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Plants emit an extraordinary diversity of chemicals, providing information about1

their identity and mediating interactions with insects. However, most studies have2

focused on a few model species in controlled environments, limiting our capacity to3

understand plant-insect chemical communication in ecological communities. Here, by4

integrating information theory with ecological and evolutionary theories, we show5

that a stable information structure of plant volatile organic compounds (VOCs) can6

emerge from a conflicting information process between plants and herbivores. We7

corroborate this information arms-race theory with field data recording plant-VOC8

associations and herbivore-plant interactions in a tropical dry forest. We reveal that9

plant VOC redundancy and herbivore specialization can be explained by a conflicting10

information transfer. Information-based communication approaches can increase our11

understanding of species interactions across trophic levels.12

One-sentence summary: We find that a stable information structure of plant volatile organic13

compounds can emerge from a conflicting information process between plants and herbivores in14

ecological communities.15
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Chemical information is an ancient and ubiquitous channel to mediate species interactions (1)16

(e.g., attracting or repelling individuals) and regarded as one of the main forces shaping17

plant-herbivore interaction networks (2,3). For example, insects have a large number of olfactory18

receptors with high sensitivity for chemical signals (4,5), which play essential roles in their19

fundamental activities (6) including foraging (7) and oviposition (8). Chemically-mediated species20

interactions are based on information transfer; which, we define simply as communication21

regardless of the benefit to the emitter and receiver, following previous work (9). Indeed,22

understanding the chemical communication between plants and herbivores has been an active23

field of research (10–12), where the majority of work has focused on how a specific plant (or24

genus) defends against herbivores directly by using chemical repellents (13)or by producing25

stronger chemical defenses (14–16), or indirectly by emitting signals to attract herbivores’26

enemies (e.g., predators or parasitoids) (17–22). So far, only a few descriptive studies (23,24)27

have begun to investigate this chemical communication at the community level. More critically,28

little is known about how information transfer shapes species interactions. For example, it29

remains unclear how plants code chemical information to deal with a diversity of potential30

herbivores, and how herbivores decode such olfactory signals to distinguish among plants and31

identify potential hosts. Even less is known about whether there is any general information32

structure of plant-herbivore chemical communication, and how such structure can be maintained33

under an ongoing chemical arms race between plants and herbivores.34

Information theory (25), which provides a quantitative and scalable way to measure information35

transfer, has already brought key insights about the structure and emergence of human36

language (26) and can be extended to increase our understanding about the “chemical language”37

in ecological communities (12,27–29). Yet, such attempts have only been employed to study38

chemical communication of a single plant species with its interacting insects (30). Here, we39

employ information theory to study plant volatile organic compounds (VOCs) as a40

communication channel forming plant-insect interaction networks (31). From an information41

perspective, the relationship between a sender and a receiver (or speaker and hearer) determines42

the nature of the signal transmission as well as the evolution of the information structure shaping43

the communication pattern between individuals. That is, individuals can either provide clear44

information that could be decoded easily or spurious information that could be di�cult to decode.45

Moreover, a conflicting or harmonious communication process between sender and receiver can be46
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modeled by the combinations of maximizing or minimizing uncertainty (or mutual information) of47

the two parties, respectively (26).48

Specifically, for a given communication system that is formalized by a matrix describing how a49

vector of signals (S) is associated with a vector of objects (O), the clearness (or the spuriousness)50

of the communication can be described by two important information measurements (25): First,51

mutual information (I(O,S)) describes the amount of information that one can obtain about52

objects by knowing the signals. Second, conditional entropy (H(O|S)) describes the uncertainty53

of correctly identifying an object given that a specific signal has been observed (Ref. (32) provides54

a detailed mathematical account of these expressions). Importantly, both mutual information and55

conditional entropy represent the e�ciency of the coding (and decoding) strategies and can be56

related to the fitness of senders and receivers (26).57

Tropical dry forests host a large number of interacting and co-evolving plant and butterfly species58

and are regarded as biodiversity hotspots (33). Our field work was conducted in a tropical dry59

forest of the Chamela-Cuixmala Biosphere Reserve (19� 22’-19� 39’N, 104� 56’-105� 10’W) in60

Jalisco, Mexico. During the rainy season of 2018, we searched comprehensively for Lepidopteran61

larvae on leaves of target plants in our transect plots and reared the larvae in the laboratory with62

leaves collected from their host plant species to confirm their trophic interaction and identify the63

herbivore species. Ref. (32) provides a detailed account of plants and insects, sampling, and64

identification procedures. We constructed a qualitative (presence/absence) animal-plant (AP )65

interaction matrix comprising 28 Lepidopteran herbivore species and 20 plant species. The AP66

matrix was rather sparse (see Figure 1A, Table S1) with a median of 1 plant species per herbivore67

(ranging from 1 to 9 plant species per herbivore).68

Additionally, we sampled the headspace around leaves to retrieve VOCs from each of these plant69

species. We were able to match 93 analytes from headspace samples to the NIST17 VOC library,70

of which 56 were likely biogenic (from plants, or from plants and microbes), and 31 of these71

biogenic VOCs could be identified by one or more abundant ions in an untargeted analysis. We72

used single representative ions from these 31 VOCs for quantification. Ref. (32) provides a73

detailed account of VOC sampling, identification, and quantification procedures. Figure 1B (and74

Table S2) shows that, contrary to the AP matrix, the plant-VOC (PV ) association matrix is75

dense and erratic with a median of 28 VOCs per plant (ranging from 23 to 30 VOCs ).76
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Importantly, the PV matrix provides information about plant-VOC associations, whereas the AV77

matrix (mathematically defined by the matrix multiplication AP ⇥ PV ) provides information78

about herbivore-VOC associations. These associations describe the patterns of plants emitting79

information and herbivores receiving it, and thus represent plant coding and herbivore decoding80

strategies. The AV matrix (Fig. 1C) is dense and weighted, indicating that individual VOCs are81

associated with more than one herbivore. Note that to generate the herbivore-VOC association82

