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Abstract. Numerical models solved on adaptive moving
meshes have become increasingly prevalent in recent years.
Motivating problems include the study of fluids in a La-
grangian frame and the presence of highly localized struc-
tures such as shock waves or interfaces. In the former case,
Lagrangian solvers move the nodes of the mesh with the dy-
namical flow; in the latter, mesh resolution is increased in
the proximity of the localized structure. Mesh adaptation can
include remeshing, a procedure that adds or removes mesh
nodes according to specific rules reflecting constraints in the
numerical solver. In this case, the number of mesh nodes will
change during the integration and, as a result, the dimen-
sion of the model’s state vector will not be conserved. This
work presents a novel approach to the formulation of ensem-
ble data assimilation (DA) for models with this underlying
computational structure. The challenge lies in the fact that
remeshing entails a different state space dimension across
members of the ensemble, thus impeding the usual compu-
tation of consistent ensemble-based statistics. Our methodol-
ogy adds one forward and one backward mapping step be-
fore and after the ensemble Kalman filter (EnKF) analysis,
respectively. This mapping takes all the ensemble members
onto a fixed, uniform reference mesh where the EnKF analy-
sis can be performed. We consider a high-resolution (HR)
and a low-resolution (LR) fixed uniform reference mesh,
whose resolutions are determined by the remeshing toler-
ances. This way the reference meshes embed the model nu-
merical constraints and are also upper and lower uniform
meshes bounding the resolutions of the individual ensem-
ble meshes. Numerical experiments are carried out using 1-
D prototypical models: Burgers and Kuramoto–Sivashinsky

equations and both Eulerian and Lagrangian synthetic obser-
vations. While the HR strategy generally outperforms that
of LR, their skill difference can be reduced substantially by
an optimal tuning of the data assimilation parameters. The
LR case is appealing in high dimensions because of its lower
computational burden. Lagrangian observations are shown to
be very effective in that fewer of them are able to keep the
analysis error at a level comparable to the more numerous
observers for the Eulerian case. This study is motivated by
the development of suitable EnKF strategies for 2-D models
of the sea ice that are numerically solved on a Lagrangian
mesh with remeshing.

1 Introduction

1.1 Adaptive mesh models

The computational model of a physical phenomenon is typ-
ically based on solving a particular partial differential equa-
tion (PDE) with a numerical scheme. Numerical techniques
to solve PDEs evolving in time are most often based on a
discretization of the underlying spatial domain. The result-
ing mesh is generally fixed in time, but the needs of a given
application may require the mesh itself to change as the sys-
tem evolves, adapting to the underlying physics (Weller et al.,
2010). We consider here the impact of such a numerical ap-
proach on data assimilation.

Two reasons that may lead to the use of an adaptive mesh
are as follows: (1) for fluid problems, it is sometimes prefer-
able to pose the underlying PDEs in a Lagrangian, as op-
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posed to Eulerian, frame or (2) the model produces a specific
structure, such as a front, shock wave or overflow, which is
localized in space. In case 1, the Lagrangian solver will nat-
urally move the mesh with the evolution of the PDE (Baines
et al., 2011). For case 2, the idea is to improve computational
accuracy by increasing the mesh resolution in a neighbor-
hood of the localized structure (see, e.g., Berger and Oliger,
1984). This may be compensated by the decrease in resolu-
tion elsewhere in the domain. Adapting the mesh can prove
computationally efficient in that an adaptive mesh generally
requires fewer points than a fixed mesh to attain the same
level of accuracy (Huang and Russell, 2010). Some impor-
tant application areas where adaptive meshes have been used
are groundwater equations (Huang et al., 2002) and thin film
equations (Alharbi and Naire, 2017) as well as large geo-
physical systems (Pain et al., 2005; Davies et al., 2011).

1.2 Data assimilation for adaptive mesh models: the
issue

Data assimilation (DA) is the process by which data from
observations are assimilated into a computational model
of a physical system. There are numerous mathematical
approaches, and associated numerical techniques, for ap-
proaching this issue (see, e.g., Budhiraja et al., 2018). We use
the term DA to refer to the collection of methods designed to
obtain an estimate of the state and parameters of the system
of interest using noisy, usually unevenly distributed data and
an inevitably approximate model of its evolution (see, e.g.,
Asch et al., 2016). There has been considerable development
of DA methods in the field of the geosciences, particularly
as a tool to estimate accurate initial conditions for numerical
weather prediction models; a review on the state-of-the-art
DA for the geosciences can be found in Carrassi et al. (2018).

Mesh adaptation brings significant challenges to DA. In
particular, a time-varying mesh may introduce difficulties in
the gradient calculation within variational DA (Fang et al.,
2006). In an ensemble DA methodology (Evensen, 2009;
Houtekamer and Zhang, 2016), the challenge arises from the
need to compare different ensemble members in the analy-
sis step. With a moving mesh that depends on the initializa-
tion, different ensemble members may be made up of phys-
ical quantities evaluated at a different set of spatial points.
There is another variation that is key to our considerations
here and that is relevant in both cases described above. The
issue is that the nodes in the mesh may become too close to-
gether or too far apart. Both situations can lead to problems
with the computational solver. Some adjustment of the mesh,
based on some prescribed tolerance, may then be preferable
and even necessary. We are particularly interested in the im-
plications for DA when this adjustment involves the inser-
tion or deletion of nodes in the mesh. The size of the mesh
may then change in time, which has the consequence that
the state vectors at different times may not have the same
dimension. In other words, the state space itself is changing

in dimension with time. Consequently, individual ensemble
members, each of them representing a possible realization
of the state vector, can even have different dimensions. In
this situation, it is not possible to straightforwardly compute
the ensemble-based error mean and error covariances that are
necessary and are at the core of the ensemble DA methods
(Evensen, 2009). Dealing with and overcoming this situation
is the main aim of this study.

Two specific pieces of work can be viewed as precursors of
our methodology. Bonan et al. (2017) study an ice sheet that
is moving and modeled by a Lagrangian evolution but with-
out remeshing. The paper by Du et al. (2016) develops DA on
an unstructured adaptive mesh. Their mesh is adapted to the
underlying solution to better capture localized structures with
a procedure that is akin to the remeshing in neXtSIM. The
challenge we address here is the development of a method
that will address models that are based on Lagrangian solvers
and involve remeshing.

1.3 Motivation: the Lagrangian sea-ice model neXtSIM

This work is further motivated by a specific application,
namely performing ensemble-based DA for a new class of
computational models of sea ice (Bouillon et al., 2018). In
particular, the setup we develop is based on the specifications
of neXtSIM, which is a stand-alone finite element model em-
ploying a Maxwell elasto-brittle rheology (Dansereau et al.,
2016; Rampal et al., 2019) to simulate the mechanical behav-
ior of the sea ice. In this new rheological framework, the het-
erogeneous and intermittent character of sea-ice deformation
(Marsan et al., 2004; Rampal et al., 2008) is simulated via
a combination of the concepts of elastic memory, progres-
sive damage mechanics and viscous relaxation of stresses.
This model has been applied to simulate the long-term evolu-
tion of the Arctic sea-ice cover with significant success when
compared to satellite observations of sea-ice concentration,
thickness and drift (Rampal et al., 2016). It has also been
recently shown how crucial this choice for the ice rheology
is in order to improve the model capabilities to reproduce
sea-ice drift trajectories, for example. This makes neXtSIM a
powerful research numerical tool not only for studying polar
climate processes but also for operational applications like
assisting search-and-rescue operations in ice-infested waters
in the polar regions, for example (Rabatel et al., 2018).

neXtSIM is solved on a 2-D unstructured triangular adap-
tive moving mesh based on a Lagrangian solver that prop-
agates the mesh of the model in time along with the mo-
tion of the sea ice (Bouillon and Rampal, 2015). Moreover,
a mesh adaptation technique, referred to as remeshing, is
implemented. It consists of a local mesh adaptation, a spe-
cific feature offered by the BAMG library that is included
in neXtSIM (https://www.ljll.math.upmc.fr/hecht/ftp/bamg/
bamg.pdf, last access: 17 July 2019). The advantages of a
local mesh modification are that it is efficient, introduces
very low numerical dissipation (Compère et al., 2009) and
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also allows local conservation (Compère et al., 2008). The
remeshing algorithm operates on the edges of the triangular
elements to avoid tangling or distortion of the mesh as well
as inserting, or removing, nodes on the mesh in case it is
needed for preventing very sharp refinements resulting in an
excessive computational burden.

The specific DA methodology we develop for adaptive
mesh problems is driven by the considerations of neXtSIM.
The remeshing in neXtSIM, and the consequent change in
the state vector’s dimension, is addressed in our assimila-
tion scheme by the introduction of a reference mesh. The lat-
ter represents a common mesh for forming the error covari-
ance matrix from the ensemble members. The question then
arises as to whether this common mesh is used to propagate
each individual ensemble member forward in time. From the
viewpoint of neXtSIM, however, continuing with the refer-
ence mesh, common to all members, could throw away valu-
able physical information. In fact, the use of a Lagrangian
solver in neXtSIM assures that the mesh configurations are
naturally attuned to the physical evolution of the ice. For this
reason, we make the critical methodological decision to map
back to the meshes of the individual ensemble members after
the assimilation step. The Lagrangian solver in the model is
thus the primary determinant of the mesh configuration used
in each forecast step. The reference mesh is only used in a
temporary capacity to afford a consistent update at the as-
similation step.

1.4 Goal and outline

In this paper, we construct a 1-D setup designed to cap-
ture the core issues that neXtSIM presents for the appli-
cation of an ensemble-based DA scheme. We perform ex-
periments using both Eulerian (where the observation lo-
cations are fixed) and Lagrangian (where observation loca-
tions move with the flow) observations. We test the strat-
egy for two well-known PDEs: the viscous Burgers and
Kuramoto–Sivashinsky equation, whose associated compu-
tational models we refer to as BGM and KSM, respectively.
The Burgers equation, which can be viewed as modeling a
one-dimensional fluid, is a canonical example for which a lo-
calized structure, in this case a shock wave, develops and an
adaptive moving mesh will get denser near the shock front.
The Kuramoto–Sivashinsky equation exhibits chaotic behav-
ior, and this provides a natural test bed for DA in a dynamical
situation that is very common in physical science, particu-
larly in the DA applications to the geosciences (see Carrassi
et al., 2018, their Sect. 5.2).

