Runge–Kutta scheme. On the other hand, it may appear
that the numerical complexity of one iteration of the Taylor
scheme is O(n2) due to the multiplication of the vectors f
and Jp1 with the Jacobian ∇f . However, for any n≥ 4, there
are only four nonzero elements in each row of ∇f ; the spar-
sity of the Jacobian means that an efficient implementation
of the matrix multiplication will only grow in complexity at
O(n).

However, there are significant differences in the number of
iterations necessary to maintain a target discretization error
over an interval [0,T ]. A typical forecast length T for a twin
experiment in the L96-s system is for T ∈ [0.1,0.5], corre-
sponding to weakly and strongly nonlinear behavior respec-
tively at the endpoints of this interval. The necessary number
of iterations to produce a truth twin with discretization er-
ror on O

(
10−6) as in the usual Lorenz-96 system is around

O
(
102) to O

(
103) integration steps with the strong order

2.0 Taylor scheme. This is because, even with the order 2.0
strong convergence, the Taylor scheme has to compensate for
the large constant term by dropping to a maximal step size of
O
(
10−4). As a practical compromise, we suggest a higher

target discretization error on the order of O
(
10−3).

The order 2.0 Taylor scheme, with a maximal step size of
1t = 5× 10−3, achieves a strong discretization error close
to 10−3 across all diffusion regimes. This order of strong
discretization error is not possible with either the Euler–
Maruyama or Runge–Kutta scheme without dropping the
maximal step size to at most 10−3, making the order 2.0 Tay-
lor scheme a suitable choice for generating the truth twin. On
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the other hand, in ensemble-based DA, the greatest numerical
cost in a twin experiment lies in the generation of the ensem-
ble forecast. Across the diffusion regimes, from weak s = 0.1
to strong s = 1.0, we have seen that the stochastic Runge–
Kutta scheme achieves a weak discretization error bounded
by 10−3 when the maximal step size is1e = 10−2. This sug-
gests the use of a hybrid approach to simulation in which the
Taylor and Runge–Kutta schemes are used simultaneously
for different scopes.

The combination of (i) truth twin – Taylor with 1t = 5×
10−3 – and (ii) model-twin – Runge–Kutta with 1e = 10−2

– maintains the target discretization error at approximately
10−3 with relatively few computations. Moreover, using the
Runge–Kutta scheme to generate the ensemble has the ben-
efit that it is easy to formulate in vectorized code over the
ensemble. In Sect. 3.2 and 3.3, we demonstrated that this
configuration does not practically bias the ensemble forecast
or the DA cycle as compared with more accurate numerical
discretizations. While there were small differences noted in
some of the short-term forecast statistics, the climatological
statistics remain largely the same. Likewise, the differences
in the asymptotic filtering statistics appear to be tantamount
to numerical noise when compared with a more accurate con-
figuration. Given the results in Sect. 3.2 on the differences for
the short-range ensemble forecast statistics with the coarsely
resolved Runge–Kutta scheme, we expect the conclusions
to hold for standard DA twin experiments with forecasts of
length T ∈ [0.1,0.5].

4 Conclusions

In this work, we have examined the efficacy of several com-
monly used numerical integration schemes for systems of
SDEs when applied to a standard benchmark toy model.
This toy model, which we denote L96-s, has been contex-
tualized in this study as an ideal representation of a multi-
scale geophysical model; this represents a system in which
the scale separation between the evolution of fast and slow
variables is taken to its asymptotic limit. This toy model,
which is commonly used in benchmark studies, represents
a perfect–random model configuration for twin experiments.
In this context, we have examined specifically the follow-
ing: (i) the modes and respective rates of convergence for
each discretization scheme and (ii) the biases introduced into
ensemble-based forecasting and DA due to discretization er-
rors. In order to examine the efficacy of higher-order integra-
tion methods, we have furthermore provided a novel deriva-
tion of the strong order 2.0 Taylor scheme for systems with
scalar additive noise.

