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Abstract 
The effectiveness of inquiry-based instruction (IBI) is well documented, however its use with 

students with mathematics difficulties (MD) has been limited, since it is often thought such 

methods are unsuitable for low attaining students. However, this belief is not entirely 

evidence based, and little research has explored how students with MD perceive IBI. In 

addition, previous research has demonstrated that students’ beliefs can have an impact on 

mathematics performance. This thesis therefore explores two research questions: (1) How do 

students with mathematics difficulties perceive inquiry-based instruction? and (2) Are 

students’ beliefs (e.g. mindset) associated with the effectiveness of inquiry-based instruction 

for students with mathematics difficulties? In a multiple case study involving two secondary 

schools from the United Kingdom, students with MD were taught using an inquiry approach 

to learning mathematics. Data were collected through a combination of questionnaires, lesson 

observations, student interviews, and pre-test/post-test assessments. Cross-case analysis 

suggested that students with mathematics difficulties perceived inquiry-based instruction 

according to four themes: IBI as a form of empowerment, IBI as a form of neglect, 

importance of the teacher, and importance of peers. The expression of the first two themes 

seemed to differ depending on the students’ mindsets. In addition, the students’ beliefs 

(including mindset) were analysed according to McLeod’s (1992) framework of beliefs in 

mathematics. Beliefs about mathematics, mathematics teaching, the self (including mindset), 

and the social context appeared to be associated with the effectiveness of IBI. Students with 

fixed mindsets showed poorer engagement and persistence compared to students with growth 

mindsets, but surprisingly, this effect was not reflected in test scores. Future research should 

seek to further explore the contextual factors that contribute to the effectiveness of inquiry 

instruction for students with MD. 
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1 Introduction 
Reform efforts to improve the teaching of mathematics have been ongoing for some time 

(Permuth & Dalzell, 2013). Central to these efforts is a migration away from traditional 

instruction, such as tell-and-practice, towards teaching that places greater emphasis on 

student inquiry. In general terms, such inquiry-based instruction (IBI) in mathematics 

describes a pedagogic approach in which the teacher provides the students with problems in a 

domain of mathematics, however, offers minimal or limited guidance. Students are expected 

to explore the problem space prior to receiving instruction. The exact amount of guidance 

given during these inquiry exercises is highly variable, and in many ways, this leads to the 

lack of clear delimitations between inquiry and non-inquiry approaches. Pure discovery 

approaches, in which students receive zero instruction, have been shown to be ineffective 

(Hmelo-Silver et al., 2007; Kirschner et al., 2006; Mayer, 2004). However, studies suggest 

that mixing inquiry approaches with some form of direct instruction can be effective in 

teaching mathematics. Most studies suggest that IBI’s biggest benefit is increased conceptual 

understanding, which ‘consists of abstract or generic ideas generalized from particular 

instances, including knowledge of problem structures’ (DeCaro & Rittle-Johnson, 2012, p. 

555). On the other hand, IBI seems to have little advantage over direct instruction when 

assessing procedural knowledge, meaning ‘the ability to execute action sequences to solve 

problems’ (Rittle-Johnson et al., 2016, p. 577). This is an important feature of IBI given 

conceptual understanding is often espoused as the superior goal of mathematics instruction. 

Despite this, there is a growing consensus that both conceptual understanding and procedural 

knowledge are equally important since the two are intimately connected (Rittle-Johnson et 

al., 2015). 

 

The factors that make IBI effective are unclear. Subjecting students to the cognitively 

demanding process of exploring the problem space during IBI would seem to increase their 

cognitive load, thereby reducing the capacity to encode new information into the long term 

memory (Kirschner et al., 2006; Sweller, 1988). Therefore, IBI would seem to be 

incompatible with Cognitive Load Theory. Various metacognitive mechanisms have been put 

forward to explain why IBI would seem to be effective despite its incompatibility with 

current understandings of cognitive architecture. By allowing students to explore the 

problems it is proposed they become conscious of gaps in their knowledge and that this 
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awareness facilitates the assimilation of the missing pieces (Loibl & Rummel, 2015; 

Schwartz & Martin, 2004). Studies also suggest inquiry-based tasks help activate deeper 

awareness of the learning processes and prepare students for subsequent direct instruction 

(Kapur, 2010, 2011, 2014; Schwartz et al., 2011; Schwartz & Martin, 2004). 