Our core strategy is to introduce a fixed reference mesh
onto which the meshes of the individual ensemble members
are mapped. A key decision is how refined the fixed reference
mesh be made. There are two natural choices here: (a) one
that has at most one node of an adaptive moving mesh in
each of its cells or (b) a reference mesh in which any adap-
tive moving mesh that may appear has at least one node in

each cell of the fixed reference mesh. We refer to the for-
mer as a high-resolution (HR) fixed reference mesh and the
latter as a low-resolution (LR) fixed reference mesh. A natu-
ral guess would be that the high-resolution mesh will behave
more accurately. Although this turns out generally to be true,
we will show that the low-resolution mesh may result in a
better estimate when the ensemble is appropriately tuned.

There have been other recent studies aimed at tackling the
issue of DA on adaptive and/or moving meshes. Partridge
(2013) studied a methodology to deal with a moving mesh
model of an ice sheet in a variational DA framework. Bonan
et al. (2017) extended the study and provided a comparison
between a three-dimensional variational assimilation (3D-
Var; Talagrand, 1997) and an ensemble transform Kalman
filter (ETKF; Bishop et al., 2001). The mesh they use adapts
itself to the flow of the ice sheet but, in contrast to our case,
the total number of nodes on the mesh is conserved.

Du et al. (2016) approach the issue in an ensemble DA
framework using a three-dimensional unstructured adaptive
mesh model of geophysical flows (Maddison et al., 2011;
Davies et al., 2011). They adopt a fixed reference mesh on
which the analysis is carried out. Each ensemble member is
interpolated onto a fixed reference mesh conservatively using
a method called supermeshing, developed by Farrell et al.
(2009). In Jain et al. (2018) a similar methodology is used
for a tsunami application which exploits adaptive mesh re-
finement on a regular mesh. Instead of using a fixed refer-
ence mesh, they use the union of meshes of all the ensemble
members to perform the analysis.

In summary, Bonan et al. (2017) addresses the issues
that arise with a Lagrangian solver without any remeshing,
whereas the approach in Du et al. (2016) is developed for
a model that has remeshing as part of its numerical algo-
rithm but uses another wise static mesh. The numerical solver
underlying neXtSIM has both features and thus requires a
methodology that differs from these two approaches. Our
paper therefore goes beyond existent works in developing a
scheme that addresses the case of a moving mesh with non-
conservative mesh adaptation.

The paper is organized as follows: in Sect. 2, we detail the
problem of interest. In Sect. 3, we describe the nature of the
adaptive moving mesh methodologies in one dimension and
describe a remeshing process that is implemented intermit-
tently. Section 4 details the model state and its evolution in
the adaptive, non-conservative 1-D mesh. In Sect. 5, we in-
troduce the ensemble Kalman filter (EnKF) using an adaptive
moving mesh model. Here, we describe the fixed reference
mesh on which the ensemble members are projected in order
to perform the analysis and discuss the forward and back-
ward mapping between the adaptive moving and fixed refer-
ence meshes along with the implications for, and the modi-
fications to, the EnKF. Section 6 provides the experimental
setup of the numerical experiments, whose results are pre-
sented and discussed in Sect. 7. Conclusions and a forward-
looking discussion make up Sect. 8.
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2 The physical model and its integration

This paper focuses on a physical model describing the evolu-
tion of a scalar quantity, u (e.g., the temperature, pressure
or one of the velocity components of a fluid), on a one-
dimensional (1-D) periodic domain [0,L). We assume that
a model of the temporal evolution of u is available in the
form of a partial differential equation (PDE):

∂u

∂t
= f

(
u,
∂u

∂z
, . . .,

∂ iu

∂zi
, . . .

)
,

where i ∈ N, 0≤ z < L, 0< t0 < t, (1)

with initial and boundary conditions

u(t0,z)= u0(z), u(t,0)= u(t,L), (2)

and with f being, in general, a nonlinear function. Realistic
models of geophysical fluids incorporate (many) more vari-
ables and are expressed as a coupled system of PDEs. A no-
table example in the field of geosciences, and fluid dynamics
in general, is the system of Navier–Stokes equations; the fun-
damental physical equations in neXtSIM have the same form
(Rampal et al., 2016). In this study, we consider the simpler
1-D framework to be a proxy of the 2-D one in neXtSIM, but,
as will be made clear below, we formulate the 1-D problem
to capture many of the key numerical features of neXtSIM.
Some of the challenges and issues for the higher-dimensional
case are discussed in Sect. 8.

Solving Eq. (1) numerically, with initial and boundary
conditions Eq. (2), would usually involve the following steps:
first discretizing the original PDE in the spatial domain (e.g.,
using a central finite difference scheme) and then integrat-
ing, forward in time, the resulting system of ordinary differ-
ential equations (ODEs) using an ODE solver (e.g., an Euler
or Runge–Kutta method). This standard approach to numeri-
cally solving a PDE is appropriate when it is cast in an Eule-
rian frame. A key point about neXtSIM, however, is that it is
solved in a Lagrangian frame. The use of a Lagrangian solver
is a particular case of a class of techniques that is known as
velocity-based methods in the adaptive mesh literature (see
e.g., Baines et al., 2011, and references therein). The dynam-
ics of the adaptive mesh are given, in this case, by using u
coming from the PDE (Eq. 1) as the velocity field for the
mesh points. The book by Huang and Russell (2010) gives a
comprehensive and detailed treatment of the case of adaptive
meshes.

A further key feature of neXtSIM as a computational
model is that it incorporates a remeshing procedure. As a
result, it is different from the usual problems considered in
the adaptive mesh literature (Huang and Russell, 2010). In
particular it entails that, in general, no continuous mapping
exists from a fixed mesh to the adaptive mesh that is continu-
ous in time. We call such an adaptive mesh non-conservative,
as the number of mesh points will change in time. It is this
characteristic that we see as presenting the greatest challenge

to a formulation of DA for neXtSIM, and addressing it in a
model situation is the main contribution of this paper and one
that makes it stand apart from previous work in the area of
DA for computational models with non-standard meshes.

3 A one-dimensional, non-conservative velocity-based
adaptive moving mesh

3.1 The mesh features and its setup

We build here a 1-D periodic adaptive moving mesh that re-
tains the key features of the neXtSIM’s 2-D mesh in being
Lagrangian and including remeshing.

For a fixed time, a mesh is given by a set of points
{z1, z2, · · ·, zN } with each zj ∈ [0,L). The zj are referred
to as the mesh nodes, or points, and we assume that they are
ordered as follows:

0≤ z1 < · · ·< zj < · · ·< zN < L. (3)

To guide the remeshing, we define the notion of a valid mesh,
in which the mesh nodes are neither too close nor too far
apart. To this end, we define two parameters: 0< δ1 < δ2 <

L. A mesh {z1, z2, · · ·, zN } is a valid mesh if

δ1 ≤ |zj+1− zj | ≤ δ2 for all j ∈ N : 1 ≤ j < N − 1,

and δ1 ≤ |z1+L− zN | ≤ δ2.

(4)

It is further assumed that δ2/δ1 ≥ 2 and that both δ2 and δ1
are divisors of L. The former hypothesis is related to the
remeshing procedure and will be discussed in Sect. 3.2, while
the latter is useful in our DA approach and will be discussed
in Sect. 5.1. When condition Eq.(4) does not hold, the mesh
is called an invalid mesh.

The mesh will evolve following the Lagrangian dynamics
associated with the solution of the PDE (Eq. 1). Each zj will
therefore satisfy the following equation:

żj = u
(
t,zj

)
, (5)

where˙ = d
dt , and u(t,zj ) is the velocity. The physical model

(Eq. 1), together with the mesh model (Eq. 5), constitutes
a set of coupled equations that can be solved either simul-
taneously or alternately (Huang and Russell, 2010). In the
former case, the mesh and physical models are solved at the
same time, which strongly ties them together. A drawback
of simultaneous numerical integration is that the large cou-
pled system of equations arising by joining the mesh and the
physical models is often more difficult to solve and may not
conserve some features of the original physical model.

The neXtSIM model adopts an alternative strategy that
bases the prediction of the mesh at time t +1t , where 1t
is the computational time step, on the mesh and the veloc-
ity field at the current time, t , and then subsequently obtains
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the physical solution on the new mesh at time t +1t . As a
consequence, the mesh is adjusted to the solution at one time
step earlier. This can cause imbalance, especially for low-
resolution time discretization and rapidly changing systems,
but it offers the advantage that the mesh generator can be
coded as a separate module to be incorporated alongside the
main PDE solver for the physical model. This facilitates the
possible addition of conditions or constraints on the mesh
adaptation and evolution. Having this ability is key to the
remeshing procedure in neXtSIM.

In neXtSIM, the coupled system, which includes the mesh
and the physical model, is solved in three successive steps.
(1) The mesh solver is integrated to obtain the mesh points
at t+1t based on the mesh and the physical solution at time
t . (2) It is then checked whether the new mesh points satisfy
the requisite condition, and, if not, the remeshing procedure
is implemented. (3) The physical solution is then computed
at t +1t on the (possibly remeshed) mesh at t +1t .