In the L96-s system, our numerical results have corrobo-
rated both the studies of Hatfield et al. (2018) and Frank and
Gottwald (2018). We find that the Euler–Maruyama scheme
actually introduces a systematic bias in the ensemble fore-
casting in the L96-s system. However, the effect of this bias

on the DA cycle also strongly depends on the observation
and, to a larger extent, model uncertainty, represented by
amplitude of the random forcing. When the intensity of the
model noise, governed by the strength of the diffusion co-
efficient, is increased, we often see low-precision numerics
performing comparably to higher-precision discretizations in
the RMSE of filter twin experiments. Indeed, in the high-
diffusion regime the state evolution becomes dominated by
noise, and the numerical accuracy of the ensemble forecast
becomes less influential on the filter RMSE. However, in
lower-model-noise regimes and with low-precision numer-
ics, the bias of the Euler–Maruyama scheme is sufficient to
produce filter divergence.

Weighing out the overall numerical complexity of each of
the methods and their respective accuracies in terms of mode
of convergence, it appears that a statistically robust config-
uration for twin experiments can be achieved by mixing in-
tegration methods targeted for strong or weak convergence
respectively. Specifically, the strong order 2.0 Taylor scheme
provides good performance in terms of strong convergence
when the time step is taken1 ∈

[
10−3,5× 10−3]. This guar-

antees a bound on the path-discretization error close to 10−3.
On the other hand, the extremely generous coefficient in
the bound for weak discretization error for the Runge–Kutta
scheme makes this method attractive for ensemble-based
forecasting and for deriving sample-based statistics. While
the performance depends strongly on the overall level of dif-
fusion, a time step of 1 ∈

[
10−3,10−2] bounds the weak

convergence discretization error by 10−3 for all of the stud-
ied diffusion levels.

Generally, it appears preferable to generate the ensemble
forecast with the Runge–Kutta scheme and step size 1=
10−3. However, we find that the slight increase in error in the
ensemble forecast by increasing the step size of the stochas-
tic Runge–Kutta scheme to 1= 10−2 does not add any sys-
tematic bias. This is observed in terms of the short-timescale
forecast statistics, the long-timescale climatological statistics
and in the filtering benchmarks. In all cases, it appears that
additional variability is introduced in the form of noise, yet
this appears to be largely unbiased, Gaussian numerical error.
In contrast, with the Euler–Maruyama scheme we observe
structural bias in the low-diffusion regimes, which is enough
to cause filter divergence when the step size is1= 10−2. Es-
pecially interesting, this is in the presence of what appears to
be an artificial inflation of the ensemble spread with respect
to the benchmark system.

Varying the accuracy of the truth-twin simulation, the re-
sults are largely the same as in a configuration with a finer
step size. Disentangling a direct effect of the discretization
error of the truth twin from the effect of, e.g., observation er-
ror or the diffusion in the process is difficult. Nonetheless, it
appears that higher discretization accuracy of the truth twin
places a more stringent benchmark for filters in systems with
less overall noise, especially due to the diffusion in the state
evolution. There appears to be some relaxing of the RMSE
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benchmark when diffusion is high and the accuracy of truth
twin is low – in these cases we see lower RMSE overall for
the coarsely evolved filters than in the benchmark system.

We suggest a consistent and numerically efficient frame-
work for twin experiments in which one produces (i) the
truth twin, with the strong order 2.0 Taylor scheme using
a time step of 1= 5× 10−3, and (ii) the model twin, with
the stochastic Runge–Kutta scheme using a time step of
1= 10−2. In all diffusion regimes, this guarantees that the
discretization error is close to 10−3 and, most importantly,
does not introduce a practical bias on the filter results versus
the more accurate benchmark system presented in this work.
Our results indicate that this configuration is a practical bal-
ance between statistical robustness and computational cost.
We believe that the results will largely extend to deterministic
versions of the EnKF (Carrassi et al., 2018; see Sect. 4.2 and
references therein) , though one may encounter differences
with respect to tunable parameters, e.g., ensemble sizes, en-
semble inflation and/or localization of the scheme.