(AV matrix) we assumed that if a herbivore can feed on a plant, it must be able to cope with83

spatial and temporal variation in VOCs that are used to distinguish suitable hosts, despite the84

e↵ects of these VOCs on the herbivore (attract, deter, neutral). Altering either the PV or AP85

matrix can change the herbivore-VOC associations (AV matrix).86

We built the conceptual framework for our study based on a conflicting optimization process87

between plants and herbivores (see Fig. 2). Specifically, we hypothesized that plants aim to88

decrease the decoding e�ciency of herbivores via changing plant-VOC associations (PV), whereas89

herbivores aim to increase this e�ciency via changing herbivore-plant interactions (AP).90

Ecologically, the decoding strategy can be linked to the fitness of plants and herbivores. A high91

decoding e�ciency can increase the attack rates and decrease the fitness of plants. In contrast,92

low e�ciency can increase the searching time and decrease the fitness of herbivores (12). Formally,93

we define the fitness relationships as FP = H(A|V ) 2 [0, 1] and FA = 1�H(V |A) 2 [0, 1],94

respectively. That is, plant fitness is proportional to the conditional entropy (uncertainty)95

between VOCs and herbivores, whereas herbivore fitness is negatively proportional to the96

conditional entropy between herbivores and VOCs. Ref. (32) provides details on the calculations.97

To track the evolutionary trajectory of the communication system between plants and herbivores98

based on our hypothesis, we simulated the optimization process above in the following way. Plants99

and herbivores can increase their fitness relationships (based on the AV matrix) via modifying100

the interactions in the PV matrix and in the AP matrix, respectively (see Figure 2). These101

modifications come from random mutations of a given number of elements in the PV and AP102

matrices. We assumed equal mutation rate for each link (plant-VOC link or herbivore-plant link)103

in the absence of any prior knowledge. Therefore, the number of random mutations that plants104

and herbivores can have for each round were proportional to the number of all possible links (i.e.,105

number of elements in PV and AP matrices). Mutations are only selected if they increase the106

corresponding fitness relationships. To mimic a continuous arms race, we only allowed changes by107
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plants and herbivores in an alternating fashion (see Figure 2). Both the PV and AP matrices can108

be initialized from any random configuration with the only restriction of matrix size. To make our109

simulation as simple as possible, we assumed that plants can potentially emit any VOC and110

herbivores can potentially eat any plant without any phylogenetic or physiological constraints.111

We investigated the capacity of our hypothesized mechanism to explain both the (de)coding112

strategies and the information structure of chemical communication between plants and113

herbivores observed in the field. Specifically, we determined the ability of our model to explain114

the conditional entropies H(P |V ), H(A|P ), and H(A|V ); which characterize the PV , AP , and115

AV matrices, respectively. Then, we determined its ability to explain the observed fitness116

relationships FP and FA. Note that conditional entropy by definition is the average entropy given117

each specific signal (i.e., individual VOC in the case of H(P |V ) and H(A|V )). Furthermore, we118

tested how accurately our model could generate the cumulative information structure given a119

combination of VOCs by calculating the mutual information between plants and VOCs (I(P, V ))120

and between herbivores and VOCs (I(A, V )) as a function of the number of VOCs.121

Additionally, we compared our proposed optimization mechanism against the three following122

alternative optimization mechanisms: The fitness relationships of plants and herbivores depend on123

their capacity to (1) maximize uncertainty (i.e., FP = H(A|V ) and FA = H(V |A)), (2) minimize124

uncertainty (i.e., FP = 1�H(A|V ) and FA = 1�H(V |A)), and (3) minimize and maximize125

uncertainty (i.e., FP = 1�H(A|V ) and FA = H(V |A)). We also ran all our simulations over126

di↵erent initial conditions, ranging from highly specialized to highly generalized matrices. The127

rationale for using these alternative mechanisms and initializations is to illustrate that potential128

matches between our theoretical expectations and observed values are not just an artifact of129

sample size, metrics, any given optimization process, or the high (low) connectivity observed in130

the PV (AP) matrix. Ref. (32) provides all the details about these additional analyses.131

Because sampling bias is an important concern in the majority of ecological studies (34), we132

tested whether our results would be a↵ected by the sampling e↵ort in reporting species, by an133

incomplete plant VOC profile, and by sampling the interaction network in a di↵erent year or134

place. We found that all our results were qualitatively equivalent when using sub-samples from135

the whole dataset (illustrating the scalability of our findings), changing the VOC profile from 31136

to 52 by including potential undefined biogenic VOCs, and using information of plant-herbivore137

interaction networks from previous years (from 2007-2017) (35). Ref. (32) provides all the details138
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about the robustness of our results to changes in community size, number of VOCs, and identity139

and number of species interactions.140

Figure 3 shows that the proposed, conflicting, information process is able to explain the coding141

and decoding patterns observed in the field. In particular, Figure 3A shows that the conditional142

entropies H(P |V ) (see triangles), H(A|P ) (see squares), and H(A|V ) (see circles) remain143

bounded across the simulated time to values close to those observed (see dashed, dotted and solid144

lines). Similarly, Figure 3B shows that the optimized fitness relationships of plants FP (see +145

symbols) and herbivores FA (see ⇥ symbols) quickly converge to a stable value close to that146

observed (see solid lines). Importantly, Figure 3C shows that the alternative optimization147

mechanisms are not able to explain all the patterns.148

Additionally, Figure 4 shows that of our four tested models, only our proposed conflicting149

optimization process can recover the information structure observed in the field. Recall that we150

measured the cumulative information structure by the mutual information (I(P, V ) and I(A, V )),151

where values closer to one imply that the presence or absence of a VOC (or a combination of152