In the first step, the movement of the mesh nodes is de-
termined by the behavior of the physical model, which is a
special case of the mesh being adaptive. In particular, the dy-
namics of the physical model can lead to the emergence of
sharp fronts or other localized structures. These features can
then be better resolved through the finer grid that now covers
the relevant region, which is the usual motivation behind the
use of adaptive meshes in general. This may result, however,
in the allocation of a significant quantity of the total num-
ber of nodes to a small portion of the computational domain.
Such a convergence of multiple nodes in a small area can lead
to a reduction of the computational accuracy in other areas of
the model domain and to the increase in the computational
cost, as smaller time steps will be required. In the case of a
mesh made up of triangular elements, as in neXtSIM, those
may get too distorted, leading again to a reduction of the nu-
merical accuracy of the finite element solution (Babus̆ka and
Aziz, 1976).

Adaptive mesh methods often invoke a mesh density func-
tion in Eq. (5) to control the mesh evolution (Huang and Rus-
sell, 2010). In some cases, such as at a fluid–solid interface,
large distortions may neither be easily handled by moving
mesh techniques alone nor addressed by mesh density func-
tions (Saksono et al., 2007). In these cases, a remeshing is
performed (step 2 above) in order to distribute the nodes in
the mesh consistently with the numerical accuracy and the
computational constraints. In neXtSIM, an analogous situa-
tion occurs due to the rheology that generates and propagates
fractures or leads breaking the sea ice. For computational ef-
ficiency, a local remeshing is performed in the vicinity of a
triangular element, called a cavity, when an element is too
distorted. For example, Rampal et al. (2016) considers a tri-
angular element to be distorted if it has a node with internal
angle less than or equal to 10◦. The remeshing procedure in-
volves adding new nodes and removing old ones if needed as
well as triangulation in the cavity to generate a suitable new

mesh while maintaining the initially set resolution of the tri-
angular mesh to the same value.

In the 1-D models described in Sect. 6, the former chal-
lenge appears due to the nature of the physical system they
describe. For instance, in Burgers’ equation, the formation of
a sharp shock-like front causes a convergence of mesh points.
A suitable remeshing procedure is then applied.

We now view the mesh points zj = zj (t) as evolving in
time, according to Eq. (5), and the computational time step
1t is chosen to be small enough that the ordering given in
Eq. (3) is preserved; the smallness of 1t thus affords the use
of a low-order, straightforward Euler scheme to evolve the
PDE forward in time. At each computational time step start-
ing at, say, t = tk , i.e., at each t = tk + i1t , remeshing may
be performed according to the procedure given below.

3.2 The remeshing procedure

When an invalid mesh is encountered as a result of the ad-
vection process, a new valid mesh is created that preserves
as many of these nodes as possible. A validity check is made
at each computational time step. The remeshing is accom-
plished by looping through the nodes zj at time tk to check if
the next node zj+1 satisfies Eq. (4) based on the parameters
δ1 and δ2. Recall that we assume that δ2 ≥ 2δ1.

For each j , if the mesh node zj+1 is too close to zj in that
the left inequality in the condition (4) is violated, then zj+1 is
deleted. Similarly, if node zj+1 is too far from zj , then a new
node z∗ is inserted in between zj and zj+1 at z∗ = zj+1+zj

2 .
Furthermore, if z1+L− zN is either too large or too small,
a similar procedure is implemented. We can understand now
what motivates the choice of setting δ2 ≥ 2δ1 (see Sect. 3.1):
if δ2� 2δ1 the insertion of a new node in the middle of the
cell would then create an invalid mesh.

The result of the remeshing will be a new mesh reordered
according to Eq. (3), and the mesh will be valid in that Eq. (4)
is satisfied. Note that any newly introduced node in the last
step of the procedure may end up as either the first or last in
the ordered set of mesh nodes. Furthermore, a node that sur-
vives the remeshing may have a new index because of other
new nodes or the deletion of old nodes. The number of nodes
in a mesh may change after a remeshing. This has the im-
plication that the dimension of the state vector will not be
constant in time. It is this feature that makes this situation so
different from standard DA and challenges us to create a new
formulation.

The remeshing algorithm, with δ1/δ2 = 0.2/0.5, is illus-
trated in Fig. 1 for the node z1(tk) at a particular time t = tk
of the integration. The node z2(tk) has a distance of 0.15
from z1(tk), which is smaller than δ1; therefore, z2(tk) is
removed (Fig. 1a). The next node, now z3(tk), has distance
0.55 from z1(tk), which exceeds δ2 (Fig. 1b); therefore, a new
node, z∗(tk), is introduced at the midpoint between z1(tk) and
z3(tk) (Fig. 1c).

www.nonlin-processes-geophys.net/26/175/2019/ Nonlin. Processes Geophys., 26, 175–193, 2019
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Figure 1. An illustration of the remeshing process with δ1 = 0.2
and δ2 = 0.5: for invalid mesh (a), remove z2(tk), which violates δ1
(b), and insert z∗(tk) to avoid violating δ2 (c).

Figure 2. An illustration of adaptive moving mesh over time solving
Burgers’ equation (see Sect. 6) until t = 1 on a domain z= [0,1).
In this example, the remeshing criteria are based on δ1 = 0.02 and
δ2 = 0.05. There are 40 initial adaptive moving mesh nodes and 27
nodes at t = 1; these are shown in green and red, respectively.

Figure 2 shows an example of this remeshing procedure
applied to a velocity-based adaptive moving mesh using
Burgers’ equation (see Sect. 6 for details) as a physical
model. We see how the nodes, oriented along the horizon-
tal axis, follow a moving front. In particular, the mesh which
initially has 40 equally distributed nodes ends up having only
27 unevenly distributed nodes as a result of the remeshing
procedure.

4 The model state and its evolution

Since both the physical value(s) representing the system and
the mesh on which the PDE is solved are evolved, we repre-

sent both in the state vector. The dimension of the state vector
is then 2N , where N is the number of mesh nodes:

x =
(
u1,u2, · · ·, uN ,z1,z2, · · ·, zN

)
∈ RN × [0,L)N , (6)

where the zi values are viewed as the mesh nodes and ui is
the values of the physical variable u at zi .

The model will encompass all the algebraic relations of the
computation, including the mesh advancement and remesh-
ing. It need not be defined for every x ∈ RN × [0,L)N .
Indeed, the mesh nodes will need to satisfy Eq. (3). We
therefore introduce VN ⊂ [0,L)N by the condition that z=(
z1,z2, · · ·, zN

)
∈ VN when Eq. (3) holds.

The model operates between observation times. If we set
t = tk as an observation time and t = tk+1 as the next time
at which observations will be assimilated, the model will be
integrated with an adapting mesh, including Lagrangian evo-
lution and possible multiple remeshings, from tk to tk+1. If
xk = x(tk) then we set this model evolution as a map,

xk+1 =M(xk). (7)

Note that if the original PDE (Eq. 1) is nonautonomous, i.e.,
f depends on t directly, then M will depend on k and we
would write M=Mk . For convenience, we assume that
tk+1− tk is a multiple of the computational time step. More-
over, we begin and end each integration between observation
times with a remeshing if the given mesh is invalid. In this
way, we guarantee that both zk and zk+1 can be taken to cor-
respond to valid meshes. In principle, we can then apply M
to any element x ∈ RN ×VN . Because of the tolerances δ1
and δ2, there are, however, constraints on N . Since they are
both divisors of L, we can introduce N1 and N2 by

L=N1δ1 =N2δ2, (8)

and we can restrict toN2 ≤N ≤N1. We can then viewM as
acting on a larger space that puts all of its possible domains
together. To this end, we set XN = RN ×VN and, viewing
each XN as distinct,

X=
N1⋃

N=N2

XN , (9)

and cast M as a mapping from X to itself, i.e., M : X→ X,
noting again that the N may change under this map, i.e., N
may be different for xk and xk+1. In other words if xk ∈ XNk ,
the next iteration is xk+1 ∈ XNk+1 where, in general, Nk+1 6=

Nk .

5 The ensemble Kalman filter for an adaptive moving
mesh model

We introduce a modification of the EnKF (Evensen, 2009)
suitable for numerical models integrated on an adaptive mov-
ing mesh. The discussion herein pertains to the stochastic
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version of the EnKF (Burgers et al., 1998), but the approach
can be straightforwardly extended to deterministic EnKFs
(see, e.g., Sakov and Oke, 2008) without major modifica-
tions. A recent review on EnKF-like methods and their ap-
plication to atmospheric circulation models can be found in
Houtekamer and Zhang (2016).

The EnKF, originally introduced by Evensen (1994), is
an ensemble-based formulation of the classical Kalman filter
(KF) for linear dynamics (KF; Kalman, 1960). Like the KF,
the EnKF is based on a Gaussian assumption for the error
statistics in that they are fully described by the mean and co-
variance. The solution is obtained recursively by alternating
a forecast step during which the state estimate and the associ-
ated error covariance are propagated in time and an analysis
step in which the forecast state is combined with the observa-
tions. The analysis, which is viewed as the best possible esti-
mate of the system’s state, is obtained as the minimum vari-
ance estimator (see, e.g., Evensen, 2003). The EnKF com-
putes the error statistics (i.e., mean and covariance) using
an ensemble of model realizations (Evensen, 2003). The for-
ward integration of the ensemble under the model dynam-
ics replaces the explicit matrix multiplications involved in
the forecast step of the KF. The EnKF, in conjunction with
implementing localization and inflation (see, e.g., Carrassi
et al., 2018, their Sect. 4.4 and references therein), has proved
accurate in high-dimensional systems by using a number of
ensemble members several orders of magnitude smaller than
the system’s dimension. The EnKF has led to dramatic com-
putational savings over the standard KF and, importantly,
does not require the model dynamics to be linear or lin-
earized.

The challenge in implementing an EnKF on an adaptive
moving mesh model with remeshing is that the dimension of
the state vector will be potentially different for each ensem-
ble member. This is addressed by Du et al. (2016) in which
the idea of a fixed reference mesh, called observation mesh,
is introduced which has higher resolution around the prede-
fined observations. We will adopt this approach here but in-
troduce a new variant in utilizing meshes of different reso-
lutions. In particular, we will work with a high- and a low-
resolution mesh. We see these as representing the extremes
which should bracket the possible results of using meshes of
various resolutions. They are, respectively, associated with
the two tolerance parameters δ1 and δ2 and are therefore
linked directly to the mesh of the models while giving us the
flexibility of assimilating any type of observations without
prior information, as is generally the case in realistic appli-
cations. In addition, in our approach, the analyzed states are
mapped back onto the adaptive moving meshes to preserve
the mesh, which resolves fine-scale structures generated by
the dynamics of the models.