 

Despite the popularity of IBI, evidence for its effectiveness for students with mathematics 

difficulties has been mixed, and teachers have demonstrated a reluctance to use these 

techniques with this population of students (Darragh & Valoyes-Chávez, 2019; Lambert, 

2018; Louie, 2017). Approximately 45 percent of teachers believe that the sort of higher 

order thinking needed for IBI is not appropriate for low achieving students (Zohar et al., 

2001). A yearlong study of 104 third-grade mathematics students in the U.S. looked into the 

effectiveness of inquiry teaching approaches on mathematics performance (Woodward & 

Baxter, 1997). They found students with learning disabilities, and similar low attaining peers, 

made marginal gains when given IBI, whereas the control group that followed a traditional 

curriculum made dramatic gains. In a meta-analysis of 58 intervention studies, focused on 

elementary-level mathematics between the years 1985 and 2000, Kroesbergen and van Luit 

(2003) concluded direct and explicit instruction was the most effective instructional 

methodology for students with learning disabilities or identified as having mathematics 

difficulties. This would all seem to support the view that IBI should not be used for students 

with mathematics difficulties.  

 

But why should IBI be effective for some students and not others? One area that has not been 

extensively researched is the extent affective factors, such as mindset, influence the utility of 

inquiry-based approaches. It is known that affective factors such as emotions, attitudes, and 

beliefs can influence a student’s overall performance. The role of mindset is particularly 

interesting given its recent popularity (Boaler, 2013; Dweck, 2017b). According to Dweck, 

mindset can be categorised in two ways. Individuals with ‘growth mindset’ believe that 

intelligence is not fixed but malleable. They view learning as a process governed by effort, as 

opposed to some ingrained ability (Boaler, 2013). By framing learning within this context 

individuals are able to perform at a higher level (Dweck, 2017b). Alternatively, individuals 

with a ‘fixed mindset’ believe intelligence cannot be altered and ability or ‘smartness’ is 

something a person either has or does not. These individuals tend to focus on performance 

and objectives around demonstrating strong ability in the areas they believe they are superior. 

As such, they avoid challenges that might compromise this view (Dweck, 2017b; Yorke & 
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Knight, 2004). Students with growth mindsets, however, see challenges as learning 

opportunities and implement flexible learning goals. Thus, students with growth mindsets 

typically respond positively to failure and see it as an opportunity for increased learning and 

effort (Dweck, 2017b; Yorke & Knight, 2004). Given that IBI inherently relies on student 

failure, is it possible that such techniques are unsuitable for students with fixed mindsets?  

 

In the U.K. and the U.S. the preponderance of ability grouping in mathematics (Boaler et al., 

2000) means students with mathematics difficulties (MD) are typically grouped in ‘low 

ability’ classrooms. This ‘ability grouping’ has been shown to propagate fixed mindset and 

the stereotype that abilities are somehow genetic and fixed (Plomin et al., 2007). Research 

suggests that teachers adopt fixed mindsets in the way they instruct these ability groupings, 

even if they believe they are adopting mixed-ability mindsets (Marks, 2013). The prevalence 

of fixed mindset tendencies is greater in students with low prior academic achievements 

(Snipes & Tran, 2017). Before concluding that IBI is ineffective for students with MD, 

researchers need a greater understanding of how a student’s mindset could be associated with 

its effectiveness. 

 

This thesis seeks to address two research questions. Firstly, how do students with 

mathematics difficulties perceive IBI? And secondly, are students’ beliefs (e.g. mindset) 

associated with the effectiveness of IBI for students with mathematics difficulties? By using a 

multiple case study design, I develop detailed descriptions of two classrooms being taught 

using IBI. The choice of this method is appropriate, as a case study is used to develop a rich 

picture using various data collection methods designed to capture the perceptions, 

experiences and ideas of the cases’ components (Yin, 2017). Over the course of two 10-week 

long case studies in two different classes, I collected interview and observation data to 

understand how students with MD and differing mindsets experienced IBI. In addition, pre- 

and post-test analysis of the students’ conceptual and procedural understanding shed light on 

the effectiveness of IBI for these students. 
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2 Literature Review 
Advances in the fields of science, technology, engineering and mathematics (STEM) are the 

engine of innovation and economic expansion. Today’s students emerging from centres of 

learning are joining a world in which the rate of STEM related roles is growing at 

approximately one and a half times that of non-STEM roles (U.S. Department of Commerce, 

2017). To contrast this, the U.S. Department of Education (2010) indicates that only 16 

percent of American high school seniors are proficient in mathematics and interested in 

STEM careers. A similar situation can be seen in the U.K., where the Confederation of 

British Industry (2016) has indicated that 42 percent of businesses struggle to recruit for 

STEM roles. Furthermore, recent PISA results ranked the U.S. and the U.K. only 41st and 29th 

respectively in mathematics among 71 other industrialised nations (OECD, 2018).  

 

This trend has persisted for some time and has given rise to numerous reform efforts in both 

countries, including substantial investment in STEM research initiatives. The most obvious 

efforts were the reform movements of the late 1990s in the U.S., which began to incorporate 

ideas from cognitive psychology and constructivism that originally rose in popularity two 

decades earlier (Permuth & Dalzell, 2013). The embodiment of reform mathematics in the 

U.S. are the Principles and Standards for School Mathematics by the National Council of 

Teachers of Mathematics (2000). These widely adopted standards are grounded in 

constructivist ideology and promote the idea of idiosyncratic learning, in which inquiry-based 

pedagogy features heavily. This contrasts with behaviourist theories of learning which 

advocate for more traditional, direct, and explicit instruction. 

