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Abstract  

Rabies is an acute viral infection which causes horrifying neurological symptoms 

that inevitably result in death. Every year at least 59,000 people are estimated to 

die from rabies and more than 10 million are treated with post-exposure 

prophylaxis (PEP). Over 90% of human rabies deaths occur in Asia and Africa 

following bites from domestic dogs. Although human rabies deaths are 100% 

preventable through the delivery of prompt PEP to bite victims following a bite, 

PEP is not accessible to many poor rural victims, most of whom subsist on less than 

US$1.25/day. 

Empirical and theoretical evidence shows that mass dog vaccination that reaches 

70% of susceptible dog population can interrupt the transmission cycle. Rabies has 

been eliminated from industrialized countries through mass dog vaccination, and 

the continent-wide elimination of canine rabies from the Americas is now within 

reach. In contrast, no effective large-scale control of dog rabies has been achieved 

in Africa and information is still needed to optimise and sustain dog vaccination 

programmes. 

The aim of this thesis was to evaluate the rabies control programme in Tanzania. 

This thesis is presented as a series of three standalone chapters (Chapters 2-4) that 

are introduced and then summarised by a general introduction (Chapter 1) and a 

general discussion (Chapter 5) respectively. 

Achieving high coverage is the most important aim of any vaccination programme; 

however, assessing the vaccination coverage achieved is often neglected in rabies 

endemic countries. In Chapter 2, I compare three methods of measuring 

vaccination coverage (post-vaccination transects, school-based surveys, and 

household surveys) across 28 districts in different settings in southeast Tanzania 

and Pemba island in order to determine which is most precise method. These 

approaches were explored in detail in a single district in northwest Tanzania 

(Serengeti), where their performance in producing precise estimates of coverage 

was compared with a complete dog population census that also recorded dog 
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vaccination status. Our analysis found that transect studies (counting vaccinated 

and unvaccinated dogs) immediately after the campaign is cheap, quick, and 

provides precise estimates. Therefore, transects were considered more 

appropriate for routine monitoring of mass vaccination campaigns than household 

or school-based surveys. 

In Chapter 3, I used data from Chapter 2 together with human population census 

data from Tanzanian Bureau of Statistics to develop a model for estimation of the 

size of dog populations in Tanzania. Knowledge of the size of the dog population is 

necessary to adequately plan and achieve the target of vaccinating 70% of 

susceptible dogs. I demonstrate that estimating dog population size using transect 

data gave more precise results than either household or school-based surveys. 

Therefore, transect data were used to develop a predictive model for estimating 

dog populations in districts lacking transect data. Using this model, I predict a 

dog population of 2.32 (95% CI 1.57,3.12) million in Tanzania and an average 

human to dog ratio of 20.7:1. 

In Chapter 4, I evaluate the implementation and performance of large-scale dog 

vaccination campaigns against rabies in Tanzania. For an effective rabies control 

and elimination, it is necessary to conduct vaccination campaigns in every 

village/street (completeness), achieve coverage of 70% (coverage) and return for 

dog vaccination within one year (timeliness). Therefore, in this Chapter 4, I 

assessed vaccination campaigns in terms of completeness, coverage and 

timeliness; I also investigated factors associated with and potentially causing 

success or failure of mass dog vaccinations, in terms of completeness and 

coverage. 

Overall, this study shows that Tanzania experienced notable challenges in the 

delivery of mass dog vaccinations. For example, although vaccination 

completeness improved over time, until the last two rounds of vaccinations, only 

25% of districts had 100% campaigns completeness. Additionally, very few districts 

(27-36% of the study districts) achieved the recommended vaccination coverage of 

70% between third and fifth round of vaccinations. Vaccination interval was 
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planned to be annually but vaccinations delayed to more than two years, as a 

result, vaccinations were conducted in pulsed approach (not annually). 
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“Science knows no country, because knowledge belongs to humanity, and is the 

torch which illuminates the world” - Louis Pasteur (1822 -1895). 

 

 

Rabies is an ancient and universally feared disease. Human deaths associated with dog bites 

were already identified since 2300 BC (Bos, 2014, Taylor and Nel, 2015). Despite being 

ancient and 100% preventable; rabies is still important today. Globally,  ~2000 people are 

bitten by suspected rabid dog everyday, of those ~ 160  people die of rabies, most of them 

children (Hampson et al., 2015). 
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Chapter 1 General Introduction 

1.1 Background 

Rabies is an ancient and much-feared disease that continues to pose a substantial 

threat to human and animal health. Over the centuries, rabies has been well 

documented by different authors, from clinicians, veterinarians, surgeons, 

pharmacists, philosophers and poets (Tarantola, 2017). For example, the first 

written reference of rabies was documented as early as 2300 B.C. in the “Law code 

of Eshnunna and mad dogs” in ancient Mesopotamia, or modern-day Iraq (Bos, 

2014). These laws dictated that the owner of a dog showing symptoms of rabies 

should take preventive measures against bites. If a person was bitten by a rabid 

dog and later died, the law code prescribed that the dog owner had to pay two 

thirds of mina (40 shekels) in silver as compensation (Bos, 2014). The law further 

prescribed that if the dog bit a slave and caused his death the dog owner shall pay 

fifteen shekels of silver. Despite being the oldest reported zoonotic disease 

(Tarantola, 2017), rabies still kills tens of thousands of people each year today 

(Hampson et al., 2015). 

In 1885, Louis Pasteur obtained his first success against rabies by vaccinating 

Joseph Meister, a 9-year-old boy presenting with multiple deep bite wounds, using 

desiccated nerve tissue containing the virus (Bourhy et al., 2010). By November 

1886, around 2500 people had been successfully treated by Pasteur's method; and 

by the time of Pasteur's death in 1895 around 20,000 persons had undergone the 

treatment, with a mortality of less than 0.5% (Théodoridès, 1989). For control of 

rabies in animals, dog vaccinations were introduced in 1915 and the first country 

to implement large-scale mass dog vaccinations was Japan in the 1920s (Umeno, 

1921, Taylor and Nel, 2015). These campaigns resulted in successful control and 

elimination of rabies in Japan in 1956. Since then, mass dog vaccination has been 

used successfully to eliminate dog-mediated rabies in all countries of Western 

Europe and North America, plus Japan and Malaysia (King et al., 2005, Hampson et 

al., 2007). Moreover, through mass dog vaccination the continent-wide elimination 

of canine rabies from the Americas is now within reach (Vigilato et al., 2013). 
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Whereas dog rabies has been successfully controlled and eliminated in most 

developed countries through dog vaccinations, it remains prevalent in Africa and 

Asia, where rabies control programmes have been unsuccessful or have not even 

begun. Currently, rabies causes an estimated 59,000 human deaths in the world 

annually (Hampson et al., 2015). Over 99% of these human rabies deaths occur in 

Africa and Asia and the vast majority of these deaths are due to bites from 

domestic dogs. Human rabies is 100% vaccine-preventable through two 

complementary interventions: first, administration of post-exposure prophylaxis 

(PEP) to people exposed to bites from rabid animals to prevent disease onset. The 

second intervention is through sustained mass dog vaccination to eliminate 

transmission from the main source (reservoir) of rabies, i.e. domestic dog 

populations (Cleaveland et al., 2018). Currently, more than 10 million people are 

administered PEP annually (Hampson et al., 2015). While human rabies can be 

effectively prevented with PEP, the intervention is expensive, with direct 

expenditure on PEP estimated at 1.70 billion USD per year and indirect costs 

estimated at 1.31 billion USD (Hampson et al., 2015). The burden of rabies falls 

disproportionately upon people in remote, rural communities where most rabies 

cases occur. A case study in Tanzania estimated that a patient from a rural area, 

where most people live on less than US$1.25 per day, would need to spend over 

US$100 to access and complete World Health Organisation (WHO) recommended 

PEP regimens (Sambo et al., 2013). Many families struggle to obtain these 

vaccines, because they cannot raise the required funds and because vaccines are 

often not stocked or are out of stock in local clinics, leading to poor compliance 

with PEP regimens, delays in presentation to health facilities, and increased risk of 

death (Hampson et al., 2008). 

The human rabies vaccine is the only way to prevent rabies following a bite by a 

rabid dog, but it cannot control and eliminate rabies alone. A complementary 

intervention targeting vaccination at the animal reservoir is needed to control 

infection at source (Cleaveland et al., 2018). For example, many countries, 

particularly Asian countries, spend substantial resources on provision of PEP, with 

only limited investment in dog vaccinations, and human deaths continue to occur 

at an unacceptably high rate  (Hampson et al., 2015). Mass dog vaccination is the 
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most cost-effective strategy for preventing rabies in people by inoculating the 

reservoir host responsible for more than 99% of human infections (Cleaveland et 

al., 2003, Hampson et al., 2009, Kaare et al., 2009, Durr et al., 2009, Lembo et 

al., 2010, Fitzpatrick et al., 2014, Fahrion et al., 2017). A detailed cost analysis 

study found that canine mass vaccination has a higher cost-effectiveness than PEP 

alone and is less costly over a period of 15–20 years (Mindekem et al., 2017). 

Therefore, combined strategies of PEP to bite patients alongside mass dog 

vaccinations under a “One Health” approach would be optimal (Lankester et al., 

2014, Cleaveland et al., 2018). One Health is an idea that reflects the 

interconnectedness of the health of human and animal populations, and therefore, 

a “One Health” approach is needed to tackle rabies (Lankester et al., 2014). 

Theoretical and empirical research demonstrates that rabies can be eliminated by 

vaccinating 70% of the susceptible dog population. Maintaining 70% coverage 

through annual vaccinations would be enough to stop virus circulation, and stop 

human deaths (Coleman and Dye, 1996, Hampson et al., 2009). Case studies 

demonstrated that this 70% coverage target is achievable even in low- and middle-

income countries (LMICs) through parenteral vaccination of dogs (Kayali et al., 

2003, Kayali et al., 2006, Kaare et al., 2009). Control and elimination of dog rabies 

through mass dog vaccinations have been successful in different settings previously 

endemic for dog rabies (Jibat et al., 2015, Cleaveland et al., 2018). Furthermore, 

controlling dog rabies through dog vaccinations reduces demand for PEP 

(Cleaveland et al., 2003, Lavan et al., 2017). 

Rabies has several epidemiological features that make it amenable to elimination 

through mass dog vaccination: first, the existence of the means to fight rabies 

through safe and effective vaccines, which were developed more than 100 years 

ago. Second, domestic dogs, not wildlife, are the main cause of about 99% of 

human rabies cases (Knobel et al., 2005, Hampson et al., 2015). In the wildlife–rich 

Serengeti ecosystem in Tanzania results from epidemiological and genetic analyses 

suggest that domestic dogs are the only population essential for maintenance with 

occasional but short-lived chains of infection in wildlife resulting from spill over 

from domestic dogs (Lembo et al., 2008). Third, the basic reproductive ratio (R0 – 

the expected number of secondary infections produced from a primary case) of 
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canine rabies is consistently low (~1.2) even across populations that differ widely 

in dog density (Hampson et al, 2009). The low R0 for rabies suggests that the 

disease should be feasible to control in most, if not all, populations across the 

world (Hampson et al., 2009, Taylor and Nel, 2015). Fourth, mass vaccination 

programmes demonstrated that most free-roaming dogs could be vaccinated, and 

that higher levels of coverage above the critical threshold is achievable. In Africa, 

studies show that despite the appearance of being stray, at least one household 

usually claims ownership of free-roaming dogs and most of these animals are 

accessible to parenteral vaccination through central-point campaigns (Kaare et al., 

2009, Lembo et al., 2010, Gsell et al., 2012, Davlin and VonVille, 2012, Vigilato et 

al., 2013). In Asia, large numbers of free-roaming dogs have also been vaccinated 

using catch-vaccinate-release (CVR) methods in areas where dog ownership 

appears to be less clear cut (Gibson et al., 2019). Fifth, despite their apparently 

poor condition, village dogs respond effectively to rabies vaccine (McNabb, 2008). 

These epidemiological features provided important evidence and further catalysed 

advocacy for investment in dog vaccinations. In December, 2015, the WHO, the 

World Organisation for Animal Health (OIE), the Food and Agriculture Organization 

of the United Nations (FAO), and the Global Alliance for Rabies Control (GARC), a 

coalition known as “United Against Rabies collaboration”, endorsed a global 

framework to eliminate human deaths from dog-mediated human rabies by 2030 

(Abela-Ridder et al., 2016). 

The road to zero human deaths from dog-mediated rabies is characterized by three 

distinct programmatic phases: control, elimination and maintenance phase. To 

understand the process of eliminating dog-mediated human rabies it is important 

to adhere to agreed concepts of control, elimination and maintenance. Control of 

an infectious disease has been defined as: “a reduction in disease incidence, 

prevalence, morbidity, or mortality to a locally acceptable level, as a result of 

deliberate efforts” (Dowdle, 1998). Whereas elimination of an infectious disease 

refers to the interruption of local transmission of the organism and the reduction-

to-zero case incidence from a defined geographical area (Dowdle, 1998). 

Maintenance is the continued measures (efforts) to prevent the re-establishment 

of transmission. When the country is free from the infectious disease of interest it 
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receives a WHO certification, which confirms to the international community that 

the country, at that time, has halted local transmission and has created an 

adequate system for preventing re-establishment of the disease. Dog rabies has 

been eliminated in large parts of the industrialized countries in Europe and North 

America (Hampson et al., 2007). The continent-wide elimination of dog rabies from 

the Latin American countries is now within reach (Vigilato et al., 2013). In contrast 

there has only been very limited dog vaccinations in most African countries 

(Hampson et al., 2015). 

A stepwise approach (the Stepwise Approach towards Rabies Elimination, SARE), 

has been developed for rabies control, where a country can use this tool to 

evaluate it’s efforts in controlling rabies (The Global Alliance for Rabies Control et 

al., 2020). The SARE tool serves as a self-assessment and practical guide in 

developing a national rabies program. The SARE score shows clear progress (or lack 

thereof) in each of the three distinct programmatic phases (control, elimination 

and maintenance). 

To reach zero human deaths, more than 100 countries in which rabies is currently 

endemic would need to implement nationwide dog vaccination campaigns. 

However, lessons learned from previous rabies elimination programmes in 

developed countries, and experiences from successful programmes in Latin 

America and the Caribbean, as well as pilot projects in different parts of the world 

such as Bangladesh, the Philippines, Sri Lanka, Vietnam, Tanzania and South 

Africa, have generated important knowledge and clearly highlighted basic scales 

that can be used to measure performance of the campaigns for the control and  

elimination of rabies (Hampson et al., 2009, Vigilato et al., 2013, Townsend et al., 

2013, Ferguson et al., 2015, Mpolya et al., 2017, Velasco-Villa et al., 2017, Minghui 

et al., 2018). These scales include: campaign completeness, dog vaccination 

coverage and campaign timeliness and are briefly described below. 

Vaccination campaigns must vaccinate 70% of the susceptible dog population in 

every year to break transmission. Therefore, knowledge of the dog population size 

is required for assessing the effectiveness of mass dog vaccination campaigns. In 

most of LMICs, reliable data on the size of dog populations are rarely available. 
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Since reliable data does not exist, assessing the effectiveness of mass dog 

vaccination campaigns is a challenge in LMICs. Data from post-vaccination surveys 

such as household surveys, and mark-recapture methods, for example by 

photographic census and transects, have been used for assessing the performance 

of vaccination campaigns. These surveys are also used to generate estimates of the 

human-to-dog ratio (HDR), which can be extrapolated to larger regions. However, 

there has been no study that comprehensively compared these methods and 

assessed which approach provides the most accurate or precise estimates of 

coverage. This comparison is needed to provide operational guidance to improve 

the performance of current or future dog vaccination campaigns. 

In most dog rabies-endemic areas, vaccination coverage levels decline rapidly as 

vaccinated dogs die and are replaced by new-borns susceptible dogs (Hampson et 

al., 2009, Gsell et al., 2012, Czupryna et al., 2016). To eliminate rabies, annual 

campaigns must vaccinate at least 70% of each community’s susceptible dog 

population in order to maintain the minimum coverage above 20 – 45% (the critical 

threshold, Pcrit) throughout the year (Hampson et al., 2009). In areas with high dog 

population turnover, a campaign target (Ptarget) of vaccinating 70% of the 

susceptible dog population is required for population immunity to remain at all 

times above Pcrit (Hampson et al., 2009). Timeliness of campaigns further 

influences their effectiveness. Long intervals between vaccination campaigns 

results in coverage dropping below Pcrit and therefore allows sustained 

transmission. Lessons learned from Tanzania showed that delivering timely 

campaigns is still a challenge, and it is particularly hindered by financial, 

organisational, operational and logistical challenges (Mpolya et al., 2017). 

Elimination prospects depend on completeness of vaccination coverage and the 

rate of re-introductions (Townsend et al., 2013). Across most of Western Europe, 

campaign completeness of oral rabies vaccination campaigns speeded up the 

elimination of fox rabies, reducing cases from 17,202 in 1978 to 7,581 cases in 

2010 (Freuling et al., 2013). Recent work from Asia has also highlighted that 

unvaccinated villages can jeopardize control and elimination efforts. Models 

indicated that even small gaps in coverage (unvaccinated communities) can 

significantly delay time to elimination (Townsend et al., 2013). 
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1.2 Dog ownership in relation to rabies control. 

Previous studies in Africa have highlighted that vaccination efforts are influenced 

by local dog ownership practices (Wallace et al., 2017, Gsell et al., 2012, Sambo et 

al., 2014). Most publications have suggested that dog keeping is much more 

common in rural areas compared to urban areas (Davlin and VonVille, 2012). I used 

the criteria of the Tanzanian National Bureau of Statistics (NBS) in differentiating 

rural and urban areas (National Bureau of Statistics, 2012). The definition of urban 

areas according to NBS, applied in this study, is that urban areas are regional and 

district headquarters with boundaries as identified by the Tanzanian Village Act of 

1975 and The Urban Ward (Administration) Act of 1976. According to the NBS, 

regions are sub-divided into districts, and districts into wards. Wards in urban 

districts are sub-divided into streets, while those in rural districts are sub-divided 

into villages. Thus, a village (in a rural area) or a street (in an urban area) is the 

lowest government administrative unit. Rural areas are characterised by fewer 

settlements, large household sizes, lower human population density and greater 

poverty. In most developing countries, rural incomes appear to be far lower than 

urban incomes (Young, 2013). Much of the developing world’s population lives in 

rural areas and agriculture plays a key role in national and local economies. For 

example in Tanzania, approximately 3.6 million people from 158,690 households 

depend on agriculture, and agricultural sectors contribute 56% of the country’s 

domestic income (National Bureau of Statistics, 2012). Other communities fully or 

partly depend on livestock-keeping. As in most of sub-Saharan Africa, throughout 

Tanzania, dogs are widely used for herding, and for protecting families, crops and 

livestock against wild animals and thieves (Bardosh et al., 2014). 

Differences in livelihood patterns between a range of systems (e.g. town, farmland 

and pastoral) have been demonstrated to influence human-dog relationships and 

the spatial distribution of dogs (Bardosh et al., 2014). Understanding of practices 

associated with dog ownership, and, most importantly, of the responsibility for 

vaccinating dogs are important steps towards the effective design and 

implementation of mass dog vaccinations. A recent publication found that all dogs 

in higher-income villages were reportedly vaccinated against rabies (Wallace et 
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al., 2017). Additionally, studies in Africa found that dog keeping is much less 

common in urban and Muslim communities (Davlin and VonVille, 2012, Knobel et 

al., 2008, Bardosh et al., 2014). There are generally broad similarities for the 

predictors of dog ownership across Africa (Davlin and VonVille, 2012). 

Understanding the ownership patterns and roles of dogs in a community is 

important for deciding upon an appropriate vaccination method and strategy, 

thereby ensuring enough dogs are reached and vaccinated to break the cycle of 

rabies transmission. Dog populations can be categorized based on (1) ownership 

status (owned, community, feral), and (2) the confinement status (confined, semi-

confined, free-roaming). A dog that depends on a household/family is called an 

owned dog, while a dog that depends on the community a called community-

owned dog (Taylor et al.). Dog rabies is transmitted from a rabid dog to a 

susceptible dog through bites. Transmission therefore depends on frequency 

contacts between rabid and susceptible dogs. Therefore, confined owned dogs 

have less risk of contacting rabid animals and therefore are not in practice as 

susceptible to rabies as free-roaming dogs (owned and feral) (Taylor et al.). Not all 

of owned dogs should therefore be targeted for mass dog vaccinations. For 

example, in developed countries, such as Australia, the United Kingdom and the 

United States of America (USA), most of their dogs are confined, if not confined 

their dogs (known as pet dogs) are always under the direct control of their owners. 

In urban areas where people keep dogs in confined spaces, there is a lower rabies 

risk due to fewer effective contacts between animals and easier access to 

veterinary services. On the other hand, in much of Africa, Asia and Latin America 

most of the dogs are free-roaming dogs and when exposed to bites by rabid 

animals, their owner may not be aware. These free-roaming dogs (family or 

community-owned dogs) are susceptible for rabies transmission and should be 

targeted for mass dog vaccinations. 

The current dog vaccination methods are either parenteral vaccination or oral 

vaccination (Kaare et al., 2009, Estrada et al., 2001). Understanding the different 

characteristics of dog ownership in different settings will be crucial to decide 

which delivery strategy to use. The delivery strategies include: central-point, 

house-to-house, oral bait and capture-vaccinate-release (CVR). Different campaign 
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strategies will reach different segments of the dog population. For example, 

owned dogs can usually be vaccinated efficiently at central vaccination points. 

This method has been reported to be effective in agropastoral communities in 

Tanzania and in urban areas in Africa (Kayali et al., 2006, Kaare et al., 2009, Gsell 

et al., 2012). However, not all owned dogs can be vaccinated at central 

vaccination points. Experience from Tanzania has shown that central vaccination 

points in pastoral communities achieved only low coverage (Kaare et al., 2009). 

Pastoral communities that live in remote and dispersed rural areas, often have 

dogs that are less used to handling and restraint and families are often absent 

during seasonal transhumance movements and therefore require the adoption of a 

door-to-door vaccination strategy (Kaare et al., 2009). However, door-to-door 

vaccination is time-consuming and expensive, particularly for a national-wide 

elimination program (Kaare et al., 2009). Moreover, dog densities in pastoralist 

areas are too low for rabies to be maintained. The focus should therefore be to 

eliminate the infection in agropastoral communities that tend to have higher dog 

densities (Sambo et al., 2018). For ownerless dogs (with no responsible person to 

take dogs to vaccination points, particularly in urban areas of Asian countries), the 

CVR strategy could be used whereby mobile vaccination teams (dog catchers) catch 

vaccinate and release vaccinated dogs. Another method that can be applied to 

both owned and ownerless dogs is the use of oral baits, whereby oral baits can be 

distributed to dog owners or the dedicated teams can distribute baits to ownerless 

dogs (Gibson et al., 2019). However, to assess the effectiveness of baits methods 

reported to be difficult as it is not possible to physically mark all dogs that 

consume baits (Gibson et al., 2019). These methods are also time-consuming and 

expensive (Gibson et al., 2019). Therefore, vaccination strategies should be 

tailored to local contexts based on the human-dog relationship or characteristics of 

the dog. Door to door, oral baits, and CVR strategies are not easily scalable 

because of their costs and time-consuming nature, but they can supplement to 

central point methods to ensure sufficient dogs are vaccinated (Kaare et al., 2009, 

Gibson et al., 2019). 
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1.3 Methods for data generation  

1.3.1 Mass dog vaccinations 

In the study districts in Tanzania, dog vaccinations were conducted using a central 

point approach, which has proven effective for accessing a large proportion of the 

dog population in other parts of Tanzania (Kaare et al., 2009). In each district, 

annual mass dog vaccination campaigns were managed and supervised by the 

District Veterinary Officer or the Head of the Livestock Department. In urban 

districts, mass dog vaccinations were carried out (implemented) at the ward level 

while in rural districts mass dog vaccinations were carried out at the village level. 

In this thesis, we consider these areas (i.e. ward or village) where dog vaccination 

was carried out as a vaccination unit. Ideally, each vaccination unit had one or 

more central vaccination points depending on the geographical areas of the 

vaccination unit. To reach more dogs, some vaccinators decided to have more 

vaccination points per vaccination unit. Prior to vaccinations, communities were 

informed about the campaign (free dog vaccinations, place, time and the day of 

the campaign) using loud-speakers, posters, announcements at schools and using 

community messengers urging dog owners to bring their dogs for vaccinations. In 

most cases, dog vaccinations began at 7 A.M. in the morning and lasted 3.30 PM in 

the evening. However, in some areas vaccinators did not achieve these specified 

hours at central points and vaccination update was reduced (Bardosh et al., 2014). 

Despite this problem, the number of vaccinated dogs in these areas were included 

in my analysis. At each vaccination point, most of the time, dog owners restrained 

the dog, a livestock field officer (dog vaccinator) injected the vaccine and asked 

dog owners to put a temporary plastic collar around the neck of their vaccinated 

dog before going to the recorder (Figure 1-1). The recorder (registrar) who was 

normally a volunteer from the local community collected information (address of 

the dog owner, sex, age and colour of the dog) and then recorded this information 

into the register. They then issued a vaccination certificate to the dog owners to 

validate the vaccination status of their dogs. Vaccination campaigns were normally 

conducted over a one-day period per vaccination unit. Register data on dogs 

vaccinated were compiled and used in subsequent calculations for the different 
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methods of estimating coverage and dog population sizes in all the following 

analyses. 