As possible future work, we have not addressed the ef-
ficacy of weak schemes, which are not guaranteed to con-
verge to any path whatsoever. Particularly of interest to the
DA community and geophysical communities in general may
be the following question: can generating ensemble forecasts
with weak schemes reduce the overall cost of the ensem-
ble forecasting step by reducing the accuracy of an individ-
ual forecast, while maintaining a better accuracy and con-
sistency of the ensemble-based statistics themselves? Weak
schemes often offer many reductions in the numerical com-
plexity due to the reduction of the goal to producing an ac-
curate forecast in distribution alone. Some methods that will
be of interest for future study include, e.g., the weak order
3.0 Taylor scheme with additive noise (Kloeden and Platen,
2013; see p. 369) or the weak order 3.0 Runge–Kutta scheme
page (Kloeden and Platen, 2013; see p. 488). Additionally, it
may be of interest to study other efficient, higher-order strong
Runge–Kutta schemes as discussed by Rößler (2010).
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Appendix A: Deriving the strong order 2.0 Taylor rule
for L96-s

A1 The abstract integration rule

We consider the SDE in Eq. (5), in the case where the noise
covariance is scalar, though possibly of time-dependent in-
tensity; S will be assumed equal to s(t)In for some scalar
function s : R+→ R+. Suppose the state of the ith com-
ponent of the model at time tk is given by xi(tk),xik and
1,tk+1− tk . From p. 359 of Kloeden and Platen (2013), the
strong order 2.0 Taylor integration rule for xk in Eq. (5) is
written component-wise as

xik+1 = x
i
k + f

i1+
1
2
L0f i12 (A1a)

+ sW i
1+

n∑
j=1

Ljf iJ(j,0)+
n∑

l,j=1
LlLjf iJ(l,j,0),

(A1b)

where the righthand side of Eq. (A1) is evaluated at (xk, tk)
and the terms are defined as follows:

1. Equation (A1a) is the deterministic second-order Tay-
lor method. The differential operator L0, defined on
p. 339 of Kloeden and Platen (2013), in the case of
autonomous dynamics, f (x, t)= f (x), with additive
noise, S(x, t)= S(t), reduces to

L0,
n∑
l=1

f l∂xl (A2)

such that the term L0f i ≡ f T
· ∇f i .

2. W i
1,W

i(1)−W i(0), where W i(t) is a 1-dimensional
Wiener process. By definition, W i(0)= 0 with proba-
bility 1, and W i

1 is a mean zero, Gaussian-distributed
random variable with variance equal to 1.

3. For each l and j , the differential operators Ll and Lj are
defined on p. 339 of Kloeden and Platen (2013). In the
case of additive noise with scalar covariance, S(x, t)=
s(t)In, these operators reduce to

Lm,s∂xm for any 1≤m≤ n. (A3)

4. For each l and j the terms J(j,0) and J(l,j,0), defined on
pp. 200–201 of Kloeden and Platen (2013), describe a
recursive formulation of multiple Stratonovich integrals
of the component random variables of W (t), over an
interval of [0,1]. These are given as

J(j,0),
1

2

(
W
j
1+ aj

)
; (A4a)

J(l,j,0),
1

2
W l
1W

j
1−

1

2

(
ajW

l
1− alW

j
1

)
+12Al,j

− J(0,l,j)− J(l,0,j); (A4b)

J(0,l,j),
1

3!
W l
1W

j
1−

1

π
W
j
1bl +1

2Bl,j −
1

4
ajW

l
1

+
1

2π
W l
1bj +1

2Cl,j +
12

2
Al,j ; (A4c)

J(l,0,j),
1

3!
W l
1W

j
1+

al

2
J(0,j)+

1

2π
W
j
1bl −1

2Bl,j

−
1

4
ajW

l
1+

1

2π
W l
1bj ; (A4d)

J(0,j),
1

2

(
W
j
1− aj

)
. (A4e)

5. Coefficients Al,j , Bl,j ,Cl,j ,al,aj ,bl and bj , in Eqs.
(A4a)–(A4e), are defined on pp. 198–199 and 201, via
the component-wise Karhunen–Loève Fourier expan-
sion (Kloeden and Platen, 2013; see pp. 70–71) of a
Brownian bridge process B(t),W t −

t
1
W1, for 0≤

t ≤1. We write the expansion of B(t) component-wise
as

Bj (t)=

aj

2
+

∞∑
r=1

[
aj,r cos

(
2rπt
1

)
+ bj,r sin

(
2rπτ
1

)]
.