 

Conceptualising inquiry-based pedagogy is problematic, as various theoretical frameworks 

have emerged over the years. The nature of inquiry-based pedagogy can therefore vary 

depending upon which theoretical framework one considers. Taken as a whole, one might 

broadly say that inquiry-based pedagogy is the study of a subject in line with the practices of 

professionals within the subject (Artigue & Blomhøj, 2013). Many studies have demonstrated 

the effectiveness of various inquiry-based approaches. Other studies have gone further and 

begun to explore factors that are associated with the effectiveness of such approaches, for 

instance prior attainment (Laursen et al., 2011), amount and type of guidance (Lazonder & 

Harmsen, 2016), gender (Cooper et al., 2015), and task set-up (Jackson et al., 2013). Despite 
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its apparent popularity there is concern in some circles, particularly in the field of special 

education, that such inquiry-based interventions are inappropriate for students with 

mathematics difficulties (MD), where more direct, explicit instruction is frequently favoured 

(Kroesbergen & van Luit, 2003). It is in this arena that this thesis focuses. 

 

In this chapter, I begin by discussing the historical and theoretical origins of inquiry as a 

pedagogical practice. I then describe some of the reported benefits of inquiry and present a 

framework of inquiry-based instruction for use in this study. Following this, I describe the 

mediating factors that have been previously explored in inquiry research, with a focus on 

student prior attainment and student beliefs1. I argue that research to date has not focused on 

how students with low prior attainment (those with MD) perceive inquiry-based instruction or 

whether their beliefs are associated with its effectiveness. I conclude this chapter with two 

research questions.  

 

2.1 Origins of inquiry as a pedagogical practice 
When reviewing the literature on the origins of inquiry as a pedagogical practice, the general 

consensus is that credit belongs to John Dewey (1859-1952). Prior to Dewey, numerous 

educational philosophers had contributed to a general shift in epistemological thinking away 

from ‘knowledge given as faith to knowledge based on thinking, reflection, experimentation 

and science’ (Artigue & Blomhøj, 2013, p. 798). Dewey’s point of departure was to turn this 

epistemological thinking into a pedagogical practice. Dewey had several names for this 

practice, such as the ‘experimental practice of knowing’ (Dewey, 1929), before settling on 

the term ‘reflective inquiry’ (Dewey, 1933). This notion captured his idea that ‘the origin of 

thinking is some perplexity, confusion, or doubt. Thinking is not a case of spontaneous 

combustion’ (Dewey, 1910, p. 12). 

 

Dewey placed the problem–and the adaptive process that is experienced during the 

exploration and solving of this problem–at the centre of learning, stating that ‘all reflective 

 
1 There are numerous other factors that may play an important role in how a student responds 

to IBI (e.g. student socioeconomic status, teacher beliefs, stereotype threat, etc.), however I 

do not address these in depth as part of this thesis.  
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inquiry starts from a problematic situation’ (Dewey, 1929, p. 189). His approach is captured 

well by Hiebert et al. (1996): 

 

Dewey placed great faith in scientific (and ordinary) methods of solving 

problems…. He believed reflective inquiry was the key to moving beyond the 

distinction between knowing and doing, thereby providing a new way of 

viewing human behaviour. (p. 14) 

 

The major features of reflective inquiry are problem identification, exploration, and 

resolution. Student exploration was what distinguished Dewey’s approach from others. As 

Dewey (1929, p. 36) put it, ‘The experimental procedure is one that installs doing as the heart 

of learning’. During student exploration the learner follows similar methods to that of 

professionals within the discipline. This requires certain habits of mind on the part of the 

learner, as exploration ‘involves willingness to endure a condition of mental unrest and 

disturbance’ (Dewey, 1910, p. 13). 

 

Dewey was a pragmatic philosopher and believed that knowledge should be useful for 

understanding and solving real-world problems. For this reason, he was an advocate for 

building school experiences that reflected real-life situations and linking students’ in-school 

experiences with their out-of-school lives. Through reflective inquiry, Dewey believed 

students would learn domain-specific knowledge as well as general habits for inquiry. 

 

Dewey’s work, along with that of Piaget (1973), contributed to the constructivist philosophy 

that says learning is idiosyncratic and must be constructed from the experiences of the 

learner. Reflective inquiry, and indeed all subsequent inquiry-based pedagogical approaches, 

can be said to fall under the constructivist philosophy. This contrasts with more traditional, 

direct instruction which can be said to fall under the instructivist philosophy that says 

teachers are the primary agents of learning (Kirschner et al., 2006; Skinner, 1965). Direct 

instruction typically includes an intervention in which the teacher provides the students with 

substantial guidance and structure such that errors and opportunities to develop 

misconceptions are reduced. Such teacher-led guidance can involve targeted instruction on a 

concept with the use of well-designed examples to facilitate learning of the canonical 

solution. This is typically followed by some form of independent practice. This form of 
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instruction is often referred to as ‘tell-and-practice’ or ‘traditional’ instruction (Schwartz et 

al., 2011).  