 

Figure 1-1:  Image of vaccinated (and marked with collar) Tanzanian dogs. 

1.3.2 Post-vaccination evaluations 

Three methods were used to evaluate the effectiveness of dog vaccination 

campaigns: 

1.3.2.1 Household surveys (HHSs) 

Household surveys (HHSs) were conducted in all districts in south-eastern Tanzania 

and Pemba. Six villages were randomly selected from a list of all villages in each of 

the study districts. Then, thirty households in each of the six 6 villages per district 

were visited to conduct the household survey. In every randomly selected village, 

a key village landmark (e.g. such as a dispensary, school, church or mosque) was 

identified and used as the starting point. At the starting point, an interviewer spun 

a pen to get the direction for interviews (Kongkaew et al., 2004). Then, the 
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households along the roadside in the chosen direction were included and 

interviewed until 30 households were completed in each village. These household 

surveys were conducted in July and August 2011, around 4 months after dog 

vaccination campaigns conducted in March and April 2011. Interviewers were 

accompanied by members of the local authority to identify village households and 

to introduce the interviewer to the households. Prior to the administration of the 

questionnaire, permission was sought from the household head or other household 

members of at least 18 years of age in the absence of the household head. For 

households that owned dogs, the questionnaire captured details of dogs owned 

(adults and puppies <3 months) and their vaccination status on the basis of owner 

recall or presentation of a dog vaccination certificate. 

1.3.2.2 Post-Vaccination Transects (PVTs) 

After completion of each vaccination campaign, post-vaccination transects (PVTs) 

were conducted in each vaccination unit on the same day from 4 p.m. to 6 p.m. 

when dogs are most active and visible. Transects involved recording all dogs 

observed while walking (or occasionally cycling) a route through villages counting 

(tallying) marked (vaccinated) and unmarked (unvaccinated) dogs. To facilitate 

counting dogs during transect surveys, tallies were broken down into two sections 

for marked and unmarked dogs (see example record sheet in Appendix A). The 

record sheet also included information on: the start and end time for each route, 

the mode of transport (walking or bicycle) and a section for comments e.g. bad 

weather conditions. The record sheet did not include dog information such as age 

and gender of the observed dog. The length of the route was dictated by the mode 

of transport as the aim was to create a route that took no longer than 2 hours to 

complete, usually 5-8 km and 8-10 km maximum in the length of the route for 

walking and biking respectively. Transects (observation of dogs) were each 

conducted by one livestock officer who had also delivered vaccination in the 

village. The Livestock Officer was selected based on their familiarity with the sub-

village or street boundaries. In each vaccination unit, single-day transects were 

conducted and lasted for two hours only. 
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Two protocols were used for rural and urban areas respectively. In rural villages 

which tend to have dispersed communities and a large geographical area compared 

to urban areas, it is difficult to survey all sub-villages within two hours. A practical 

solution to this problem relied upon randomly sampling two sub-villages from each 

village for transects. In the first sub-village, enumerators (observers) were 

instructed to count dogs starting transects from the centre of the sub-village 

heading to the outskirts, while in the other sub-village, transects started from the 

edge (periphery) of the sub-village and headed towards the centre. Each transect 

was conducted for one hour per sub-village, therefore taking a total of two hours 

to complete each village. 

In urban areas, enumerators were required to pass across streets covering key 

landmarks (e.g. the dispensary, shopping centres, primary school, church or 

mosque) for two hours. Observers randomly selected the direction to be walked at 

the beginning of each transect, at the border of sub-villages/streets and at road 

junctions. One day of training was held for enumerators prior to data collection. 

Printed protocols and data collection forms were provided to enumerators during 

training. Transects have been conducted annually since 2013, with the aim of 

completing at least one transect in each vaccinated village on the day of or 

immediately following the vaccination campaign. 

1.3.2.3 School-based surveys 

School-based surveys (SBSs) were conducted within two months of vaccination 

campaigns in south-east Tanzania, Pemba and in Serengeti district. In each 

district, six primary schools (one school per village) were randomly selected. 

Logistic and financial limitations meant that school surveys were not conducted in 

some districts or were conducted in less than six schools per district as initially 

planned. Between 50 to 100 pupils (one per household per school) from standard 

IV-VII (aged 11-15 years), were asked to complete a questionnaire to collect data 

from their household. Written consent from the District Executive Officer and 

verbal consent of teachers and pupils were obtained at each primary school prior 

to the study. We used total population purposive sampling with a target to 

interview 100 pupils per school. This resulted in all Standard VII pupils being 
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selected to fill the questionnaire. If there was more than one pupil from one 

household recruited, the oldest was selected. If the school had fewer than 100 

standard VII pupils, additional pupils were recruited from lower classes (Standard 

IV–VI). No time limit was set for questionnaire completion. The questionnaire 

included questions on the number of adults and children (<18 years of age) living in 

the household. the number of dogs and puppies (<3 months of age) kept at the 

household, and the number of dogs and puppies that had been vaccinated during 

the most recent campaigns. We decide to conduct questionnaires to children to 

reduce recall bias, as observed from HHSs surveys, as the children are the largest 

segment of the population that usually bring dogs to vaccination centres. 

1.4 Thesis overview 

My thesis focused on measuring, monitoring and improving mass dog vaccination 

programmes to control and eliminate rabies. There were three key questions in 

this thesis: 1) What is the best way to implement, monitor and assess the success 

of campaigns? 2) What are key determinants for reaching the appropriate 

vaccination coverage and completeness in each community? and 3) How can 

vaccination strategies be maintained to eliminate infection? To answer these 

questions, I analysed vaccination and post-vaccination data from mass dog 

vaccination campaigns conducted between 2010 and 2017, in 28 districts across 

Tanzania: 24 from southeast Tanzania and four from Pemba Island. 

1.5 Thesis organisation 

This thesis has been compiled as a collection of three data chapters in research 

article format. As each chapter has its own introduction and discussion, I include 

only a brief introduction (Chapter 1) and a general discussion (Chapter 5), as well 

as an appendix on guidance for conducting post-vaccination evaluations. 

Chapter 2 compared the effectiveness of the methods that were used for post-

vaccination evaluations in term of vaccination coverage in rural and urban 

communities in Tanzania. I compared household surveys, school-based surveys and 
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transect surveys to assess which of these methods provides the most precise 

estimates of coverage. For comparison of how sampling impacted coverage 

estimates, only data from Serengeti were considered as it was the only district 

with a full census completed. However data on costs of implementation data from 

Pemba and Southeast Tanzania were used, and data from these areas were also 

used to inform our simulation study to assess the effects of sampling in 

communities with fewer dogs. A method that provides acceptable coverage 

estimates is needed to guide policies and provide operational guidance for 

improving the performance of current or future campaigns. Poorly enumerated dog 

populations is a critical issue facing many rabies-endemic countries (Downes et al., 

2013). In Chapter 3, I tried to address this problem by comparing three methods of 

household, school-based and transect surveys in estimating the size of dog 

populations. This comparison is required to help other countries to initiate 

vaccination programmes, refine their dog population estimates,  choose better 

methods for evaluating vaccination programs and guide ongoing and future 

vaccinations on a large scale in Africa and beyond. My analyses found that transect 

surveys, which involve counting vaccinated and unvaccinated dogs immediately 

after vaccination campaigns, are cheap, quick, and provide more precise dog 

population estimates than either household or school-based surveys. I subsequently 

used transect data together with human census data from the Tanzanian Bureau of 

Statistics to develop a predictive model for estimating dog populations in districts 

lacking transect data, where no vaccination campaigns have been undertaken. 

Chapter 4 evaluated the implementation and the performance of large-scale dog 

vaccination campaigns against rabies. My evaluations were based on three basic 

scales that can be used to measure performance of the campaigns. I evaluated 

whether the campaigns: (a) reached the coverage target (Ptarget); (b) campaign 

intervals (timeliness); and (c) reached all dog-owning communities (completeness). 

I also discuss the lessons learned (about delivery, costs, obstacles, etc) from one 

campaign to another and how coverage, timeliness and completeness of the 

campaigns can be improved. In Chapter 5, I briefly summarize the results of the 

research and draw general conclusions to guide policy on the best way to establish 



 

16 

 

and monitor the effectiveness of rabies control programmes in different settings in 

Tanzania and in Sub-Saharan Africa as a whole. 

Overall, this thesis contains timely information whereby findings can be directly 

incorporated into ongoing practices across the country and the region, potentially 

enabling the impacts of mass dog vaccination campaigns to be effectively 

monitored and future implementation is improved. 
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Chapter 2 Comparing Methods of Assessing Dog 

Rabies Vaccination Coverage in Rural and Urban 

Communities in Tanzania 

2.1 Abstract 

Rabies can be eliminated by achieving comprehensive coverage of 70% of domestic 

dogs during annual mass vaccination campaigns. Estimates of vaccination coverage 

are, therefore, required to evaluate and manage mass dog vaccination campaigns; 

however, there is no specific guidance for the most accurate and efficient methods 

for estimating coverage in different settings. Here, we compare post-vaccination 

transects, school-based surveys, and household surveys across 28 districts in 

southeast Tanzania and Pemba island covering rural, urban, coastal and inland 

settings, and a range of different livelihoods and religious backgrounds. These 

approaches were explored in detail in a single district in northwest Tanzania 

(Serengeti), where their performance was compared with a complete dog 

population census that also recorded dog vaccination status. Post-vaccination 

transects involved counting marked (vaccinated) and unmarked (unvaccinated) 

dogs immediately after campaigns in 2,155 villages (24,721 dogs counted). School-

based surveys were administered to 8,587 primary school pupils each representing 

a unique household, in 119 randomly selected schools approximately 2 months 

after campaigns. Household surveys were conducted in 160 randomly selected 

villages (4,488 households) in July/August 2011. A complete dog census was 

conducted in Serengeti district continuously over a 7-year period (ranged from 0-11 

months after dog vaccination) and was used to inform simulation experiments on 

the accuracy of coverage estimation methods. Costs to implement these coverage 

assessments were $12.01, $66.12, and $155.70 per village for post-vaccination 

transects, school-based, and household surveys, respectively. Simulations were 

performed to assess the effect of sampling on the precision of coverage 

estimation. The sampling effort required to obtain reasonably precise estimates of 

coverage from household surveys is generally very high and probably prohibitively 

expensive for routine monitoring across large areas, particularly in communities 
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with high human to dog ratios. School-based surveys partially overcame sampling 

constraints, however, were also costly to obtain reasonably precise estimates of 

coverage. Post-vaccination transects provided precise and timely estimates of 

community-level coverage that could be used to troubleshoot the performance of 

campaigns across large areas. However, transects typically overestimated coverage 

by around 10%, which therefore needs consideration when evaluating the impacts 

of campaigns. We discuss the advantages and disadvantages of these different 

methods and make recommendations for how vaccination campaigns can be better 

monitored and managed at different stages of rabies control and elimination 

programmes. 

2.2 Introduction 

Rabies is a fatal viral disease transmitted to humans by animal bites, usually from 

domestic dogs. Although under control in most industrialized countries, rabies 

continues to kill an estimated 59,000 people each year in low- and middle-income 

countries (LMICs (Hampson et al., 2015)). Reliable estimates of the proportion of 

dogs vaccinated against rabies are crucial to determine the performance of 

vaccination campaigns and their impact on disease transmission. Empirical and 

theoretical evidence shows that mass dog vaccination campaigns that reach at 

least 70% of the dog population can control rabies (Coleman and Dye, 1996, 

Hampson et al., 2009). While achieving this coverage in all communities can lead 

to elimination, even small gaps in coverage can delay the time to elimination 

(Townsend et al., 2013). As progress is made toward reaching global targets of 

zero human rabies deaths from dog-mediated rabies through the implementation 

of mass dog vaccinations (Abela-Ridder et al., 2016), there is a clear need to 

identify reliable, cost-effective, and feasible approaches that can be used, at 

scale, to assess community-level vaccination coverage. 

Limited population data on owned and free-roaming dogs in most LMICs make 

estimation of vaccination coverage challenging. Several methods have been used 

to estimate coverage including (i) the use of pre-campaign estimates of dog 

population size through human to dog ratios (HDRs) as the denominator, and the 
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number of dogs vaccinated during the campaign as the numerator (6); (ii) post-

vaccination household surveys to estimate the proportion of vaccinated dogs 

(Kayali et al., 2003, Cleaveland et al., 2003, Kongkaew et al., 2004, Kayali et al., 

2006, Suzuki et al., 2007, Gsell et al., 2012); and (iii) post-vaccination transects to 

estimate the proportion of marked (vaccinated) dogs (Townsend et al., 2013, 

Muthiani et al., 2015, Tenzin et al., 2015b, Léchenne et al., 2016). However, these 

methods all have limitations (Davlin and VonVille, 2012). If dog populations are 

estimated from data on HDRs, inaccuracies in estimates of the human population 

will invariably affect the accuracy of dog population estimates. This may occur, for 

example, through errors in extrapolating current human population sizes from 

census data (for example, using average population growth rates) or from 

administrative/boundary changes that affect village demarcations across different 

time periods. Furthermore, published data on HDRs usually reflect a sample from 

surveys across several communities (Knobel et al., 2008), and even a small degree 

of variation in HDRs can have a major effect on dog population estimates at the 

community level. 

Household surveys are restricted to capturing estimates of vaccination coverage in 

owned dog populations and are relatively intensive to complete. Moreover, there is 

known to be wide variability in patterns of dog ownership within communities—for 

example, in Tanzania, a much smaller proportion of Muslim and urban households 

own dogs in comparison with rural, livestock-keeping communities (Knobel et al., 

2008). This variability and the highly skewed pattern of dog ownership in some 

communities make household surveys prone to selection and measurement biases 

(Jibat et al., 2015). Additional uncertainty from household surveys arises in 

relation to validation of dog vaccination status. In Tunisia, for example, about 14% 

of dog owners who claimed their dogs were vaccinated but were unable to validate 

their claims by providing dog vaccination certificates (Touihri et al., 2011). 

Post-vaccination transects are limited to observations of free-roaming dogs and 

will, therefore, be biased toward dogs that are more likely to be observed from 

transects. For example, young puppies are likely to be less visible and are known 

to represent an age group that typically has a low vaccination coverage (Kongkaew 

et al., 2004, Kaare et al., 2009, Minyoo et al., 2015), thus resulting in the 
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potential for overestimating coverage. In a recent study from Tanzania, post-

vaccination transects were shown to overestimate coverage by approximately 7% in 

comparison with household surveys, although it was unclear in this study which of 

the approaches was most accurate (Minyoo et al., 2015). 

Here, we present a detailed assessment of three methods to estimate dog 

vaccination coverage across settings in Tanzania. We use a complete household 

census as reference data for a simulation experiment to determine the impacts of 

sampling on the precision of coverage estimates. Specifically, we aim to answer 

the following questions: (i) What are the resources (personnel, time, and money) 

required to implement these methods? (ii) Which methods provide the most precise 

estimates of coverage? and finally (iii) Which approaches, therefore, generate 

acceptable coverage estimates to provide operational guidance to improve the 

performance of current or future campaigns? 

2.3 Materials and Methods 

2.3.1 Study Sites 

The study was conducted in 29 districts across Tanzania: 24 districts from 

southeast Tanzania, 4 districts from Pemba island, and 1 district (Serengeti 

district) from northwest Tanzania (Figure 2-1). These areas are inhabited by an 

estimated 9.1 million people (20% of the Tanzanian population) according to the 

2012 national census (National Bureau of Statistics, 2012) and represent districts 

that span a wide range of settings, comprising rural, urban, coastal and inland 

areas, and a range of livelihoods and religious backgrounds. Mass dog vaccination 

campaigns were conducted in all these districts by local government teams, with 

support of WHO and collaborating institutions (Mpolya et al., 2017). Various 

methods of estimating vaccination coverages achieved during campaigns were 

compared.  

 summarizes the methods used in different locations and the rationale for data 

collection. 
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Figure 2-1: Study sites in Tanzania. Post-vaccination transects (2 sub-villages/village in 
2,070 villages), school-based surveys (6 schools/district), and household surveys (30 
households/village in 6 villages/district) were conducted in southeast Tanzania and 
Pemba. In Serengeti district, transects were conducted in all sub-villages in almost all 
villages (85/88), and four school-based surveys and a complete census of dogs (surveys of 
35,867 households) were undertaken. Km sq, Square Kilometres. 

2.3.2 Post-Vaccination Transects 

To generate rapid estimates of village-level vaccination coverage, post-vaccination 

transects were conducted on the same day as vaccination campaigns in each 

village from 4 p.m. to 6 p.m. when dogs were active and visible. Transects 

involved recording all dogs observed while walking (or occasionally cycling) a route 

through villages counting marked (vaccinated) and unmarked (unvaccinated) dogs. 

In rural communities, transects were conducted in two randomly selected sub-

villages from each village (villages ranged in size from 2 to 10 sub-villages, with a 

median of 4 sub-villages/village), aiming to representatively sample coverage 

within each village. In the first sub-village, enumerators were instructed to start 
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transects at the centre of the sub-village heading to the outskirts, while in the 

other sub-village, transects started from the edge of the sub-village and headed 

toward the centre. Some of transects were performed in the same sub-village 

where vaccination were undertaken. Each transect was conducted by one 

enumerator for 1 h, therefore, taking a total of 2 h to complete each village. In 

urban areas, enumerators were required to cover the jurisdiction of a street (a 

geographical area defined from the National Census, which covers a neighbourhood 

with several roads). One day of training was held for enumerators prior to data 

collection and printed protocols, and data collection. Printed protocols and data 

collection forms were provided to enumerators during this training. Enumerators 

selected the direction at the start of transects, at the border of sub-

villages/streets and at road junctions by spinning a pen. In Serengeti district, 

transects were conducted in every sub-village of vaccinated villages. 
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2.3.3 School-Based Surveys 

School-based surveys were planned to be conducted immediately after completion 

of the 1-day vaccination campaign but were conducted within 2 months of 

vaccination campaigns as a result of delays in the delivery of funds for their 

completion. Logistically, it was not possible to conduct two post-vaccination 

surveys in all study districts in short time period. We decided to start with transect 

surveys then school based-surveys. These surveys required help from 6 other 

researchers to train and administer these surveys. School-based surveys were 

conducted in southeast Tanzania, Pemba, and Serengeti district (Table 2-1). In 

each district in southeast Tanzania and Pemba, six primary schools (one school per 

village, as most villages in Tanzania have a primary school) were randomly 

selected, and in Serengeti district, four primary schools were selected. Logistic 

and financial limitations meant that school surveys were not conducted in some 

districts or were conducted in less than six schools per district as initially planned. 

Between 50 and 100 pupils (one per household) from Standard IV–VII (aged 11–15 

years) were asked to complete a questionnaire to collect data from their 

household. We used total population purposive sampling with a target to interview 

100 pupils per school. This resulted in all Standard VII pupils being selected to fill 

the questionnaire. If there was more than one pupil from one household recruited, 

the oldest was selected. If the school had fewer than 100 standard VII pupils, 

additional pupils were recruited from lower classes (Standard IV–VI). Written 

consent from the district executive officer and verbal consent of teachers and 

pupils were obtained at each primary school prior to the study. To introduce the 

project to schools, researchers were accompanied by the district veterinary 

officer, district health officer, and district education officer. Questionnaires were 

administered to pupils by the lead author and his research team. The 

questionnaire included questions on the number of adults and children (<18 years 

of age) living in the household, the number of dogs and puppies (<3 months of age) 

kept at the household, and the age of dogs and their vaccination status. 
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2.3.4 Household Surveys 

Household surveys were conducted in all districts in southeast Tanzania and Pemba 

with the aim of obtaining an initial assessment of coverage from the first phase of 

vaccination campaigns. Six villages were randomly selected from all villages in 

each district, and the survey was conducted by surveying 30 households in each of 

the selected villages. In every randomly selected village, a landmark was identified 

(preferably a school, otherwise a dispensary, church, or mosque). From this 

starting point, interviewers randomly chose a direction for selecting households for 

interview by spinning a pen. Every third household was sampled, and interviews 

conducted until 30 households were completed in each village. Surveys were 

conducted in July and August 2011, around 4 months after dog vaccination 

campaigns conducted in March and April 2011. Interviewers were accompanied by 

local village officers to identify household heads and provide introductions. Prior 

to the administration of the questionnaire, permission was sought from the 

household head or other household members of at least 18 years of age in the 

absence of the household head. Interviewers explained the study background to 

each respondent and obtained verbal consent to carry out the questionnaire. For 

households that owned dogs, the questionnaire captured details of dogs owned 

(adults and puppies <3 months) and their vaccination status on the basis of owner 

recall. 

2.3.5 Serengeti district dog population census 

In Serengeti district, a complete dog census was conducted to collect the same 

household questionnaire data as described above, for every household in the 

district. The census began in 2008 and was administered continuously by local 

enumerators working in each village. The census was completed in 2015 (Table 2-

1), as enumerators were only able to conduct the census in between other 

activities. some villages census was conducted the same month of dog vaccination 

while in other villages the time between census data collection and vaccinations 

was 11 months. The census recorded the number of people (adults and children) in 

each household, and the number of adult dogs and puppies (<3 months) and cats 
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and kittens in each household, as well as the numbers of each that were 

vaccinated and the GPS location of the household. Because the census was 

conducted over an extended period, it was not used to generate point estimates of 

vaccination coverage in relation to specific vaccination campaigns, which in 

Serengeti have been conducted annually over the last decade. Instead, these data 

were used for a simulation experiment, whereby the data were sampled to 

simulate a household survey, thereby enabling a comparison of methods and how 

they affect the precision of coverage estimates (see Data Analysis). 

2.3.6 Resources for estimating vaccination coverage 

The number of people involved in each survey method, the time required to 

complete data collection and associated costs to set up and implement each 

assessment across southeast Tanzania were recorded. Costs per surveyed village 

were calculated as total costs incurred in all of the study districts divided by the 

number of villages surveyed. Costs per district were calculated as the overall costs 

for conducting the surveys across surveyed districts, divided by the number of 

surveyed districts. The costs incurred included per diems to government officials 

such as District Veterinary Officers, District Health Officers, District Education 

Officers, and researchers and allowances to enumerators who conducted transects. 

Communication costs covered phone calls to coordinate with enumerators and data 

collectors. Fares covered travel to districts to facilitate training, supervision, and 

to collect records. For school-based and household surveys, travel covered fuel for 

vehicle use. All costs were calculated for evaluation of a single mass dog 

vaccination campaign in Tanzanian shillings (TZS) and converted to US dollars (US$) 

using the average exchange rate in 2011 [1 TZS to US$ 0.000632 (Bank of Tanzania, 

2012)]. 

2.3.7 Data analysis 

The census data from Serengeti district together with the transects and school-

based surveys conducted in Serengeti in 2015 were used to determine the impacts 

of sampling on the precision of vaccination coverage estimation. We define 
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accuracy as lack of bias. Repeated estimates using an accurate method will 

converge on the true coverage value as sample size increases. Precision is the 

absence of random sampling error from the measured value. Repeated estimates 

using a precise method will be close to their mean, although not necessarily close 

to the true coverage. Clearly, for an estimation method to be informative about 

the true coverage, it must be both accurate and precise. Across Tanzania there is 

considerable variation in dog ownership, from largely. Muslim communities with 

very few dogs per household to pastoralists with many dogs in most households. 

This variation in dog ownership patterns among communities means that sampling 

designs should aim to deal with these variations and give accurate and precise 

estimates. 

To examine the precision and accuracy of different methods in estimating 

vaccination coverage, we estimated the district-wide mean coverage and 95% 

confidence intervals in Serengeti from the complete census (all households in all 

88 villages) and from subsamples of households and villages from the census 

equivalent to a household survey. We also compared these to the precision of 

district-wide coverage estimates from the school-based surveys (in 4 villages) and 

post-vaccination transects (in 85 villages) in Serengeti district. To facilitate 

comparison, the four villages selected for the household survey during the 

simulation in Figure 2-2 were the same ones sampled by the school-based survey. 

We fitted binomial generalized linear mixed models (GLMMs), with a random 

intercept to account for variation in mean coverage between villages. The 

dependent variable was dog vaccination status followed a binary distribution 

(vaccinated, unvaccinated) and the independent variable was intercept whereas 

the random effect was village. 
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To assess the impact of sampling on district-wide coverage estimates, we 

conducted simulations where we sub-sampled from the complete census (88 

villages) different numbers of households per village (10, 20, 30, 40, and 50) and 

villages (5, 10, 20, 30, 40, 50, 60, 70, 80, and 88). In my simulation experiment, I 

also incorporated transect data from Serengeti district which were conducted in 

every sub-village. to assess the effects of sampling in communities with less dogs.
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Figure 2-2: District and village-level vaccination coverage estimates and precision in 
Serengeti District. Coverage estimates are shown for all dogs (including puppies, top) and 
adult dogs only (bottom) in surveyed villages (dots); the dots also represent the village-
level coverage. Red squares and error bars show mean district-level coverage ±95% CI, 
estimated using generalized linear mixed models (see main text for details). The coverage 
distribution is plotted for individual villages (shaded circles) and summarized by box-and-
whisker plots, where the thick line shows the median, the box covers the interquartile 
range and the whiskers extend to the range. Blue diamonds represent villages with no 
vaccination campaign where vaccination coverage was assumed to be zero (not included in 
calculation of mean ± 95% CI or boxplots). PVT, post-vaccination transects; SBS, school-
based surveys; HHS, household surveys. 
 