The location of the nodes and their total number are bound
to change with time and across ensemble members: each
member now provides a distinct discrete representation of
the underlying continuous physical process based on a dif-

Figure 3. Illustration of the analysis cycle in the proposed EnKF
method for adaptive moving mesh models. In S1, adaptive moving
meshes are mapped onto the fixed reference mesh. The ensemble is
updated on the fixed reference mesh at step S2 (i.e., the analysis).
Then, in S3 the updated ensemble members are mapped back to the
corresponding adaptive moving meshes. The full process is illus-
trated in Fig. 4 for one ensemble member. See text in Sect. 5 for full
details on the individual process steps, S0, S1, S2 and S3.

ferent number of differently located sample points. The indi-
vidual ensemble members have to be intended now as sam-
ples from a different partition of the physical system’s phase
space, and they do not provide a statistically consistent sam-
pling of the discrete-in-space uncertainty distribution. This
is reflected in practice by the fact that the members cannot
be stored column-wise any longer to form ensemble matri-
ces, and thus the matrix computations involved in the EnKF
analysis to evaluate the ensemble-based mean and covariance
cannot be performed.

On the other hand, on the reference mesh, the members are
all samples from the same discrete distribution and can thus
be used to compute the ensemble-based mean and covari-
ance. The entire EnKF analysis process is carried out on this
fixed reference mesh, and the results are then mapped back
to the individual ensemble meshes. This procedure amounts
to the addition of two steps on top of those in the standard
EnKF. First, we map each ensemble member from its adap-
tive moving mesh to an appropriate fixed uniform mesh and
perform the analysis. Then, the updated ensemble members
are mapped back to their adaptive moving meshes, providing
the ensemble for the next forecast step.

The process is summarized schematically in Fig. 3. Steps
S0 and S2, integration of the model M to compute prior
statistics, and the analysis step are common in an EnKF. At
step S1, before the analysis, the forecast ensemble on adap-
tive moving meshes is mapped onto the fixed uniform mesh
(Sect. 5.1), while step S3 amounts to the backward mapping
from the fixed to the individual adaptive meshes. In the fol-
lowing sections, we give the details of processes in S1, S2 and
S3, following their respective order in the whole DA cycle.

5.1 Fixed reference meshes

We divide the physical domain [0,L) into M cells of equal
length, 1γ :

[0,L)= L1 ∪L2 ∪ ·· · ∪LM , (10)
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where Li =
[
γi,γi+1). It follows that γ1 = 0 and γi = (i−

1)1γ for each i and that γM+1 = L. Because of the period-
icity, we identify 0 and L in the fixed mesh; in other words,
γM+1 = γ1 modulo L. The points γi are the mesh nodes of
the fixed reference mesh.

While we are, in principle, free to choose the fixed refer-
ence mesh arbitrarily, it makes sense to tailor it to the applica-
tion under consideration. We choose to define the resolution
of this fixed uniform mesh based on the maximum and min-
imum possible resolution of the individual adaptive moving
meshes in the ensemble. The resolution range in the adaptive
moving mesh reflects the computational constraints adapted
to the specific physical problem: it therefore behooves us to
bring these constraints into the definition of the fixed mesh
for the analysis.

The high-resolution fixed reference mesh (HR) will be ob-
tained by setting M =N1 and the low-resolution fixed refer-
ence mesh (LR) by setting M =N2. We will focus on these
two particular fixed meshes, although the methodology de-
scribed below could be adapted to working with any fixed
reference mesh. Recalling that L=N1δ1 =N2δ2, and the
criteria for a valid mesh given by Eq. (4), it can be seen that
any valid mesh {z1,z2, · · ·,zN } will have at most one node
in each cell Li of an HR case and at least one node in each
cell of an LR case. As will be seen below, the HR case will
require some interpolation to fill in empty cells, whereas the
LR case will average physical values at nodes that share a
cell. It may seem that the higher-resolution mesh would al-
ways be preferable, but a key finding of this work is that this
is not always true.

Note that the hypothesis L=N1δ1 =N2δ2, i.e., the toler-
ances δ1 and δ2 being divisors of the domain dimension L,
does not need to be assumed. The computational and phys-
ical constraints of the model may suggest that δ1 and δ2 do
not satisfy this condition; it would be a technical change in
our method to accommodate such a situation.

5.2 Mapping onto a fixed reference mesh

The mapping will take a state vector x =

(u1,u2, · · ·,uN ,z1,z2, · · ·,zN ), where {z1,z2, · · ·,zN } is
a valid mesh, onto a vector in XM = RM×VM withM =N1
(HR) or M =N2 (LR). The state vector to which the map
is applied should be thought of as an ensemble member at
the forecast step so that it has gone through remeshing after
its final model evolution step. Thus N may be any integer
between N1 and N2. This is step S1 in the scheme of Fig. 3.

We denote the mapping as Pj : X 7−→ XM , with M =
N1 for j = 1 (HR) or M =N2 for j = 2 (LR) as above. Re-
calling that the γi are nodes of the fixed reference mesh, the
image of specific x ∈ XN values has the form

Pj (x)= (̃u1, ũ2, · · ·, ũM ,γ1,γ2, · · ·,γM) . (11)

The physical value ũi is viewed as the value of u at mesh
node γi ; the tilde is used hereafter to refer to quantities on
the fixed reference mesh.

To set the u values, we introduce a shifted mesh as follows:
set L̃i =

[
γi − δ/2,γi + δ/2) for i = 2, · · ·,M , where δ = δ1

or δ2 and again M =N1 or N2, respectively. Furthermore,
set L̃1 =

[
0,δ/2)∪

[
L− δ/2,L). We view L̃1 as an interval,

since we identify 0 and L. The procedure is now separated
into the high- and low-resolution cases.

Case 1 – HR. Taking x ∈ XN as above, if there is a zk ∈ L̃i ,
then set ũi = uk . If there is no zk ∈ L̃i but zk < γi , then find
k so that zk < γi < zk+1 and set

ũi =
uk + uk+1

2
. (12)

If there is no such zk , then set

ũi =
u1+ uN1

2
. (13)

Case 2 – LR. For each i, find all zk ∈ L̃i values. Denote
these as zki , · · ·,zki+ni and set

ũi =
1
ni

ki+ni∑
j=ki

uj . (14)

The map Pj is now well defined, in both the HR and LR
cases, for each x ∈ XN .

For the EnKF, we will also need the map that omits the
mesh points in the fixed reference mesh,

P̃j (x)= (̃u1, ũ2, · · ·, ũM) , (15)

and again M =N1 or N2 for HR or LR, respectively.
In the EnKF analysis, we will denote P̃j (x) by ũ and work

with this reduced state vector, which consists only of the
physical values and not the mesh points. A consequence is
that we will not be updating the mesh locations but rather
remapping the analysis back onto the original adaptive mesh
for each ensemble member. We will discuss the possibility of
updating the mesh locations in the conclusions.

5.3 Observation operator

The observations will be of physical values (u) at specific
locations (zo). Assuming that there are d observations, then
the observation operator will be a mapping on reduced state
vectors ũ= (̃u1, ũ2, · · ·, ũM) given as y =H(̃u), i.e., H :
RM 7−→ Rd , with M =N1 or N2. Each component of H(̃u)
is the estimate the state vector ũ gives of the observations at
locations zo. For the explicit representation of the observa-
tion operator, let us consider one observation at once so that
for all 1≤ j ≤ d , we consider the j th observation and find
i so that zoj ∈ Li ; then the j th component of the observation
operator reads

hj (̃u)= ũi +
zo
j − γi

γi+1− γi
(̃ui+1− ũi) . (16)
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Since γi ≤ zoj < γi+1, this is the natural linear interpolation
between values of u at γi and γi+1. The full observation op-
erator is then

H(̃u)= (h1(̃u),h2(̃u), · · ·,hd (̃u)) , (17)

where each hj (̃u) has the above form of an observation value
at its respective observation locations zo

j .
Thus, we can eventually define the state vector on 0̃ as

w̃(t)=

(
x̃(t)

z̃(t)

)
=

[
x̃1(t) x̃2(t) . . .̃xM−1(t) x̃M(t) z̃1(t)

z̃2(t) . . . z̃M−1(t) z̃M(t)

]T

.

(18)

5.4 Analysis using the ensemble Kalman filter

After mapping all the ensemble members onto the dedicated
fixed reference mesh (either the high- or the low-resolution
one), the stochastic EnKF can be applied in the standard way.
This is step S2 in our scheme. The mapped forecast ensemble
members can be stored as columns on the forecast ensemble
matrix,

Ef
=

[
ũf

1, . . ., ũ
f
Ne

]
∈ RM×N

e
, (19)

withM =N1 orM =N2 for the HR and LR reference mesh,
respectively, and Ne being the ensemble size. To simplify
the notation the time index and the tilde from the matrices
are omitted: all terms entering the analysis update operations
are defined at the same analysis time onto the fixed, either
HR or LR, mesh. The forecast ensemble mean is computed
as

ũ
f
=

1
Ne

Ne∑
n=1

ũf
n, (20)

while the normalized forecast anomaly matrix Xf is formed
by subtracting the forecast ensemble mean from each of the
ensemble members as

Xf
=

1
√
Ne− 1

[
ũf

1− ũ
f
, . . ., ũf

Ne − ũ
f
]
. (21)

Model outputs are confronted with the observations at the
end of every analysis interval and are stored in the observa-
tion vector, y ∈ Rd . The observations are related to the sys-
tem state via the (generally nonlinear) observational model,

y =H(̃u)+ ε, (22)

and are assumed to be affected by a Gaussian, zero-
mean white-in-time noise ε with covariance R ∈ Rd×d , ε ∼
N (0,R). In the experiments described in Sect. 7, we directly

observe the model physical variables (onto the fixed refer-
ence mesh), ũ, so that as explained in Sect. 5.3, the observa-
tion operator only involves a linear interpolation and is thus
linear. Nevertheless, the approach described herein is suit-
able for working with nonlinear H values subject to minor
modifications.