VOCs) gives more information or has higher probability to tell all the species apart. In fact, the153

field data revealed that as few as 8 VOCs can tell all the plants apart and 15 VOCs can give 97%154

information about herbivores (i.e., have 97% of probability to correctly tell all the herbivores155

apart). Importantly, this structure was closely recovered by our proposed optimization156

mechanism (9 VOCs yield all the information of plants, and 14 VOCs for 97% information of157

herbivores, red lines). In contrast, the three alternative optimization mechanisms yield very158

di↵erent information structures, where either a large number of VOCs would be needed to159

uniquely identify species or the identification from VOCs would be less likely. For example, in the160

case where both parties aim to maximize uncertainty (i.e., confuse their opponents as in a161

mutually competitive relationship, blue lines), even by using the combination of all VOCs, it162

would be impossible to tell all the species apart. All these results are robust to changes in163

community size, number of VOCS, the identity and number of species interactions, and di↵erent164

initial conditions (see Ref. (32) Fig. S1-S6).165

While a few recent studies have begun to demonstrate chemical patterns associated with166

plant-insect communities (24,31,36), our study proposes a plausible theoretical framework that167

explains and recovers patterns of information transfer between plants and herbivores from168

empirical data. Our work is hypothesis-driven and suggests that an information arms race169
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between plants and herbivores can drive plants to produce VOCs that are commonly shared by170

other species, increasing the di�culty for herbivores to identify suitable plants and potentially171

pressuring herbivores to specialize on a few plants (as the AP matrix shows in Fig. 1). Indeed,172

previous studies have shown a substantial overlap among the VOCs emitted by di↵erent plant173

species (31,37,38). However, functional roles of a large portion of plant VOCs have been174

unexplained and overlooked because most mechanistic studies have focused on specific plant175

species and on the ecological functions of only a few VOCs (12). Here, our information arms-race176

theory suggests that these seemingly redundant VOCs play an important role in confusing177

herbivores at the community level. Focusing on herbivore-plant interactions, herbivores are178

commonly regarded as specialists (6), which was also recovered from our theory. In fact, it is179

estimated that < 10% of all herbivores feed on plants that span more than 3 families (39).180

Our findings further suggest that a conflicting information process drives the rapid accumulation181

of information by adding VOCs (Fig. 4), contrary to other optimization processes. This provides182

additional evidence for an arms-race process explaining the large diversity of VOCs in nature,183

where herbivores have the evolutionary potential to quickly tell all plant species apart by making184

use of the few most informative VOCs and plants can in-turn respond to this potential by adding185

more VOCs to their profile. Interestingly, under the same process, herbivores themselves can also186

be identified using a set of informative VOCs (Fig. 4B). This raises the question of how these187

VOC profiles result in evolutionary trade-o↵s regulating the attraction of herbivores and their188

predators and parasitoids (17,18). Overall, our study suggests information-transfer processes are189

key drivers of the formation and maintenance of species interactions across trophic levels.190

(34,35,40–45)191
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26. Ferrer-i Cancho R, Solé RV (2003) Least e↵ort and the origins of scaling in human language.246

Proceedings of the National Academy of Sciences 100:788–791.247

27. Margalef R (1968) Perspectives in Ecological Theory (University of Chicago Press, Chicago).248

28. Ulanowicz RE (2001) Information theory in ecology. Computers & Chemistry 25:393–399.249

29. O’Connor MI, et al. (2019) Principles of ecology revisited: integrating information and250

ecological theories for a more unified science. Frontiers in Ecology and Evolution 7:219.251

30. Doyle L (2009) Quantification of information in a one-way plant-to-animal communication252

system. Entropy 11:431–442.253

31. Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S (2017) The network of plants volatile254

organic compounds. Scientific reports 7:1–18.255

256� 32.� See�the�supplementary�material.

257� 33.� Miles�L,�et�al.� (2006)�A�global�overview�of�the�conservation�status�of�tropical�dry� forests.

Journal of Biogeography 33:491–505.258

34. Chase JM, Knight TM (2013) Scale-dependent e↵ect sizes of ecological drivers on259

biodiversity: why standardised sampling is not enough. Ecology Letters 16:17–26.260

35. Boege K, et al. (2019) Temporal variation in the influence of forest succession on caterpillar261

communities: A long-term study in a tropical dry forest. Biotropica 51:529–537.262

36. Kantsa A, Raguso RA, Lekkas T, Kalantzi OI, Petanidou T (2019) Floral volatiles and263

visitors: A meta-network of associations in a natural community. Journal of Ecology264

107:2574–2586.265

37. Courtois EA, et al. (2009) Diversity of the volatile organic compounds emitted by 55 species266

of tropical trees: a survey in french guiana. Journal of Chemical Ecology 35:1349–1342.267

38. Knudsen JT, Eriksson R, Gershenzon J, St̊ahl B (2006) Diversity and distribution of floral268

scent. The Botanical Review 72:1.269

39. Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous270

arthropods. Ecology 69:886–892.271

11



40. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through272

dna barcodes. PLoS Biology 2:e312.273

41. Kallenbach M, Veit D, Eilers EJ, Schuman MC (2015) Application of silicone tubing for274

robust, simple, high-throughput, and time-resolved analysis of plant volatiles in field275

experiments. Bio-protocol 5(3):e1391.276

42. R Core Team (2017) R: A Language and Environment for Statistical Computing (R277

Foundation for Statistical Computing, Vienna, Austria).278

43. Qi J, et al. (2016) Oral secretions from mythimna separata insects specifically induce defence279

responses in maize as revealed by high-dimensional biological data. Plant, cell & environment280