 

2.2 Frameworks of inquiry in mathematics education 
Dewey was a former science teacher, and therefore much of his early work on inquiry-based 

instruction was focused on science, a subject in which he felt there was an excessive focus on 

facts and insufficient emphasis on thinking (Dewey, 1910). In this section, I discuss how 

inquiry-based instruction developed in science education and then migrated to mathematics 

education, where it met several existing ideas.  

 

In the U.S., the national science curriculum was already under review when the Sputnik 

Crisis of 1957 incited the nation to challenge the quality of its science education. The result 

was a wave of changes to science education that provided for the development of teaching 

practices that encouraged students to ‘think like a scientist’ (DeBoer, 1991, p. 192). 

Ultimately, this led to the National Science Education Standards in 1996 with subsequent 

revision in 2000 (National Research Council [NRC], 1996, 2000). These standards outline 

five essential features of inquiry, which Barrow (2006, p. 268) describes as: ‘(1) scientifically 

oriented questions that will engage the students; (2) evidence collected by students that 

allows them to develop and evaluate their explanations to the scientifically oriented 

questions; (3) explanations developed by students from their evidence to address the 

scientifically oriented questions; (4) evaluation of their explanations, which can include 

alternative explanations that reflect scientific understanding; and (5) communication and 

justification of their proposed explanations’. 

 

Around the same time in Europe a project called PRIMAS (which stands for ‘Promoting 

inquiry-based learning (IBL) in mathematics and science across Europe’) began incorporating 

similar features into its curriculum and teacher development materials (see Figure 2.1). 

 

The NRC (1996, 2000) and PRIMAS (Abril et al., 2013) are well aligned on the features of 

inquiry. Both also come from the position that habits of inquiry are an independent, valuable, 

and developable skill distinct from the domain-specific knowledge being taught, as well as 

the idea that bigger concepts (those concepts that apply to a wide range of ideas or 

phenomena) emerge from smaller ones (ones that apply to a specific idea or observation). 
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Figure 2.1: PRIMAS vision of inquiry-based instruction.  

From ‘Inquiry-based learning in maths and science classes,’ by A. M. Abril et al., 2013, PRIMAS 

Project, p. 8. CC-BY-SA. 

Inquiry-based pedagogy moved from science education into mathematics education as calls 

for economic competitiveness in the U.S. and the U.K. intensified (Laursen & Rasmussen, 

2019), and both researchers as well as teachers began to see overlap between the two 

disciplines. Numerous theories of inquiry instruction in mathematics have emerged over the 

years. The proliferation of these, their associated terms, and the nuanced differences between 

them can lead to confusion and a lack of clear delimitations between different inquiry and 

non-inquiry approaches. To help conceptualise inquiry-based instruction it is helpful to 

review some of the significant theories and terms. 

 

Laursen and Rasmussen (2019) describe two strands of inquiry-based mathematics education. 

The first strand is research-driven and known as Inquiry-Oriented Instruction (IOI). This 

form of inquiry instruction draws heavily from the work of Paul Cobb and Erna Yackel in the 

1990s, whose work helped to solidify the term inquiry in the field of mathematics education 

(e.g. Cobb et al., 1991; Yackel & Cobb, 1996). Their observations of IOI in primary 

mathematics classrooms led them to define a series of sociomathematical norms (Yackel & 

Cobb, 1996). Two such norms were: (1) an understanding of what counts as an acceptable 
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mathematical explanation, and (2) an understanding of what constitutes a mathematical 

difference. 

 

The second strand of inquiry-based mathematics education identified by Laursen and 

Rasmussen (2019) is called Inquiry-Based Learning (IBL), and it is principally practitioner-

led. The rise of this approach began as a movement to emulate the distinctive teaching 

practices of Robert Lee Moore, a mathematics professor at the University of Texas at Austin. 

This became known as the ‘Moore Method’ and then later the ‘Modified Moore Method’ and 

then finally ‘IBL’, partly in an effort to unite with the terminology being used in science 

education. IBL is not described as research-based practice but rather as ‘consistent with and 

supported by education research’ (Laursen & Rasmussen, 2019, p. 136). 

 

Both strands of inquiry-based instruction persist and are characterised by challenging 

problems that require students to explore, explain, and evaluate new ways of working in 

mathematics. Central to both researcher-led and practitioner-led inquiry instruction is that 

students have the opportunity to explore new ideas before being taught directly. 

 

Other conceptual theories of inquiry-based instruction include Problem-Based Learning (e.g. 