In the stochastic EnKF (Burgers et al., 1998), the observa-
tions are treated as random variables so that each ensemble
member assimilates a different perturbed observations vec-
tor,

yn = y+ εn 1≤ n≤Ne, (23)

with εn ∼N (0,R). We can now compute the normalized
anomaly ensemble of the observations,

Yo =
1

√
Ne− 1

[
y1− y, . . .,yNe − y

]
=

1
√
Ne− 1

[
ε1, . . .,εNe

]
, (24)

and define the ensemble-based observational error covari-
ance matrix,

Re
= Yo

(
Yo
)T
, (25)

and the observed ensemble-anomaly matrix,

Y :=H(Ef)−H(Ef
), (26)

with Ef
= ũ

f1 and 1= [1, . . .,1]T
∈ RM . The forecast en-

semble member are then individually updated according to

ũa
n = ũ

f
n+K

[
yn−H(̃uf

n)
]
, 1≤ n≤Ne, (27)

where

K= XfYT
[

1
Ne− 1

YYT
+Re

]−1

, (28)

is the ensemble-based Kalman gain matrix. It is worth recall-
ing that in the limit,Ne

→∞, Re
→ R and the Kalman gain,

K converges to that of a classical, full-rank Kalman filter if
both the dynamical and the observational models are linear
and all of the errors are Gaussian.

When applied to large dimensional systems for which
Ne
�M , as is typical in the geosciences, the success of the

EnKF is related to the use of localization and inflation (see,
e.g., Carrassi et al., 2018, their Sect. 4.4, for a review). In
this work localization is not used, but the covariance multi-
plicative scalar inflation (Anderson and Anderson, 1999) is
adopted so that the ensemble-based forecast anomaly matrix
is inflated as

Xf
7−→ αXf, (29)

with α ≥ 1, before Xf is used in the analysis update Eq. (27).
Multivariate multiplicative inflation or more sophisticated
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adaptive inflation procedures exist and could have been im-
plemented here, but this is not of great importance in this
work, and the scalar coefficient α has been properly tuned. A
recent review of adaptive inflation methods can be found in
Raanes et al. (2019).

The updated analysis ensemble in Eq. (27) is then used
to initialize the next forecast step. However, prior to this,
we need to map back each individual analysis member on
their respective adaptive, non-uniform mesh; the process is
described in Sect. 5.5.

5.5 From a fixed reference mesh to an adaptive moving
mesh

After the analysis, the update on the fixed reference mesh
has to be mapped back onto the individual adaptive mov-
ing meshes of the ensemble members. In the forward map-
ping step S1 (see Fig. 3), the mapping indices associating the
nodes in the adaptive moving mesh with nodes in the refer-
ence mesh are stored in an array. These are the indices result-
ing from the projections on the HR or the LR reference mesh
as described in Sect. 5.2.

Each analysis ensemble member ũa
n will thus retrieve its

adaptive mesh (z1,z2, . . .,zN(n)) from the stored array. In the
reverse mapping step S3 (Fig. 3) the updated solution is pro-
jected to the adaptive moving meshes by locating each zj in
an interval L̃m and assigning the mth component of ũa

n to be
the ith component of u in the vector xk that will initialize the
model after the analysis time step.

In summary, each ensemble member after the analysis step
will have the form

xk = (u1,u2, . . .,uN ,z1,z2, . . .,zN ) , (30)

where if zi ∈ L̃m, then ui = ũ(γm). The backward mapping
procedure is the same for both HR and LR cases, although it
will provide different results.

The process steps S1→ S2→ S3 are illustrated in Fig. 4a
and b, representing HR and LR cases, respectively, for one
ensemble member, and using Burgers’ equation as a model
(Burgers, 1948); the model and experimental setup are de-
scribed in detail in Sect. 6.

Let consider first the HR case of Fig. 4a. In S1, the fore-
casted physical quantity uf on the adaptive moving mesh
(dark blue with large circles) is mapped to the fixed reference
mesh nodes (light blue with small circles) at γm−1 = 0.68
and γm+1 = 0.70. The fixed mesh’s node γm = 0.69 is left
emptied: a value is thus assigned by interpolation from the
adjacent nodes γm−1 and γm+1. This provides the forecasted
physical quantity, ũf, on the full reference mesh and com-
pletes step S1. In the next step, S2, ũf is updated using the
stochastic EnKF as described in Sect. 5.4 to get the analy-
sis field ũa (light red line and small circles). Finally, in step
S3, the ũa is mapped back to the adaptive moving mesh so
as to get ua (dark red line with large circles). Note that the
physical quantity on the interpolated node γm in the fixed ref-

erence mesh is not mapped back (that node did not exist in
the original adaptive mesh), yet it was required at step S2 to
perform the analysis.

Similarly, Fig. 4b describes the LR case. In this situa-
tion, however, the forecasted physical quantity on the adap-
tive moving mesh nodes at 0.672 and 0.686 is averaged (step
S1) in order to associate a value on the fixed reference mesh
node γm = 0.68 before the analysis. After the update (step
S2), in step S3, the analysis ũm at γm = 0.68 is used to pro-
vide the analyses on both the original nodes (at 0.672 and
0.686) on the adaptive mesh that will have thus the same an-
alyzed value. As a result of this, we observe that the analy-
sis is better than the forecast (in the sense of being closer to
the truth: compare dark blue and red circles, respectively, for
forecast and analyses) at node z= 0.672 but worse at node
z= 0.686. In this latter case in fact, the overestimate of the
truth increases from about 0.15 to more than 0.3 for the fore-
cast and analysis. On the other hand, at node z= 0.672 the
forecasted overestimate of about 0.2 is reduced to a slight
underestimate of about 0.04.

We note a key aspect of our methodological choice: the
ratio of the remeshing criteria δ2

δ1
exerts a control on the rela-

tion between the adaptive moving meshes and the fixed ref-
erence mesh. In fact, δ2

δ1
is the upper bound of the number

of nodes that will be interpolated in the HR case and aver-
aged in the LR case, since it represents the maximum ratio
between the dimension of the fixed reference mesh and that
a moving mesh can ever reach.

6 Experimental setup

Our aim is to test the modified EnKF methodology described
in Sect. 5 by performing controlled DA experiments with two
numerical models and two types of synthetic observations:
Eulerian and Lagrangian. In particular, we aim at assessing
the impact and comparing the performance of the HR and LR
options detailed in Sect. 5.

The first numerical model is the diffusive version of Burg-
ers’ equation (Burgers, 1948):

∂u

∂t
+ u

∂u

∂z
= ν

∂2u

∂z2 , z ∈ [0,1), t ∈ (0,T ], (31)

with periodic boundary conditions u(0, t)= u(1, t). In our
experiments, we set the viscosity ν = 0.08; the model
Eq. (31) is hereafter referred to as BGM. Given that Burgers’
equation can be solved analytically, it has been used in sev-
eral DA studies (see, e.g., Cohn, 1993; Verlaan and Heemink,
2001; Pannekoucke et al., 2018).

As second model, we use an implementation of the
Kuramoto–Sivashinsky equation (Papageorgiou and Smyrlis,
1991),

∂u

∂t
+ν

∂4u

∂z4 +
∂2u

∂z2 +u
∂u

∂z
= 0, z ∈ [0,2π), t ∈ (0,T ], (32)
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Figure 4. Schematic illustration of the DA cycle on the high-resolution (a) and low-resolution (b) fixed reference mesh. On the legend,
dark and light blue and red lines are forecast and analysis on adaptive moving mesh (AMM) and fixed reference mesh (FRM), respectively.
Observations (gray circles) are sampled from the truth (black line). When following the arrows, S1 is the mapping the adaptive moving mesh
onto the fixed reference mesh, S2 is update of the ensemble member and S3 is backward mapping onto the adaptive moving mesh (see Fig. 3).

which is also given as periodic boundary conditions. Con-
centration waves, flame propagation and free surface flows
are among the problems for which this equation is used.
The higher-order viscosity, ν, is chosen as 0.027, which
makes Eq. (32) display chaotic behavior (Papageorgiou and
Smyrlis, 1991). Both numerical models are discretized us-
ing finite central differences and integrated with an Eule-
rian time-stepping scheme. We integrate them using very
small time steps, 10−3 and 10−5 for BGM and KSM, respec-
tively, since the equations are propagated forward explicitly.
For the BGM, the remeshing criteria for mesh adaptation
are δ1 = 0.01 and δ2 = 0.02, while they are δ1 = 0.02π and
δ2 = 0.04π for the KSM. Given that the model domain has
dimension L= 1 and L= 2π for BGM and KSM, respec-
tively, this implies that the number of nodes in the HR and
LR fixed reference mesh for the analysis is 100 and 50 for
both BGM and KSM.

Two “nature runs” are obtained, one for each model, by
integrating them on a high-resolution fixed uniform mesh.
For both models, the meshes for the nature are intentionally
chosen to be of at least the same resolution of the HR fixed
uniform reference mesh of the analysis. The size of the nature
run’s mesh for the BGM is 100 (corresponding to a resolution
of 0.01), while it is 120 for KSM (equivalent to a resolution
of about 0.052).

We have limited the time length of the simulations in BGM
to T = 2, as the viscosity tends to dominate over longer times
and dampen the wave motion. Figure 5a shows the nature run
for BGM until T = 2 with the initial condition

u(z,0)= sin(2πz)+
1
2

sin(πz). (33)

The figure shows clearly how the amplitude of the wave,
picking around z= 0.5 at initial time, is almost completely
dampened out at the final time.