Each of the 50 combinations of these two sampling choices was simulated 500 

times, and mean coverage for the district was estimated from each simulated data 

set as the total number of vaccinated dogs divided by the total number of dogs. 

Although generally this simple method is inferior to fitting a GLMM as above 

(Bolker et al., 2009), this was not feasible for sampling designs with low total dog 
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numbers. The precision achieved using each sampling design was assessed by 

plotting coverage estimates against the numbers of villages and households 

sampled. 

To assess the impact of variability in dog ownership or HDR on the precision of 

coverage estimates, we repeated the simulation described above. However, 

instead of subsampling from the Serengeti census dataset, we used a simulated 

dataset with the same structure but with fewer dogs per household. The number of 

dogs in each household was simulated from a negative binomial distribution with 

mean μ = 0.2 and dispersion parameter k = 0.06 [calculated from the mean and 

variance of the household survey data in southeast Tanzania using the 

parameterization of the negative binomial with variance μ + (μ2/k)]. The number 

of vaccinated dogs was simulated with mean coverage and random effect variances 

between villages, sub-villages, and households estimated from a binomial GLMM 

fitted to the Serengeti census dataset. 

As a result, the “low dog ownership” dataset was as similar as possible to (and 

therefore comparable to) the Serengeti dataset, but with dog numbers similar to 

the mean dogs/household in southeast Tanzania (Table 2-2). As the results 

presented here come from a single simulated “low dog ownership” dataset, we 

checked for sensitivity to random variation by comparing across several (>5) 

simulated data sets. We also assessed the impact of sampling using transect 

surveys. We examined the scenario of sampling 1, 2, 4 and 8 (or all if <8) sub-

villages in a village and determined which sampling effort (sampling design) 

provided reasonable estimates of village-level coverage. 

All statistical analyses were conducted using R version 3.3.1 (R Core Team, 2017). 

GLMMs were fitted using the lme4 package (Bates et al., 2014), and the “low dog 

ownership” data set was simulated using the sim.glmm function (Johnson et al., 

2015). 
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2.4 Results 

Across southeast Tanzania, Pemba Island and Serengeti district, we conducted (i) 

post-vaccination transects following vaccination campaigns in 2,155 villages and 

counted 24,721 dogs, (ii) questionnaires with 8,587 primary school pupil 

respondents, each representing a unique household, in 119 randomly selected 

schools (3,090 dogs recorded), and (iii) 4,488 household surveys in 160 randomly 

selected villages (731 dogs recorded—excluding Serengeti district). In addition, a 

complete census was conducted in Serengeti district covering 35,867 households, 

which collectively owned 62,771 dogs (Table 2-1). Table 2-2 summarizes the 

attributes of each study district and dogs recorded by each method. Many more 

dogs were observed on transects than were recorded in either household or school-

based surveys, even in districts with low dog ownership i.e., high HDR (Table 2-2). 

2.4.1 Logistics and costs for coverage assessments 

Post-vaccination transects usually took around 2 hours to complete. Collars were 

fitted to dogs during vaccination campaigns with very few cases where this was not 

possible. As transects were conducted the same day as campaigns, collar loss was 

assumed to be negligible. School-based surveys involved two research scientists 

with the help of teachers. The questionnaire was administered in one classroom, 

and all pupils normally took approximately 40 min to complete questionnaires. 

Household surveys involved a research team comprised of two drivers, eight 

interviewers, and one supervisor split between two vehicles. Each vehicle covered 

four villages per day (an average of one village per interviewer/day), and the 

village leader accompanied each interviewer in every village. The census in 

Serengeti district was the most time-consuming method, with locally trained 

interviewers spending an average of 14 (8 h/day) days to complete a census of one 

village. 

Costs of estimating coverage varied depending upon the method. The costs per 

village were $12.01, $66.12, and $155.70 for transects, school-based, and 

household surveys, respectively, and these costs scaled up with the sampling for 
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each method (Table 2-3). Specifically, the average cost for assessing district-level 

coverage was around $1,300 with transects completed in every village, 

approximately $300 based on 6 school-based surveys per district and $900 based on 

sampling 30 households per village in six villages per district. 

2.4.2 Comparison of Coverage Estimates and Their Precision 

between Methods 

Vaccination coverage in Serengeti district was estimated using each method and 

from the complete census to assess precision in coverage estimates. Figure 2-2 

illustrates village-level coverage estimates and the district-wide mean estimates. 

Transects in Serengeti were conducted in 85 out of 88 villages, with 6,285 dogs 

counted and school-based surveys were conducted in four schools, with 

interviewed pupils representing 333 households and collective ownership of 892 

dogs. We observed that excluding puppies resulted in higher estimates of coverage 

(from 37.5% as estimated from the census including puppies and adults to 49.7% 

including only dogs >3 months of age), with similar increases for both the 

household and school-based surveys. However, we were unable to analyse the 

post-vaccination transect data according to age class of observed dogs as this 

information was not recorded during transects. 
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Our GLMM estimate of district-level coverage of all dogs (puppies and adults) from 

the census was 37.5% with relatively narrow 95% confidence intervals (32.8–42.3%). 

The coverage estimate from the census data subsampled to represent a household 

survey fell outside of these confidence intervals at 44.5% and had wider 95% CI 

(37.1–52.0%). Although the district-wide coverage for the school-based survey 

(51.2%) was not directly comparable to the census data, the span of the 95%CI can 

be compared and was found to be much wider (38.7–63.4%). The transect coverage 

estimate (61.7%) was higher than the school-based survey but had narrow 95% CI 

(58.2–65.2%) similar in span to the census. 

In comparison to the census, only the post-vaccination transects method provided 

similar precision in coverage estimates (Figure 2-2) but these appeared to 

overestimate district-level vaccination coverage in comparison to the school-based 

survey. This is likely due to few puppies being observed during the transects. 

Transects generated coverage estimates for every village in a district, although 

village-level estimates were not very precise. Nonetheless, these village-level 

estimates were sufficient for identifying villages with low coverage, for example, 

less than 70% coverage. 

2.4.3 Impact of sampling on district-level coverage estimates 

Estimates of coverage from the school-based and household surveys were sensitive 

to the sampling design (Figure 2-3). As the sample size increases, in terms of the 

numbers of households sampled per village, coverage estimates became 

increasingly precise (Figure 2-3A). In Serengeti district, where there is high dog 

ownership, once at least 30 households within each of 20 villages were sampled, 

estimates were very close (±10% with high probability) to the true mean from the 

census data. In scenarios with low dog ownership (i.e., higher HDR), approximately 

three times the sampling effort (30 households × 60 villages) is required to achieve 

an equivalent degree of precision (Figure 2-3B). It was possible to sample more 

households more rapidly through school-based surveys than household surveys 

because it is easier to recruit pupils at school than visiting individual households. 
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For the transects, sampling two or more sub-villages per village gave coverage 

estimates that were within 10% of the true village-level coverage, although 

coverage estimates were more precise if transects were completed in all villages in 

all wards rather than just a sample of villages per ward (Figure 2-3C). 

 

Figure 2-3: The impact of sampling on precision of coverage estimates derived from 
household surveys in communities with (A) low human:dog ratios and, (B) high human:dog 
ratios, and from (C) post-vaccination transects. Estimated mean district-level vaccination 
coverage (red line) for different numbers of villages and households sampled from (A) 
actual Serengeti district dataset and (B) a dataset from Serengeti District but simulated 
with lower dog ownership (0.2 dogs per household). For each sampling design [i.e., the 
number of villages and households sampled in panels (A,B)], coverage estimates from 500 
subsampled data sets are plotted (blue dots), with shading indicating the number of 
sampled households, and the mean of these estimates is shown by red line. Similar to 
panels (A,B), each column of points shows sampling variation among 500 subsampled data 
sets for each sampling design using transects (C). Coloured dots represent the number of 
subvillages sampled per village for estimating coverage from transects. 
 

2.5 Discussion 

The feasibility of global canine rabies elimination has been recognized by major 

international health agencies, including the WHO, the World Animal Health 

Organization (OIE), and the Food and Agriculture Organization of the United 
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Nations (FAO (Abela-Ridder et al., 2016)). Implementation of mass dog vaccination 

campaigns to meet the 2030 target of zero human deaths are now underway in 

several countries in Asia and Africa. To guide the progress of these vaccination 

campaigns, it is important to evaluate the performance of mass dog vaccination 

campaigns. Specifically, monitoring is useful to determine whether campaigns have 

reached the required vaccination coverage, to identify problematic areas with low 

coverage, and target communities with coverage gaps. Dog rabies control 

programmes typically operate under financial constraints that affect both 

implementation and evaluation. While several studies have evaluated vaccination 

coverage as part of small-scale research/pilot vaccination campaigns (Davlin and 

VonVille, 2012), here we evaluate different approaches in the context of 

comparison of setup and implementation costs for generating precise and accurate 

coverage estimates at scale. 

A weakness of the study was that the dog census data did not provide a point 

estimate of coverage relative to a specific campaign. Serengeti district has been 

subject for long term dog vaccination interventions since 1990s (Dye and 

Cleaveland, 1995). In this district, baseline data on number of dogs have been 

established through accurate records of dogs vaccinated in each village. Therefore, 

changes in dog demographic structure did not affect much of our results and we 

were confident to use the dog census data as a valuable comparison to get the 

picture on how sampling affect coverage estimates. 

Mark-resight technique requires sufficient time should be given after marking to 

allow mixing of marked animals within the population. In our experience of 

implementing and monitoring dog vaccinations, we did not observe any concern of 

temporarily change of the behaviour of the vaccinated dogs in the community as a 

result of dog vaccination activities (including putting collars around their necks) 

that could lead to inaccurate counts. For example, we didn’t observe or receive 

information on dogs left vaccination points or left the village due to vaccination 

activities. 

It is important to recognize this trade-off between precision and degree of spatial 

resolution, which are offset by time and cost. However, in many situations, a 
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combination of both spatial resolution (level of spatial details) and level of 

precision of data (consistent and reliable data ) is very important in rabies control 

and elimination efforts. For example, high spatial resolution may be needed to 

detect coverage gaps, yet the corresponding data samples may be usable at less 

than full precision to adequately approximate measured coverage. In this study, 

we demonstrated that transects were the simplest method that generated precise 

estimates of vaccination coverage and was cheap. Transects generated sufficient 

precise data even in villages where detection rates were extremely low such as in 

island or coastal areas, and we can recommend for monitoring the dog 

vaccinations in country-wide campaigns in Tanzania. 

Our study revealed that transect surveys can detect coverage gaps in areas where 

vaccinations were conducted. We found that rapid assessment of dogs vaccinated 

in each unit can be used to inform remedial vaccinations. The analysis of these 

fine-scale resolution data collected through transect surveys (or from vaccination 

records of areas with no campaign) will help to map spatial heterogeneities in 

vaccination coverage at the local level i.e. village or street level. Mean coverage 

at district-level can appear to sufficient because averaging good and poor 

performing villages. However, fine scale data are needed to help project managers 

to troubleshoot why some areas campaigns were not successful. However, in our 

study in Tanzania, transect surveys were paper-based. The process of compiling, 

entering into the database, analysing and presenting these paper-based data were 

tedious. These paper-based approaches do not allow a rapid high-resolution 

analyses to be carried out to identify vaccination coverage gaps. It is now urgent 

that rapid, practical and effective approaches of measuring coverage are used by 

program managers to support national and global policymakers to track progress 

towards implementation of stated goals and check whether milestones are being 

met. The developments in mobile phone technology and spatial modelling that 

facilitate rapid assessment of vaccination programs, and reporting to the project 

managers to take actions will greatly advance transect surveys (Gibson et al., 

2015). Spatial analysis will inform/visualize the performance of campaign and 

suggest response. Additionally, using paper-based surveillance it was impossible to 

track the path route of enumerators, with mobile phone monitoring will help 
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indicate if the transect routes was performed in the same sub-villages where 

vaccination were undertaken. This will help to assess detection rate in areas 

close/far from vaccination points. 

A limitation of transects is that they tend to overestimate coverage because of 

excluding puppies and a solution for this is to incorporated puppies to adult ratio 

(PAR) when calculating the coverage. It was previously reported that post-

vaccination coverage estimates in Tanzania from transects overestimate coverage 

by 10–15% (Minyoo et al., 2015). We saw a similar difference in our coverage 

estimates from the complete census when puppies were excluded. This suggests 

that puppies are rarely observed on transects and that puppies are less likely to be 

vaccinated, which could explain why coverage is overestimated from transects 

(Minyoo et al., 2015). Estimates of vaccination coverage from transects should 

therefore be reduced by around 10% when assessing whether coverage is sufficient 

or if remedial vaccination is required, and for determining the impacts of 

vaccination programs. 

Household surveys generate useful data on vaccination coverage of owned dogs 

and provide opportunities for collection of additional demographic data (Knobel et 

al., 2008, Kaare et al., 2009, Minyoo et al., 2015). Evaluation costs are often the 

major factors affecting the choice of design. For example, we found that 

household surveys were time consuming and costly at ~$34 dog recorded or ~150 

per village. Because of these costs, we restricted out household (and school-based) 

surveys to a set number (6) per district, which meant that larger districts were 

sampled less. This was the underlying statistical reason why household (and school-

based) surveys performed worse than transect surveys. However, this problem can 

be solved by increasing sample size, but would be very expensive to achieve levels 

comparable to transects. We found that village sampling is more important that 

household sampling. Our simulation experiment showed that approximately 30 

villages would need to be surveyed to generate district-level estimates of coverage 

precise to within 10% of the true coverage. We therefore conclude from our 

simulation experiment that the sampling required to reach an adequate level of 

precision (say within 5% of confidence interval ) would likely be expensive in most 

settings, particularly where HDRs are high and even larger sample sizes would be 
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needed. The effort required to conduct these surveys would be difficult to justify, 

given the more urgent priority of vaccinating dogs. 

School-based surveys can generate data from more households at lower cost, as 

pupils are easily recruited. Moreover, school pupils typically take their dogs to 

vaccination stations (Kaare et al., 2009). Therefore, school pupils are more likely 

to recall vaccination status of their dogs than parents. The main costs of school-

based surveys are at the setup stage, which requires considerable government 

support, although this cost is not incurred on successive campaigns. School-based 

surveys are, therefore, simple to implement and can capture a range of 

socioeconomic and religious backgrounds. However, estimates may be less 

accurate because of a biased subsample of children attend school and less precise 

in areas with low numbers of pupils attending schools, such as pastoralist 

communities. Critically, this method may, therefore, fail to capture coverage in 

the most vulnerable populations with the highest dog ownership (lowest HDR) but 

lowest school attendance (Bardosh et al., 2014). In communities with few dogs, 

school-based surveys are also sensitive to sampling, as very few pupils (<10 pupils 

per 100 households) reported to own dogs at their households (see also simulation 

experiments in Figure 2-3B). In these areas, large numbers of households would 

need to be surveyed to obtain representative sample sizes for adequately precise 

coverage estimates. 

Among the limitations of our household and school-based surveys was their 

timeliness. For example, our study was conducted 2 months after vaccination, and 

since then some dogs may have died and therefore were not counted. However, 

our questionnaire asked about dogs <3 months including those born after 

vaccination, which would affect the coverage estimate (we assume both 

vaccinated and unvaccinated dogs are likely to die with equal probability and 

therefore this will not affect our coverage estimates). We also considered the 

vaccination status of dogs reported by owners, which could be biased. More logistic 

effort was involved in setting up these surveys than for transects, therefore rapid 

assessments of vaccination performance (and remedial action if required) are more 

difficult with these methods, which also do not provide estimates of coverage for 

every village unless completed in every village which would be very costly. By 
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contrast, transects were very efficient and generated immediate operational 

guidance at the village-level (Figure 2-4). 

 

Figure 2-4: Vaccination performance in villages in Serengeti District. Villages where surveys 

were conducted are coloured based on whether village-level coverage exceeded 60% (green) or 

were less than 60% (blue) based on (A) post-vaccination transects and (B) school-based surveys 

versus whether coverage exceeded 70% (green) or were less than 70% (blue) based on (C) post-

vaccination transects and (D) school-based surveys. 

On the whole, many more dogs were recorded by transects than other methods. 

For example, fewer than 10 dogs were counted during household surveys in Chake 

chake district on Pemba, while 182 dogs were counted during transects. Transects 

surveys are therefore more likely to generate more precise estimates of coverage 

than the other methods even in areas with fewer dogs. However, at the village-

level dog counts even from transects were often very low and therefore village-

level coverage estimates would be expected to be imprecise. Although transects 

could be carried out for longer periods of time, this might also result in recounting 
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of dogs and would make them more expensive to conduct. Overall, transects were 

affordable and generated more precise estimates of district-level coverage than 

questionnaire-based surveys that were affected by sampling. But the costs of 

transects accrue as more villages are surveyed, so in very large populations (with 

lots of villages) the costs of transects increase. 

Priorities in terms of vaccination campaign evaluation typically change over time 

(Lembo and Partners for Rabies Prevention, 2012). During initial stages of national 

control programs, the priority, for example, is likely to be planning for dog vaccine 

procurement, with estimates needed of the dog population size. Human census 

data are almost universally available and can be used with HDRs to provide a 

baseline for vaccine procurement (Gibson et al., 2016). HDRs for a range of 

settings in Africa and Asia are a useful starting point (Knobel et al., 2008, Davlin 

and VonVille, 2012, Gsell et al., 2012). However, these data should not be 

considered sufficiently reliable to provide a denominator for generating 

vaccination coverage estimates. Indeed, our experience in southeast Tanzania was 

that dog population estimates derived from HDRs substantially overestimated dog 

populations and reassessment of vaccine procurement was required in subsequent 

years. But, in general, it was better to overestimate the dog population at this 

stage than underestimate it. 

Consecutive vaccination campaigns should generate data on vaccine doses 

delivered at the village level. We therefore, recommend post-vaccination transects 

be used in conjunction with monitoring vaccine doses delivered during campaigns 

to guide vaccine procurement for future campaigns. This approach may mean that 

once baseline levels of coverage have been established through accurate records 

of dogs vaccinated in each village/vaccination station, post-vaccination transects 

may not be required every year, but could be completed less frequently. In our 

experience, local government authorities in Tanzania do not have resources or 

incentives to invest in monitoring and evaluation, and their priority, 

understandably, is on vaccinating dogs. A further advantage of post-vaccination 

transects is that local paravets, community-based health officers, local community 

members, and volunteers can be rapidly trained to conduct transects and 

therefore provide relatively independent coverage data. 



 

44 

 

A major obstacle when approaching elimination is the need to address difficulties 

in program implementation in hard-to-reach populations (Klepac et al., 2015). 

Post-vaccination transects could be used to troubleshoot the performance of 

vaccination coverage in stubborn foci. For example, vaccination programs across 

Latin America have achieved tremendous success in controlling dog rabies with 

average levels of coverage estimated to exceed 70% based on HDRs (Schneider et 

al., 2007). However, in localized areas, canine rabies persists, likely due to gaps in 

coverage or overestimation of routine coverage achieved (Ferguson et al., 2015). 

Transects could be used to identify areas in need of improved vaccination, where 

delivery was poor (for example in Figure 2-4). More generally, transects have 

proven to be effective in measuring the immediate success of vaccination 

campaigns in settings in both Asia and Africa (Putra et al., 2013, Muthiani et al., 

2015, Tenzin et al., 2015b, Gibson et al., 2016, Léchenne et al., 2016). 

Our transect surveys require further improvements to adequately address some 

concerns:  transect routes were not pre-defined, which may have resulted in 

recounting of dogs. But efforts were taken to avoid recounting dogs, as we aimed 

to go from the outskirts to the centre of sub-villages and vice versa. Our transect 

surveys were paper-based, however, the developments in mobile phone technology 

to direct (guide) enumerators could greatly overcome this challenge and advance 

transect surveys (Gibson et al., 2015). Additionally, transect enumerators 

(observers) were the one who delivered dog vaccinations, which could cause 

observer bias. Another concern is the loss of collars of vaccinated dogs which have 

a significant impact on interpretation of vaccination coverage (Cleaton et al., 

2019). We overcame this limitation by conducting transects immediately after 

vaccinations. In our study, some enumerators cycled rather than walked transects, 

but enumerators were trained to cover routes slowly, so we expect that any 

differences due to this would have been negligible. Simple tools are available to 

evaluate the performance of vaccination programs. 

capturing the spatial variation that transects provide, which could also address 

these concerns (Gibson et al., 2015, Gibson et al., 2016). 
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Patterns of dog ownership in Tanzania are very heterogeneous. As such, district-

level coverage estimates from household or school-based surveys tend to be more 

imprecise than estimates from transects. To obtain estimates with comparable 

precision would require considerably increased sampling efforts and increased 

costs. The issue of precision exists for all sampling methods, but transects 

overcame this issue because they were conducted in all villages (and therefore had 

a much larger sample size) while other methods (school-based surveys and 

household surveys) were conducted in just six sampled villages per district 

regardless of the geographical size of the district. The relatively lower precision of 

the estimates from households and school based surveys, and higher precision of 

estimates from transects may be at least in part because different sample sizes for 

these method. Post-vaccination evaluation methods that are precise are very 

important for long term evaluation of a program. Therefore, the focus should be 

precision of the methods, assuming that accuracy is sufficient and can be 

validated. 

Moreover, from transects we were able to estimate village-level coverages. This 

can be useful when aiming to eliminate rabies as gaps in coverage can be 

detected, and therefore campaigns can be strengthened to effectively interrupt 

transmission. With the wide availability of mobile phones, real-time data on 

vaccinated dogs and coverage estimates from transects can easily be submitted by 

enumerators (Gibson et al., 2016, Mtema et al., 2016). We therefore recommend 

transects as a relatively cheap method to estimate village-level coverage that can 

be conducted at scale, in comparison to other methods where high levels of 

sampling are required that are cost prohibitive. 

In this comparison, we could confirm that transects perform better than other 

methods as relatively cheap, comprehensive evaluations are needed. In future 

works, evaluation is needed to confirm: 1) the minimum number of dogs that need 

to be counted during transects surveys for inclusion in analysis, 2) what are the 

limitations of single-day transects (compared) to 2-days transects? 3) what is the 

required detection rate? and is two hours sufficient in both communities with low 

or high dog ownership? Obtaining quality data will entail trade-offs (e.g. costs vs. 
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detection rate). Because all methods have limitations, the intent of a practical 

evaluation is to strive for precise estimates. 
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Chapter 3 Estimating the Size of Dog Populations 

in Tanzania to Inform Rabies Control 

3.1 Abstract 

Estimates of dog population sizes are a prerequisite for delivering effective canine 

rabies control. However, dog population sizes are generally unknown in most 

rabies-endemic areas. Several approaches have been used to estimate dog 

populations but without rigorous evaluation. We compare post-vaccination 

transects, household surveys, and school-based surveys to determine which most 

precisely estimates dog population sizes. These methods were implemented across 

28 districts in southeast Tanzania, in conjunction with mass dog vaccinations, 

covering a range of settings, livelihoods, and religious backgrounds. Transects were 

the most precise method, revealing highly variable patterns of dog ownership, with 

human/dog ratios ranging from 12.4:1 to 181.3:1 across districts. Both household 

and school-based surveys generated imprecise and, sometimes, inaccurate 

estimates, due to small sample sizes in relation to the heterogeneity in patterns of 

dog ownership. Transect data were subsequently used to develop a predictive 

model for estimating dog populations in districts lacking transect data. We 

predicted a dog population of 2,316,000 (95% CI 1,573,000–3,122,000) in Tanzania 

and an average human/dog ratio of 20.7:1. Our modelling approach has the 

potential to be applied to predicting dog population sizes in other areas where 

mass dog vaccinations are planned, given census and livelihood data. Furthermore, 

we recommend post-vaccination transects as a rapid and effective method to 

refine dog population estimates across large geographic areas and to guide dog 

vaccination programmes in settings with mostly free roaming dog populations. 

3.2 Introduction 

Dog-mediated rabies is a serious zoonosis responsible for at least 59,000 human 

deaths every year, primarily in low-income countries in Asia and Africa where 

rabies is endemic (Hampson et al., 2015). In these areas, over 95% of human rabies 
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deaths result from bites by domestic dogs. Empirical data and mathematical 

modelling have shown that annual dog vaccination campaigns that achieve a 

coverage of 70% are sufficient to eliminate rabies (Coleman and Dye, 1996, 

Hampson et al., 2009). The global call for the elimination of dog-mediated human 

rabies by 2030 (Abela-Ridder et al., 2016), has prompted many countries to invest 

in dog vaccinations. For example, Tanzania has developed a National Rabies 

Control and Elimination Strategy, aiming to control dog rabies and eliminate 

human rabies in the country by 2030 (Mpolya et al., 2017). However, in low-income 

countries, dog population sizes are usually unknown, or hard to estimate, making it 

difficult to implement and evaluate dog vaccination campaigns (Lembo et al., 

2010). 