39:1749–1766.281

44. Villa-Galaviz E, Boege K, del Val E (2012) Resilience in plant-herbivore networks during282

secondary succession. PLoS ONE 7:e53009.283

45. Saavedra S, et al. (2017) A structural approach for understanding multispecies coexistence.284

Ecological Monographs 87:470–486.285

12



ACKNOWLEDGEMENTS286

We thank Inari Sosa Aranda and Richard Moore for their help in field work, Geo↵ey Kite for his287
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Figure legends305

Fig. 1. Field data on herbivore (animal)-plant interactions, plant-VOC associations,306

and herbivore-VOC associations. Panel A, each row and column represents one of the 28307

insect herbivores and 20 plants sampled, respectively. Black and white squares show that a given308

herbivore was, or was not observed feeding on a given plant, respectively. We refer to this as the309

AP matrix and we use it to investigate the plant-herbivore interaction network. Panel B, each310

row and column represent one of the 20 plants and 31 VOCs sampled, respectively. Black and311

white squares show that a given VOC was present or absent in a given plant, respectively. We312

refer to this as the PV matrix and we use it to investigate the coding strategy of plants. Panel C313

shows the matrix of herbivore-VOC associations produced by the multiplication of the previous314

two matrices (AP ⇥ PV ). Each row and column represents one of the 28 herbivores and 31 VOCs315

associated, respectively. The darker the squares, the greater the frequency with which a given316

herbivore is associated with a given VOC. We refer to this as the AV matrix and we use it to317

investigate the decoding strategy of herbivores. See Ref. (32) Table S1-S2 for more information318

about these matrices.319

Fig. 2. Conceptual diagram of the proposed, conflicting, information process320

(information arms race) between plants and insect herbivores. The coding strategy by321

plants is characterized by the plant-VOC (PV ) association matrix (green right box). The322

animal-plant (AP ) interaction matrix (blue left box) is used to infer how plants’ codes are323

decoded by herbivores. These matrices undergo mutations by changing any of their elements (e.g.,324

red numbers): zeros and ones correspond to absence and presence, respectively. These mutations325

will fixate only if the fitness relationship of the corresponding species increases. The fitness326

relationship of species is defined by herbivores’ decoding e�ciency based in the communication327

system, i.e., the AV matrix that results from the product of AP and PV matrices. Specifically,328

we defined plant and herbivore fitness relationships by the expressions FP = H(A|V ) and329

FA = 1�H(V |A), where H(·) corresponds to the conditional entropy. To increase this fitness330

relationship, plants and herbivores go through an alternating optimization process, mimicking331

their arms race. Main text and Ref. (32) provide details about this process.332
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Fig. 3. Simulated results based on the information arms-race theory recover the333

observed information structures in the field. Panel A illustrates the simulation over 1000334

time steps derived from our proposed optimization mechanism (information arms-race). The335

simulation is randomly initialized. The circles, triangles and squares correspond to the conditional336

entropies H(A|V ), H(P |V ) and H(A|P ), respectively. The solid, dotted and dashed lines stand337

for the corresponding conditional entropies from field observations. For the same simulation, in338

Panel B, the + and ⇥ symbols correspond to the fitness relationships of plants (FP ) and339

herbivores (FA), respectively. The solid lines correspond to the field observations. Panel C shows340

the summary of the observed and simulated values (mean± s.d.) based on the last 250 steps (the341

rectangle window in Panel A) when reaching equilibrium for our proposed mechanism (in red;342

plants aim to maximize, maxA, and herbivores aim to minimize, minP , uncertainty of343

information, see Fig. 2) and the corresponding ones for the three alternative mechanisms (in344

green, yellow, and blue; the alternative combinations of the maximization and minimization).345

Fig. 4. Emergence of cumulative mutual information. The figure shows the information346

structure characterized by the cumulative mutual information of A) plants and VOCs, i.e.,347

I(P, V ) and that of B) herbivores and VOCs, i.e., I(A, V ). The higher the value, the better that348

the presence or absence of VOCs can identify plants. The cumulative mutual information is349

calculated as a function of the number of VOCs. The black curve corresponds to the field350

observation, whereas the colored curves correspond to the proposed (in red) and alternative351

optimization mechanisms. Dashed lines correspond to the minimum number of VOCs that gives352

the best mutual information according to the field data.353
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Materials and Method

A Field data

Field site

The field data were collected in 2018 from a tropical dry forest located in the surroundings
Chamela-Cuixmala Biosphere Reserve (19� 22’-19� 39’N, 104� 56’-105� 10’W) in Jalisco, Mexico.
This site has been established for plant-herbivore network annual surveys during rainy seasons
since 2007. Annual average precipitation during the past 12 years ranged from 523 to 1172 mm.
There are three stages of secondary succession of the forest: mature (more than 50 years with-
out anthropogenic perturbations), intermediate (approximately 20 years after being excluded and
protected from cattle ranching use), and early (approximately 6 years after being excluded and
protected). We targeted 20 tree species in plots belonging to the three stages (See Tables S1-S2
for a detailed list of species).