With the given choice of the viscosity, KSM is not as dis-
sipative as BGM and simulations can be run for longer. KSM

is initialized using

u(z,0)=−sin(2πz), (34)

as the initial condition. Then, it is spun up until T = 20, and
the solution at T = 20 is used as the initial condition for the
DA experiments. Figure 5b shows the KSM nature run until
t = 5 after re-initialization of the model following the spin-
up (i.e., the actual simulation time being T + t = 25); the
chaotic behavior of the KSM solution can be qualitatively
identified by the random oscillations.

Synthetic Eulerian and Lagrangian observations are sam-
pled from the nature run. Eulerian observations are always
collected at the same, fixed-in-time locations of the domain.
We assume that Eulerian observers are evenly distributed
along the one-dimensional domain (i.e., observations are
at equally spaced locations) and that their total number is
constant, so the number of observations at time step tk is
dEUL(tk)= d

EUL
k = d for all k > 0. The locations of the La-

grangian observations, on the other hand, change in time: the
data are sampled by following the trajectories, solutions of
the model. Being advected by the flow, Lagrangian obser-
vations may eventually concentrate within a small area of
the model domain; they can thus be more spatially localized
compared to Eulerian observations. In our experiments with
Lagrangian observations, if two observations come within
the threshold distance, 10−3, the one closer to the upper
boundary of the spatial domain is omitted from the assimila-
tion at that time and all future observation times so as not to
oversample a specific location. As a result, the total number
of Lagrangian observations will tend to decrease in time. An
illustration of the different spatial coverage provided by the
Eulerian and Lagrangian observations is given in Fig. 6 for
the BGM with dEUL

= dLAG
0 = 10 on the mesh of the nature

run.
In the experiments that follow, we chose to deploy as many

Lagrangian observers at t0 as Eulerian ones and to place them
at the same locations, i.e., d0 = d. The number of Eulerian
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Figure 5. Numerical solutions of Burgers’ and Kuramoto–Sivashinsky equations. The solutions are computed on an uniform fixed mesh and
represent the nature run from which synthetic Eulerian and Lagrangian observations are sampled.

Figure 6. Observations sampled from the BGM nature run (see Fig. 5a) in Eulerian (a) and Lagrangian (b) manner, mimicking geostationary
satellite and buoy measurements, respectively.

observations and the initial number of Lagrangian observa-
tions is set to dEUL

= dLAG
0 = 10 and dEUL

= dLAG
0 = 20 for

BGM and KSM, respectively. Gaussian, white-in-time and
spatially uncorrelated noise is added to these observations;
the observational error covariance matrix is diagonal so that
R= σ 2

o I, with σo being the observational error standard de-
viation and I being the identity matrix. These synthetic ob-
servations are assimilated with the modified EnKF presented
in Sect. 5.4, and the specifications of its implementation,
namely the number of initial ensemble members, initial mesh
size and inflation, are provided in the Sect. 7. The analysis in-
terval is set to1t = 0.05 time units in all the DA experiments
and for both models and observation types. A summary of the
experimental setup is given in Table 1.

The experiments are compared by looking at the root-
mean-square error (RMSE) of the ensemble mean (with re-
spect to the nature run) and the ensemble spread. Since the
analysis is performed on either the HR or the LR fixed mesh,
the computation of the RMSE and spread is done on the mesh
resulting from their intersection. Given that we have chosen
the remeshing criteria in both models such that δ1 is half of
δ2, the intersection mesh is the LR mesh itself. Finally, in all
of the experiments, the time mean of the RMSE and spread
are computed after T = 1 time units, unless stated otherwise.
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Table 1. Experimental setup parameters: ν is the viscosity, δ1 and δ2 the remeshing criteria, N1 and N2 are the number of nodes in the
HR and LR fixed reference mesh, T is the duration of the experiments, 1t is the analysis interval, and dEUL and dLAG

0 are the number of
Eulerian observations and the initial number of Lagrangian observations.

ν δ1/δ2 N1/N2 T 1t d/d0 σo

BGM 0.008 0.01 / 0.02 100 / 50 2 0.05 10 0.01
KSM 0.027 0.02π / 0.04π 100 / 50 5 0.05 20 0.78

7 Results

We present the results in three subsections. In Sect. 7.1
and 7.2, we investigate the modified EnKF with fixed refer-
ence mesh (either HR or LR) for the BGM and KSM, respec-
tively, using Eulerian observations. In these sections we also
present the tuning of the EnKF with respect to the ensem-
ble size (Ne), inflation factor (α) and initial adaptive moving
mesh size (N0). The combination of those parameters giv-
ing the best performance with BGM is then kept and used in
Sect. 7.3, where the comparison between Eulerian and La-
grangian observations cases is described.

7.1 Modified EnKF for adaptive moving mesh models –
Burgers’ equation

In this section, the experiments using BGM are presented.
In order to calculate the base error due to the choice of the
specific fixed reference mesh, HR or LR, and the resulting
mapping procedures, we first perform an ensemble run with-
out assimilation. This DA-free ensemble run is subject to all
of the steps described in Fig. 3, except for step S2, in which
the analysis update is performed. Given that DA is not carried
out, the difference between the HR and LR experiments (if
any) can only be due to the mapping procedures. Recall that
this procedure differs in that it involves interpolation or av-
eraging in the HR or LR cases, respectively. For consistency,
the mapping to or from the fixed reference mesh is performed
every 1t = tk+1− tk , i.e., the time between the assimilation
of observations.

Figure 7 displays the RMSE and the ensemble spread for
the HR and LR in these DA-free ensemble runs. We see that
the RMSE is slightly larger in the LR than in the HR case, in-
dicating that averaging introduces larger errors than interpo-
lation in this specific model scenario. This can be interpreted
in terms of the sharpness of Burgers’ solution (see Fig. 5a)
that might not be accurately described using the LR mesh.
Furthermore, this is also consistent with what is observed in
Fig. 4b, in which the LR analysis was deteriorating the fore-
cast in some instances. After an initial faster error growth in
the LR case, at about t = 0.4, the difference between LR and
HR almost stabilizes, with the two error curves having the
same profile. The ensemble spread is initially slightly larger
in the HR case, but it then attains similar values for both HR
and LR after t = 0.6, suggesting that the spread does not de-
pend critically on the type of mapping and resolutions of the

Figure 7. Time evolution of the forecast RMSE (solid line) and
spread (σ ; dashed line) of DA-free ensemble run using BGM. Dark
and light blue lines represent the HR and LR, respectively.

fixed reference mesh. While this appears to be a reasonable
basis for building the EnKF, Fig. 7 also highlights the unde-
sirable small spread of values compared with the RMSE. We
will come back to this point in the DA experiments to follow.

In the DA experiments, we study the sensitivity of the
EnKF to the ensemble size, inflation factor and initial size of
the adaptive moving meshes. Recall that the ensemble mem-
bers are all given the same uniform mesh at the initial time;
however these meshes will then inevitably evolve into a dif-
ferent, generally non-uniform mesh for each member. We re-
mark that the three parameters under consideration are all
interdependent, and a proper tuning would involve varying
them simultaneously, which would make the number of ex-
periments grow too much. To reduce the computational bur-
den, we opted instead to vary only one at a time while keep-
ing the other two fixed.

The results of this tuning are displayed in Fig. 8, which
shows the RMSE of the EnKF analysis (the ensemble mean),
and the spread, as a function of the ensemble size, inflation
factor and initial mesh size, respectively, in Fig. 8a, b and
c. The RMSE and spread are averaged in space and time af-
ter the initial spin-up period T = 1. For reference, we also
plotted the observational error standard deviation (horizontal
black dashed line).

In the case of the sensitivity to the ensemble size (Fig. 8a),
Ne is varied between 10 and 90, while the initial mesh size
is kept to 70 for both HR and LR cases, and inflation is
not used (i.e., α = 0). The RMSE in the HR case is gener-
ally lower than in the LR case; it is, respectively, slightly
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188 A. Aydoğdu et al.: Data assimilation using adaptive, non-conservative, moving mesh models

Figure 8. Time mean of the RMSE of the analysis ensemble mean (solid line) and ensemble spread (σ ; dashed line) of BGM for different
ensemble size, Ne (a), inflation factor, α (b), and initial mesh size, N0 (c). Dark and light red lines show the HR and LR, respectively.

below and above the observational error standard deviation.
In both cases, however, the RMSE approximately converges
to quasi-stationary values as soon as Ne

≥ 30. This phe-
nomenon, which we also observe for KSM in the next sec-
tion, is reminiscent of the behavior in a chaotic system, where
the EnKF error converges when Ne is larger or equal to the
dimension of the unstable–neutral subspace of the dynamics
(Bocquet and Carrassi, 2017).

We therefore set Ne
= 30 and study the sensitivity to the

inflation factor in Fig. 8b (the initial mesh size is still kept
to 70). Inflation is expected to mitigate the difference (the
underestimation) between the RMSE and the spread shown
in Fig. 8a. By looking at Fig. 8b this seems actually to be
the case, and in the LR case the RMSE and spread decrease
and increase by increasing the inflation factor α. In the HR
case, the RMSE is already lower than the observational stan-
dard deviation and the inflation has only a small effect: the
increase in spread is not accompanied by a similar decrease
in error. Based on this, we hereafter set the inflation to α = 1
and α = 1.45 for HR and LR, respectively.

Finally, in Fig. 8c, we consider the initial mesh size; recall
that the ensemble size is set to Ne

= 30. Also recall that the
size of the individual member’s adaptive moving mesh size,
N , is controlled by the remeshing tolerances δ1 = 0.01 and
δ2 = 0.02 and can vary throughout the integration between
50 and 100. In the set of experiments depicted in Fig. 8c, we
initialize the ensemble on an adaptive moving mesh of size
N0, ranging from 50 to 90. Interestingly, the EnKF does not
exhibit great sensitivity to N0, and the differences between
HR and LR appear to be very small and not systematic. The
fact that LR kept the RMSE at the level of the HR is the result
of successful tuning. We saw in fact that the mapping error
in the LR case is larger (see Fig. 7). Nevertheless this initial
disadvantage of the LR has been largely compensated by the
inflation. In the experiments that follow, we have chosen to
fix N0 = 70 for both HR and LR.