In most low-income countries where rabies is endemic, owned dogs are not 

registered by local authorities, dogs are free to roam, and dog censuses are not 

conducted. Insufficient knowledge of dog population sizes for planning of 

vaccination campaigns was reported as one of the limiting factors for ineffective 

rabies control in Africa (Lembo et al., 2010). This lack of knowledge prevents 

countries from forecasting vaccine procurement needs, and hinders assessment of 

the effectiveness of mass dog vaccination campaigns. It is, therefore, important to 

develop practical methods for estimating dog population sizes. 

Approaches for estimating dog population sizes include extrapolation from 

human/dog ratios derived from household surveys and from transects with counts 

of dogs differentiating unvaccinated and vaccinated dogs marked with collars or 

paint sprays (Kongkaew et al., 2004, Knobel et al., 2008, Gsell et al., 2012, 

Downes et al., 2013, Tenzin et al., 2015a, Tenzin et al., 2015b, Rinzin et al., 

2016). The accuracy of these methods has been questioned, as they generate very 

different population estimates from the same geographical areas, and surveys can 

be imprecise unless large numbers of households are sampled (Downes et al., 2013, 

Sambo et al., 2017). Household surveys are restricted to assessing owned dogs, 

while transects capture only free-roaming (observable) dogs. In Tanzania, over 78% 

of dog owners reported that their dogs roam freely all the time (Sambo et al., 

2014), and therefore, the majority of dogs can be observed during transects. In 

settings where the vast majority of dogs are owned, such as Tanzania (Lembo et 
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al., 2010, Sambo et al., 2014), a complete dog census, whereby each household in 

a community is visited, is the gold standard method to estimate the dog 

population, but requires considerable investment of time and resources. 

Dog ownership patterns are not uniform across all communities. The distribution of 

dogs in different settings is linked to religious, cultural, geographical, and 

socioeconomic factors (Kongkaew et al., 2004, Knobel et al., 2008, Bardosh et al., 

2014). For example, there tend to be fewer dogs in predominantly Muslim 

communities than in Christian communities (Kongkaew et al., 2004, Knobel et al., 

2008). Tools to accurately estimate dog populations that take into account local 

cultural norms could, therefore, support the scaling up of mass dog vaccination 

programmes. 

Our overall aim is to provide practical and effective approaches to estimate dog 

populations in different settings. Our first objective was to compare methods to 

determine which provides the most precise dog population estimates, and explain 

why estimates differ according to method. From this comparison, we identified 

that post-vaccination transects, which involve counting both vaccinated and 

unvaccinated dogs, provide more reliable dog population estimates than either 

household or school-based surveys. Our second objective was to identify factors 

that predict dog ownership in different settings in Tanzania, using our estimates of 

dog population size from transects. The aim of identifying these factors was to 

enable prediction of dog population sizes and densities in other parts of the 

country not yet subject to vaccination campaigns, which was our third objective. 

We assessed the performance of these factors from known populations in our 

study, and finally used these factors together with nationally available human 

census data to predict dog population sizes throughout Tanzania. Our findings 

should be valuable for both Tanzania and other countries as they develop, 

implement, and monitor their national rabies control programmes. 
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3.3 Methods 

3.3.1 Study Sites 

The study was conducted in the area already described previously (Chapter 2 

(2.2.1)). 

3.3.2 Data Collection 

Since 2010, dog rabies vaccinations have been conducted in villages across the 

study districts using a central point approach (Kaare et al., 2009), whereby owners 

bring their dogs to a centrally located vaccination point within their village. At the 

vaccination points, all dogs that were vaccinated were fitted with temporary 

plastic collars around their necks. We used the number of vaccinated dogs in each 

district as the minimum possible dog population size from which to compare the 

performance of our estimates. Data from three different approaches were used to 

estimate dog populations: post-vaccination transects, household surveys, and 

school-based surveys. These methods are described in full elsewhere in Chapter 2, 

and outlined briefly below. 

3.3.3 Post-vaccination Transects: 

Since 2013, following vaccination campaigns, post-vaccination transects have been 

conducted (Sambo et al., 2017). Transects were walked (or occasionally cycled) on 

the same day as campaigns from 16:00 to 18:00, when dogs were active and 

visible, counting all marked (vaccinated) and unmarked (unvaccinated) dogs. In 

rural areas, transects were conducted in two randomly selected sub-villages per 

village (villages ranged in size from 2 to 10 sub-villages, with a median of 4), 

aiming to representatively sample each village. In the first sub-village, 

enumerators started at the sub-village centre and headed to the outskirts, while in 

the other, enumerators walked from the edge toward the centre. Each transect 

was conducted by one enumerator for 1 h per sub-village, taking 2 h to complete 

the village. In urban areas, enumerators covered the jurisdiction of a street (a 
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geographical area defined by the National Census, which covers a neighbourhood 

with several roads). Enumerators selected the direction at the start of transects, 

at the border of sub-villages/streets and at road junctions by spinning a pen. 

Numbers of vaccinated dogs per district were compiled from dog vaccination 

registers and used in conjunction with the transect data to estimate coverage 

achieved and numbers of dogs in each district. In Serengeti district in northern 

Tanzania, data from mass dog vaccinations and transects that were conducted in 

August 2015 were used to validate the performance of transects. Data from a 

complete census of dogs (covering all 35,867 households in Serengeti district), 

undertaken from 2008 to 2015, were used to calculate the pup/adult ratio of dogs. 

Since every household was visited (large sample size) in Serengeti district, I used 

this district to calculate for puppies to adult ratio (PAR). 

3.3.4 Household Surveys: 

Household surveys were completed in all 28 study districts between July and 

August 2011, with the aim of obtaining an initial assessment of coverage from the 

first phase of vaccination campaigns conducted between February and April in 

2011. Six villages were randomly selected from all villages in each district. In each 

selected village, a landmark was identified (preferably a school, otherwise a 

dispensary, church, or mosque). From this starting point, interviewers randomly 

chose a direction for selecting households for interview by spinning a pen. Every 

third household was sampled, and interviews conducted until 30 households were 

completed in each village. For households that owned dogs, the questionnaire 

captured details of dogs owned (adults and puppies <3 months) and their 

vaccination status on the basis of owner recall. 

3.3.5 School-Based Surveys:  

School-based surveys were conducted from June 2014 to February 2015, in the two 

months following dog vaccination campaigns in each district. The surveys were 

conducted in 24 districts (4 districts were missed) and were used to ask questions 

on the number of adults and children (<18 years of age) in households, as well as 



 

52 

 

the number of dogs and puppies (<3 months of age), and their vaccination status. 

Six primary schools (one per village; most villages in Tanzania have a primary 

school) were randomly selected from each district but logistic and financial 

limitations meant that surveys were not conducted in four districts and were 

conducted in fewer than six schools per district as initially planned. We used total 

population purposive sampling with a target to interview 100 pupils per school 

(Teddlie and Yu, 2007). Standard VII pupils (ages from 13–15 years) were selected 

to complete the questionnaire. If more than one pupil from a household was 

recruited, the oldest pupil was selected. If the school had fewer than 100 standard 

VII pupils, pupils were recruited from lower classes (Standard IV–VI, ages from 12–

14 years). Schools were selected from the same villages where household surveys 

were conducted. 

3.3.6  Characteristics of Study Districts 

Human demographic data for the study were extracted from the 2012 national 

population and housing census, including district-level population sizes, annual 

population growth rates, average household sizes (persons/household), numbers of 

livestock keeping households, and the percentage of the population living in rural 

areas (National Bureau of Statistics, 2012). Human populations were projected 

from the 2012 census to 2014, using annual growth rates for each district. The 

census also included district-level information on employment status among the 

working population (defined as those aged 10 years or over), which showed that 

the most frequent occupations were farming and livestock keeping. We, therefore, 

also extracted the number of workers in each district employed as peasants 

(farmers who only grow crops) and livestock keepers, respectively. To examine 

whether geographical setting was associated with dog ownership, districts were 

also categorized as (1) Inland, comprising 14 districts from the mainland that did 

not border the ocean; (2) Coastal, comprising 14 districts that bordered the Indian 

Ocean, including both Tanzania mainland coastal districts and the four districts 

from Pemba island; and (3) Island, covering the four districts from Pemba island. 

We extracted the geographical area of each district from data obtained from the 

National Bureau of Statistics (National Bureau of Statistics, 2012), using 
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the unionSpatialPolygon function from the maptoolspackage in R (Bivand and 

Lewin-Koh, 2014), excluding water bodies and protected areas. These variables are 

summarised in Table 3-1 for study and non-study districts. 

Table 3-1: Characteristics of study and non-study districts in Tanzania. Continuous 
variables are summarised by the mean (range) and categorical variables by the number 
(%). Variables were either extracted from the national census (National Bureau of 
Statistics, 2012) or from district shapefiles from the Tanzania National Bureau of Statistics 
(NBS) website. These variables were tested using ordinary least squares regression to 
assess the best variables for predicting numbers of dogs in districts. 
Variable Study districts 

(n = 28) 

Non-study district 

(n = 140) 

Human population size 307,676 

(70,209, 1,775,049) 

257,188  

39,242, 807,619) 

Annual % human population growth rate  2.3 (-1.0, 7.0) 2.6 (-3, 7) 

Number of households 75,452 (16,892, 441,240) 50, 636 (9,027, 134,608) 

Average household size (persons per 

household) 

4.2 (3.5, 5.5) 5.1 (3.8, 7.8) 

Area (km2)¥  4,375 (15, 28,000) 4,375 (18.6, 28,244) 

Setting:  

 Inland  

 Coastal‡ [including Island] 

 

14 (50%) 

14 (50%) [4 (14%)] 

 

128 (91%) 

12 (9%) [6 (4.7%)] 

Number of livestock-keeping households 18,317 (4,771, 35,829) 24,168 (2,258, 71,335) 

Proportion (%) of persons employed* as: 

 Peasants 

 Livestock keepers 

  

60 (3, 88) 

1 (0, 6) 

 

64 (4, 93) 

1 (0, 65) 

¥Excluding protected areas and water bodies. ‡Coastal districts were defined as districts 
that border the Indian ocean. *Defined as the main occupation on which persons aged 10 
years and above spend most of their working time. 

3.3.7 Statistical Analysis 

Estimation of dog population sizes: For transects, which involve counting both 

vaccinated and unvaccinated dogs, estimates of dog vaccination coverage, and 

their 95% confidence intervals (CIs), were obtained from binomial generalized 

linear mixed models (GLMMs) with normally distributed (on the logit scale) random 

intercepts allowing coverage to vary among villages. Dog population estimates for 

each district were calculated by dividing the numbers of vaccinated dogs by the 

coverage estimates. Puppies under the age of three months are not often 

vaccinated during campaigns (Durr et al., 2009, Minyoo et al., 2015), and are less 
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likely to be counted than adult dogs during transects (Minyoo et al., 2015, Arief et 

al., 2017, Sambo et al., 2017). In Thailand, puppies comprised approximately one-

quarter of the dog population (Kongkaew et al., 2004). Estimates of dog population 

sizes from transects therefore require further adjustment. We calculated the ratio 

of pups/adult dogs (1:3.81) from the dog census conducted in Serengeti district in 

northern Tanzania (Sambo et al., 2017), and adjusted our dog population size 

estimates accordingly. We used transect and mass dog vaccination data collected 

between November 2014 to January 2015 for these calculations. Transect data 

were collected from 27 districts (we were unable to collect transect data in Ilala 

district, and it was not included in our analysis). To assess year-to-year variation of 

the estimated dog population sizes, we compared these data (November 2014 to 

January 2015) with data that were collected from September 2015 to December 

2016. 

The total number of dogs across the 27 districts was calculated as the sum of the 

dog population estimates in each district. A 95% confidence interval for this total 

was estimated as the 2.5% and 97.5% quantiles from 100,000 bootstrap samples, 

where bootstrapped samples for each district were generated by first sampling 

coverage estimates from a normal distribution with the mean being the estimated 

log odds of coverage and the standard deviation being its estimated standard 

error, and second, converting these coverage estimates to total dog population 

sizes, with adjustment for undercounting of puppies, as described above. The 

formula for this was: dog population size=(count of vaccinated dogs/coverage) 

multiplied by pup to adult ratio. 

For household and school-based surveys, we estimated dog population sizes by 

multiplying the mean number of dogs per household (MDH) recorded during these 

surveys (all recorded dogs and people in 6 sampled villages/district per method) by 

the total number of households within each district according to the 2012 national 

census. The MDH is less popular than the human to dog ratio (HDR), but it has been 

recommended as a reliable method (Rinzin et al., 2016). For each district, the 

mean number of dogs per household and profile likelihood 95% confidence limits 

were estimated from a negative binomial GLMM, where the response was the 

number of dogs in each household, and the only fixed parameter was the 
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intercept. Confidence limits were not calculated for districts where too few (≤3) 

surveyed households owned dogs to provide reliable estimates of uncertainty. We 

explored fitting a random effect to account for variation in dog numbers among 

villages, but omitted it because, for the majority of districts, the model either 

failed to converge, suggesting insufficient information in the data to estimate the 

variance, or gave zero variance estimates and, therefore, identical estimates and 

confidence intervals to the model, with no random effects. The district-level 

estimates from the household and school-based surveys were summed to estimate 

the overall dog population size in the study districts. Confidence intervals for these 

estimated totals were calculated by parametric bootstrapping, similarly to the 

transect methods above, by sampling from a normal distribution with the mean 

being the log mean number of dogs per household, and the standard deviation 

being its standard error estimated from the GLMM. Where too few households 

owned dogs to allow the GLMM to be fitted, the standard error was assumed to be 

zero. 

Prediction of dog population sizes: We used a linear regression model to achieve 

our second objective of identifying factors (those considered are shown in  Table 

3-1) associated with dog population sizes, and our third objective of estimating the 

number of dogs in each district. Here, we motivate our approach to modelling dog 

numbers. 

First, rather than modelling dog numbers directly, we modelled the dog:human 

ratio, then multiplied estimated dog:human ratio by human population size to 

estimate dog numbers. A simple model for predicting the ratio of the number of 

dogs (Di) to the number of humans (Pi) in district i is , where every district is 

predicted to have the same dog: human ratio, K, from which individual districts 

are allowed to deviate by means of district-specific residuals, ei, where ei > 0 with 

geometric mean 1. We can add flexibility to this model by introducing continuous 

variables that are potential predictors of the dog: human ratio, for example the 

proportion of the population employed as livestock keepers, Li/Pi, such that 

, where β1 is a coefficient governing the influence of Li/Pi on Di/Pi. The 
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model can be further extended to allow differences in Di/Pi between categories of 

district, such as between districts with and without a coastline: 

, where Ci is a binary indicator variable with the value 1 for 

coastal districts and 0 otherwise, so that exp(β2) represents the ratio (coastal dog: 

human ratio):(mainland dog:human ratio). Taking the natural log shows that this 

model can be viewed as a linear regression model: 

, where log(ei) ~ Normal(0, σ2). Further 

continuous and binary variables (listed in Table AB-2) were added in the same way 

(continuous variables were logged and categorical variables fitted as binary 

indicator variables) to give the full model prior to filtering using the variance 

inflation factor. 

We used this ordinary least squares regression model to assess whether any of the 

variables that we collated were useful for predicting numbers of dogs. We 

partitioned our data into two sets of districts: a model-building set, which we used 

to develop the model, and a prediction set, for which we aimed to predict dog 

numbers from the model. The model-building set comprised the data from the 28 

study districts where we collected data, whereas the prediction set included all 

districts in Tanzania (including the 28 study districts). The response variable (Di/Pi) 

was the estimated number of dogs per 1000 people in each of the study districts, 

log-transformed to fit the modelling assumptions of linearity and homoscedasticity. 

Before fitting the model, we conducted data exploration to detect collinearity 

among the variables using pairwise scatter plots and the variance inflation factor 

(VIF) as described by Zuur et al. (Zuur et al., 2010). The variable with the highest 

VIF was removed and VIFs recalculated, repeating this process, stopping when all 

VIF values were below 5. The remaining variables were taken forward to model 

selection. 

The aim of model selection was to identify the best-fitting model, that is, the 

model that most accurately predicted district dog population sizes. The best model 

was selected by fitting all possible subsets of the six candidate variables as main 

effects, and choosing the model with the lowest corrected AIC (AICC (Wagenmakers 
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and Farrell, 2004)). The predictive power of the best model was assessed by 

calculating R2
FPE, where FPE stands for final prediction error (Rousson and Goşoniu, 

2007). The R2
FPE  is the useful stat to show the importance of variable. The 

interpretation of R2
FPE  is similar to classical R2 and adjusted R2, except that unlike 

these two statistics, R2
FPE  does not overestimate predictive power (Rousson and 

Goşoniu, 2007). We also calculated adjusted R2 for comparison. The contribution of 

each selected variable to the predictive power of the best model was gauged by 

calculating partial R2
FPE, which estimates the proportional reduction in prediction 

error when a given variable is included in the final model. Partial R2
FPE  is 

calculated as 1 − (1 − R2
FPE)/(1 − R2

FPE*), where R2
FPE is calculated from the best 

model, and R2
FPE* is calculated from a reduced version of the best model, where 

the variable under investigation has been dropped. 

Two methods were used to assess the validity of the final model. First, we 

assessed the propensity for the model selection procedure to select spurious 

variables (“false discoveries”). We permuted the response variable 1000 times to 

simulate 1000 datasets in which none of the variables are associated with the 

response. We applied the model selection procedure to each dataset and 

calculated the mean number of variables selected. The ratio of mean number of 

false discoveries to the actual number of variables selected is a permutation-based 

estimate of the false discovery rate (FDR; (Efron, 2004)). Second, we used 

bootstrapping to assess the stability of the selected variables to sampling error. 

We performed the model selection procedure on 1000 bootstrapped datasets 

(datasets of equivalent size but sampled with replacement from the original 

dataset), recording the proportion of datasets from which each variable was 

selected. The final model was then used to predict the dog population size, 

density, and 95% prediction interval for each district in Tanzania. 

To assess year-to-year variation in our estimates, we compared dog population 

sizes estimated from data that were collected in 2014–2015 against those 

estimated from 2015–2016 data. 

When making predictions from the models of coverage and the number of dogs per 

1000 humans, it was necessary to back-transform from the linear predictor scale 
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using a nonlinear inverse “link” function (inverse logit for coverage and 

exponential for dog numbers). Since these models have normally distributed 

errors, predictions would be biased, potentially severely, if calculated simply by 

back-transforming without adjusting for the error variance, as a consequence of 

Jensen’s inequality (Nakagawa et al., 2017). Log-scale predictions from the model 

of district dog population size were adjusted for Jensen’s inequality by back-

transforming using exp(μ + 0.5σ2), and logit-scale predictions of vaccination 

coverage were back-transformed using logit−1(μ + 0.5σ2 tanh(μ(1 + 2 

exp(−0.5σ2))/6)), where μ is the link-scale prediction and σ2 is the total error 

variance (Von Tress, 2003). 

All statistical analyses were conducted using R version 3.4.1 (R Core Team, 2017). 

GLMMs were fitted using the lme4 (Bates et al., 2014) and glmmTMB packages 

(Magnusson et al., 2017). Models selection was performed using 

the dredge function from the MuMIn package (Barton, 2009). 

3.4 Results 

During the 2014–2015 mass dog vaccination campaigns, 86,361 dogs were 

vaccinated in the 28 study districts, and 86,142 dogs were vaccinated in the 2015–

2016 campaign. The following data collection activities were completed: (i) post-

vaccination transects in ~2100 villages in 2014–2015 and in ~2600 villages in 2015–

2016; (ii) household surveys in 4488 households in 2011, from 160 randomly 

selected villages; and (iii) school-based surveys of 8254 primary school pupils (each 

representing a unique household) within 115 randomly selected schools following 

the 2014–2015 campaign. During the 2014–2015 transects, 18,436 dogs were 

counted, of which 63% were observed with collars, indicating that they were 

vaccinated. From the school-based surveys, 2198 owned dogs were reported, 

corresponding to a mean of 0.7 dogs per household, and from the household 

surveys, 731 dogs were recorded, corresponding to a mean of 0.6 dogs per 

household (Table AB-2). 
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Estimation of dog population sizes: The overall dog population estimated in these 

study districts varied according to the survey method used (Figure 3-1). From 

transects, we estimated a total dog population in the 27 study districts of 164,000 

(95% CI 163,000–169,000 reported to three significant digits) and an overall 

human/dog ratio of 53.6:1 in the study districts. The estimated dog population size 

leads to a vaccination coverage estimate of 52% (86,000/164,000), which is lower 

than the direct coverage estimate from transects (63%), due to adjusting for 

unobserved and unvaccinated pups. By contrast, using household and school-based 

surveys, we estimated the dog population in the study districts to be 412,000 (CI 

348,000–544,000) and 403,000 (CI 341,000–531,000), respectively. We compared 

the predicted and estimated dog numbers per each district (Figure 3-1). There was 

minimal year-to-year variation in the estimated number of dogs in each district 

from the data that were collected in 2014–2015 versus those collected in 2015–

2016 (Figure A3-2). 
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Figure 3-1: Comparison of the estimated and predicted number of dogs in the 28 districts. 
The number of vaccinated dogs from the 2014–2015 campaign is also plotted as a 
horizontal line for each district. 
 

Prediction of dog population sizes and densities: using our transect estimates, 

we investigated the influence of district-level variables on dog population sizes. 

The pairwise plots between the log-scale continuous variables investigated showed 

that the number of households was highly correlated with the human population 

(Pearson’s r = 0.96). We therefore dropped the number of households from the 

model. A further two variables, the number of people living in rural areas and the 

number of livestock-owning households, were dropped in order to reduce all VIFs 

to below 5 (Table A3-1). These variables were also highly correlated with human 

population size. 

All 64 possible models were fitted from the combination of the six retained 

variables and the models were ranked by δAICC (Table 3-2). The top three models 

were almost equivalent in predictive power (R2
FPE = 58%), and were very close in 
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δAICC, which ranged from 0–1.27. Our best fitting model retained three variables: 

the proportions of livestock keepers and of peasants, and the geographic setting 

(inland versus coastal and island). The proportions of livestock keepers and 

peasants were both positively associated with the dog/human ratio: a doubling of 

the proportion of livestock keepers was associated with 28% (95% CI: 14%, 44%) 

larger dog populations, while the equivalent effect for the proportion of peasants 

was 36% (95% CI: 13%, 65%), all other characteristics being equal. We also found 

that there were 103% (95% CI: 21%, 120%) more dogs per person in inland districts 

than in island and coastal districts. 

Two predictor variables: the proportion of livestock keepers and the geographic 

setting (inland versus coastal/island) were consistently retained in the best-ranked 

models (Table 3-2). Dropping either the setting variable or the proportion of 

persons employed as peasants also reduced the variance explained by 16% (R2
FPE 

fell from 58% to 42% in both cases, giving a partial R2
FPE of 27%). Excluding the 

proportion of persons employed as livestock keepers in the final model reduced 

R2
FPE to 30%, showing the substantial predictive power of this variable (partial R2

FPE 

= 39%). 
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We used permutations and bootstrapping to assess the reliability of the selected 

best-fitting model. Using 1000 permutations, we estimated an FDR of 28%. 

Bootstrapping the model selection procedure showed that two of the three 

variables were highly robust: proportion of livestock keepers and coastal setting 

were selected in 97% and 91% of bootstrapped models, respectively (Table 3-2). 

However, despite their robustness, a model containing these two predictor 

variables alone performed substantially worse than the best-fitting model, as 

evidenced by its relatively low R2
FPEof 42% and its selection as the best model in 

only 6% of bootstrapped datasets. Two other variables were selected with around 

50% frequency, proportion of the population employed as peasants (49%), and 

human population size (51%). Based on δAICC, R2
FPE , and the reliability analysis, we 

concluded that two of the three variables selected are highly robust, and that at 

least one other variable is required to maximise predictive power. Since the top 

three models are almost equivalent in terms of predictive power (R2
FPE ) and δAICC, 

we selected the one with only three variables selected, which also happened to be 

the best-fitting model. This combination of three variables (the proportions of 

livestock keepers and of peasants, and geographic setting) chosen for our final 

model was used to predict the dog population across Tanzania. 

From our final model, we predicted considerable variability in dog population sizes 

across all 168 districts in Tanzania (Figure 3-2). Dog population estimates ranged 

from just 630 dogs in Kusini district on the island of Zanzibar, to 45,000 dogs in the 

inland district of Nzega. Overall, the final model predicted a dog population of 

2,316,000 (95% CI 1,573,000–3,122,000) in Tanzania in 2014–2015. In 2014, a human 

population of 47,831,000 was projected from the Tanzania population census 

(National Bureau of Statistics, 2012). Taken together with our predicted dog 

population size (2,316,000 dogs), we obtain an overall human/dog ratio of 20.7:1 

in Tanzania. Generally, the highest dog ownership was predicted from inland 

districts, especially those dominated by rural livestock keepers. Human/dog ratios 

for each study district are presented in (Table 3-2). 
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Dog density from the predicted dog population sizes for each of the 168 districts 

also varied greatly, ranging from 0.14 to 113 dogs per square kilometre (Figure 3-

3). Liwale district (an inland study district which has an area of ~15,000 km2) had 

the lowest dog density of 0.14 per km2, while Bukoba urban (an inland district with 

an area of 30 km2) had the highest dog density of 113 dogs per km2. Based on 

Tanzania’s total land area and predicted dog population, we determined the mean 

density of dogs to be 8.81 per square kilometre (interquartile range: 2.24–9.23 per 

km2). Predicted densities were highest in northern and north-eastern Tanzania, 

and lowest in the southern and central-west parts of the country (Figure 3-3). 