(A5)

The random Fourier coefficients aj,r and bj,r are de-
fined for each r ∈ N+, with

aj,r,
2
1

1∫
0

(
W j
τ −

τ

1
W
j
1

)
cos

(
2rπτ
1

)
dτ, (A6)

bj,r,
2
1

1∫
0

(
W j
τ −

τ

1
W
j
1

)
sin
(

2rπτ
1

)
dτ, (A7)

as pairwise-independent, Gaussian-distributed random
variables,

aj,r ,bj,r ∼N

(
0,

1

2π2r2

)
. (A8)

The convergence of the righthand side of Eq. (A5)
to the left-hand side is in the mean-square sense
(L2 norm) and uniform in t . From the Fourier co-
efficients, for each j , we define aj and bj as

aj,
2
1

1∫
0

(
W j
τ −

τ

1
W
j
1

)
dτ ;bj,

∞∑
r=1

1
r
bj,r , (A9)
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and the auxiliary coefficients as

Al,j,
π

1

∞∑
r=1

r
(
al,rbj,r − aj,rbl,r

)
; (A10)

Bl,j,
1

21

∞∑
r=1

(
al,raj,r + bl,rbj,r

)
, (A11)

Cl,j,
−1
1

∞∑
r,q=1 & r 6=q

r

r2− q2

(
ral,raj,q + qbl,rbj,q

)
.

(A12)

Expanding Eq. (A1) in the above-defined terms gives an ex-
plicit integration rule that has strong convergence of order
2.0 in the maximum step size. The subject of the next section
is utilizing the symmetry and the constant/vanishing deriva-
tives of the Lorenz-96 model to derive significant reductions
of the above general rule.

A2 Deriving reductions to the rule for L96-s

We note that

∂f i

∂xj
=



−xi−1 j = i− 2

xi+1
− xi−2 j = i− 1

−1 j = i

xi−1 j = i+ 1
0 else,

(A13)

from which we derive

∂2f i

∂xl∂xj
=



−1 j = i− 2, l = i− 1

−1 j = i− 1, l = i− 2
1 j = i− 1, l = i+ 1
1 j = i+ 1, l = i− 1
0 else.

(A14)

The constancy of the second derivatives in Eq. (A14) will al-
low us to simplify the expressions in Eq. (A1b). Specifically,
notice that

LlLjf iJ(l,j,0) = s2 ∂2f i

∂xl∂xj
J(l,j,0) (A15)

such that the sum
∑n
l,j=1LlLjf iJ(l,j,0) reduces to

n∑
l,j=1

LlLjf iJ(l,j,0) =

s2 (J(i−1,i+1,0)+ J(i+1,i−1,0)
)

− s2 (J(i−2,i−1,0)+ J(i−1,i−2,0)
)
. (A16)

We are thus interested in reducing the terms of Eq. (A16) via
antisymmetry within J (l,j,0) with respect to the arguments
l and j . We note that

Al,j =−Aj,l, (A17)

(ajW
l
1− alW

j
1)=−(alW

j
1− ajW

l
1), (A18)

and combining these relationships with the definition in
Eq. (A4b), we find

J(l,j,0)+ J(j,l,0) =

1W l
1W

j
1−

[(
J(l,0,j)+ J(0,l,j)

)
+
(
J(j,0,l)+ J(0,j,l)

)]
.