The results of the tuning experiments of Fig. 8 and se-
lected values of the parameters are reported in Table 2 and
are used in the experiments of Fig. 9, which shows the fore-

Figure 9. Time evolution of the RMSE (solid line) and spread (σ ,
dashed line) for BGM until t = 2. Dark and light lines represent
the HR and LR, respectively. Blue and red lines show forecast and
analysis, respectively.

cast and analysis RMSE and spread for both HR and LR as a
function of time. Notably the HR and LR perform quite sim-
ilarly for t > 1.2, when the solution of the model is possibly
of small amplitude due to the viscous damping. Neverthe-
less, for t ≤ 1.2, LR is often as good as (t < 0.4) or better
(0.4≤ t ≤ 1.2) than HR, making LR a viable, computation-
ally more economic solution. The time-averaged RMSE and
spread of these experiments are included in Table 2.

7.2 Modified EnKF for adaptive moving mesh models –
Kuramoto–Sivashinsky equation

This section shows the same type of results as in the previous
section, this time being applied to the KSM. We begin by
evaluating the errors related to the mapping on the HR and
LR case by running a DA-free ensemble; results are shown
in Fig. 10.

As opposed to what is observed in Fig. 7, we see now that
the different mapping procedures in the HR and LR cases in-
duce similar errors and impact the spread in a similar way.
This difference is certainly due to the different dynamical
behavior in BGM and KSM, with the solution of the latter
displaying oscillations over all of the model domain. These
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Table 2. Ensemble size (Ne), inflation factor (α) and initial mesh size (N0) chosen from the sensitivity experiments in Fig. 8 to perform the
experiment in Fig. 9. Resulting time mean of the RMSE and spread (σ ) in for the HR and LR using BGM between t = 0 and t = 2 are also
listed.

BGM Ne α N0 RMSEf RMSEa σf σa

HR 30 1.0 70 0.025 0.023 0.026 0.015
LR 30 1.45 70 0.018 0.017 0.023 0.014

Figure 10. Same as Fig. 7, but using KSM.

can be in some instances well represented (i.e., less affected)
by the averaging procedure in the LR case and in others by
the interpolation in the HR case. Another remarkable differ-
ence with respect to BGM is that now the ratio spread and
RMSE is larger, meaning that the spread underestimates the
RMSE relatively less than for BGM.

Figure 11 shows the same set of experiments as in Fig. 8,
this time using KSM. The time mean of the RMSE and
spread are again considered after t = 1, but experiments are
run until t = 5, since KSM is not as dissipative as BGM with
chosen values for the viscosity. Furthermore, all values are
normalized using an estimate of the model internal variabil-
ity based on the spin-up integration from t = 0 to t = T = 20
(see Sect. 6).

In Fig. 11a, the analysis RMSE and spread are shown
against the ensemble size, Ne. No inflation is applied, and
initial mesh size is chosen to be 80 in both the HR and LR
cases. The analysis RMSE goes below the observation error
standard deviation as soon as Ne

= 30 in the HR case, but
an ensemble as big as Ne

= 50 is required in the LR case.
Based on these results, we have chosen to use Ne

= 40 for
both cases as a trade-off between computational cost and ac-
curacy, given that the RMSE in the LR case is very close
to observational accuracy. Notably, the spread is quite large
in both cases and is even larger than the RMSE in the HR
configuration. With Ne

= 40, the impact of inflation is con-
sidered in Fig. 11b. We see here how the spread is consis-
tently increased by increasing the inflation factor α and the
corresponding RMSEs decrease until α = 1.3 and increase
afterwards, possibly as a consequence of too much spread.
The selected values for the inflation factor are α = 1.2 and

Table 3. Same as Table 2, but using KSM deduced from experi-
ments in Fig. 11.

KSM Ne α N0 RMSEf RMSEa σf σa

HR 40 1.2 80 1.30 0.51 2.96 0.85
LR 40 1.3 80 1.25 0.78 1.83 0.71

1.3 for the HR and LR cases, respectively. Fig. 11c stud-
ies the sensitivity to the initial mesh size, N0. Similarly to
what is observed for the BGM in Fig. 8c, the performance of
the EnKF does not show a marked sensitivity to N0: it is ar-
guable that the mesh size of the individual members quickly
adjusts to the values with little memory of the initial dimen-
sion. In the experiments that follow, the initial mesh size is
set to N0 = 80 in both HR and LR configurations. Overall
Fig. 11 indicates that, as opposed to BGM, with KSM, the
EnKF on the HR fixed reference mesh is always superior to
the LR fixed mesh. The selected optimal values of Ne, α and
N0 are reported in Table 3.

Figure 12 shows the time evolution of the forecast and
analysis RMSE and spread for HR and LR until t = 5 us-
ing these selected values. First, we observe that the analysis
RMSE is always lower than the corresponding RMSE of the
forecast in both the HR and the LR cases. Remarkably the
spread of the forecast is also larger than the RMSE of the
forecast, in both configurations, pointing to healthy perfor-
mance of the EnKF. As for the comparison between HR and
LR we see that now the former is systematically better than
the latter, suggesting that in the KSM, the benefits of per-
forming the analysis on HR are larger compared to BGM.
Nevertheless, the LR case also performs well, and it could
be preferred when computational constraints are taken into
consideration. The time-averaged RMSEs and spreads are re-
ported in Table 3.

7.3 Impact of observation type: Eulerian versus
Lagrangian

Up to this point, we have only utilized Eulerian observations.
Using the optimal setup presented in the previous sections,
we now assess the impact of different observation types, i.e.,
Eulerian or Lagrangian (see Figs. 6a and 6b). We consider
here only the BGM with the LR configuration for the fixed
reference mesh, and the values for the experimental param-
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Figure 11. Same as Fig. 8, but using KSM.

eters are those in Table 2 (first three columns of the second
row). Results (not shown) with the KSM using Lagrangian
observations indicate that the EnKF was not able to track the
true signal, possibly as a consequence of the Lagrangian ob-
servers ending trapped within only few of the many fronts in
the KSM solution (see Fig. 5b): the number of observations
and their distribution then becomes insufficient.

Figure 13 shows the forecast and analysis RMSE as a func-
tion of time for both Eulerian and Lagrangian data. As for
previous figures, the observation error standard deviation is
superimposed as reference, but the number of Lagrangian ob-
servers is now included (right y axis). Recall that Lagrangian
data are bound to decrease with time (see Sect. 6 and Fig. 6b)
and that their initial number and locations are the same as for
the Eulerian observations, i.e., dEUL

= dLAG
0 = 10, and they

are equally spaced.
At first sight, one can infer from Fig. 13 that overall La-

grangian data are approximately as effective as their Eule-
rian counterparts even though they are fewer in number. This
is reminiscent of a known advantage of Lagrangian obser-
vations that has been documented in a number of studies
(see, e.g., Kuznetsov et al., 2003; Nodet, 2006; Apte and
Jones, 2013; Slivinski et al., 2015, and references therein);
however the actual positions at which the observations are
made are assimilated in these pieces of work. A closer in-
spection of Fig. 13 reveals also other aspects. For instance, it
is remarkable that between 0.2≤ t ≤ 0.4, the assimilation of
5≤ dLAG

obs ≤ 10= dEUL
obs Lagrangian observations is superior

to using dEUL
obs = 10 fixed, evenly distributed Eulerian ones.

On the other hand, when t ≥ 1.3, the assimilation of Eulerian
data is always better than Lagrangian, a behavior possibly
due to the fact that dLAG

obs ≤ 3 and that, despite their dynam-
ically guided locations, there are not as many as required to
properly keep the error low. It is finally worth pointing out
the episode of the very high analysis RMSE (higher than the
corresponding forecast RMSE) occurring at t = 1.5: the as-
similation was in that case clearly detrimental. Nevertheless
the EnKF was quickly able to recover, and the RMSE is re-
duced to much smaller values, close to the observation error.

Figure 12. Same as Fig. 9, but using KSM.

Figure 13. Time evolution of the RMSE until t = 2 using BGM.
Light blue and red lines are the forecast and analysis RMSE with
the Eulerian observations, respectively. Dark blue and gray lines are
the same as the Lagrangian observations. Gray dashed line shows
the number of Lagrangian observations in time.

8 Conclusions

We propose a novel methodology to perform ensemble
data assimilation with computational models that use non-
conservative adaptive moving mesh. Meshes of this sort are
said to be adaptive because their node locations adjust to
some prescribed rule that is intended to improve model ac-
curacy. We have focused here on models with a Lagrangian
solver in which the nodes move following the model’s ve-
locity field. They are said to be non-conservative because the
total number of nodes in the mesh can itself change when
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the mesh is subject to remeshing. We have considered the
case in which remeshing avoids having nodes too close or
too far apart than given tolerance distances; in practice the
tolerances define the set of valid meshes. When an invalid
mesh appears through integration, it is then remeshed and a
valid one is created.

The major challenge for ensemble data assimilation stands
in that the dimension of the state space changes in time
and differs across ensemble members, impeding the normal
ensemble-based operations (i.e., matrix computations) at the
analysis update. To overcome this issue, we have added in
our methodology one forward and one backward mapping
step before and after the analysis, respectively. This mapping
takes all the ensemble members onto a fixed, uniform ref-
erence mesh. On this mesh, all ensemble members have the
same dimension and are defined onto the same spatial mesh;
thus the assimilation of data can be performed using stan-
dard EnKF approaches. We have used the stochastic EnKF,
but the approach can be easily adapted to the use of a square-
root EnKF. After the analysis, the backward mapping returns
the updated values to the individual, generally different and
non-uniform meshes of the respective ensemble members.