 

Figure 3-3: Estimated dog densities in districts across Tanzania. White areas represent water 

bodies, forest reserves, or wildlife-protected areas. 
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3.5 Discussion 

Knowledge of the size of dog populations is critical for the planning and 

implementation of effective canine rabies control strategies. Before the 

implementation of vaccination campaigns, this information is useful for 

determining the personnel required, and for the procurement of vaccines and 

other supplies. After implementation, this information is required to evaluate the 

intervention in terms of the vaccination coverage achieved. Our study uses data 

from well-studied dog populations in Tanzania, where vaccination campaigns have 

been conducted to predict the size of dog populations in new areas, and where 

vaccination campaigns will hopefully be scaled up in the future. 

Although several methods have been used to calculate the size of dog populations 

(Davlin and VonVille, 2012), these methods have not been comprehensively 

compared to assess which generates the most precise dog population estimates. 

From our comparison, we found that post-vaccination transects generated more 

precise and reliable estimates than either household or school-based surveys in 

Tanzania. Transects are, however, only reliable if all dogs (owned and unowned, 

free-roaming or restricted) have an equal chance of being counted. In many sub-

Saharan countries, most owned dogs are free-roaming, so this assumption would 

hold. In a previous survey in Tanzania, most dog owners reported that they did not 

tie or cage their dogs. Those who reported restricting their dogs were from urban 

areas, while in rural areas, the vast majority of dog owners reported that they do 

not restrict their dogs at any time (Sambo et al., 2014). Hence, transects are 

appropriate for estimating dog population sizes in Tanzania, but in countries where 

a large proportion of dogs are kept indoors, this method would not be appropriate. 

The imprecision of the dog population estimates from household and school-based 

surveys was due to their low sampling effort compared with post-vaccination 

transects (Sambo et al., 2017). Although sample size at the household level was 

not low (30 households per village and ~100 families per school), only six out of an 

average of 95 villages per district were sampled, and the precision of estimates 

from hierarchical sampling designs is expected to be dominated by sample size at 
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the highest level (Maas and Hox, 2005, Snijders, 2005). The overall proportions of 

the population surveyed were also small (4488/441,000 households from household 

surveys versus 8254/441,000 households from school-based surveys), despite the 

large numbers of surveys conducted, whereas for the post-vaccination transects, 

~2500 villages were sampled. The practical consequence of imprecision in the 

estimates from household and school-based surveys for the implementation of 

mass dog vaccination is that the upper bound of the range of plausible dog 

population sizes is, on average, 3 times the lower bound, compared with 1.18 for 

transects. 

In addition to being imprecise, estimates from household and school-based surveys 

were often inconsistent (Figure 3-1), either with each other (for example, 

Kisarawe and Wete districts), or with the number of dogs vaccinated (for example, 

Mkuranga and Chakechake districts). The dog population may, therefore, be either 

over- or -underestimated by projecting from the mean number of dogs per 

household, given limited sampling and considerable house-to-house variation in 

dog ownership. For example, Kinondoni district in Dar es Salaam has over 400,000 

households with 0.32 dogs per household estimated from the household survey, 

which would suggest a dog population of 141,197, a large overestimate. However, 

when we used the mean number of dogs per person (as estimated from SBS) 

multiplied by number of people in Kinondoni district, the number of dogs was 46, 

977 which was much lower than the estimated above 141,197 using mean dogs per 

household (Table AB-2). When mean number of dogs per person (from SBS or HHS) 

extrapolated to district level using known human population was estimating fewer 

dogs compared to estimates of dog number from using mean number of dogs per 

household (Table AB-2). The mean dog/household tend to throw away a lot of 

information which we accept as the limitation in this study. However, this is 

finding should be interpreted with caution. In Bhutan, the number of owned dogs 

estimated from the mean number of dogs per household was lower than those 

estimated from mean number of dogs per person (Rinzin et al., 2016). The number 

of vaccinated dogs (numerators), together with the size of dog populations derived 

from household and school-based surveys (denominators), were used to calculate 

the vaccination coverage, and compared against coverage estimated directly from 
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these surveys. We found large discrepancies depending upon the method used. For 

example, in 2014–2015, around 86,000 dogs were vaccinated, but school-based 

surveys estimated a dog population of 399,000, which would have led to just 22% 

coverage (Table AB-2). By contrast, direct estimates of dog vaccination coverage 

from school-based and household surveys were both around 56% (Table AB-2). In 

some districts, the discrepancy was clearly implausible, for example, in Chake 

Chake, Pemba, where more than double the number of dogs estimated from 

school-based surveys were vaccinated (Table AB-2). These discrepancies have 

practical impacts on rabies control, and demonstrate the need for careful post-

vaccination evaluations, without reliance on dog population survey estimates only. 

Our multivariable regression analysis identified the proportion of livestock keepers 

and geographical setting as robust variables for predicting dog population sizes, 

consistent with previous studies on factors influencing dog ownership in different 

parts of the world (Kitala et al., 2001, Acosta-Jamett and Cleaveland, 2010, Davlin 

and VonVille, 2012). In most African countries, dogs are reported to play a role in 

protecting livestock, explaining why livestock keeping was such an important 

variable (Knobel et al., 2008, Bardosh et al., 2014). Other factors reported to 

influence dog ownership in Africa include socioeconomic status, livelihood (which 

could include livestock keeping), culture, and religious beliefs linked to different 

settings (Bardosh et al., 2014). The reason for fewer dogs in Tanzanian coastal and 

island areas could be linked to the predominantly Muslim communities in these 

areas, as Muslims are reported to own fewer dogs (Knobel et al., 2008, Bardosh et 

al., 2014). Our study demonstrates the need to consider such factors in planning 

vaccination campaigns, and in understanding dog rabies incidence, control, and 

prevention, more generally. 

We found that despite the robustness of these two variables (livestock keeping and 

geographical setting), by themselves, they accounted for only about two-thirds of 

the predictive power of the best-fitting model. A third variable was also needed to 

improve predictive power. Our model validation showed that the proportion of 

peasants or the human population were almost equivalent in the final model 

(R2
FPE values of 58% and 55%, respectively). If applying this model to new settings, 

the decision as to which variable to use will depend on the availability of data on 
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either of these variables. In settings (countries) that do not have data on peasants, 

they can use human population sizes that are generally available from the census. 

In this study, I didn’t evaluate poverty and human population density or human 

development index (HDI) which have been reported as a strong predictor of dog 

ownership (Wallace et al., 2017). I also do not propose evaluating campaign 

success by working backwards from the total dog population estimates derived 

from this predictive model, because the uncertainty in this estimate is inflated 

from the large variation in district population sizes. To evaluate coverage across 

districts, we would suggest estimating mean coverage directly from the village-

level transect measures. District-level estimates of dog populations (Figure 3-1), 

which are based on these coverage estimates, are quite precise, as are directly 

derived district-level estimates of coverage ((Sambo et al., 2017), 58–65% not 

adjusted for puppies). 

Our study was consistent with previous findings in Tanzania, which reported more 

dogs in mainland compared to island and coastal areas (Knobel et al., 2008, Sambo 

et al., 2017). However, our overall human to dog ratio estimate of 20.7:1 was 

higher than previous studies in Africa, which ranged from 3:1 to 15:1 (Kitala et al., 

2001, Awoyomi et al., 2007, El-Yuguda et al., 2007, Knobel et al., 2005, Knobel et 

al., 2008, Bardosh et al., 2014, Mbilo et al., 2017). This suggests that human/dog 

ratios extrapolated from household or school-based surveys could be unreliable 

when extrapolated to district or national level. Initially, the study area was 

estimated to have about 400,000 dogs (Hatch et al., 2017, Mpolya et al., 2017), 

based on reported human/dog ratios (Knobel et al., 2008), which was much higher 

than the number of dogs subsequently estimated with post-vaccination transects 

(164,000 (95% CI 163,000–169,000). The lower number of dogs in our study suggests 

that dog vaccine requirements in Africa might be less than previous estimates. A 

study in Uganda also found lower numbers of dogs than previously estimated 

(Wallace et al., 2017). If this pattern holds across more countries, the lower 

number of dogs provides further incentives for African governments to undertake 

vaccination programmes, as the target of 70% could be more easily achieved 

(Wallace et al., 2017). However, our data were largely collected from southeast 

Tanzania, where there are fewer pastoralists who tend to own more dogs (Malele 



 

70 

et al., 2011), and from coastal or island districts (~50% of study districts) which 

tend to have fewer dogs. A consequence of this non-random sampling of districts is 

that for several districts (the 40 districts at the left of Figure 3-2) the model is 

extrapolating beyond the range of the training data, and these estimates should 

therefore be treated with caution. . Additional data (dog vaccination and transect 

surveys) from other populations (inside and outside of Tanzania) would be valuable 

to further refine and validate this predictive approach. 

Several household surveys have been conducted in Tanzania, generating lower 

human/dog ratios than we found from transect-based estimates. For example, in 

Iringa urban, the human/dog ratios were estimated to be 14 (Gsell et al., 2012), 

versus our transect estimate for Iringa urban of 34. Meanwhile, in Kilombero and 

Ulanga districts, human/dog ratios were estimated to be 12 and 29, respectively, 

from households surveys (Bardosh et al., 2014), in contrast to our transect 

estimates of 21 and 18, respectively. Variation was also reported by geographical 

setting, with human/dog ratios estimated to on average be 7.6:1 in rural-inland 

areas, 10.8:1 in rural-coastal areas, 27.1:1 in urban-coastal areas, and 14.4:1 in 

urban-inland areas (Knobel et al., 2008). These estimates derived from household 

surveys are likely to be affected by limited sampling. Mark-recapture studies are 

useful for estimating numbers of dogs (Downes et al., 2013). Our study suggests 

that transects, when done in association with dog vaccinations at scale, can 

capture population variability. However, there is still a need for predictive 

methods for working in areas where dog vaccinations have yet to be conducted, 

such as the model that we developed. 

My predictive model could be used to make preliminary predictions of dog numbers 

in other countries that are similar to Tanzania, with respect to dog-owning 

practices i.e., where most dogs are free-roaming and there are very few unowned 

dogs. This model can give a starting point for settings with no dog population size 

estimates even prior to any vaccination campaigns (and transects), given available 

data on the proportions of livestock keepers and of peasants or on human 

population sizes. Such preliminary dog population estimates could provide a 

baseline for planning mass dog vaccinations. The wide confidence intervals of 

these model estimates may initially mean procurement of excess or insufficient 



 

71 

numbers of vaccine vials. However, over-procurement should not be problematic, 

as the vaccines can be stored for long periods (normally three years) for use in 

future campaigns. For vaccines remained with shorter shelf life (i.e. one year) as a 

result of donations i.e. from OIE vaccine bank, we recommend these vaccines to 

be used first followed by vaccines with long shelf life. 

Conducting post-vaccination transects in every village is, however, labour-

intensive and costly (Sambo et al., 2017). In my opinion, I don’t think conducting 

transects survey every year is a sustainable approach for national rabies control 

campaigns. I recommend conducting transect in the initial phases of vaccination to 

get reliably estimate of dog population and coverage. Awareness and participation 

of dog owners typically increase in the first few years of a rabies control 

programme (Mpolya et al., 2017), so transects may help to refine estimates in the 

second or third campaigns. Once baseline levels of coverage have been established 

through accurate records of dogs vaccinated in each village/vaccination station, 

post-vaccination transects may not be required every year as substantial changes 

in dog population sizes are not expected (Figure A3-2). For example in village X, 

the coverages were 70%, 75%, and 74%, after vaccinating 120, 130 and 127 dogs 

respectively in year 2017,2018 and 2019. Therefore, there is no need to conduct 

transects in 2020 and 2021 because the baseline data for number of dogs in village 

X has been established. Assume if you vaccinate 100 dogs in 2020, you really know 

that the 70% coverage is not achieved. However, using my previous example, I 

recommend do also recommend repeating transects after several years i.e. 2022 or 

2023 given dog population growth, and conducting transects in areas where control 

programmes have been less successful than expected, so that any coverage gaps 

that may be limiting progress can be identified (Sambo et al., 2017). 

Our overall estimates of dog density were higher those reported from elsewhere in 

Africa (Brooks, 1990, Dye and Cleaveland, 1995, Kitala et al., 2001, Kitala et al., 

2002, Knobel et al., 2005). This was probably because we excluded water bodies 

and protected areas when calculating densities. Our dog density map highlights 

districts with high dog densities that should be prioritized in the scaling up of dog 

vaccinations (only two districts, Moshi urban and Zanzibar urban, had densities 

exceeding 120 dogs/km2, Table AB-2), and districts where dog densities might be 
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too low to support rabies transmission without importation from other districts 

(Dye and Cleaveland, 1995, Cleaveland et al., 2003, Lembo et al., 2008). 

Our study had several limitations. The main limitation was that we could not 

externally validate our predictive model, due to a lack of reliable data on dog 

numbers outside the study area, with the exception of Serengeti district. In 

addition, our study areas did not cover many inland livestock keeping districts. Our 

surveys were also completed at different times, with household surveys conducted 

in 2011, transects immediately following dog vaccination campaigns in 2014/15, 

and school-based surveys within 2 months of these dog vaccinations. These 

differences may have affected our estimates. The one-day mark-resight were 

reported to conserve time and financial resources compared to two-days mark-

resight. one-day mark-resight could be used as long as researchers acknowledge 

the assumptions violated and work to correct them (Cleaton et al., 2019). Number 

of assumptions are required for the mark-resight technique (Lettink and 

Armstrong, 2003). These assumptions apply to dog population estimations. The 

first assumption is that marks are not lost and that they are correctly identified. 

To overcome collar loss our study was one-day mark-resight (same day of 

vaccination), conducted immediately after collars were fitted (in the evening). 

However, a study in Bhutan found that there were 17% more sights in morning 

counts compared to the afternoon counts (Tenzin et al., 2015b). To overcome 

collar loss, our collars were made of soft plastic materials, which I expect to be 

durable leading to a low rate of collar loss during the 1-2 hours between 

vaccination and transect. Since the population size estimator is based on the 

proportion of marked dogs that are declared re-sights, I took into account the 

binomial sampling error. However, dogs that were recaptured at the village were 

reflected in the district’s 95% confidence interval. Counting less dogs during 

transects was not a problem in this chapter as the aim of my method was to get 

estimates at the district level and extrapolate from the model to districts with no 

transect data. 

The second assumption is that the study population should be in a closed system. 

Our study system was not closed and there was a possibility of either recounting 

dogs from the same village or counting dogs that emigrated from other villages. 



 

73 

The consequences of counting dogs from another village that has not been 

vaccinated or has lower coverage is underestimation of coverage and consequent 

overestimation of population size, whereas counting dogs from another village with 

higher coverage would cause underestimation of population size due to 

overestimation of coverage. On the other hand, recounting of dogs from the same 

village could cause overestimating the recapture sample size. Therefore,  coverage 

estimates would be unbiased but over-precise. Only observable dogs were counted 

from transects, which results in systematic biases, such as poor observation of 

pups which could under-estimated the number of dogs (Downes et al., 2013). We 

considered this as another limitation of the design of our study. We assumed that 

pups are never seen on transects and that no pups were vaccinated. Although 

registers had information on the age of vaccinated dogs, we only collected the 

number of vaccinated dogs per vaccination unit (i.e. village) without categorising 

the age of these dogs, while for transect we only counted observable dogs without 

categorising their age. This limitation will be overcome through a mobile phone-

based system for collection of both vaccination and transect data. Using mobile 

phones to track vaccinations and post-vaccination evaluation has the potential to 

improve the accuracy and speed of data collection, reporting and analysis (Gibson 

et al., 2015). Because of this limitation of excluding puppies in our design, we 

adjusted our estimates for this bias by using pup/adult ratios in all of our study 

locations. The pup/adult ratio was calculated from a dog census completed in 

Serengeti district data between 2008 and 2015. Although this dog census was 

conducted over multiple years, we do not expect that the dog population age 

structure has changed very much during this period. 

Again, capture heterogeneity could also be caused by counting only free-roaming 

dogs (excluding confined dogs). Although most of Tanzanian dogs are free-roaming 

dogs there is a very small fraction of dogs that are always confined inside the 

houses (Gsell et al., 2012, Sambo et al., 2014). Therefore, in this setting of 

Tanzania, the transect appears to be the best method. However, in a setting of 

highly confined dogs like in developed countries, the transect method will not be 

reliable. However, in places where dog rabies remains endemic, most dogs are 

free-roaming and unrestrained (Davlin and VonVille, 2012, Sambo et al., 2014) and 
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therefore transect will still be the best method. Additionally, larger villages also 

require more time to complete and those with more sub-villages were less well-

sampled resulting in precludes some individual dogs and therefore less precise of 

estimates. 

Notwithstanding these limitations, we found that transects were fast and relatively 

low cost to complete at scale, sampling populations more representatively than 

other approaches that were limited in spatial scope. We recommend that marking 

of vaccinated dogs (visible markers/collars) should be included as part of mass dog 

vaccination campaigns, and that transects should be completed immediately after 

vaccination campaigns, aiming to cover the centre and the periphery of villages, as 

coverage has been reported to decrease with the distance to the vaccination point 

(Matter et al., 2000, Kaare et al., 2009, Minyoo et al., 2015, Mazeri et al., 2018). 

Estimates should also be adjusted to account for not observing pups. 

3.6 Conclusions 

Our study underlines the importance of knowledge of dog population sizes and 

distribution in different settings in rabies endemic countries, with methods of 

estimating the number of dogs needed to plan, monitor, and evaluate the 

performance of rabies control efforts. We demonstrated that post-vaccination 

transects, together with dog vaccination data, can be used to rapidly generate and 

refine dog population estimates in areas with ongoing vaccination campaigns. Using 

the transect population estimates, we developed models that use demographic and 

geographical characteristics to generate tentative predictions of dog populations in 

districts without dog vaccination interventions. We also show that data derived 

from smaller scale sampling of the dog population could lead to substantial under- 

or overestimation of the population in areas with considerable village-to-village 

variation, leading to poor rabies control. We conclude that post-vaccination 

transects may be a useful tool for rabies elimination, taking advantage of data on 

vaccinated dogs that are routinely collected through implementation of mass dog 

vaccinations. 
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Chapter 4 Scaling-up, monitoring and improving 

the efficiency of large-scale dog vaccination 

campaigns against rabies in Tanzania. 

4.1 Introduction 

Each year, rabies causes approximately 59,000 human deaths worldwide, mostly in 

Asia and Africa. Ninety-nine percent of these deaths result from the bites of rabid 

domestic dogs (Knobel et al., 2005). Rabies deaths are 100% vaccine-preventable 

through two complementary interventions: first, administration of post-exposure 

prophylaxis (PEP) to people bitten by suspected rabid animals to prevent disease 

onset; second, sustained mass dog vaccinations (MDV) to eliminate transmission 

within the main source (reservoir) of infection, domestic dog populations 

(Cleaveland et al., 2018). Currently, more than 10 million patients are 

administered with PEP annually (Hampson et al., 2015). While human rabies can be 

effectively prevented with PEP, the intervention is expensive, with direct 

expenditure on PEP estimated at 1.70 billion USD per year and indirect costs 

estimated at 1.31 billion USD (Hampson et al., 2015). The burden of rabies falls 

disproportionately upon people in remote, rural communities where most rabies 

cases occur. A case study in Tanzania estimated that a patient in rural area, where 

most people live on less than USD 1.25 per day, would need to spend over USD 100 

to access and complete World Health Organisation (WHO) recommended PEP 

regimens (Sambo et al., 2013). Many families struggle to obtain PEP, either 

because they cannot afford it, or because PEP is not stocked or out of stock at 

local clinics. These barriers lead to poor compliance with PEP regimens, delays in 

presentation to health facilities, and increased risk of death (Hampson et al., 

2008). Human rabies prevention should not rely only on PEP but should focus on 

investment to control rabies at its source. Dog vaccination is the most effective 

control strategy to restrict the spread of rabies in the reservoir population 

(domestic dogs) and prevent exposures. Economic analysis has shown that canine 

vaccination against rabies is a very cost-effective approach to prevent human 

rabies and even cost-saving relative to PEP alone (Fitzpatrick et al., 2014). 
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However, throughout most of sub-Saharan Africa, canine vaccination is limited and 

rarely implemented with sufficient coverage to achieve these benefits (Lembo et 

al., 2010). 

Dog rabies has been eliminated from industrialized countries in Europe and North 

America (King et al., 2005, Hampson et al., 2007) and the continent-wide 

elimination of canine rabies from the Americas is now within reach (Vigilato et al., 

2013). Recent research has demonstrated that rabies can be eliminated through 

mass vaccination of dogs from even the poorest countries (Zinsstag et al., 2017).  

To draw attention to this neglected disease and efforts to control it, in 2016 the 

World Health Organisation (WHO), the World Organization for Animal Health (OIE), 

the Food and Agriculture Organization of the United Nations (FAO), and the Global 

Alliance for Rabies Control (GARC) established the “United Against Rabies” 

partnership, which is working towards the goal of “zero human rabies deaths by 

2030” (Abela-Ridder et al., 2016). This alliance has brought global momentum to 

the drive to eliminate canine rabies. 

To eliminate the rabies virus from dog populations and consequently prevent 

human deaths, a MDV programme must be delivered effectively in terms of 

completeness, coverage, and timeliness. First, MDV campaigns must ensure there 

is no areas left unvaccinated as “patchy coverage” can lead to persistence 

(Townsend et al., 2013). Research shows that unvaccinated (incomplete) areas can 

be a source of incursions and can jeopardize MVD programmes (Townsend et al., 

2013). Vaccination campaigns should aim for a geographically uniform across all 

communities (completeness). Second, MDV campaigns must aim to achieve high 

coverage. Empirical and theoretical evidence shows that annual vaccination 

coverage of 70% can interrupt the transmission cycle and if sustained can eliminate 

rabies from dog populations (World Health Organisation, 2018b). However, in dog 

rabies-endemic countries of Africa, vaccinating large numbers of dogs at 70% 

coverage has been challenging (Jibat et al., 2015). Accessibility of free roaming 

dogs for vaccination is often mentioned as an operational constraint (Lembo et al., 

2010). Third, follow-up MDV campaigns must be conducted within a target time 

interval (timeliness), because coverage declines rapidly following a campaign as 

vaccinated dogs die, susceptible dogs are recruited, and vaccine-induced immunity 
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wanes.  If coverage of 70% is achieved during a campaign, then the next campaign 

must be completed 12 months later to keep coverage above the ~25% threshold 

(Hampson et al., 2009). 

In 2010, Tanzania started to implement the Rabies Elimination Demonstration 

Project (REDP), a large-scale intervention coordinated by the World Health 

Organization and funded by the Bill and Melinda Gates Foundation (Mpolya et al., 

2017). These were the first government-led large-scale dog vaccinations to have 

been implemented in the country. Monitoring the implementation of control 

programmes should reveal whether campaigns are being delivered well or poorly 

(Sambo et al., 2017). Therefore, identifying the factors associated with, and 

potentially influencing, the success or failure of vaccination campaigns may give 

insights about how to improve rabies control programmes, particularly in 

communities where dog vaccination is not effectively implemented (Kaare et al., 

2009, Mpolya et al., 2017). Together these insights should be used to guide future 

control efforts and improve their success. In this study, we evaluate dog 

vaccinations implemented in southeast Tanzania through the REDP from 2010–

2017, focusing on the coverage, completeness and timeliness achieved during 

campaigns, and identifying factors associated with their performance. 
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4.2 Methods 

4.2.1 Study sites 

The study was conducted in five regions from south-eastern Tanzania: Lindi, 

Mtwara, Coast, Dar es Salaam and Morogoro. Dar es Salaam is an urban region, 

while the others are mixed rural and urban. These regions consist of 25 districts 

(Table 4-1; Figure 4-3). In Tanzania, regions are sub-divided into districts, and 

districts into wards. Wards in urban districts are sub-divided into streets, while 

those in rural districts are sub-divided into villages. Thus, a village (in a rural area) 

or a street (in an urban area) is the lowest government administrative unit. 

Villages are generally larger than streets. The study districts comprise rural, 

coastal and urban settlements, and cover an area of 160,000 km2, 16% of the 

landmass of Tanzania. According to the last official population census conducted in 

2012, these districts had a population of about 8.5 million people, with an average 

annual growth rate of 2.16% (National Bureau of Statistics, 2012). Most of the 

population is engaged in subsistence farming for their own or very local 

consumption. These districts were selected for the REDP to exploit natural 

boundaries to facilitate the establishment and maintenance of a rabies-free area, 

including the coastline to the east, the Udzungwa Mountains to the northwest, and 

the Ruvuma River to the south. The Dar es Salaam–Mbeya highway to Morogoro and 

the railway line to Kilosa town define the northern boundary of the vaccination 

zone (Mpolya et al., 2017). 

4.2.2 Data collection 

Mass dog vaccination campaigns: Five rounds of mass dog vaccinations were 

carried out in the study districts (approximately annually) from 2010 (Mpolya et 

al., 2017). In each district, mass dog vaccination campaigns were managed and 

supervised by the District Veterinary Officer or the Head of the Livestock 

Department. In urban districts, mass dog vaccinations were carried out at the ward 

level while in rural districts mass dog vaccinations were carried out at the village 
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level. To avoid confusion, in this study we refer to the area (i.e. ward or village) 

where dog vaccination was carried out as a vaccination unit. 