H.-C. Li & Stylianides, 2018), Realistic Mathematics Education (Freudenthal, 1973, 1991), 

the Theory of Didactical Situations (Brousseau, 1997), Active Learning (e.g. Freeman et al., 

2014), Productive Failure (e.g. Kapur, 2014), Ambitious Mathematics (e.g. Jackson et al., 

2013), and Complex Instruction (e.g. Boaler, 2006). This literature review does not undertake 

an exhaustive review of all of these theories. However, there are several which warrant 

further discussion. These are Problem-Based Learning, Realistic Mathematics Education, 

Theory of Didactical Situations, and Productive Failure. 

 

Problem Based Learning (PBL) is a learning and teaching theory in which students are 

presented with a problem and a learning objective. As students attempt to solve the problem 

the teacher provides feedback and guidance. The objective is frequently to help guide the 

students towards the correct solution. Hence, this approach is sometimes labelled guided-

discovery (Hmelo-Silver, Duncan, & Chinn, 2007). PBL is often conducted in collaborative 

settings, and student learning is scaffolded through the use of a domain knowledge expert 

(the teacher) as well as other materials. By providing question prompts, feedback on 

proposed solutions, clarifications, and drawing attention to critical aspects of the problem, 
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teachers are able to scaffold their students toward the correct solution. As a teaching 

approach, however, PBL is principally focused on teaching students the habits of problem 

solving and hence is perhaps best considered a metacognitive strategy (Schoenfeld, 1992). 

 

Realistic Mathematics Education (RME) traces its origins to Hans Freudenthal (1973). 

Realistic Mathematics is essentially the mathematisation of real events (but not necessarily 

everyday events). Freudenthal believed that even though not all students will go on to 

become mathematicians they will inevitably use mathematics in their lives, and therefore, the 

way they learn mathematics in school should reflect this. Whereas PBL might be described as 

the epistemology of problem-solving, RME might be said to be the epistemology of 

problematising. RME starts from two central principles: (1) mathematics is a human activity, 

and (2) meaningful mathematics is constructed from rich contexts (Freudenthal, 1991). As a 

result, teaching practices should focus on presenting problems and creating environments that 

allow students to ‘construct the meaning of the abstract concepts and methods gradually 

through mathematization of meaningful real-life situations’ (Artigue & Blomhøj, 2013, p. 

804). Realistic problems appeal to the learner’s common sense, present situations that are 

useful beyond the problem context, and allow a broad range of approaches and solution 

pathways (Wang et al., 2018). In general, RME leads to the philosophy of teaching through 

reinvention, a concept that lays at the heart of many inquiry-based teaching approaches. 

During RME students take real-world problems into the world of mathematical notation 

through a process called horizontal mathematisation (Gravemeijer & Terwel, 2000). As 

students then reflect upon and challenge these mathematical models, they begin to form more 

abstract mathematical models through a process called vertical mathematisation 

(Gravemeijer & Terwel, 2000). 

 

The Theory of Didactical Situations (TDS) was put forward by Guy Brousseau (1997). 

Central to this theory is the notion of a ‘situation’, which is broadly understood to be a system 

of interactions between a student, the student’s peers, the teacher, the mathematical concept 

being taught, and a ‘milieu’. According to Brousseau, teachers seek to create a ‘didactical 

situation’ with their student, the goal of which is to create or modify the knowledge or 

understanding of the student. Through a process called ‘devolution’ the teacher passes 

authority of the problem to the student, who in taking ownership has entered into an ‘a-

didactical situation’. Whilst in an a-didactical situation the student moves through three 

further situations: (1) the Situation of Actions–the exploration of the problem as problem-
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solvers; (2) the Situation of Formulation–the development and discussion of the problem and 

solutions; and (3) the Situation of Validation–the evaluation of their thinking and proposed 

explanation of the phenomena. Finally, the teacher moves the student through a process of 

‘institutionalisation’ whereby the student’s understanding is aligned to the established 

mathematical norms being taught. TDS mirrors other inquiry-based theories in that it frames 

learning as a process in which students take ownership of problems, explore problems 

individually and collaboratively, evaluate their solutions during classroom discussions, and 

move toward a canonical solution.  

 

Turning to another theory in this space, Kapur (2016) argues that existing inquiry approaches 

provide too much guidance, and therefore he advocates for a teaching strategy called 

Productive Failure. Under this approach students undertake a pure discovery exercise, in 

which students are permitted to repeatedly fail without any guidance or feedback, followed 

by a period of direct, explicit instruction of the mathematical concepts. Kapur argues that 

studies have shown that even when students initially solve problems in sub-optimal or even 

invalid ways, they ultimately demonstrate deeper conceptual learning (Kapur, 2014). Despite 

repeated incorrect attempts at solving problems, the students in Kapur’s studies were better 

prepared for the direct instruction that followed and thus were better able to appreciate the 

superiority of the canonical method over their own. 