(A19)

Notice that from Eqs. (A4c) and (A4d), the sum J(l,0,j)+

J(0,l,j) contains the terms on the left-hand side of Eq. (A20),

1

3!
W
j
1W

l
1+

1

3!
W
j
1W

l
1 =

1

3
W
j
1W

l
1; (A20a)

12Bl,j −1
2Bl,j = 0; (A20b)

−
1

4
ajW

l
1−

1

4
ajW

l
1 =−

1

2
ajW

l
1; (A20c)

1

2π
W l
1bj +

1

2π
W l
1bj +

1

2π
W
j
1bl −

1

π
W
j
1bl

=
1

π
W l
1bj −

1

2π
W
j
1bl . (A20d)

Combining terms as in the left-hand side of Eq. (A20) and
substituting the righthand side of the terms in Eq. (A20) we
derive that

J(l,0,j)+ J(0,l,j) =
1

3
W l
1W

j
1 (A21a)

+
1
2
alJ(0,j)−

1

2
ajW

l
1 (A21b)

+
1

π

(
W l
1bj −

1
2
W
j
1bl

)
(A21c)

+12
(
Cl,j +

1
2
Al,j

)
. (A21d)
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Note then, from Eq. (A19), that we need to combine the
terms of the symmetric sum in l and j ,(
J(l,0,j)+ J(0,l,j)

)
+
(
J(j,0,l)+ J(0,j,l)

)
. (A22)

We thus use the antisymmetry in the terms in Eq. (A21) to
make further reductions. Note that from Eq. (A4e) we have

1
2
alJ(0,j) =

1

4

(
alW

j
1− alaj

)
. (A23)

Therefore, the symmetric sum in l and j of 1
2alJ(0,j) is given

by

1
2
alJ(0,j)+

1
2
ajJ(0,l) =

1

4

(
alW

j
1− alaj + ajW

l
1− ajal

)
=
1

4

(
alW

j
1+ ajW

l
1

)
−
1

2
alaj .

(A24)

Thus using Eq. (A24), the symmetric sum of Eq. (A21b) in l
and j equals

1

4

(
alW

j
1+ ajW

l
1

)
−
1

2
alaj −

1

2

(
ajW

l
1+ alW

j
1

)
=

−1

4

(
alW

j
1+ ajW

l
1

)
−
1

2
alaj .

(A25)

Likewise, taking the sum of Eq. (A21c) symmetrically in l
and j equals

1

π

(
W l
1bj −

1
2
W
j
1bl +W

j
1bl −

1
2
W l
1bj

)
=

1

2π

(
W l
1bj +W

j
1bl

)
. (A26)

Recalling the antisymmetry of Al,j and the substitutions
in Eqs. (A25) and (A26), we combine the terms J(l,0,j)+
J(0,l,j)+ J(j,0,l)+ J(0,j,l) to derive

J(l,0,j)+ J(0,l,j)+ J(j,0,l)+ J(0,j,l) =

21
3
W l
1W

j
1−

1

4

(
W l
1aj +W

j
1al

)
−
1

2
alaj +

1

2π

(
W l
1bj +W

j
1bl

)
+12 (Cl,j +Cj,l) . (A27)

Finally, using Eq. (A27), let us define the symmetric func-
tion in (l,j),

9(l,j) =1W
l
1W

j
1

−
[(
J(l,0,j)+ J(0,l,j)

)
+
(
J(j,0,l)+ J(0,j,l)

)]
=
1

3
W l
1W

j
1+

1

4

(
W l
1aj +W

j
1al

)
+
1

2
alaj

−
1

2π

(
W l
1bj +W

j
1bl

)
−12 (Cl,j +Cj,l) ; (A28)

from the above definition and Eq. (A16), we recover the ex-
pression

n∑
l,j=1

LlLjf iJ(l,j,0) = s2 [9(i−1,i+1)−9(i−2,i−1)
]
. (A29)

Furthermore, define the random vectors

9+,

 9(n,2)
...

9(n−1,1)

 , 9−,

 9(n−1,n)
...

9(n−2,n−1)

 , (A30a)

J1,


1
2

(
W 1
1+ a1

)
...