Pre-vaccination campaign logistics: Before starting each round of campaigns, 

planning meetings were held in each district to train Livestock Field Officers 

(LFOs) in dog vaccination. Training was provided by personnel from the Ministry of 

Livestock, World Animal Protection and Ifakara Health Institute on how to: 1) 

restrain and vaccinate a dog, 2) maintain the vaccine cold chain, 3) mobilise dog 

owners to bring their dogs to vaccination points, and 4) prepare and choose 

vaccination points. Since 2013 meetings were also used to train enumerators in 

how to carry out transect surveys. During the meeting, challenges on delivery of 

dog vaccinations were presented and the way forward to overcome challenges 

were discussed. 

Implementation of mass dog vaccinations: The delivery of mass dog vaccination 

campaigns in rural and urban areas was through a central point (CP) approach 

(Kaare et al., 2009), whereby owners voluntarily brought their dogs to a centrally 

located vaccination point/centre within their village. LFOs within the districts 

communicated with local authorities to inform communities in advance of the 

campaigns (normally one week before with a reminder the day before the 

campaign). Various sensitization approaches and methods such as local radios, 

public address system, posters, and advertisement in notice boards, and public 

announcements during religious gatherings were used to encourage participation in 

the vaccination campaign. In some areas mobilization was done through village 

assemblies’ meetings or use of the local community messenger. In urban settings, 

there was at least one vaccination point assigned to each ward (an urban ward 

consists of four to ten streets) while in rural areas there was one vaccination point 

per village. Data on all vaccinated dogs were recorded in registers, including 

information on the dogs (i.e. name, age, sex, colour, previous vaccinations) and 

information of the dog owners (i.e. name and the address (village) of the dog 

owner), location of vaccination centres, operating time, type of vaccine, and 

batch number of doses used. Dog owners were given signed vaccination certificates 

to validate the vaccination status of their dogs, and vaccinated dogs were fitted 
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with temporary collars to enable assessment of coverage. All vaccinated dogs were 

recorded into registers. 

Post-vaccination monitoring: Transect surveys were conducted in 1322 (64%) of 

vaccination units. Transects were conducted immediately after the vaccination 

campaigns, for all campaigns conducted since 2013 (Sambo et al., 2017). Transects 

were walked (or occasionally cycled) on the same day as vaccination campaigns 

from 4 to 6 p.m. when dogs were active and visible, counting all marked 

(vaccinated) and unmarked (unvaccinated) dogs. Transects were conducted in two 

randomly selected sub-villages in each surveyed village (villages ranged in size 

from two to ten sub-villages, with a median of three), aiming to representatively 

sample coverage within each village. In the first sub-village, enumerators started 

transects at the sub-village center and headed to the outskirts, while in the other, 

enumerators walked from the edge toward the center. Each transect was 

conducted by one enumerator for one hour per sub-village. 

Vaccination costs: The cost of the dog vaccines and consumables such as syringes 

and needles were excluded in this analysis as information on their costs were not 

available. This is because consumables and dog vaccines were procured 

internationally by the international project coordinator at the World Health 

Organisation (WHO) headquarters who then arranged shipment to the WHO country 

office in Tanzania (Mpolya et al., 2017). However, district officials received funds 

from the WHO country office in Tanzania. District officials were expected to use 

money for: 1) conducting vaccination campaigns (allowance and transport), 2) 

planning and training vaccinators, and 3) campaign advertisement (community 

sensitization on the vaccination campaigns). These costs were compiled from the 

National Rabies Coordinator and were used in our analysis. 

Dry and wet season: In our analysis, we considered Tanzania to have two seasons, 

the dry and the wet season. We used the study by (Koutsouris et al., 2016) to 

assign months to dry and wet seasons. March to September, including transition 

months (i.e. from the dry to the wet season, July to September), were considered 

to fall in the dry season, whereas October to February, including transition months 
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(wet to the dry season, December to February), were considered to fall in the wet 

season. 

Other data: Demographic and geographical data for the study districts were 

extracted from the 2012 national Population and Housing Census (National Bureau 

of Statistics, 2012). For each vaccination unit, we extracted data on the area and 

human population size. We also extracted district-level population sizes, annual 

population growth rates, average household sizes (persons/household) and 

numbers of livestock keeping households. Human population numbers from 2010 to 

2017 were projected backwards and forwards from the 2012 census using annual 

growth rates for each district (Table 4-1). From census data, vaccination units 

were categorised as rural or urban, and the straight-line distance from the 

vaccination unit to the vaccination campaign headquarters (HQ), which was the 

district veterinary office or livestock office, was calculated. 
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Table 4-1: Descriptive characteristics of the study districts where mass dog vaccination 
and post-vaccination transects were conducted since 2010. 

District No of 

VUs 

Mean 

distance 

(km) from 

HQ to VUs 

(SD)* 

Estimated 

dogs 

Human 

populat-ion 

(1000s) 

Proportion of 

households 

owning 

livestock 

Growth 

rate (%) 

Total number 

of  households 

District 

area 

(km
2
) 

Average MDV 

budget (TZS 

1,000,000s) 

Number of  

vaccinators

. 

(LFOs) 

Ilala 26 10.5 (9.3) 8179 1,221 26,671 7 297,750 364.7 12.7 58 

Kibaha Rural 50 35.9 (18.6) 9327 70 4,771 3 16,892 1500.8 10.2 25 

Kibaha Urban 53 13.7 (8.5) 6596 128 7,650 5 31,092 705.3 10.3 47 

Kilombero 80 62.5 (49.8) 27599 408 34,427 2 93,331 7994.8 12.3 59 

Kilwa 100 56.5 (26.5) 4961 191 20,507 1 42,596 14545.4 8 29 

Kinondoni 34 9.6 (8.7) 8618 1,775 35,829 5 441,240 537.1 12.3 71 

Kisarawe 77 45.2 (23.1) 5010 102 12,275 1 25,475 4514.3 10,4 38 

Lindi Rural 133 43.9 (14.7) 2788 194 21,931 -1 52,821 5971.5 8.6 69 

Lindi Urban 18 7.08 (7.8) 1876 79 6,500 7 22,344 1063 6.8 19 

Liwale 76 30.9 (26.9) 2386 91 10,582 2 21,084 15634 7.2 25 

Mkuranga 116 27 (13.3) 3891 223 17,610 2 51,101 2825.4 9.8 55 

Morogoro Rural 140 41.7 (19.6) 12292 286 31,160 1 67,671 8267.7 11.8 100 

Morogoro Urban 19 3.7 (3.2) 17476 316 12,060 3 76,039 288.3 11.8 50 

Mtwara Rural 156 38.2 (18) 2635 228 21,651 1 58,602 3629.5 8.2 58 

Mtwara Urban 15 5.7 (3) 1160 108 5,034 2 27,968 169.9 5.8 14 

Nachingwea 118 23.8 (23) 4477 178 21,726 1 48,145 5971.8 8.5 29 

Nanyumbu 89 32.8 (13.5) 2364 151 13,474 1 40,746 5200.4 6.7 18 

Newala 153 23.2 (12) 3630 205 28,279 1 58,035 1951.3 7.7 37 

Ruangwa 89 22.5 (12.2) 2095 131 17,605 1 37,326 2513.8 8.2 22 

Rufiji 115 45.9 (19.3) 3128 217 14,973 1 48,164 9383.8 10.5 29 

Tandahimba 155 20.4 (11.3) 1269 228 26,595 1 60,872 2047.3 7.3 33 

Temeke 30 8.1 (8.8) 5819 1,369 22,150 6 344,391 728.2 12.5 38 

Ulanga 65 44.8 (27.9) 19256 265 22,460 3 53,290 14476.8 12 41 

Masasi 147 36.2 (14.6) 5027 248 30,565 1 67,872 4003.2 5.7 25 

Masasi Urban 12 7.3 (5.6) 4504 103 28,279 2 28,222 752.8 5.7 21 

SD=standard deviation, HQ=District headquarters, VU=Vaccination units, 
TZS=Tanzanian shillings. 

4.2.3 Statistical analysis 

The aim of this analysis was to determine if the vaccination campaigns achieved 

their intended goals. The goals of REDP were to conduct vaccination campaigns in 

every vaccination units, achieve dog vaccination coverage of 70% and conduct 
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annual vaccination campaigns. Additionally, we carried out an analysis to learn 

about factors associated with success/failure of vaccination goals. 

Vaccination completeness: This was measured as the proportion of vaccination 

units reached by vaccination campaigns in each round of vaccination. During the 

initial campaigns (i.e. round one and two of vaccinations), data collection 

protocols were not well understood by district officials, and numbers of vaccinated 

dogs were aggregated at district level instead of at vaccination unit level for some 

districts. We did not get the names of vaccination units for the data that were 

aggregated at district level, and thus dropped these districts from our 

completeness analysis. 

Vaccination coverage: To estimate vaccination coverage in vaccination units, it 

was necessary to first estimate dog population at the vaccination unit level for the 

years 2010-2017, as follows. Provided that the number of vaccinated dogs observed 

during a transect through a vaccination unit was non-zero, the dog population at 

the time of the transect could be calculated as per (Sambo et al., 2018): 

D=VC/(VT/(VT+ST))*(1+PAR) 

where VC is the total number of dogs from the vaccination records, VT is the 

number of vaccinated dogs (dog with collars/marked dogs), ST is the number of 

unvaccinated dogs (dog without collars /unmarked dogs), and PAR is the ratio of 

pups to adult dogs (estimated from a census of the dog population conducted in 

Serengeti district between 2008-2016. The value of PAR that was used in this 

analysis was 0.256. Multiplication by (1+PAR) corrects the estimated dog 

population based on the assumption that vaccination campaigns fail to reach the 

majority of pups, and that without this correction, dog populations estimated 

based on campaign data would be underestimated (Sambo et al., 2018). 

Post-vaccination transects where only small numbers of dogs were observed are 

unlikely to provide accurate population estimates, so we did not use data from 

transect surveys where fewer than five dogs were observed. Transect-based dog 

population estimates were available for at least one vaccination round for 63.4% of 

vaccination units (up to three rounds of estimates were available in some cases). 
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Missing population estimates, in rounds where there was no transect data, were 

obtained using three approaches. (1) If the missing round lay between two known 

estimates, an exponential dog population growth rate was estimated from the two 

known estimates, and used to project the population in the intermediate year. 2) 

If the missing year did not lie between two known estimates, but there was either 

a preceding or subsequent estimate, a human:dog ratio was calculated based on 

this estimate and the associated human population size projected from the 2012 

human census. A dog population in the missing year was then obtained by dividing 

the human population in that year by the human:dog ratio. (3) For the 36.6% of 

vaccination units where no transect-based dog population estimates were 

available, estimates for all years were obtained by taking the projected human 

populations for those years and dividing by district-level human:dog ratios (Sambo 

et al., 2018). 

The total number of dogs vaccinated was divided by the dog population estimate 

(calculated as above) for each vaccination unit in each round to get estimates of 

vaccination coverage. In vaccination units and rounds where dog population 

estimates were not available from transect surveys, some of these coverage 

estimates exceeded the proportion of the dog population expected to be adult 

based on the Serengeti dog census (79.6%), and the values were corrected to this 

assumed maximum value. The annual dog death rate was estimated using data 

from Northern Tanzania (Czupryna et al., 2016). These longitudinal data allowed 

us to calculate the probability of a given dog dying in each year, (0.45 ), and thus 

estimate a dog birth/death rate of 0.595 year-1. 

Vaccination timeliness: Campaign timeliness was measured as the vaccination 

intervals between vaccination campaigns. Campaign timeliness is an important 

determinant for the success of the campaign. Between campaigns, 70% initial 

coverage (Ptarget) is required to keep coverage above critical immunity threshold 

(Pcrit (estimated at 20%)) by the time of the next campaign after one year 

(Hampson et al. 2009). We therefore evaluated the performance of the REDP on 

timeliness. However, where initial coverage is less than 70%, the interval to the 

next campaign should be less than one year to keep coverage above Pcrit; 

therefore, we estimated the required time interval to the next campaign based on 
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coverage and dog population data. To evaluate the performance of the campaign 

on timeliness, we estimated monthly vaccination coverage through time (January 

2010 to January 2017 (total=85 months)) in each district. Vaccination coverages for 

each month between campaigns were projected using the following equation 

(Townsend et al. 2013): 

Vt = V0 e(-(1/v+b)t) 

where Vt represents vaccination coverage at time t, V0 represents the number of 

vaccinated dogs at the time of the preceding vaccination campaign, v=mean 

duration of vaccine-induced immunity (assumed to be 3 years (Ferguson et al., 

2015)), and b = birth/death rate (year-1), assuming constant population size which 

we set b =  0.595 year-1. 

To estimate the required time interval between campaigns, we used coverage data 

that were estimated directly from the transect surveys. Coverage values obtained 

from transects could be overestimated as puppies are rarely observed on transect 

surveys (Sambo et al., 2017). We therefore decided to use Pcrit of 30% (which 

adjust for over-estimation of coverage). We then compared Pcrit of 20% and Pcrit of 

30% against the Ptarget coverage of 70%. Therefore, from the above equation, we 

derived t from the above principle (Ferguson et al., 2015), to calculate for the 

timing (campaign interval) of vaccination campaigns, Δt, in months. Then Pcrit 

denote the V0 and Ptarget stand for V1. 

Δt =-loge(Pcrit /Ptarget )/((1/v+b)/12) 

Factors associated with rabies vaccination completeness and coverage: We 

investigated eleven factors hypothesized to influence dog vaccination 

completeness and coverage (Table 4-2) by fitting them as predictors in binomial 

generalized linear mixed models (GLMM). We estimated the strength of their 

associations with completeness and coverage as odds ratios (ORs) with 95% 

confidence intervals. We developed separate models for completeness and 

coverage. For completeness, the response variable was the binary outcome of 

whether a dog vaccination campaign was conducted (coded as 1) or not conducted 

(coded as 0) in each of the vaccination units in each round. For coverage, the 
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response variable was the binomial outcome of the number of dogs vaccinated 

(marked with collars) out of the total number of dogs observed in each vaccination 

units in each round during the transect surveys (round 3 to round 5 of vaccination). 

Because many of the continuous predictors were right skewed, and because we 

generally expect multiplicative relationships between these predictors and 

completeness and coverage, we log-transformed all the continuous predictors by 

log2, choosing base 2 to aid the interpretability of the odds ratios. 
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We carried out univariable regression analyses assessing the association with the 

response of each predictor in isolation, before fitting the predictors together in a 

multivariable model where their associations with the response would be mutually 

adjusted. Before fitting models, we conducted data exploration to detect 

collinearity among the predictor variables using pairwise scatter plots and the 

variance inflation factor (VIF), as described by (Zuur et al., 2010). Predictors with 

VIF values greater than or equal to 5 were assumed to be collinear and were 

removed. This process was repeated until all VIF values were below 5. The 

resulting variables were fitted in a multivariable model, which was refined by a 

single round of model selection by dropping non-significant (P > 0.05) predictors. 

All models, including the univariable models, were adjusted for the effects of 

spatial (vaccination unit, district and region) and temporal (round of vaccination) 

factors. These factors were fitted as random effects, with the exception of round, 

which was fitted as a fixed effect because it has too few levels (five in the 

completeness model, three in the coverage model) to be fitted as a random effect 

(Bolker et al., 2009). Additionally, an observation-level random effect to account 

for overdispersion was fitted in the coverage model (Harrison, 2015). 

All models were fitted using the glmer function of the lme4 package (Bates et al., 

2014). All statistical analyses were conducted using R version 3.5.1 (R Core Team, 

2017). 

4.2.4 Ethical considerations 

The study protocol was approved by the Medical Research Coordinating Committee 

of the National Institute for Medical Research of Tanzania 

(NIMR/HQ/R.8a/Vol.IX/2109), the Institutional Review Board of the Ifakara Health 

Institute and the Tanzania Commission for Science and Technology (COSTECH). 

4.3 Results 

Mass dog vaccinations: During 2010-2017, mass vaccination campaigns were carried 

out that vaccinated 349,000 dogs in 2066 vaccination units. The number of dogs 
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vaccinated increased over the five rounds of campaigns (Figure 4-1). In all 

districts, the number of vaccinated dogs increased from year to year until round 

four and then remained fairly stable for round five (Figure 4-2), when the 

vaccination campaigns were completed within all districts during a 4-month 

period. A total of 2, 573 transects were conducted from the study areas. Out of 

this, 1197 transects counted greater than or equal 5 dogs which were included for 

the analysis. 

 

Figure 4-1: The number of dogs vaccinated during each year of project implementation. 
Coverage was calculated from the total number of dogs vaccinated in each month from all 
of the study areas (all the study districts with vaccination campaigns in that month) 
divided by the dog population estimates per respective month as shown by the red line. 
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Figure 4-2: Figure 2. The number of dogs vaccinated in each district by month from 

2010-2017. The number of dogs vaccinated in each district during campaigns 

ranged from 0 to 13 thousand dogs, indicated by the “heat intensity” of the 

colours from salmon red (low numbers) to blue (high numbers). 

Vaccination coverage: At the local level, patterns of vaccination coverage varied 

markedly across the study area (Figure 4-3). Over the three rounds (3, 4 and 5) 

when coverage was being monitored, on 19-21% of vaccination units achieved the 

recommended coverage threshold of 70% (Table 4-3). At the district level, overall, 

vaccination coverage increased with the implementation of vaccination campaigns 

across districts (Table 4-3). The mean coverage across the three rounds of 

vaccinations ranged from 42% in Masasi Township to 71% Nachingwea district 

(Figure 4-4). When looking at the mean coverage across the three rounds of 

vaccinations, the analysis shows that only four of 25 districts were consistent in 

achieving the coverage target of 70%. 
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Figure 4-3: Village-level (vaccination unit level) coverage achieved in the five rounds of 
vaccination campaigns. Coverage for rounds 1 and 2 was calculated using projected dog 
population estimates, while for rounds 3-5 coverage were either estimated  directly from 
the transects or were projected as explained from the Methods (i.e. when transects 
weren’t available). Darker shading (dark green) corresponds to higher vaccination 
coverage while white shading indicates that no vaccination campaign was undertaken. 
Grey shading represents forest reserves or wildlife-protected areas. 
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Figure 4-4: Coverage achieved during campaigns in each district from 2013 to 2017 (third 
to fifth round of vaccinations) calculated directly from transect surveys and did not 
account for pup:adult ratio (PAR). Green circles represent mean coverage across the three 
rounds. The black dashed line represents the target 70% vaccination coverage threshold. 

Factors associated with the performance of rabies vaccination: In both coverage 

and completeness models, the predictor variables cost per head and vaccinators 

per 1000 people were highly correlated, therefore I omitted vaccinators per 1000 

people. After omitting vaccinators per 1000 people, the remaining predictors met 

the criteria for low multicollinearity, with VIFs in the range of 1–5. Four predictors 

that were not significant were dropped in the multivariable completeness model: 

number of villages, proportion of livestock owning households, setting (rural versus 

urban), and household size. For the coverage model, only four predictors were 

significantly associated with coverage and were retained in the model: number of 

the people in the vaccination unit, estimated number of dogs per vaccination unit, 

number of people, and season. 
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In the multivariable regression analysis, we found that vaccination units with 

larger geographical area were associated with better campaign completeness OR: 

1.24; 95% CI: 1.19, 1.30 (Table 4-4). Similarly, larger distance from the district 

livestock offices was associated with better campaign completeness OR: 1.11; 95% 

CI: 1.04, 1.19 (Table 4-4). Completeness in round 2 was significantly lower than in 

round 1, then increased significantly from round 2-3 and from 3-4, with no 

significant change from 4-5. Overall, completeness was substantially higher in 

rounds 4-5 than in rounds 1-3 (Table 4-4). 

Our model investigating vaccination coverage indicated that there were significant 

differences in coverage between villages located near and far from district 

headquarters (HQ), with villages located far from HQ having better coverage than 

those located near HQ (Table 4-4). However, the strength of the association was 

weak, with a doubling in distance being associated with only a 5% increase in the 

odds of a dog being vaccinated (OR: 1.05; 95% CI: 1.02, 1.08). The model indicated 

that vaccination units with more dogs had lower coverage than vaccination units 

with fewer dogs (OR: 0.86; 95% CI: 0.83, 0.89). The number of people (human 

population size) was positively, but weakly, associated with coverage (OR: 1.04; 

95% CI: 1.00, 1.09). Additionally, campaigns conducted during the wet season had 

better coverage than those conducted during the dry season (OR: 1.17; 95% CI: 

1.03, 1.33). 
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Campaign timeliness: Vaccination campaigns were not all completed annually. 

Vaccination intervals varied greatly between rounds, which led to further declines 

in vaccination coverage before the next campaigns were implemented (Figure 4-5). 

For example, the median campaign intervals between the first and second round of 

vaccination was 16 months and ranged from 12-18 months (Table 4-3).
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Figure 4-5: Projected dog vaccination coverage in each of the 25 districts from 2010 to 
2017. High coverage (Ptarget) was not achieved in all districts; and between campaigns 
coverage declined due to dog population turnover. When annual campaigns achieved high 
coverage, coverages were sustained above the critical immunity threshold (below-dashed 
line labelled Pcrit) for approximately 12 months. Although some districts achieved the 
target coverage of 70%, the time lag between campaigns (up to >20 months), caused 
coverage to decline below Pcrit. Coverage was calculated from the number of vaccinated 
dogs divided by number estimated dogs per each district per each month. 

Timing (interval between vaccination campaigns): To eliminate dog rabies, a 

certain proportion of the susceptible population (Pcrit; critical proportion) has to be 

vaccinated. The threshold level can be calculated based on the basic reproductive 

number (R0; the average number of secondary infected cases initiated by one 

infected individual in a fully susceptible population). It is recommended  to keep 
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the vaccinated proportion of the dog population above the critical threshold, 

otherwise natural turnover in the dog population leads to drops in coverage that 

allow sustained rabies transmission. My analysis to determine interval between 

vaccination campaigns found that, in dog populations with high birth rates and 

death rates such as in Tanzania, timely annual vaccination campaigns are required 

in order to prevent the herd immunity declining below the critical immunity 

threshold. By vaccinating annually, vaccination of at least 66% of dogs is required 

to keep waning coverage above the 30% critical immunity threshold (Figure 4-6). 

 

Figure 4-6: Guidance in choosing the most suitable timing (interval between 

campaigns) of vaccination campaign. For effective control and elimination of 

canine rabies, sufficiently high herd immunity level must be achieved and 

maintained. For example, in Tanzania, to keep the herd immunity above a Pcrit of 

30% (adjusted Pcrit), our data show that the annual campaign must reach ≥ 66% 

coverage. 

4.4 Discussion 

My finding showed that campaigns did not achieve the vaccination targets. Only 

few districts achieved 100% vaccination completeness. Whereas, 19-21% of 

vaccination units achieved the WHO’s recommended coverage threshold of 70% 
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between round 3 and 5. This suggests that 70% coverage is achievable and static 

central point vaccination is a feasible strategy for delivery of dog vaccinations in 

Tanzania.  During the initial vaccinations (round 1 and 2), campaign completeness 

was poor as a result lower number of dogs were vaccinated. 

Initially, organisational and operational challenges delayed the implementation of 

the MDVs (Mpolya et al., 2017). For example, the Coordinator and District 

Livestock/Veterinary Officers in Tanzania had no previous experience in planning 

and delivering large-scale dog vaccination campaigns, resulting in delayed 

implementation and phased campaigns in some districts (Mpolya et al., 2017). 

Financial resources were distributed equally to all 25 districts irrespective of 

geography, infrastructure and dog populations (Bardosh, 2018). As a result, some 

districts were well resources and others particularly large districts were under-

resourced. This caused field staff to operate within resource constraints, for 

example when there was insufficient fuel to reach all villages (Bardosh et al., 

2014, Bardosh, 2018). When they started the implementation of dog vaccinations, 

the first challenge was the placement of vaccination points. For example, 16% of 

respondents from a population-based survey of 750 dog-owning households 

conducted in two study districts reported that vaccination points were too far from 

their homestead (Bardosh et al., 2014). The second challenge was lack of training. 

some vaccinators lacked proper training on dog management during vaccinations, 

such as how to handle or restrain aggressive dogs (Bardosh et al., 2014). This is not 

only a challenge for vaccinators but also for dog owners. A study in northern 

Tanzania found that over a third of respondents (39%) claimed that they could not 

handle their dogs (Minyoo et al., 2015). To overcome this challenge, we learned 

from our experience delivering dog vaccinations in the study areas that campaign 

advertisements should advise dog owners to bring dogs on leads and cats in sacks. 

The third challenge was the organization of the vaccination sessions. For example, 

dog owners complained that vaccinators did not stay in the village for enough 

time. They complained that the sessions often ended either before or just after 

school finished, therefore children (pupils) failed to bring their dogs (Bardosh et 

al., 2014). It has been recommended that timing of campaigns should therefore 

take account of agricultural cycles and school holidays (Cleaveland et al., 2018). 
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Once these challenges had been overcome, there was a large increase in the 

number of vaccinated dogs, particularly after the introduction of post-vaccination 

transects in 2013 to monitor the performance of campaigns. Since 2013, prior to 

the commencement of MDV activities, district-level meetings were held to share 

experiences on the delivery of vaccinations. From these meetings, lessons learned 

were incorporated into subsequent campaigns. 