 

Students who are allowed to solve problems before direct instruction are also able to more 

accurately gauge their understanding in both the short and long term (DeCaro & Rittle-

Johnson, 2012). It seems failure plays an important role in the learning process (Tawfik et al., 

2015). It is precisely when students reach an impasse during instruction that they are 

presented with a valuable learning opportunity (VanLehn et al., 2003). Kapur argues that 

even guided discovery tasks such as PBL are too restrictive and constrict the creative 

landscape for students. It has long been known that adult instruction restricts children’s 

creativity, as they believe the adult has provided them with all the necessary information 

(Bonawitz et al., 2011). 

 

In this section, I have presented several theories of inquiry instruction. Many of the theories 

in this space share more similarities than they do differences. In some respects, they all 

theorise on the amount and nature of guidance to provide to students when they reach an 

impasse during an inquiry problem. Therefore, before leaving this section, it is worth 
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touching on one of the more extreme form of inquiry learning in which students receive zero 

teacher guidance, called ‘pure discovery learning’. There appears to be agreement that pure 

discovery learning is a poor method of instruction (Hmelo-Silver et al., 2007; Kirschner et al., 

2006; Mayer, 2004). Numerous experimental and quasi-experimental studies have 

demonstrated that there is little benefit to permitting students to undertake a cognitively 

demanding search of the problem space with little hope of discovering the correct solution 

(Sweller, 2009). In a meta-analysis of 164 publications looking at different inquiry 

implementation Alfieri, Brooks, Aldrich, and Tenenbaum (2011, p. 13) found that ‘the effects 

of unassisted-discovery tasks seem limited, whereas enhanced-discovery tasks requiring 

learners to be actively engaged and constructive seem optimal’.  

 

For this reason, all of the previously discussed theories have a clear role for the teacher in 

providing some form of guidance and instruction. In practice, no inquiry-based curricula 

advocate for a position as extreme as pure discovery learning, but rather they argue for a 

balanced approach in which inquiry-based activities precede or are interwoven with some 

form of more direct instruction or guidance. A study by Aulls (2002) found that few teachers 

implement inquiry-based instruction in a pure form, but rather tend to move towards the 

hybrid options such as PBL or RME. 

 

Many critics portray a dichotomy between inquiry-based instruction and direct instruction, 

with direct instruction contrasted against pure discovery learning. Accepting the finding that 

pure discovery learning is ineffective does not necessarily indicate pure direct instruction is 

the optimal method by which learning can occur, nor that all forms of IBI are ineffective in 

mathematics classrooms. I, therefore, see this as a false dichotomy. I prefer to think of 

inquiry instruction in line with the view put forward by Bruder and Prescott (2013, p. 811) 

who argue ‘the situation is less black-and-white so it is more practical to see these terms as 

being at either end of a continuum’. This continuum generally moves from teacher-centred 

approaches (such as direct instruction) at one end to student-centred approaches (such as IBI) 

at the other. Between these two poles lay a continuum of possibilities in which optimal 

learning for different circumstances may occur. Terms such as inquiry-based instruction, 

realistic mathematics education, discovery learning, exploratory learning, problem-based 

learning, minimally guided instruction, experiential learning, constructivist learning, and 

more recently productive failure all have homes on this continuum. 
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In an effort to advance a unified vision of Inquiry-Based Mathematics Education (IBME), 

Laursen and Rasmussen (2019, p. 138) suggest four pillars: ‘(1) students engage deeply with 

coherent and meaningful mathematical tasks; (2) students collaboratively process 

mathematical ideas; (3) instructors inquire into student thinking; and (4) instructors foster 

equity in their design and facilitation choices’. I believe these pillars are generally a helpful 

framework in conceptualising inquiry-based instruction in mathematics. However, in 

presenting this framework, I put forward a small amendment to the first pillar so that it reads: 

‘students engage deeply with coherent and meaningful mathematical tasks prior to receiving 

instruction.’ 

 

2.3 Benefits of inquiry-based instruction 

There are significant benefits to inquiry-based instruction that have been evidenced in the 

literature. The primary benefit of IBI is thought to be the development of students’ 

mathematical proficiency. Mathematical proficiency is defined by Kilpatrick, Swafford, and 

Findell (2001, p. 5) as the composition of five interwoven strands. The five strands are: 

 

• conceptual understanding—comprehension of mathematical concepts, 

operations, and relations 

• procedural fluency—skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately 

• strategic competence—ability to formulate, represent, and solve 

mathematical problems 

• adaptive reasoning—capacity for logical thought, reflection, explanation, 

and justification 

• productive disposition—habitual inclination to see mathematics as 

sensible, useful, and worthwhile, coupled with a belief in diligence and 

one’s efficacy. 

 

In this section, I focus on the impact of inquiry instruction on students’ conceptual 

understanding and procedural fluency. 