1
2

(
W n
1+ an

)
 . (A30b)

Using the above definitions, we can write the integration rule
in a matrix form as

xk+1 = xk +f1+
12

2
∇f ·f (A31a)

+ sW1+ s∇f ·J1+ s
2 (9+−9−) . (A31b)

Once again, Eq. (A31a) is the standard deterministic order
2.0 Taylor rule but written in matrix form. On the other hand,
the additional term in Eq. (A31b) resolves at second-order
the SDE form of L96 with additive noise of scalar covariance
(L96-s).

A3 Finite approximation and numerical computation

So far we have only presented an abstract integration rule
that implicitly depends on infinite series of random vari-
ables. Truncating the Fourier series for the components of the
Brownian bridge in Eq. (A5), we define a random process

W
j,p
t ,

t

1
W
j
1+

aj

2

+

p∑
r=1

[
aj,r cos

(
2rπt
1

)
+ bj,r sin

(
2rπτ
1

)]
, (A32)

from which we will define a numerical integration rule, de-
pending on the order truncation p. Key to the computation
of the rule is that, by way of the approximations on pp. 202–
204 of Kloeden and Platen (2013), it is representable as a
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function of mutually independent, standard Gaussian ran-
dom variables. We will denote these standard Gaussian ran-
dom variables as ξj ,ζj,r ,ηj,r ,µj,p and φj,p, and for each
j = 1, · · ·n, r = 1, · · ·,p and all p ∈ N+, we define

ξj,
1
√
1
W
j
1, µj,p,

1√
1ρp

∞∑
r=p+1

aj,r , (A33a)

ζj,r,

√
2
1
πrar,j , φj,p,

1√
1αp

∞∑
r=p+1

1
r
bj,r , (A33b)

ηj,r,

√
2
1
πrbr,j , (A33c)

where

ρp,
1

12
−

1
2π2

p∑
r=1

1
r2 , αp,

π2

180
−

1
2π2

p∑
r=1

1
r4 . (A34)

It is important to note that, while µj,p,φj,p are defined as
an infinite linear combination of the random Fourier coeffi-
cients, we take µj,p and φj,p as drawn iid from the standard
Gaussian distribution and use their functional relationship to
the Fourier coefficients to approximate the Stratonovich inte-
gral. The coefficients ρp and αp normalize the variance in the
remainder term in the truncation of the Brownian bridge pro-
cess to the finite sumW

j,p
t . Using the above-defined random

variables in Eq. (A7) and auxiliary deterministic variables in
Eq. (A34), we will define the pth approximation of the mul-
tiple Stratonovich integrals in Eqs. (A4e)–(A4c).

For any p ∈ N+ and for each j = 1, · · ·n, we can recover
the term bj directly from the functional relationships in
Eq. (A33), and we recover aj by the relationship on p. 203
of Kloeden and Platen (2013),

aj,− 2
√
1ρpµj,p −

√
21
π

p∑
r=1

ζj,r

r
; (A35a)

bj,
√
1αpφj,p +

√
1

2π2

p∑
r=1

1
r2 ηj,r . (A35b)

The auxiliary function Cl,j is truncated at the pth order, de-
fined on p. 203 of Kloeden and Platen (2013), as

C
p
l,j,
−1
2π2

p∑
r,q=1 & r 6=q

r

r2− q2

(
1
q
ζl,rζj,q +

1
r
ηl,rηj,q

)
.

(A36)

While the choice of p modulates the order of approxima-
tion of the Stratonovich integrals, it is important to note that
in our case the choice of p > 1 is unnecessary. Actually, all
terms in the Stratonovich integrals in the integration rule we
have derived are exact except for the terms of Cpl,j . Up to a
particular realization of the random variables, aj and bj are
constructed identically from the full Fourier series. It is thus

only the terms of Cpi,j that are truncated, and this approxima-
tion appears at order 2.0 in the integration step. Therefore, up
to a constant that depends on p, the approximation error of
the Stratonovich integrals is also at order 2.0. Note that, by
definition, when p = 1,Cpl,j ≡ 0 for all l, j = 1, · · ·,n. There-
fore, we may eliminate this term in our finite approximation
without loss of the order of convergence.