Construction of field plant-herbivore network

To sample herbivores within each plot, we established four transects of 2 ⇥ 20m every 10m, in
which we marked all the target tree species with diameter � 1cm and height � 50cm. We searched
for Lepidopteran larvae on all the leaves up to 3 meters of the target trees, and in the cases of taller
trees, we randomly chose 3 branches per individual for searching. We conducted a monthly census
during the four-month rainy season. We reared larvae to adulthood in the laboratory with leaves
from the species on which they were found to confirm their trophic interaction. Lepidopterans
were identified using traditional taxonomy complemented with molecular identification (we used
the standard DNA barcoding for insects: cytochrome oxidase I, or COI, mitochondrial DNA) of
operational taxonomic units (35, 40 ), especially for those cases in which adults failed to emerge.
We edited sequences with Sequencher version 4.0.5 (Gene Codes) and aligned them manually based
on their translated amino acids. All caterpillars and their host plants registered within the year in
each plot were considered as a pooled community, hence we had a total of 29 herbivore species on
the targeted plant species. Specific details on the sampling design, molecular identification and
species identities can be found in Ref. (35 )

Plant VOC collection and construction of plant-VOC network

We sampled the leaf headspace from three individuals each of the 20 target tree species that
were sampled in the field from August 27th - 31st, 2018. We used polydimethysiloxane (PDMS)
tubing (provided by the Max Planck Institute for Chemical Ecology, Jena, Germany) following
the method developed in Ref. (41 ). Specifically, we selected leaves with no or minimal damage
and gently covered it with a cleaned Polyethylene tetraphthalate (PET) cup. A PET lid was
also used to close the cup, with a hole allowing the petiole to penetrate. We punctured two
holes (one at the bottom of the cup, one in the center of lid where the petiole went through) to
avoid moisture accumulation. We placed five pieces of silicone tubing (each 5mm length, 1mm
i.d. ⇥ 1.8mm o.d.) in each cup and left these to equilibrate for 24 hours to avoid differences due
primarily to daily dynamics of VOC emission. We set two to three air controls from empty cups
for each successional stage plot and each round of VOC sampling. At the end of each sampling,
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we removed the leaves from the cups and transferred the silicone tubing from each sample into
a 1.5ml glass vial (Sigma-Aldrich Chemie Gmbh, Munich, Germany), and screwed on the vial
lid (with PTFE/silicone septum bonded, Sigma-Aldrich Chemie Gmbh Munich, Germany). We
stored samples in a �20�C freezer before transport to the Royal Botanic Gardens, Kew, London,
UK for analysis.

To analyze the leaf VOC samples, we used an Agilent Technologies (Palo Alto, CA, USA, 7890A)
gas chromatograph connected to an Agilent Technologies 5975C MSD mass spectrometer (GC-
MS) coupled with a Markes International TD100 thermal desorption auto-sampler. We placed
two silicone tubes from each sample into the sample tray and injected desorbed volatiles into the
GC under a temperature program following Ref. (41 ). The GC was equipped with an Agilent
Technolgies DB-5 MS capillary column (30m length, 0.25mm diameter, 0.25µm film thickness).
We set the temperature of the GC oven to 40�C (5min hold) and increased to 185�C at 5�C/min,
then increased to 280�C at 30�C/min (0.83min hold). We used helium as the carrier gas, with a
constant flow of 40 cm/second.

To retrieve leaf VOC profiles, we used an untargeted analysis to screen all the peaks across all
the samples in R (42 )using the package XCMS as described in Qi et al. 2016 (43 ). We removed
the typical contamination peaks, and then compared the analytes from headspace samples with
the National Institute of Standards and Technologies NIST17 mass spectral library. The relative
retention of different identified compounds was checked against that expected for a DB5 column.
This allowed the assignment of 93 analytes (although did not distinguish enantiomers where they
may have occurred e.g., (+) and (�) ↵-pinene) of which 56 were likely biogenic (from plants,
or from plants and microbes), and 31 of the biogenic VOCs could be identified by one or more
abundant ions (i.e., ions specific to the analyte and having at least 20% of the maximum relative
intensity across the electron impact mass spectrum) in an untargeted analysis. Each VOC may
be represented by a "fingerprint" of multiple m/z values. We chose one m/z value to represent
one VOC. If we had used all m/z values for each VOC, this would have produced multiple peaks
per VOC (redundant information) as well as different numbers of peaks for different VOCs. An
alternative is to use the TIC (total ion chromatogram) but that is less specific and is inaccurate
in cases where there is chromatographic overlap of VOCs, or of VOCs with contaminants (41 ).
Then we generated qualitative data (1 for presence, 0 for absence) for each species by comparing
the peaks in the samples to those in the air controls. Due to the variation of VOC emission within
species, we regarded it to be ’presence’ as long as one or more individual emitted the compound
in a greater amount than in the air controls. The plant-animal interaction matrix as well as the
plant-herbivore association matrix were constructed by pooling together the four plots sampled
in our study. This was done in order to provide a better approximation to a community-wide
pattern of communication.

We used the plant-VOC matrix with either 31 or 56 VOCs to test the robustness of our results
to changes in the number of VOCs. In addition to the 20 target tree species that were used
for the plant-VOC network in year 2018, we also randomly chose another 27 tree species in
different succession stages and collected their VOCs. These 47 plants and their VOC patterns
were used to test the robustness of our results to changes in species interaction networks from
other years (2007-2017) (See bellow Section D Robustness tests concerning effects of sampling bias.
Zu_etal_2020_Data_Archive.xlsx).