We consider two cases: a high-resolution and a low-
resolution fixed uniform reference mesh. The essential prop-
erty is that their resolution is determined by the remeshing
tolerances δ1 and δ2 such that the high- and low-resolution
fixed reference meshes are the uniform meshes that bound,
from above and below, respectively, the resolution of all rele-
vant adaptive meshes. While one can in principle use a fixed
reference mesh of arbitrary resolution, our choice connects
the resolution of the reference mesh to the given physical
and computational constraints, reflected by the tolerance val-
ues in the model design. This in practice means that our ref-
erence mesh cell will contain at most, or at least, one node
of the ensemble member mesh in either the high- or low-
resolution cases, respectively. Hence, using this characteriza-
tion, we can avoid excessive smoothing or interpolation at the
mapping stages. Depending on whether the tolerances are di-
visors of the model domain dimension, the reference meshes
can also be themselves valid meshes; nevertheless this con-
dition is not required for the applicability of our approach.

We tested our modified EnKF using two 1-D models, the
Burgers and Kuramoto–Sivashinsky equations. A set of sen-
sitivity tests is carried through some key model and DA
setup parameters: the ensemble size, inflation factor and ini-
tial mesh size. We considered two types of observations: Eu-
lerian and Lagrangian. It is shown that, in general, a high-
resolution fixed reference mesh improves the estimate more
than a low-resolution fixed reference mesh. Whereas this
might indeed be expected, our results also show that a low-
resolution reference mesh affords a very high level of accu-
racy if the EnKF is properly tuned for the context. The use of
a low-resolution fixed mesh has the obvious advantage of a
lower computational burden, given that the size of the matrix

operations is to be implemented at the analysis step scales
with the size of the fixed reference mesh.

We then examined the impact of assimilating Lagrangian
observations compared with Eulerian ones and have seen, in
the context of Burgers equation, that the former improves
the solution as much as the latter. The effectiveness of La-
grangian observers, despite being fewer in number than for
the case of fixed, Eulerian observations, comes from their
concentrating, where their information is most useful, i.e.,
within the sharp single (shock-like) front of the Burgers so-
lution.

In this work, we have focused on the design of the strategy
and, for the sake of clarity, have focused only on updating
the physical quantities, while the locations of the ensemble
mesh nodes were left unchanged. A natural extension of this
study is to subject both the model physical variables and the
mesh locations to the assimilation of data. Both would then
be updated at the analysis time, and this is currently under
investigation.

This paper is part of a longer-term research effort aimed at
developing suitable EnKF strategies for a next-generation 2-
D sea-ice model of the Arctic Ocean, neXtSIM, which solves
the model equations on a triangular mesh using finite ele-
ment methods and a Lagrangian solver. The velocity-based
mesh movement and remeshing procedure that we have built
into our 1-D model scenarios were formulated with the aim
of mimicking those specific aspects of neXtSIM. In terms
of our different types of observations, the impact of Eule-
rian and Lagrangian observational data was studied in light
of observations gathered by satellites and drifting buoys, re-
spectively, which are two common observing tools for Arctic
sea ice.

Such a 2-D extension is, however, a non-trivial task for
a number of fundamental reasons. First of all, given the tri-
angular unstructured mesh in neXtSIM, we cannot straight-
forwardly define an ordering of the nodes on the adaptive
moving mesh, as is done in the 1-D case considered here. As
a consequence, the determination of a fixed reference mesh
might not be linked to the remeshing criteria in the same
straightforward way. However, it is still possible to define
a high- or low-resolution fixed reference mesh with respect
to the mesh of neXtSIM, since the remeshing in neXtSIM is
mainly used to keep the initial resolution throughout the in-
tegration. Secondly, the models considered in this study are
proxies of continuous fluid flows, whereas the rheology im-
plemented in neXtSIM treats the sea ice as a solid brittle ma-
terial which results in discontinuities when leads and ponds
form due to fracturing and ice melting; the Gaussian assump-
tions implicit in the EnKF formulation then need to be re-
considered. Nevertheless, the methodology presented in this
study, and the experiments herein, confronts some of the key
technical issues of the 2-D case. The current results in 1-D
are encouraging regarding the applicability of the proposed
modification of the EnKF to adaptive moving mesh models
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in two dimensions, and the extension to two dimensions is
the subject of the authors’ current research.
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A. Aydoğdu et al.: Data assimilation using adaptive, non-conservative, moving mesh models 193

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast
error statistics, J. Geophys. Res.-Oceans, 99, 10143–10162,
https://doi.org/10.1029/94JC00572, 1994.

Evensen, G.: The ensemble Kalman filter: Theoretical formula-
tion and practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.

Evensen, G.: Data Assimilation: The Ensemble Kalman Filter,
Springer-Verlag/Berlin/Heildelberg, second edn., ISBN 978-3-
642-03711-5, 2009.

Fang, F., Piggott, M., Pain, C., Gorman, G., and Goddard, A.: An
adaptive mesh adjoint data assimilation method, Ocean Model.,
15, 39–55, https://doi.org/10.1016/j.ocemod.2006.02.002, 2006.

Farrell, P., Piggott, M., Pain, C., Gorman, G., and Wilson, C.:
Conservative interpolation between unstructured meshes via su-
permesh construction, Comput. Meth. Appl. Mech. Eng., 198,
2632–2642, https://doi.org/10.1016/j.cma.2009.03.004, 2009.

Houtekamer, P. L. and Zhang, F.: Review of the Ensem-
ble Kalman Filter for Atmospheric Data Assimilation, Mon.
Weather Rev., 144, 4489–4532, https://doi.org/10.1175/MWR-
D-15-0440.1, 2016.

Huang, W. and Russell, R. D.: Adaptive moving mesh methods,
vol. 174, Springer Science & Business Media, ISBN 978-1-4419-
7916-2, 2010.

Huang, W., Zheng, L., and Zhan, X.: Adaptive moving mesh meth-
ods for simulating one-dimensional groundwater problems with
sharp moving fronts, International J. Numer. Meth. Eng., 54,
1579–1603, https://doi.org/10.1002/nme.482, 2002.

Jain, P. K., Mandli, K., Hoteit, I., Knio, O., and Daw-
son, C.: Dynamically adaptive data-driven simulation of
extreme hydrological flows, Ocean Model., 122, 85–103,
https://doi.org/10.1016/j.ocemod.2017.12.004, 2018.

Kalman, R. E.: A new approach to linear filtering and prediction
problems, J. Fluid. Eng., 82, 35–45, 1960.

Kuznetsov, L., Ide, K., and Jones, C.: A method for assimilation of
Lagrangian data, Mon. Weather Rev., 131, 2247–2260, 2003.

Maddison, J., Marshall, D., Pain, C., and Piggott, M.: Accurate rep-
resentation of geostrophic and hydrostatic balance in unstruc-
tured mesh finite element ocean modelling, Ocean Model., 39,
248–261, https://doi.org/10.1016/j.ocemod.2011.04.009, 2011.

Marsan, D., Stern, H. L., Lindsay, R., and Weiss, J.:
Scale dependence and localization of the deforma-
tion of Arctic sea ice, Phys. Rev. Lett., 93, 178501,
https://doi.org/10.1103/PhysRevLett.93.178501, 2004.

Nodet, M.: Variational assimilation of Lagrangian data in oceanog-
raphy, Inverse problems, 22, 245, https://doi.org/10.1088/0266-
5611/22/1/014, 2006.

Pain, C., Piggott, M., Goddard, A., Fang, F., Gorman, G., Marshall,
D., Eaton, M., Power, P., and de Oliveira, C.: Three-dimensional
unstructured mesh ocean modelling, Ocean Model., 10, 5–33,
https://doi.org/10.1016/j.ocemod.2004.07.005, 2005.

Pannekoucke, O., Bocquet, M., and Ménard, R.: Paramet-
ric covariance dynamics for the nonlinear diffusive Burg-
ers equation, Nonlin. Processes Geophys., 25, 481–495,
https://doi.org/10.5194/npg-25-481-2018, 2018.

Papageorgiou, D. T. and Smyrlis, Y. S.: The route to chaos for
the Kuramoto-Sivashinsky equation, Theor. Computat. Fluid Dy-
nam., 3, 15–42, 1991.

Partridge, D.: Numerical modelling of glaciers: moving meshes and
data assimilation, PhD thesis, University of Reading, 2013.

Raanes, P. N., Bocquet, M., and Carrassi, A.: Adaptive co-
variance inflation in the ensemble Kalman filter by Gaus-
sian scale mixtures, Q. J. Roy. Meteor. Soc., 145, 53–75,
https://doi.org/10.1002/qj.3386, 2019.

Rabatel, M., Rampal, P., Carrassi, A., Bertino, L., and Jones, C. K.
R. T.: Impact of rheology on probabilistic forecasts of sea ice
trajectories: application for search and rescue operations in the
Arctic, The Cryosphere, 12, 935–953, https://doi.org/10.5194/tc-
12-935-2018, 2018.

Rampal, P., Weiss, J., Marsan, D., Lindsay, R., and Stern,
H.: Scaling properties of sea ice deformation from buoy
dispersion analysis, J. Geophys. Res.-Oceans, 113, C03002,
https://doi.org/10.1029/2007JC004143, 2008.

Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM:
a new Lagrangian sea ice model, The Cryosphere, 10, 1055–
1073, https://doi.org/10.5194/tc-10-1055-2016, 2016.

Rampal, P., Dansereau, V., Olason, E., Bouillon, S., Williams,
T., and Samaké, A.: On the multi-fractal scaling prop-
erties of sea ice deformation, The Cryosphere Discuss.,
https://doi.org/10.5194/tc-2018-290, in review, 2019.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensem-
ble Kalman filter: an alternative to ensemble square root filters,
Tellus A, 60, 361–371, 2008.

Saksono, P. H., Dettmer, W. G., and Perić, D.: An adaptive
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