For simplicity, at each integration step for each j = 1, · · ·n,
r = p = 1, we may draw n× (2p+ 3)= n× 5 iid standard
Gaussian random variables, ξj ,ζj,r ,ηj,r ,µj,p and φj,p, to
obtain an approximation of the recursive Stratonovich inte-
grals in Eq. (4). For each j we will make substitutions as
described in Eqs. (A34)–(A35) to obtain the final integration
rule. Using the simplifications made to the rule in Sects. A
and A2 and the above discussion, we define

9
p

(l,j),
12

3
ξlξj +

1
3
2

4

(
ξlaj + ξjal

)
+
1

2
alaj

−
1

3
2

2π

(
ξlbj + ξjbl

)
. (A37)

Finally, we define the following random vectors

9
p
+,

 9
p

(n,2)
...

9
p

(n−1,1)

 , 9
p
−,

 9
p

(n−1,n)
...

9
p

(n−2,n−1)

 , (A38a)

J
p
1,


1
2

(√
1ξ1+ a1

)
...

1
2

(√
1ξn+ an

)
 , ξ =

ξ1
...

ξn

 (A38b)

such that we obtain the integration rule in matrix form,

xk+1 = xk +f1+
12

2
∇f ·f (A39a)

+ s
√
1ξ + s∇f ·J

p
1+ s

2 (9p+−9p−) . (A39b)

The constants ρp and αp can be computed once for all steps,
with truncation taken at p = 1 such that

ρp =
1
12
−

1
2π2 ; αp =

π2

180
−

1
2π2 . (A40)

Then, for each step of size1, we can follow the rule outlined
in Eq. (4).

Appendix B: Resolving the strong order 2.0 Taylor
scheme for consistent numerical benchmarks

When we benchmark the convergence of the strong order
2.0 Taylor scheme to a finely discretized reference path xSP,
the formulation for generating the Taylor scheme discretized
solution differs from the direct implementation in Sect. 2.5.
The strong order 2.0 Taylor scheme approximately resolves
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the multiple Stratonovich integrals, Eq. (A4), using combi-
nations of the Karhunen–Loève Fourier coefficients for the
Brownian bridge process, Eq. (A5), between the discretiza-
tion points. The realization of the Brownian motion at the
discretization times is independent of the realizations of the
Brownian bridge in between these times such that, when sim-
ulating an arbitrary sample path with the Taylor scheme,
one can simply use the functional relationships described
in Sect. 2.5 to define the linear combinations in Eq. (A33).
Therefore, if there is no concern about discretizing a specific
reference path then drawing iid realizations for the standard
normal variables ζj,r ,ηj,r ,µj,p and φj,p is sufficient.

With regard to a specific reference path xSP discretized
with time step 1SP smaller than the Taylor scheme step of
1q , we must use the known realizations of the Brownian
motion at steps 1SP in between the coarse steps 1q to com-
pute the Brownian bridge. The random vector b is defined
functionally in Eq. (A9) as an infinite sum of vectors of ran-
dom Fourier coefficients such that there is an additional de-
pendence on the order of truncation p of the term b in our
benchmarks. This again differs substantially from the case
in which we wish to simulate some arbitrary path with the
Taylor scheme; in this case, the relationship between b and
the Fourier coefficients is defined by an analytical, functional
relationship, and it is sufficient to make a truncation order
p = 1 to other terms to maintain order 2.0 strong conver-
gence.

As a modification of the Taylor scheme, utilizing the
known realization of the Brownian bridge process between
the discretization steps 1q , we compute the Fourier coeffi-
cients of the Brownian bridge, up to pth order, directly by
the right-Riemann sums approximating Eqs. (A6)–(A7), with
discretization step size1SP. With respect to all of our bench-
marks, we found no significant difference in performance
when directly computing only the order p = 1 and the order
p = 25 Fourier coefficients as described above, so we present
only the p = 1 case for simplicity.
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