Note that in this study, we sampled plant VOCs in the field under natural conditions, reflecting
an ecologically relevant chemical environment encountered by herbivores. Our data represent
qualitative "snapshots" of VOCs likely including both constitute and induced VOCs. Additionally,
we have taken a top-down perspective: if an herbivore can feed on a plant, it must be able to deal
with the VOCs which the plant emits, despite the effect of each VOC on the herbivore (attract,
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deter, neutral). Because insects are known to have a large number of olfactory receptors with
high sensitivity, it should therefore be reasonable to assume that the insects in our community
take into account plant VOCs across spatial and temporal variation when deciding where to feed.
However, future work can explore the capacity of our theoretical work in understanding chemical
communication and species interactions by including different sets of VOCs (e.g., constitute and
induced VOCs), VOCs from different organs (e.g., from flowers, leaves and roots), and different sets
of partners across trophic levels (e.g., pollinators, microbes, parasitoids and predators). Moreover,
experimental work could be further conducted to determine which VOCs are relevant for which
herbivores. This includes measuring VOC profiles under controlled conditions, e.g., measuring
before and after herbivore damage, conducting behavioral assays using synthetic compounds,
using different VOC concentrations and combinations, and measuring from a larger number of
samples per species. There are many such published studies which could perhaps be analyzed
using the framework we propose here. Similar experiments can be conducted repeatedly along
time (seasons) to explore temporal dynamics of chemical communication between plants and
insects.
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B Information theory

For any binary m ⇥ n matrix, say object-signal (OS) matrix with m objects and n signals and
each element osij (i 2 1, 2, ...,m, j 2 1, 2, ..., n) representing the presence osij = 1 or absence
osij = 0 of an interaction (or association), we can calculate the conditional entropy as Hn(O|S) =Pn

j=1 P (Sj)Hn(O|Sj). Note that Hn(O|S) 2 (0, 1), where the higher the value, the higher the
uncertainty (information needed) to know the outcome (identity) of an object given that a specific
signal was observed. In this calculation, P (Sj) =

Pm
i=1 osi,jPm,n

i=1,j=1 osi,j
corresponds to the probability of

having signal j given that signal was observed. Then, Hn(O|Sj) = �
Pm

i=1 P (Oi|Sj)lognP (Oi|Sj),
where P (Oi|Sj) =

osi,jPm
i=1 osi,j

corresponds to the probability of having object i given that signal j
was observed.

We can also calculate the mutual information I(O,S) = Hm(O) � Hn(O|S), where Hn(O|S)
is calculated as previously mentioned, and Hm(O) = �

Pm
i=1 P (Oi)lognP (Oi). In our analysis,

objects correspond to species and given that we generated qualitative matrices (with 0s and 1s), we
did not use species abundances and considered P (Oi) =

1
m . Note that I(O,S) = I(S,O) 2 (0, 1),

where the higher the value, the greater the information (identity) that we can obtain about an
object by knowing the presence or absence of a signal.

Similarly, to calculate the mutual information between an object and a library (combination)
of signals, we constructed new matrices describing an object and a library (i.e., a OL matrix).
For example, for a given library size (say 2) with a given set of signals (say S1 and S2), all the
unique combinations of the library (e.g., (1,1),(1,0),(0,1), and (0,0)) would form the columns of the
matrix and the objects form the rows. Then, we filled the elements of the OL matrix with either
1 or 0, depending on the presence or absence of the specific set of signals in the corresponding
object. As the library size increases, the number of signal combinations exponentially increases,
making potential analyses infeasible. For example, choosing a library size of 2 out of 50 will give
2, 450 different combinations, whereas choosing a size of 5 out of 50 will give 10, 593, 800 different
combinations. Therefore, for each library size, we used 5000 unique random combinations and
then calculated the maximum mutual information we could obtain from these combinations to
represent the situation with a best set of VOCs. We calculated the mutual information between
herbivores and VOCs as a function of the VOC library size based on the herbivore-VOC (AV )
matrix. Because the AV matrix is weighted, we first scaled the number of VOCs for each herbivore
based on the total number of plants that a given herbivore interacts with. This produced a
probability matrix representing the chance that a herbivore associates with each of the VOCs.
Next, we created 30 replicates or realizations of binary AV matrices based on the corresponding
probability for each interaction, mimicking the decoding process. Then, for each of these binary
AV matrices, we calculated the mutual information the same way as stated before for the PV
matrices. Then we calculated the median (due to the skewed distribution) mutual information
based on these results from the 30 realizations.
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C Simulations and statistics

To test the long-term behavior of the studied optimization mechanisms, we used three initial
conditions for the AP and PV matrices. We defined the first initial condition by a matrix with
highly specialized interactions. That is, each plant interacts with only one or maximum two
(given the constraints imposed by the dimension of the matrices) herbivores and VOCs. The
second initial condition was defined by a matrix with highly generalized interactions. That is,
each plant interacts with all but one or maximum two herbivores and VOCs. The third initial
condition was defined by randomly drawing values (1 or 0) with different probabilities. Note that
the third condition is the only one generating different matrices, hence, we explore many different
randomization and probability values. To control for confounding factors related to dimensionality,
all the simulated matrices had the the same dimension as the observed matrices.

For each initial condition (matrices), we calculated the conditional entropy (for AP and PV )
and the plant and animal fitness relationships (FP = H(A|V ) and FA = 1 � H(V |A), where
AV = AP ⇥PV ). Then, the optimization mechanism began with herbivores, which were allowed
to alter their interactions with plants (i.e., mutate 1 and 0 in the AP-matrix) to maximize their
fitness relationships. Specifically, as shown in Figure 2, one element will mutate at each time, and
a new fitness relationship will be calculated accordingly. The old matrix will remain if the new
fitness relationship is smaller than the old value. Otherwise, the new matrix will fixate and will
be used for the next mutation event. We assumed equal mutation rate for each link (plant-VOC
link or herbivore-plant link) in the absence of any prior knowledge. Therefore, the number of
random mutations that plants and herbivores can have for each round were proportional to the
number of all possible links (i.e., number of elements in PV and AP matrices). However, different
mutation rates for plants and herbivores mimicking unequal ability in combating in the arms-race
can be further investigated. Here, the number of mutation events in herbivores is given by 20%
of the total number of elements in the AP matrix. After this number of mutations, plants take
a turn and maximize their fitness relationships by changing their association with VOCs (i.e.,
mutate elements in the PV matrix in the same fashion as described before). The number of
mutation events in plants is also given by 20% of the total number of elements in the PV matrix.
This alternated optimization scheme is repeated 1000 times. The number of mutations within
each round does not change the pattern; it only changes the time to reach equilibrium (Fig. S1).
Starting the optimization mechanism with plants or herbivores also does not affect the results.