 

As a complement to the definition given by Kilpatrick et al. (2001), procedural fluency can 

be seen as an extension of procedural knowledge, meaning ‘the ability to execute action 
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sequences to solve problems’ (Rittle-Johnson et al., 2016, p. 577). Conceptual understanding 

can refer to conceptual knowledge, meaning ‘one’s mental representation of the principles 

that govern a domain’ (Rittle-Johnson et al., 2016, p. 577). Whereas procedural knowledge is 

intimately connected to the specific problem, conceptual knowledge ‘consists of abstract or 

generic ideas generalised from particular instances, including knowledge of problem 

structures’ (DeCaro & Rittle-Johnson, 2012, p. 555). 

 

Historically, mathematics educators and researchers have advocated for the superiority of 

conceptual understanding over procedural knowledge (Llewellyn, 2014). However, there is a 

growing consensus that both conceptual understanding and procedural fluency are equally 

important since the two are intimately connected and increasing one has a direct impact on 

the other (Rittle-Johnson et al., 2015). It has been argued that inquiry-based instruction is an 

efficient teaching approach since it has been shown to improve both conceptual and 

procedural knowledge (Rittle-Johnson et al., 2016). 

 

There have been numerous studies that have argued that inquiry-based approaches lead to 

improved conceptual understanding without sacrificing procedural fluency. One of the early 

studies demonstrating this effect was conducted by Cobb et al. (1991). Cobb et al. compared 

ten classes who each undertook a yearlong inquiry-based mathematics project with eight 

classes who did not. The results were that those students who were exposed to the inquiry 

learning approach scored similarly on procedural mathematics questions but demonstrated 

superior performance on questions designed to assess conceptual mathematics understanding. 

Also, the inquiry students ‘held beliefs about the importance of understanding and 

collaborating; and attributed less importance to conforming to the solution methods of others, 

competitiveness, and task-extrinsic reasons for success’ (Cobb et al., 1991, p. 3). In 102 

classroom observations of inquiry-based lessons (60 in science and 42 in mathematics) in an 

urban middle school district in the U.S., Marshall and Horton (2011) noted a positive 

correlation between the amount of time dedicated to exploration of a novel problem and the 

cognitive level at which students operated. 

 

In a multiple case study of U.K. secondary schools, Boaler (1998) observed two schools with 

differing mathematics instructional philosophies over three years. One school implemented 

an open, problem-based curriculum while the other implemented traditional instruction. The 

conclusion was that students who received problem-based instruction ‘were able to achieve 
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more in test and applied situations than the [traditionally instructed] students; they also 

developed more positive views about the nature of mathematics’ (p. 60). Boaler’s study, like 

many case studies, is open to the criticism that case-specific contextual factors make 

comparison problematic. However, similar observations were seen when reviewing the 

implementation of a problem-based mathematics curriculum in three California high schools 

(Clarke et al., 2004). In this study, students exposed to the problem-based curriculum scored 

equivalent to or higher than their peers on the mathematics portion of the Scholastic 

Achievement Test (SAT). 

 

There have also been numerous studies that have found similar results in various fields such 

as secondary school mathematics (e.g. Kandil & Işıksal-Bostan, 2019; Kapur, 2011; Salim & 

Tiawa, 2015), undergraduate mathematics (e.g. Kwon et al., 2005; Rasmussen et al., 2006; 

Rasmussen & Kwon, 2007), college pre-service mathematics education (e.g. Laursen et al., 

2016), secondary school economics (e.g. Mergendoller et al., 2006), secondary school 

physics (e.g. Schwartz et al., 2011), and medical school (e.g. Schmidt et al., 2009; Vernon & 

Blake, 1993). 

 

It is worth noting that not all of the literature supports these findings and some studies have 

concluded that direct instruction is superior at developing both procedural and conceptual 

knowledge (e.g. A. L. Brown & Campione, 1994; Klahr & Nigam, 2004; Moreno, 2004; 

Tarmizi & Sweller, 1988). A review of 30 years of research into such minimal guidance 

approaches by Mayer (2004) found there was ‘sufficient research evidence to make any 

reasonable person skeptical about the benefits of discovery learning’ (p. 14). Most of these 

studies, however, were contrasting direct instruction with pure discovery rather than the more 

common inquiry theories which include a supportive role for the teacher.  

 

Beyond the benefits of mathematical proficiency, studies have also suggested that inquiry-

based instruction can help to moderate the gender gap. Work by Laursen et al. (2014) 

demonstrated a reduction in the gender gap for mathematics students at the undergraduate 

level. In addition, after a 4-year study into the effect of inquiry-orientated instruction in 

secondary schools, Boaler (2006) found ‘the work of students and teachers … was equitable 

partly because students achieved more equitable outcomes on tests, but also because students 

learned to act in more equitable ways in their classrooms’ (p. 45). In one instance, IBI 

actually created a gender gap in favour of females (Cooper et al., 2015). 
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IBI has also been shown to enhance a number of dimensions of student affect. For example, 

confidence (Kogan & Laursen, 2014), attitudes towards mathematics (McGregor, 2014), and 

agency (Hassi & Laursen, 2015). 