Our first aim of this study was to measure the coverage in the study areas. As we 

found in previous chapters, coverage estimates can vary greatly by the source of 

the data and analysis formulation. Therefore, when measuring coverage important 

aspects are: source of data, place (area, geography), time period, and jurisdiction 

(administrative unit). For example, in Figure 4-1 we measured coverage by using 

the number of vaccinated dogs per month divided by the estimated number of dogs 

in that month (data were from all of the study areas). This coverage was slightly 

different from figure 4-5, which was estimated using number of vaccinated dogs 

per month divided by estimated dogs in that month per each district. In Table 4-3, 

coverage was calculated directly from the transect surveys and did not account for 

pups:adult ratio (PAR), and in this table, the jurisdiction was vaccination unit and 

district level. 

Our second aim of this study was to learn the demographic, resource and 

geographical factors that affect campaign completeness and vaccination coverage. 

I found that campaigns conducted during the wet season had better completeness 

and coverage. This finding was contrary to my hypothesis that vaccinations 

conducted during the dry season when most of the roads are passable and peasants 

are not occupied by farming activities have better completeness and coverage. 

This may be due to the seasonal migration of pastoralists in some districts, 

affecting the availability of dogs for vaccination during dry season. Pastoralists 

migrate away from village centres for pasture and water, which probably hindered 

them from bringing their dogs for vaccinations in village centres. Secondly, our 

categorization of seasonality may have influenced this finding. Pastoralists 

recommend June as the ideal month for vaccination while farmers recommend 

August or September (Bardosh et al., 2014). For, effective rabies control, timing of 

campaigns that will take place outside of harvesting or planting season (for 
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peasants) and not nomad season (for pastoralists) might help to further increase 

coverage. Otherwise, alternative approaches such as door to door or outreach 

vaccination campaigns are necessary to achieve the target coverage. Additionally, 

our finding shown that vaccination units with more dogs had lower coverage 

(versus vaccination units with fewer dogs). This could be linked to pastoralists or 

agro-pastoralists who tend to own more dogs that peasants (Sambo et al., 2018). 

This data shown that most of these people (pastoralists and agro-pastoralists) were 

not well reached by the campaigns. It has been reported that remote livestock 

keepers (pastoralist) were not well covered by vaccination campaigns in a previous 

study (Bardosh, 2018). 

Campaign completeness has been shown to be an important factor in the success 

of large-scale vaccination campaigns (Townsend et al. 2013, Ferguson et al., 

2015). Despite the improvements in numbers of vaccinated dogs from year to year, 

we found that campaigns were not conducted in each of the vaccination units. 

Even during the fifth round of vaccination, some vaccination units were not 

vaccinated and only 28% of districts had 100% completeness (Table 4-3). In most 

cases, completeness is tied to district-level planning and incompleteness with 

issues around leadership or external financial constraints. 

Our data showed that spending more (increased budget) resulted into better 

campaign completeness. However, our vaccination costs excluded dog vaccines 

and consumables as these data were not available. We consider, this a weakness 

for our predictor. A study evaluated the costs of implementing dog rabies control 

found that the cost of the dog vaccine in Tanzania constituted 6% of the total cost 

of vaccinating a dog while consumables and equipment constituted 29% (Elser et 

al., 2018). These costs were not included in our analysis. Most LMIC countries 

including Tanzania will not be able to fund sustainable mass dog vaccinations due 

to budget constraints. For elimination of rabies external funding will be crucial. 

External funding will allow countries to secure sustainable dog vaccines. We also 

found that vaccination units with more dogs had better completeness than those 

with fewer dogs, possibly because district officials considered these high priority 

areas for vaccination campaigns. This also could be the reason why completeness 

increased positively with area. To our knowledge, vaccination units from rural 
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areas tend to have larger geographical areas and contain a higher proportion of 

dogs than those from urban areas. Therefore, district officials considered these 

villages as high priority areas for vaccination campaigns as a result they have high 

campaign completeness than vaccination units with small geographical areas. 

Additionally, larger human populations were associated with better completeness 

and previous studies have linked dog ownership with human population size 

(Knobel et al., 2008, Davlin and VonVille, 2012). We also do not know why 

campaign completeness was associated with areas further from the district 

headquarters, which was not our expectation. We also found that completeness 

was improved with rounds of vaccination with the fifth round has better 

completeness than initial rounds of vaccination. This could be linked with 

increased training, experience, and lessons learned in delivering dog vaccinations 

improved completeness. 

Although, we found that long distance from district headquarters associated with 

better coverage, their effect size is not big OR= 1.05 (CI 1.02, 1.08). The recent 

research from Malawi reported that distance to the closest city appeared to 

produce a negligible effect on coverage (Sánchez-Soriano et al., 2020). We also 

found that coverage decreased with levels of dog population sizes. This is 

supported by the fact that it is easy to achieve higher coverage in areas with fewer 

dogs than in areas with higher number of dogs. Additionally, we found that 

livestock keeping household (pastoralists) was associated with decreased odds 

ratios of vaccinating a dog (although it was not significant). 

It has been reported that dogs owned by pastoralists are less used to handling and 

restraint by their owners and families often absent during dry season due to 

transhumance movements. As a result, our central point strategy achieved only a 

low coverage (Bardosh et al., 2014, Kaare et al., 2009). However other strategies 

such as door-to-door and strategy and community-based animal health workers 

reported achieving the necessary coverage (Kaare et al., 2009). However, these 

approaches were reported to be time consuming and expensive compared to 

central point strategy (Kaare et al., 2009). 
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Since most of the delivery of vaccination in the project was through central points 

approach whereby owners voluntarily brought their dogs to a centrally located 

vaccination point. The vaccination coverage was tied to the ability/willingness of 

dog owners to bring their dogs to vaccination points. Dog vaccines could available, 

vaccinator could be available but if the dog owners did not bring dogs coverage 

will be poor. This could probably be the reason why very few variables were 

retained in the multivariable analysis. 

Timeliness is another essential component for control and elimination of dog 

rabies. Rapid dog population turnover causes population-level protection to fall in 

the interval between vaccination campaigns. In this study, the longest interval 

between campaigns was 27 months. Bureaucratic leadership caused delays in 

timely procurement of dog vaccines and therefore campaigns (Mpolya et al. 2017). 

In contrast, delays during the initial rounds (between round 1 and 2) were 

negligible as dog vaccines were available due to overestimation of dogs (Mpolya et 

al. 2017). Between round 1 and round 2 of vaccination, the vaccination interval in 

all of the study district was within 18 months. The delays of vaccinations for round 

2 was not caused by shortages of dog vaccines but by delays in reimbursement of 

financial resources (Mpolya et al. 2017). Additionally, in the 2016 round of 

vaccinations (the fifth and last round), the campaigns were conducted in a much 

more timely manner compared to previous campaigns, and largely synchronized 

across all districts as vaccines (procured for fourth and fifth round) and financial 

resources were available. In most cases, timeliness is tied to the national level, 

i.e. the ability of the Ministry of Livestock to plan, procure and distribute dog 

vaccines and disburse funds to districts on time. To overcome this challenge of the 

long interval between campaigns (vaccination delays), countries must develop 

strong procurement systems. For example, bulk procurement of high-quality 

vaccines, through for example OIE rabies vaccine banks, are a means to ensure 

consistent availability of affordable, safe and effective vaccines. 

In Africa and Asia, dog rabies control programs typically operate under financial 

constraints. Biannual campaigns would be even more challenging than annual 

campaigns. In these settings, biannual vaccinations would not only be financial and 

logistical challenges but also vaccinations might be ended by vaccinating the 
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previously vaccinated dogs but not the new susceptible. Therefore, vaccination 

units with poor coverage should be identified through post-vaccination transects 

and prioritised for rapid remedial vaccinations. 

Our study investigated demographic, resource (human and financial resources) and 

geographical factors that affect campaign completeness and vaccination coverage. 

We cannot modify geographical factors but we can learn from this and 

troubleshoot on how we can improve the performance of the campaigns. For 

example increase placement of the central point, increase frequency of 

advertisement for the campaign. However, our study did not investigate 

socioeconomic or cultural factors which are known to be the barriers to dog 

vaccination and can therefore affect coverage (Bardosh et al., 2014, Kaare et al., 

2009, Mazeri et al., 2018). Social factors like socioeconomic status are always 

important with regard to willingness to pay or vaccinate dogs. We found in this 

study that coverage varied greatly from village to village and district to district. 

We suspect that unequal access to information about vaccination campaigns 

(advertising issues) is the cause of this difference in coverage. It was reported that 

23% of the 113 dog owners were not aware that the campaign was taking place 

(Bardosh et al., 2014).  We also did not investigate the religious factors, 14 (50%) 

of our study areas were island or coastal areas which are dominated by Muslim 

communities who do not prefer to contact with a dogs (Bardosh et al., 2014). Our 

estimates of completeness in urban districts were also biased as the vaccination 

unit was considered at ward level. Some urban wards had 2 or 3 vaccination 

centres while in rural districts, the vaccination unit was considered at village 

level.  

Another limitation of the study, was due to low detection rate, where transect 

surveyors counted very small numbers of dogs which potentially biased our 

coverage estimates. However, in our analysis, we excluded transect data that 

counted <5 dogs per village.  

The success of the dog vaccination campaign is determined by its impact on 

disease incidence assessed through disease surveillance. A dog vaccination 

campaign must aim to achieve at least 70% coverage of susceptible dog population 
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in every vaccination in order to interrupt rabies transmission. Another limitation of 

this study is that I was able to measure village level coverage but unable to 

evaluate the outcome and impacts of vaccinations in term of incidence of bite-

injuries (as a measure of rabies incidence). Monitoring the status of infectious 

diseases is one of the most challenging problems facing the public health sector in 

Africa. Very few laboratories in Africa are capable of rabies diagnosis and sample 

submissions are extremely limited (Lembo et al., 2010). These data on surveillance 

were not included in this chapter because were not cleaned and were incomplete. 

However, these data have been recently cleaned and improved by my colleague 

who is using integrated bite case management (IBCM (Lushasi et al., 2020)). In 

future, these data from this thesis together with data from IBCM are potentially 

needed to inform policy-makers be on the performance of these campaigns. 

4.5 Conclusion 

As we are fast approaching the 2030 deadline for achieving “zero dog-mediated 

human rabies deaths”, it is essential for rabies-endemic countries to learn and 

promote the most efficient strategies to control and eliminate rabies. This chapter 

provides a way in which the dog vaccination performance of can be more 

accurately measured. Our evaluation showed that Tanzania’s Rabies Elimination 

Demonstration Project did not reach 100% of the project targets, districts were not 

consistently achieving 70% coverage, campaigns were not 100% completed in each 

of the vaccination units, and there were serious delays of vaccinations between 

campaigns. Long interval between campaigns were not ideal, this lengthy was 

caused by insufficient dog vaccines. This indicated that vaccination campaigns 

need a specific action plan before the beginning of the campaign. Transect surveys 

are useful in providing important operational guidance as to how vaccination 

coverage may be improved. Dog demographic data and coverage data can help to 

forecast dog vaccines for future vaccination activities. We conclude that 

completeness, coverage and campaign timeliness are essential scales if rabies 

control and elimination goals are to be met. 
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Chapter 5 General discussion 

5.1 Discussion 

The World Health Organisation (WHO) has set its sights on elimination of dog-

mediated human rabies deaths by 2030 (Abela-Ridder et al., 2016). Dog 

vaccination is a crucial component of efforts to achieve this goal and vaccination 

programmes are now underway around the world. However, most low-income 

countries, particulary in sub-Saharan Africa, still have limited investment in dog 

vaccination programmes (Hampson et al., 2015). This research will directly benefit 

control programmes in low-income countries by providing guidance on the 

implementation of vaccination campaigns, including guidance for evaluating 

vaccination coverage using transect surveys. 

This thesis investigated the best way to implement, monitor and assess the success 

of campaigns. We found that campaigns must be carefully planned and coordinated 

to ensure that large number of dogs are vaccinated to reach the recommended 

coverage threshold. Because the true dog population numbers will likely not be 

known, we demonstrated the best approach to estimate dog population sizes. 

Understanding the dog population size is important for campaign planning (e.g., 

number of dogs to vaccinate, dog vaccines needed, number of vaccinators needed) 

and evaluating the effectiveness of intervention. Major research findings 

generated in Chapter 2 and Chpater 3 are useful for planning of the 

implementation of dog vaccinations. 

To eliminate rabies, vaccination coverage must achieve be 70% of susceptible 

domestic dogs during annual mass vaccination campaigns (Coleman and Dye, 1996). 

It is therefore important to measure the vaccination coverage that was achieved 

during vaccination campaigns; however, there is no specific guidance for the most 

accurate and efficient methods for estimating coverage in different settings. In 

chapter 2, I compared and assessed three methods that are commonly used to 

estimate dog vaccination coverage, namely post-vaccination transects, household 

surveys and school-based surveys. I compared the effect of sampling on the 
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precision and accuracy of coverage estimation against a complete census of the 

dog population that also recorded dog vaccination status. From this comparison, I 

demonstrated that transects, which involve the counting vaccinated and 

unvaccinated dogs in communities soon after campaigns, are cheap, quick, and 

provide precise coverage estimates, in contrast to household or school-based 

surveys. Although transects provide rapid estimates, these need to be adjusted 

because they generally do not include puppies. However, this adjustment is 

straighforward by incorporating the ratio of pups to adult dogs. I demonstrated 

that transects are cheap, rapid generate precise estimates and therefore are more 

appropriate for routine monitoring of vaccination campaigns than household or 

school-based surveys. 

I further compared the practicability and scalability of these methods to identify 

coverage gaps. My results showed that household and school-based surveys are not 

suitable for spatial resolution unless all villages are sampled, which is impractical. 

I demonstrated that transects are essential to identify problematic areas that 

require repeat vaccination campaigns. With this result, I suggest that transects can 

be used to troubleshoot stubborn foci areas for countries close to elimination. For 

example, vaccination programs across Latin America the Caribbean have achieved 

tremendous success in controlling dog rabies, with average levels of coverage 

estimated to exceed 70% based on HDRs (Schneider et al 2007, Vigilato et al. 2013, 

Seetahal et. al 2018). However, rabies persists in some countries in Latin America, 

such as in Bolivia, and a few remaining foci in Brazil, Peru, and Guatemala 

(Vigilato et al. 2013). In some of these countries, the ongoing circulation of rabies 

suggests that vaccination coverages have been over-estimated. Identifying the 

remaining pockets of susceptible individuals is essential for focusing control and 

elimination efforts, as these pockets can delay elimination during the endgame 

(Klepac et al. 2013). Tools such as transects that are cheap and quick to complete, 

can potentially detect the remaining pockets of susceptible individuals and could 

be used to guide implementation during the last mile to elimination. 

When aiming for eliminating dog rabies in endemic transmissions, campaign must 

consistently achieve at least 70% vaccination coverage of susceptible dog and 

ensure that there is no areas left unvaccinated (Townsend et al. 2013). Aiming for 
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a geographically uniform vaccinated dog population with no areas left 

unvaccinated is important since a patchy coverage might cause persisting disease 

due to “unvaccinated pockets” (Townsend et al., 2013). This is because 

unvaccinated pockets can hinder progress to elimination. An important result from 

this thesis was that transects can detect poor performing communities with low 

vaccination coverage. These communities with no vaccination campaigns or poor 

vaccination coverage could be targeted for remedial vaccination to improve both 

their completeness and their coverage. Transects could not detect unvaccinated 

pockets missed by routine vaccination campaigns. However, transects could help 

managers to monitor their campaigns and use thorough planning and assessment to 

ensure areas are not missed. 

When problematic areas are detected, careful planning of tailored vaccination 

delivery approaches such as remedial vaccinations can be applied to these areas 

with no vaccination campaigns  or poor vaccination coverage. Continuous 

vaccinations using remedial strategy could improve both completeness and 

coverage. This study demonstrated that random sampling of villages is not enough 

to detect unvaccinated pockets, we therefore, recommend to conduct transects 

for two or three consecutive years in every vaccination units, monitoring coverages 

in these vaccination units. Transects together with records of vaccinated dogs will 

help to refine dog population sizes in each vaccination units. When reliable 

estimates of dog population size is established i.e. after two or three years of 

consecutive dog vaccinations, transects will be no longer required. We know doing 

transects in every villages can greatly increase the sample size and generate 

precise coverage estimates but their implementations are expensive. We still 

recommend to countries to budget for transects if the goal is to eliminate dog-

transmitted human rabies. Important lesson campaign completeness could be 

learnt from other diseases whereby “Reaching Every District” (RED) strategy was 

demonstrated to be successful in reducing gaps in immunization coverage 

(Vandelaer et al., 2008, Ryman et al., 2010).Additional lesson can be learnt from 

large-scale delivery of mass public health interventions including drug 

administrations for lymphatic filariasis, using mop-up campaigns, where millions of 

drugs were administered in different parts of the world. For example in Tanzania, 
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administration of drug administrations for lymphatic filariasis increased from 86% 

in 2013 to 93% in 2014 following additional mop-up campaigns (Mwingira et al., 

2016). Another drugs delivery approach to the problematic areas has been through 

the outreach/supplementary campaigns. For example, 84 mobile outreach teams 

delivered 2,979,000 supplemental doses of oral polio vaccine to children younger 

than 5 years in 18 months  in Nigeria (Bawa et al., 2019). Another vaccination 

delivery approach was through the use the local communities. Experience shows 

that involvement of the community in delivering drugs (community-driven 

interventions) in very remote areas speeded up the control efforts of neglected 

tropical diseases, and if intensified can contribute to the elimination of disease 

(Amazigo et al., 2012). For example, the elimination of rinderpest was achieved by 

using thermo-stable vaccine which was delivered through community-based animal 

health workers (CBAHW(Roeder et al., 2013)). 

The above “mop up” delivery approaches could be applied in dog vaccinations. The 

availability of a thermotolerant rabies vaccine would allow the investigation of 

community-led dog vaccination delivery approach (Lankester et al., 2016). 

Community-based interventions could be used in problematic areas that are poorly 

served by vaccination interventions. However, research is required to investigate 

cost, logistical and practical challenges associated with dog vaccination delivery 

through these approaches. The cost of vaccinating a dog using static central point 

vaccination was estimated to be $1.7 ($0.8-$2.7) in agropastoral areas in Tanzania 

(Kaare et al., 2009) and $1.3-$1.8 in urban areas in Chad (Kayali et al., 2006). On 

the other hand, door-to-door strategies to achieve the necessary coverage in 

pastoralist areas were time-consuming and expensive, with costs estimated at 

$5/vaccinated dog (Kaare et al., 2009). If local communities will be allowed to 

deliver dog vaccination campaigns, the cost vaccinating a dog might be lower than 

the previous estimated. 

The results from my thesis showed that fine-scale transect data allows the 

assessment of the performance of vaccination campaigns. Coverage data from 

transects will show areas where the number of vaccinated dogs were below the 

estimated target of 70% of the susceptible dog population in each area. There are 

two reasons on why a vaccination campaign can fail to achieve the recommended 
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coverage of 70%: First, campaign was never done, perhaps due to poor planning, 

and second, campaign was done poorly and needs remedials (re-doing). I 

recommend remedial vaccination due to the following reasons. First, empirical 

evidence show that shows outbreaks in villages according to coverage (Hampson et 

al., 2009). Second, experience from Bali in Indonesia who did implement remedial 

vaccination coverage which resulted into substantial declines in rabies incidence 

and spread (Putra et al., 2013). Third, experience from Pemba island showed that 

initial vaccinations covered just 25% of the population, subsequent campaigns 

across the entire island locally eliminated dog rabies. Rabies reintroduced after 

suspension of dog vaccinations (Lushasi et al., 2017). 

Additionally, I carried analysis to determine the interval between vaccination 

campaigns. We found that the levels that was achieved by the majority of districts 

were low and potentially required biannual vaccination campaigns. Since it is 

expensive to conduct biannual campaigns in LMICs, I presume planning and  doing 

everything properly is cheaper than doing biannual campaigns. This should rapidly 

increase protective “herd” immunity and will give enough time (i.e. 12 months 

vaccination interval) for rabies project managers to prepare (i.e. procuring 

vaccines) for the next vaccination campaign. 

Since in the study areas in Tanzania where I worked, remedial dog vaccination 

campaigns were not conducted, my recommendation raises four important areas 

for further discussion: first, how should these remedials be considered in terms of 

costing into national plans? Future studies are needed to compare the cost per dog 

vaccinated between remedial and routine campaigns. These costs need to be 

incorporated into national vaccination plans. Second, how quickly should remedial 

vaccinations be conducted after routine dog vaccination campaigns i.e. after one 

day/one week or one month? Third, which geographical areas should be targeted 

by remedial campaigns to achieve maximum impact to interrupt rabies 

transmission i.e. geographical high-risk areas or is reaching all problematic settings 

feasible, and fourth, how long will it take to complete remedial campaigns in 

comparison with routine dog vaccination campaigns? This study demonstrated that 

transect surveys generated fine scale resolution data that can be used to identify 

gaps in coverage but were paper-based, which does not allow rapid analysis to be 
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carried out. Since transects are urgently needed by program managers to track the 

progress of their vaccination campaigns, methods are needed to more rapidly 

record and summarize these data, such as the use of mobile health (mHealth) 

technology. For example, In Malawi, Mission Rabies vaccinated more than 35,000 

dogs in 20 working days and used a mobile phone application to evaluate the 

coverage achieved (Gibson et al. 2016). In different parts of the world, 

introduction of mHealth technology has greatly facilitated the real-time 

monitoring of mass dog vaccination campaigns, with over one million dog 

vaccinations recorded using this application (Gibson et al 2018). This application of 

mHealth innovations allow more efficient capture of extensive data, rapidly 

analyse and report the community level coverage, these systems, are now 

replacing the commonly used paper-based surveillances that are prone to data 

entry errors and cannot allow real-time analyses (Gibson et al. 2015). When gaps 

are detected rapidly, coverage can be improved through prompt remedial 

vaccination (Gibson et al. 2015). 

Estimates of dog population sizes are a prerequisite for delivering effective dog 

rabies control. However, dog population sizes are unknown in most rabies-endemic 

areas. In Chapter 3, I compared three post-vaccination methods to assess which 

provides the most accurate estimates of the dog population size. I found sampling 

had effect on estimating dog population sizes and could lead to substantial under 

or overestimation of the population particularly in areas with considerable village-

to-village variation, leading to inaccurate dog population size estimates, which 

could result into poor rabies control. Using dog population estimates from 

transects, I further developed a statistical model (from the 27 study districts) to 

predict dog numbers and distribution in other parts of Tanzania (i.e. 142 districts) 

where no data on dog numbers are available. 

My results showed that there are lower number of dogs in coastal and island areas 

than in mainland areas, and that pastoralists tend to own more dogs than farmers 

(peasants). These findings were consistent with previous findings that have been 

reported elsewhere in East Africa whereby dog keeping is much less common in 

coastal areas with a predominantly Muslim population and in households without 

livestock (Knobel et al 2008, Kitala et al. 2001, Gsell et al. 2012). In these settings 
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with lower numbers of dogs, little financial and human resources are required to 

undertake vaccinations. This provides further incentives to undertake vaccination 

programmes in these areas as the target of 70% could be more easily achieved. The 

data on the size of dog populations in Tanzania generated from this thesis has been 

incorporated into the Tanzania National Rabies Control Strategy, which lays out a 

roadmap for elimination of rabies in Tanzania by 2030. The modelling approach 

presented in this thesis that is used to estimate the size of dog populations in 

Tanzania could be potentially transferable to other parts of Africa. 

Moreover, this thesis demonstrated practical approaches for monitoring the 

implementation of mass dog vaccination campaigns in different settings, which 

could guide policy in Tanzania and Africa as a whole. One of the key questions in 

designing vaccination campaigns is the delivery mechanism that will ensure 

campaigns reach the entire dog population. A key lesson that can be learnt from 

this chapter is that vaccination campaigns must be constantly and consistently 

monitored through improved survey methods. This study found several reasons why 

campaign monitoring is important. First, monitoring the performance of 

vaccination campaigns allows assessment of their effectiveness in terms of 

preventing rabies. My findings showed that vaccination campaigns significantly 

improved over time from when transects were introduced in 2013 for monitoring 

vaccination programmes. A lesson can be learned that countries could spend 

money on transects to increase awareness and increase coverage. In each of the 

study districts, the number of vaccinated dogs increased leading to an increase of 

vaccination coverage. Campaign monitoring helps rabies project managers to find 

out whether the target coverage was reached or not, and, if not, they can 

troubleshoot why not. Project managers can then link poor coverage with reasons 

that have been reported as barriers for dogs vaccinations (Kaare et al. 2009, 

Bardosh et al, 2018, Castillo-Neyra et al. 2017 & Mazeri et al 2018). Second, 

campaign monitoring helps in identifying areas where vaccination campaigns were 

poor or missed entirely. For example, lessons can be learned from campaigns to 

eliminate lymphatic filariasis. Lot Quality Assurance Sampling (LQAS) surveys in 

each of the implementation units was used to identify problematic areas with low 

coverage (Maroto-Camino et al. 2019). LQAS was used to determine three factors: 
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(1) a target percent coverage for an indicator (the upper threshold); (2) a percent 

coverage below which a lot is considered unacceptable (the lower threshold); and 

(3) the tolerable levels of misclassifying failures and successes i.e. the alpha and 

beta errors, respectively (Robertson and Valadez, 2006). Third, campaign 

monitoring motivates district officials and vaccinators to improve their campaigns.  