To test whether the optimization mechanisms, starting from the simulated matrices, would con-
verge to our field observations, we examined the long-term patterns of each simulated matrix.
Specifically, we calculated conditional entropies and fitness relationships based on simulated ma-
trices using the average values over the last 250 rounds of the simulated time series. The specific
number of rounds did not change our results, but we used this number in order to provide a mean
behavior over time. All the simulations and statistics were conducted with R version 3.5.2. (42 ).
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D Robustness tests concerning effects of sampling bias

Sampling bias is an important concern in ecological studies (34 ). To test whether the sampling
effort will affect our results, we conducted multiple paralleled analyses with different conditions:
(1) community size, (2) number of VOCs, and (3) interaction network.

1. Community size: Will results be affected by a sub-sampling of the community? For this
test, we used a subset of the plant-herbivore community (a specific plot with 8 plants and
16 herbivores instead of the entire pooled community as in the main text). We found that
the results remain qualitatively equivalent regardless of community size, illustrating the
scalability of our findings (Figure S2). We also performed simulations with many different
sub-samples and they were all qualitatively equivalent to Figure S2.

2. Number of VOCs: Are our results affected by an incomplete plant VOC profile? Here, we
were concerned about the potential effects of unidentified plant VOCs. For this test, we
included 21 more undefined VOCs that were potential biogenic VOCs (see above Section
Construction of field leaf scent collection and plant-VOC network under A Field data), and
kept the interaction matrix unchanged. We found that the results still remain qualitatively
equivalent (Figure S3, all VOC information see Zu_etal_2020_Data_Archive.xlsx).

3. Interaction network: Will results be affected by sampling the interaction network in a dif-
ferent place or year? To test this, we used information from previous years (from 2007-2017
using data from Ref. (44 )and repeated all our analyses. Specifically, using the pool of plant
species and VOC information collected in 2018, we checked for those plant species present in
a given previous year together with all their feeding herbivores present in such year to form
yearly interaction matrices. This made both the identity and number of plant-herbivore
interactions to change each year. Note that here we assumed that VOCs of a specific plant
species in a specific plot remain qualitatively unchanged through these years. We found that
the results remain qualitatively equivalent regardless of the identity and number of species
interactions (Figures S4-S6, all interaction networks under analyses from previous years see
Zu_etal_2020_Data_Archive.xlsx).

The robustness of these results is aligned with previous work (45 ) that has found no change of
global network measures in the data despite large beta diversity along each year (turnovers of
herbivores). This result further indicates that a community can be formed by different species,
but the interaction patterns (and likely the mechanism to drive the interaction patterns) do not
change at our level of resolution.
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Figure S1: Simulations from different starting matrices. The simulations started from PV
and AP matrices that are: (1) both generalized relationship matrices; (2) both random; (3) PV
specialized and AP generalized; (4) PV random and AP specialized; (5) both specialized, and
the element mutation rate is 5% of the total elements (instead of 20% for all the other cases).
Panel A illustrates the uncertainty (conditional entropy) of the three matrices simulated over
1000 time steps derived from our proposed optimization mechanism. The circles, triangles and
squares correspond to the conditional entropies H(A|V ), H(P |V ) and H(A|P ), respectively. The
solid, dotted and dashed lines stand for to the corresponding conditional entropies from field
observations. For the same simulation, in Panel B, the + and ⇥ symbols correspond to the fitness
relationships of plants (FP ) and herbivores (FA), respectively. The solid lines correspond to the
field observations.
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Figure S2: Test with a subset of the plant-herbivore community. This analysis corresponds
to a subset of the community from year 2018. This includes 16 animal species, 8 plant species,
and 30 VOCs. Here we have 30 VOCs instead of 31 because one VOC was emitted by none of the
8 plant species. For detailed figure captions see Figures 1, 3, and 4 in the main text.
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Figure S4: Test with different network communities - year 2017. We used the plant-
herbivore interaction matrix sampled in the year 2017. This corresponds to 52 animal species, 30
plant species, and 56 VOCs. For detailed figure captions see Figures 1, 3, and 4 in the main text.
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Figure S5: Test with different network communities - year 2007. We used the plant-
herbivore interaction matrix sampled in the year 2007. This corresponds to 42 animal species, 34
plant species, and 56 VOCs. For detailed figure captions see Figures 1, 3, 4 in the main text.
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Figure S6: Summary test with different network communities - years 2008-2016. We
used the plant-herbivore interaction matrix sampled in the years 2008-2016. The number of VOCs
is 56 for all these years. Number of animal species (A) and number of plant species (P) in each
year are: 2008 (75A-28P), 2009 (57A-25P), 2010 (63A-22P), 2013 (36A-20P), 2014 (37A-25P),
2016 (13A-14P). The year 2015 was not sampled due to bad weather conditions generated by
Hurricane Patricia boege2019temporal. The years 2011 and 2012 are missing because no VOC
information is available for the tree species sampled that year. For detailed figure captions see
Figure 3 in the main text.
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Table S1: Herbivore-plant interaction network. Data for Figure 1A in the main text.

Pl
an

t s
pe

ci
es

G
ua

pi
ra

 
m

ac
ro

ca
rp

a
Co

ur
se

tia
 

ca
rib

ae
a

Cr
ot

on
 ro

xa
na

e

Ap
op

la
ne

si
a 

pa
ni

cu
la

ta
Le

uc
ae

na
 

la
nc

eo
la

ta

Ca
se

ar
ia

 n
iti

da

Ca
es

al
pi

ni
a 

co
ria

ria
Th

ou
in

ia
 

pa
uc

id
en

ta
ta

Pi
pt

ad
en

ia
 

co
ns

tr
ic

ta
Ay

en
ia

 
m

ic
ra

nt
ha

M
ac

ha
on

ia
 

ac
um

in
at

a
G

yr
oc

ar
pu

s 
ja

tr
op

ifo
liu

s
Hi

nt
on

ia
 

la
tif

lo
ra

 
Za

nt
ho

xy
lu

m
 

fa
ga

ra
Di

os
py

ro
s 

ae
qu

or
is

Bu
nc

ho
si

a 
pa

lm
er

i
Ra

uv
ol

fia
 

te
tr

ap
hy

lla
St

em
m

ad
en

ia
 

do
nn

el
l-s

m
ith

ii
Sp

on
di

a 
pu

rp
ur

ea
Co

lu
br

in
a 

tr
ifl

or
a

Su
cc

es
si

on
 

st
ag

e

M
at

ur
e

M
at

ur
e

M
at

ur
e

M
at

ur
e

Ea
rly

Ea
rly

Ea
rly

M
at

ur
e

Ea
rly

M
at

ur
e

Ea
rly

Ea
rly

Ea
rly

Ea
rly

Ea
rly

Ea
rly

Ea
rly

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

Pl
an

t c
od

e

G
U

M
A

CO
CA

CR
RO

AP
PA

LE
LA

CA
N

I

CA
CO

TH
PA

PI
CO

AY
M

I

M
AA

C

G
YJ

A

H
IL

A

ZA
FA

D
IA

E

BU
PA

RA
TE

ST
D

O

SP
PU

CO
TR

Herbivore 
code

Herbivore 
species Sum

O3 Psychidae sp1. 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 9

O30 Orgya sp. 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 7

O18 Hypercompe sp. 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 6

O14 Psychidae sp2. 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 6

O347 Eudesmia menea 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 5

O24 Wockia chewbacca 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 4

O741 Lepidoptera sp1. 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 3

O44 Misoria amra 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3

O161 Dalcerides  sp1. 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 3

O69 Diaphania jairusalis 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2

O752 Lepidoptera sp2. 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2

O718 Erebinae sp1. 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2

O765 Lepidoptera sp4. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O719 Erebinae sp2. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

O230 Anacamptodes herse 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

O190 Cargida pyrrha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

O775 Lepidoptera sp3. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

O52 Gonodonta pyrgo 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

O25 Michaelophorus  sp. 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O1 Dalcerides sp2. 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O71 Helia sueroides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

O768 Deinopa biligula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

O341 Perigonia ilus 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

O114 Lophocampa citrina 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

O213 Melipotis perpendicularis 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

O746 Geometridae sp1. 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O700 Noctuidae  sp1. 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O96 Syllepis hortalis 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
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Table S2: VOC-plant association matrix. Data used for the transposed PV matrix in Figure 1B
in the main text.
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ID PCgroup
VOC name 
(NIST17_library)

m/z 
used

Retention 
time 

(minute)
Sum

1 X112 (Z)-3-Hexenol 67.10 10.86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

2 X250 (E)-2-Hexenal 39.10 10.79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

3 X381
Butanoic acid, 3-
methyl-, 3-
methylbutyl ester

103.10 19.71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

4 X406
2-Methylbutanal 
oxime

86.10 10.82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

5 X814 2-Bromododecane 170.20 25.98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

6 X892 3-Heptanone 114.20 11.94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

7 X438 (Z)-Linalool oxide 94.10 18.57 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 19

8 X6 (Z)-β-Ocimene 93.10 17.69 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 19

9 X651 Eucalyptol 139.20 17.29 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 19

10 X1735 Isoledene 204.20 29.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 19

11 X1789 Pyridine 79.10 7.29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 19

12 X403 Butylbutyrate 89.10 15.96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 19

13 X168 Benzaldehyde 77.10 14.84 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 18

14 X825 Heptanal 70.10 12.44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 18

15 X961 Humulene 77.10 29.78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 18

16 X14
(E)-4,8-Dimethylnona-
1,3,7-triene (DMNT)

69.10 19.90 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 17

17 X223 2,3-Butanediol 45.10 8.55 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 17

18 X40 α-Copaene 119.10 27.72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 17

19 X105
Methoxyphenyl 
Oxime

133.00 12.55 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 16

20 X516
2,3-Dimethyl-2-(1-
methylethyl)-
butanoic acid

116.10 21.82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 16

21 X265
1,2,3-Trimethyl-
cyclopent-2-
enecarboxaldehyde

109.10 16.25 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 15

22 X774 1-Methyl-1H-pyrrole 80.10 6.64 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 15

23 X4 2-Ethyl-1-hexanol 56.10 17.12 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 14

24 X317 α-Pinene 93.10 13.68 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 13

25 X456 Hexanal 40.00 8.76 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 13

26 X1898 2-Pentylfuran 138.10 15.75 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 12

27 X196
4,7-Dimethyl--
undecane, 

44.10 18.12 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 11

28 X495 Furfural 96.00 10.08 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 11

29 X234 (E)-β-Ocimene 103.10 17.42 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 10

30 X1396 Nonanoic acid 74.10 25.11 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 8

31 X450
2,4,6-
Trihydroxybenzaldehy
de

154.10 27.88 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 5

Plant code
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