The experience from Tanzania showed that the results from transects provided 

useful feedback for the staff implementing the campaigns (i.e. Livestock Offices 

and District Veterinary Officers). We observed that when feedback-sharing 

meetings were conducted resulted into an increased motivation for districts that 

achieved lower levels of coverage to increase vaccination coverage in subsequent 

campaigns. 

Our finding indicates that to ensure that vaccination coverage in dogs does not 

drop below the critical threshold, vaccination intervals should not be longer than 

one year. Many districts in the study areas faced substantial challenges in 

achieving timely (annual) vaccination campaigns due to the shortages of dog 

vaccines. These delays were linked to national-level planning and administration. 

Therefore, to overcome delayed vaccinations, countries must accurately forecast 

dog vaccine needs. 

5.2 Future work 

The overall aim of evaluation is to find out information about a programmes' 

activities, characteristics, and outcomes. This thesis evaluate only activities and 

characteristics of the vaccination programmes but did not evaluate the outcomes 

(impacts) of vaccination programmes on bite incidence. Further work is required to 

incorporate dog bite incidence to explore the impact of mass dog vaccinations on 

bite incidence. This could be done by exploring the relationship between levels of 

coverage (that were estimated in Chapter 4) and bite incidence. In addition to 

that, future work is needed to explore if there is any relationship between rabies 

incidences and dog population sizes (that were estimated in Chapter 3). This will 

improve our understanding on whether rabies is dog population based on not. 
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Additionally, future work is needed to investigated the impacts of reported gaps in 

coverage on rabies control. 

In Chapter 3 of this thesis, I developed a model to predict dog numbers in districts 

without dog vaccinations. Investigating the performance of my model in other LMIC 

countries is therefore important as most of LMIC countries do not have reliable 

data on dog numbers. Dog numbers in LMICs are needed for global initiatives for 

rabies elimination. For example, Gavi, the Vaccine Alliance, is considering the 

investment in rabies vaccines (World Health Organisation, 2018a). However, to be 

eligible for Gavi investment, countries need to demonstrate plans and delivery of 

mass dog vaccinations and dog population sizes will fit for the purpose. 

Future geospatial modelling analysis is required to develop highly specific 

prediction models regarding to which geographical clusters will be at risk for rabies 

outbreak. I would like to incorporate bite incidence data, transect data, and 

geographical data (i.e. altitude, roads, waterways, railways and water bodies) into 

my model. Geospatial modelling would provide timely identification of geographic 

clusters of unvaccinated communities and assess the risk reintroduction of rabies 

from these clusters. This would allow us to explore the potential association 

between landscape (i.e. physical barriers such as lakes, rivers, elevation, and 

habitat) and vaccination completeness and vaccination coverage. 

5.3 Conclusion and general recommendations 

If the goal to end human deaths from dog-mediated rabies by 2030 is to be 

achieved, mass vaccination of dogs will need to be scaled up and sustained across 

LMICs in Asia and Africa. Based on the results from my PhD thesis, I recommend 

the following: 

ü It is important for dog vaccination campaigns to include post-vaccination 

evaluations. Therefore, countries that are implementing dog vaccinations 

should also set a budget for transect surveys. Monitoring in vaccination 

campaigns helps to detect gaps in vaccination coverage. The detected gaps 

can be targeted for remedial vaccination campaigns to boost coverage as 
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biannual campaigns are impractical in LMICs. Detection of coverage gaps 

and conducting remedial vaccinations help to interrupt rabies circulation, 

generate herd immunity, and accelerate progress towards rabies elimination 

(Chapter 2). 

ü Assessing dog population sizes is extremely helpful when planning 

vaccination campaigns (i.e. budgeting for human and financial resources 

that will be incurred) and evaluating their effectiveness (i.e. to calculate 

vaccination coverage (Chapter 3)). 

ü Small scale sampling of the dog population could lead to substantial under- 

or overestimation of dog population sizes in areas with considerable village-

to-village dog variation, leading to poor rabies control. Population size 

estimation using transects is a useful alternative tool to support the global 

initiatives for rabies elimination, taking advantage of data on vaccinated 

dogs that are routinely collected through implementation of mass dog 

vaccinations (Chapter 3). 

ü The assessment of vaccination coverage at vaccination unit level showed 

that most of vaccination units in the study areas in Tanzania had not 

attained the threshold of 70% vaccination coverage. Therefore, efforts 

should be made to maintain and increase the current vaccination coverage 

to reach the threshold of 70% coverage by increasing campaign 

completeness, conduct remedial vaccinations in poor performing 

communities  and conduct annual vaccinations (Chapter 4). 

ü A focus on the campaign timeliness could be an effective strategy to 

enhance the effectiveness of the vaccination campaigns. Due to high dog 

population turnover in most rabies endemic countries, a one-year interval 

between vaccination campaigns is needed to maintain sufficient coverage 

for transmission to be interrupted. Dog vaccine procurement was a major 

constraint for timely vaccination in Tanzania and affects the efficiency of 

dog vaccinations. Allocating at least six months for vaccine tendering and 

procurement is necessary. Over-procurement of dog vaccines is not a 
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problem, because dog vaccines can be used for vaccination campaigns in 

subsequent years (Chapter 4). 

ü Our data supports that 70% vaccination coverage should remain the 

coverage target in countries with high dog population turnover (Chapter 4). 
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Appendix A 

Evaluating Vaccination Coverage in Dog Populations: a guide for 

practitioners and rabies programme managers 

Background: Each year tens of thousands of people die from dog-mediated rabies, 

mostly in Africa and Asia (Hampson et al., 2015). The most effective way to 

prevent rabies is to interrupt transmission in dogs through vaccination (World 

Health Organisation, 2018b). Rabies can be eliminated by achieving and sustaining 

comprehensive vaccination coverage of 70% through annual dog vaccination 

campaigns (World Health Organisation, 2018b). The United Against Rabies 

collaboration recently set its sights on reaching the global goal of “zero human 

deaths by 2030” (Abela-Ridder et al., 2016). Mass dog vaccination is the 

cornerstone of these elimination efforts. Monitoring and evaluation (M&E) are 

required to assess the performance of mass dog vaccination programmes (Sambo et 

al., 2017). Here we provide guidance on approaches to evaluate coverage, with a 

focus on transect surveys. 

 Why is it important to monitor and evaluate vaccination coverage?  

M&E in public health is used for assessing interventions over time and for 

identifying where delivery needs improving (Reynolds and Sutherland, 2013). 

Monitoring is conducted continuously to check progress against targets and allow 

for regular adjustments, whilst evaluation is periodic, usually carried out at 

specified milestones to check the programme is having the desired and stated 

impact. M&E involves measurement of ‘indicators’ chosen to reflect important 

components of the programme at different stages. Useful performance indicators 

for dog rabies control programmes are: vaccination coverage, timeliness and 

completeness. With the launch of the ‘Zero by 30’ campaign, one hundred 

countries are projected to scale up dog vaccinations over the next ten years 

(Minghui et al., 2018). As countries scale up it will become increasingly important 

to monitor whether their campaigns are on track. 

There are three main reasons for conducting post-vaccination transects:  
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o To measure the performance of vaccination campaigns and whether the 

vaccination coverage target was reached. If coverage was poor, it is 

important to identify reasons for this, so that specific remedial actions 

can be planned and the situation avoided in future. Barriers to 

vaccination are typically related to planning and include: poorly located 

or timed vaccination stations, advertising issues, insufficient 

procurement, mistrust from communities, and lack of responsible dog 

ownership. Through monitoring, vaccination coverage gaps can be 

detected. Monitoring can therefore help to highlight both problems and 

successful elements of interventions. 

o To evaluate the effectiveness of the programme by relating coverage to 

impact: i.e. coverage versus bite incidence, demand for post-exposure 

prophylaxis (PEP) and rabies cases in animals and humans. Through 

monitoring, we can demonstrate if interventions are achieving their 

aims. 

o To estimate or revise estimates of the dog population size. Vaccination 

coverage assessments together with dog vaccination campaign 

information enable dog population estimates to be adjusted as improved 

data becomes available, which can inform vaccine procurement 

requirements. 

This guidance only focuses on transect surveys for M&E of dog vaccination 

programmes. It is intended to provide guidance for practitioners and rabies 

programme managers involved in monitoring and evaluating implementation of 

their regional or national rabies control activities, in order to make any required 

improvements. The basis for this guidance is the outcome of a workshop on scaling 

up rabies control, held on 10–11 December 2018, in Geneva, Switzerland. These 

guidelines aim to assist in the implementation, monitoring and evaluation of 

vaccination programmes, especially in areas where M&E of the performance of dog 

vaccination campaigns is neglected. They describe how to choose, establish, and 

implement an appropriate post-vaccination survey and also the field protocol and 

analysis of resulting data.  
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What data do we need to measure vaccination coverage?  

Dog vaccination coverage is commonly assessed as the proportion of the total dog 

population (denominator) that are vaccinated (numerator). In most of Sub-Saharan 

Africa, dog census or dog registration data (denominators) are not available which 

makes measuring vaccination coverage a challenge. Denominators are then 

obtained from human-to-dog ratios (HDRs), which can be used as a preliminary 

guide on the number of owned dogs. Alternatively, coverage can be obtained from 

household surveys by asking dog owners to confirm the vaccination status of their 

dog by memory recall or showing dog vaccination certificates. Coverage estimates 

obtained from household or school-based surveys and HDRs frequently over- or 

underestimate coverage in LMICs because of lack of precision due to limited 

sampling (i.e. small sample size at the household or village level). Another 

challenge of using these methods is the failure to identify coverage gaps across 

populations. Transect surveys that involve counting vaccinated (marked) and 

unvaccinated (unmarked) dogs across communities which are used to measure 

coverage provide precise and accuracy coverage estimates. 

What methods should you use? 

Different methods have been used to measure vaccination coverage, such as 

household surveys, school-based surveys and transect surveys (Table AA-1). Each 

has advantages and disadvantages and their suitability depends on the setting as 

summarized in Table AA-1. All the methods miss some part of the dog population, 

for example households and school-based surveys count only owned dogs while 

transects counts only free-roaming dogs (both ownerless and owned free-roaming 

dogs) and tend to miss puppies (dogs under 3 months of age). Critically, household 

or school-based survey methods do not provide a complete picture of the 

effectiveness of the campaigns, as they can only detect poor coverage (coverage 

gaps) in sampled areas because they are typically only implemented in a small 

geographic area in relation to scaled-up vaccination campaigns. In some parts of 

the world, HDRs are estimated from household surveys, and are used with human 

census data to estimate dog populations and coverage achieved during vaccination 

campaigns. However, this approach suffers from the same problem as they over or 
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underestimating dog populations and coverage. Transect surveys are the most 

useful method as they generate detailed data across large geographic areas, which 

can be used to identify spatial heterogeneity in vaccination coverage, i.e. 

variability, in terms of areas with both low and high coverage. If coverage is low, 

remedial vaccination should be undertaken. Therefore, we recommend rabies 

project managers to use transect surveys over other methods for fine-scale 

monitoring of coverage. 
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Planning: Planning is key to successful vaccination campaigns and should include 

M&E. Vaccinated dogs must be marked during campaigns, with, for example, a 

temporary collar or paint mark, and the costs of marking dogs needs to be included 

in the budget. Transects require consideration of equipment, resources and a 

timetable, including training. Bare minimum equipment of transects is a notepad, 

recording sheet/survey form (see the checklist at the end of this guidance) and a 

pencil or pen. Global Positioning System (GPS) devices and digital cameras are also 

useful but not essential. For electronic data collection, appropriately configured 

devices are required for all persons collecting data, and these devices should be 

fully charged. 

Program managers are required to budget for manpower and equipment; working 

with local officials to identify who will do what, when and where. For example, 

each district could be assigned a supervisor who will supervise the surveyors. 

Surveyors can be livestock officers, agricultural extension officers, animal health 

workers, villagers or volunteers, as long as they are trained. Proper budgeting will 

ensure that surveys are completed properly and on time. Surveyors must receive 

training before starting surveys: training and field practice should be completed 

the week before the surveys, so that surveyors are familiar with the methods and 

motivated. During training sessions, survey instructions should be distributed to 

surveyors and supervisors, the survey tools tested, and transect locations (such as 

villages and streets) assigned to each surveyor. 

An important consideration for surveyors is the setting (rural or urban) for their 

transect, as this will determine the route followed. Surveyors should have 

knowledge of village and sub-village boundaries to ensure their route passes 

throughout the targeted areas (sampled sub-villages within a village). Maps with 

boundaries, human settlements, blocks/streets and major roads in urban areas are 

usually available through the local councils or government agencies and these 

should be printed for planning and training purposes. Data can be collected using 

paper forms or using handheld devices such as a data logger 

(https://rabiesalliance.org/capacity-building/gdl) or an mobile phone with an App 

e.g. www.wvsapp.org or a form that can be configured to collect relevant data 

e.g. www.epicollect.net/. A major advantage of using handheld digital devices to 
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conduct transects is that these data can be vary quickly compiled and reviewed to 

provide real-time feedback that can guide the implementation of campaigns. 

 

A list of villages and sub-villages to be covered by vaccination campaigns (if 

possible, together with village maps) should be prepared. To ensure a 

representative sample (every dog has equal chance of being counted), make sure 

the transect covers both the centre and periphery of the village in rural areas, or 

most streets in urban areas. This protocol is well tested in both rural and urban 

communities in Tanzania, and we have found that completing transects in two 

randomly selected sub-villages from each village provides useful village-level 

coverage estimates (Figure AA-2). The same approach, adapted to the local 

context, has been found to work well in Indonesia (5, 6). The lists of sub-villages 

and villages and maps (if available) should be shared with surveyors during the 

training session, checking that they understand the protocols of data collection 

and are able to discuss with village leaders to identify landmarks for transect 

starting points, such as a village offices, mosques, schools, churches etc. 

 

Conducting transects: On starting the transect, the surveyor should decide upon a 

direction to follow by, for example, spinning a pen. The surveyor should alternate 

between starting transects at the village centre heading to the outskirts, versus 

starting transects at the sub-village edge (periphery) and heading toward the 

centre (Figure AA-2). In urban communities, transects should be conducted across 

the ward, block or borough (in Tanzania one ward contains 3-7 streets or blocks). 

Maps can be used to help select transect routes within the target area. Maps on 

mobile phones can help to guide field personnel. In urban areas, select transect 

routes that intersect with at least half of all streets/blocks of the area, and cover 

the whole area for a 2-hour period, randomly deciding on a direction to follow 

when at a junction. Every dog seen during a transect should be recorded (Figure 

AA-6), noting whether it is marked or unmarked. Dogs should only be counted 

once. Avoid recounting dogs by ensuring that transect routes are not too close to 

each other and are within the target area (i.e. village). 
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Transects should be completed soon after the vaccination campaign, ideally the 

same day, and should take no more than 2 hours to cover each village/ward 

regardless of the area involved. In rural areas a good strategy is to spend 1 hour in 

each sub-village (making 2 hours for 2 sub-villages). Ideally, transects should be 

conducted in the evening from ~4-6 pm when the temperature is lower and dogs 

are more likely to be active. 

 

Transects should aim to cover as large an area as possible within the village/ward 

boundary. Surveys can be done on foot in urban areas. In rural areas that are less 

densely populated bicycles can help to cover large areas quickly and maximize 

information-gathering (dogs counted), but avoid cycling at speeds over 20km/hour 

because surveyors need to travel slowly enough to count and record dogs. 

Recording each transect survey. 

The main data that have to be collected from transects for assessing coverage are 

the village name and the counts of marked (vaccinated) dogs and counts of dogs 

without marks, as well as the date. Other information can also be collected 

depending on the purpose of the transect (Figure AA-7). For example, name of 

surveyor, start time, end time, dog age and confinement status can also be 

recorded but are not essential.  
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Figure AA-2. Sketch map of a village with  four subvillages (A-D), transects covering 2 (sub-
village A and C) out of 4 sub-villages. Sub-village A and C were randomly selected for the 
transect survey. In sub-village A the surveyors started to count dogs from the centre of the 
sub-village while in sub-village C, surveyors started at the periphery of the sub-village.  

Using mobile phones, randomly selected sub-villages can be viewed on Google 

maps, allowing the surveyor to constantly check while moving if he/she is walking 

within the sampling area. When transect surveys are completed, data should be 

entered and stored in a database,  containing the following information: name of 

surveyor, date, village, district (i.e. generally sufficient geographical information 

to map the location to the administrative unit), count of dogs observed with 

collars/marks (vaccinated dogs), count of dogs observed without collars/ marks 

(unvaccinated dogs), and any other relevant information. The quality of the 

transect data plays a crucial role as data entry errors reduce the precision of the 

information collected. Ensure that data are examined and verified from the 

transect form if using paper-based data collection. Issues to look out for include: 

incomplete (missing counts) or unusually high or low counts, due to data-entry 

errors. Consult surveyors while their memories are still fresh or have their 

notebooks accessible. In addition, check if data are unusually high or low counts 
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(out of the required range/ outliers). Validate count data with the number of 

vaccinated dogs in the village. Some errors cannot be corrected due to lack of 

appropriate information, and these data have to be deleted. 

Data entry from paper-based surveys becomes more time consuming and less 

reliable as the amount of survey data increases. Use of digital devices to collect 

and upload standardised data is preferred, especially for large-scale dog 

vaccination programmes, as these can be used most effectively to rapidly identify 

coverage gaps (Figure AA-3) requiring remedial revaccination. Mobile technology is 

widely applied for field data collection, allowing for quick and easy data 

management, and almost everyone in low-income countries now has mobile phone 

access. 
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Figure AA-3. Ranchi city in India showing coverage levels in vaccinated wards (from 
(Gibson et al., 2015)). 

Analysis of data 

The cleaned data can be analysed using a variety of programmes and summaries of 

the data displayed to support easy interpretation. Maps can be overlaid with other 

features, to help visualize what might affect vaccination success.  
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Vaccination coverage: Coverage is calculated as the number of vaccinated dogs, 

i.e. those observed with a mark, divided by the total number of dogs observed, i.e. 

vaccinated dogs with collars and unvaccinated dogs without collars. This estimate 

needs adjusting because typically puppies are not observed during transects and 

puppies are rarely vaccinated. Multiplying the coverage estimate by the proportion 

of dogs that are adult (P) corrects for this bias, which would otherwise be an 

overestimate (Figure AA-4). P can be calculated from the ratio of pups to adult 

dogs (PAR) as 1 - PAR/(1+PAR). 

 

 

 

 

 
Figure AA-4. The formula to calculate vaccination coverage, adjusted for unvaccinated 
and unobserved puppies. ). P is the proportion of dogs that are adult, calculated from the 
pups:adult ratio (PAR) as 1 - PAR/(1+PAR). Example: In Tanzania, the PAR is estimated to 
be around 1:3.8 = 0.263, so P = 1 – 0.263/(1+0.263) = 0.79. During transects conducted in 
village A, 20 dogs were observed wearing collars and 10 without collars (unadjusted 
coverage = 20/30 = 0.67). Vaccination coverage is therefore estimated to be 53%:  
20/30*0.79=0.53. 

Coverage gaps: These can be identified from transect data using heat maps 

indicating where remedial vaccination is required. Subsequent monitoring can 

show the improvement in coverage following remedial vaccination. Figure AA-5, 

shows areas with >70% coverage, as per WHO’s recommendation, and subsequent 

improvements. 

  

Coverage= (1-PAR) * 

Count of marked dogs 

marked + unmarked dogs 
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Figure AA-5. Coverage in wards after first vaccination campaign and remedial vaccination. 
Initial (red) and remedial (blue) coverage estimates are shown, with 95% confidence 
intervals. 70 % vaccination coverage is indicated by the dotted horizontal line (from 
(Gibson et al., 2015)). 

Dog population sizes: Data on dog population sizes are important for local and 

national planning and transect data can be used in conjunction with dog 

vaccination campaign information, to revise (improve) dog population estimates. 

For example, if 220 dogs were vaccinated in Village A, and 30 dogs observed during 

the post-vaccination transect, 22 of which had collars, we would get coverage of 

0.73 (22/30), an initial estimate of 300 dogs in village A (220/0.73). Adjusting for 

unobserved puppies (using PAR=1/3.8) would give a total of 381 dogs 

(220/0.73*(1+1/3.8)). Regression models can be performed to refine (improve) 

estimates and quantify their uncertainty (Sambo et al., 2018).  

How often should transect surveys be conducted?  

At the very start of a vaccination programme, transects should be conducted over 

consecutive vaccination campaigns to generate baseline data as communities 

become familiar with the process of vaccination. Once baseline levels of coverage 
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have been established through accurate records of dogs vaccinated in each 

village/vaccination station, post-vaccination transects may not be required every 

year, but could be completed less frequently. Many LMICs do not have resources or 

incentives to invest in M&E, and their priority, understandably, is on vaccinating 

dogs. Nonetheless we recommend conducting transects at least every four years to 

monitor longer-term changes in the dog population.  

An example of a paper-based form for completing a transect survey is detailed 

below and an example of a form used from a mobile phone can be accessed via the  

Mission rabies WSV App (https://www.wvsapp.org)  

Paper-based transect survey forms: 

Paper-based forms that can be filled out easily by surveyors using a pen or pencil 

e.g. Figure AA-6. Surveyors should fill all form fields. These field include: name of 

the surveyor, village name, ward name, name of the first sub village, date (when 

the survey was conducted), start and end time of the survey, mode of transport 

and tallies of dogs counted in both the first and second sub villages (each of 

marked dogs and unmarked dogs in the separate section). At the end of the 

transect surveyors should count up the tallies. 
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Figure AA-6:  Example of a paper-based transect form.  

Paperless transect forms: This can be easily filled out by surveyor on his/her 

devices by typing requested information into boxes (also known as ‘fields’) or 

choosing information from dropdown lists. 

Steps to fill the online transect form.  

· Contact: epi@missionrabies.com to configure a form and setting up a user 

ID and password for your study. 

· Download WVS APP from the App Store or Google Play store. 

· Start filling in your user ID and password. 
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· The configured transect form with text fields will appear – tap on the active 

area of the field to type in the text. 

Click Start >Select DOG 

Next page will open; fill your details accordingly:  

· Name of enumerator( Your name) 

· Village name (Surveying village) 

· Fill sub-village  

· Check if the sub-village is the first or the second sub-village 

· Start time is option (the system detects starting time) 

· Choose the mode of transport from the menu 

SAVE & click NEXT 

Click START SESSION 

Drop in box will pop in and ask start path tracker? SELECT YES (this will trace your 

routes) 

Click a green box written  ADD ENTRY 

Click new page, the new page titled dog sighting will appear (see figure below 

named Figure AA-7)  
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Figure AA-7. Screenshot of survey form using Android- enabled form. RQ=required field 

These questions are filled for each sighted dog.  
· the age of the sighted dog as you see (puppy or adult)  

· the vaccination status of the sighted dog (wearing collar on not wearing 

collar) 

· confinement status of the sighted dog 

· any comments (not compulsory) 

· Select FINISH 

Continue to ADD ENTRY for the next dog until completed. 

 

 For technical support of using this App contact: epi@missionrabies.com 
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Appendix B 

Chapter 3: Estimating the Size of Dog Populations in Tanzania to Inform Rabies 

Control 

 

Figure AB-1: The distribution of the non-study districts and study districts in Tanzania. Red 
points represent data from each district. (A) human population from the National census in 
2012 (B) geographical area of the district  in square kilometres (C) percentage of 
population (aged >10 years and above) employed as peasants and (D) percentage of 
population (aged >10 years and above) employed as livestock keepers.  
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Figure AB-2: The predicted number of dogs in districts across Tanzania. Model predictions 
(points) and their prediction interval are shown in blue and compared to dog populations 
estimated directly from transects conducted in 2014–2015 (red points) and in 2015–2016 
(green points). This comparison shows that there was minimal year-to-year variation in the 
estimated number of dogs per district. 

 



 
 

136 
 

 

 
Figure AB-3: Dog population size estimates for the 28 districts (on actual scale). Data for 
the household survey were collected in 2011 (different dog vaccination campaigns) while 
school-based survey and transects were conducted in 2014 and 2015 following the dog 
vaccination campaigns. Points are the mean estimate and error bars show the 95% 
confidence intervals (CI) around the mean. We did not report CIs for districts which 
counted less than three dog-owning households or where surveys were not administered. 
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Table AB-1: A stepwise comparison of Variance Inflation Factors (VIFs) for variables that 
may influence dog populations in Tanzania. Predictor variables with highest VIF values 
were removed and the stepwise comparison repeated until all VIF values were below 5. 
NA=not applicable after the predictor was dropped. 
Variables VIF after step: 

 1 2 3 4 

Human population in 2014 972.8 9.5 2.4 2.9 

Number of people living in rural areas 9.5 NA NA NA 

Proportion of livestock keeping households 8.8 7.8 5.4 NA 

Number of households 948.9 2.9 NA NA 

Proportion of persons employed as livestock 
keepers 

1.6 1.6 1.4 1.3 

Setting (inland vs coastal) 1.9 1.9 1.8 1.5 

Setting (Mainland vs island) 9.2 5.3 4.7 2.1 

Proportion of persons employed as peasant 9.4 8.8 5.4 4.7 

Area 8.2 4.3 4.1 3.1 
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