 

Various mechanisms have been put forward to explain why IBI seems to be effective. By 

allowing students to explore the problems it is proposed they become conscious of gaps in 

their knowledge and that this awareness facilitates the assimilation of the missing pieces 

(Loibl & Rummel, 2015; Schwartz & Martin, 2004). Studies also highlight that inquiry-based 

tasks help activate deeper awareness of the learning processes and prepare students for 

subsequent direct instruction (Kapur, 2010, 2011, 2014; Schwartz et al., 2011; Schwartz & 

Martin, 2004). In addition, IBI has been shown to increase student motivation (Glogger et al., 

2013; Hmelo-Silver, 2004) and increased motivation has a positive impact on learning and 

transfer (Belenky & Nokes-Malach, 2012). Piaget (1970b, p. 715) said, ‘Each time one 

prematurely teaches a child something he could have discovered for himself, that child is kept 

from inventing it and consequently from understanding it completely’. 

 

2.4 Criticisms of inquiry-based instruction 
There are several axes upon which the literature criticises inquiry-based approaches. While 

this literature review does not make an exhaustive list of these criticisms, it does highlight 

several. Herein I address issues regarding: (1) coverage, (2) implementation, and (3) 

cognitive architecture. 

 

‘You cannot cover all the material’ 

Coverage issues relate to the challenges that teachers face when attempting to meet every 

learning standard set for their students within a school year. Teachers are under immense 

pressure to cover these learning standards in part because their students, their schools, and 

their teaching abilities are assessed against them using standardised tests (e.g. the National 

Curriculum Assessments in the U.K.). Coverage is also thought to be necessary so that 

students are adequately prepared for their next mathematics course in the sequence. Critics of 

inquiry-based curricula complain that inquiry approaches to instruction take too much time, 

and this wasted time results in less coverage of the topics students are required to learn. A 

typical teacher worried about coverage might say, ‘I need to cover all these topics, so I don’t 
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have enough time to do student-centred activities’ (Yoshinobu & Jones, 2012, p. 304). But 

what is the price of coverage? In a yearlong study of a tenth-grade geometry class in the U.S., 

Schoenfeld (1988) found that using traditional, direct teaching approaches ensured coverage 

but not understanding. In this study, the teacher successfully taught all the material on the 

curriculum, and the students scored well on standardised tests. Nevertheless, Schoenfeld 

found that the students significantly lacked conceptual understanding of geometry. 

 

‘It is too difficult to implement’ 

Turning to the implementation criticism of IBI, Hiebert and Stigler (2004) found that despite 

teachers advocating for inquiry-based instruction, most struggle to implement it successfully 

and instead stick to a traditional teaching approach. It appears the main challenges that 

teachers face include difficulty embracing the facilitator role (H.-C. Li & Stylianides, 2018) 

and struggles with student engagement (Stylianides & Stylianides, 2014). Dorier and García 

(2013) argue, as have others, that greater emphasis must be placed on the development of 

high-quality inquiry materials to help practitioners with implementation. Today there are 

more inquiry resources available than ever. For example, Bowland Maths2, PRIMAS3, and 

NRICH4 have all developed useful professional development resources for IBI. 

 

‘It is not compatible with cognitive architecture’ 

One final criticism of IBI is its poor compatibility with Cognitive Load Theory (CLT; 

Sweller, 1988). CLT is built upon the standard cognitive model proposed by Atkinson and 

Shiffrin (1968) in which human cognitive architecture is composed of sensory memory, long 

term memory, and working memory. The latter two are most relevant for learning. According 

to Sweller (2011), working memory is placed under cognitive load during learning, and this 

load can be differentiated into intrinsic, extraneous, and germane (see Table 2.1).  

 

The extraneous component of cognitive load is thought to be directly affected by the 

instructional approach. The oft-cited article by Kirschner, Sweller, and Clark (2006) points to 

excess extraneous load as the fundamental reason why inquiry approaches to instruction do 

 
2 https://www.bowlandmaths.org.uk/ 
3 https://primas-project.eu/ 
4 https://nrich.maths.org/ 
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not work. However, the authors seem to conceptualise all inquiry approaches as pure 

discovery learning, which as discussed in Section 2.2, has long been rejected. The authors, 

therefore, overlook ways in which CLT may be relevant to modern forms of inquiry 

instruction which incorporate different levels of teacher guidance. Furthermore, Kirchner and 

colleagues do not attend to the possibility that IBI can result in increased germane load (the 

type of load required to achieve long term learning) or the potential metacognitive benefits of 

such minimal instruction (Foster, 2014; Loibl & Rummel, 2015; Schwartz & Martin, 2004). 

 

Table 2.1: Three components of cognitive load 

Component Explanation 

Intrinsic Relates to the inherent complexity of the 

subject matter 

Extraneous Relates to the demands created through the 

manner in which information is presented 

Germane Relates to the processing and construction 

of schemas into the long-term memory 

 

2.5 Students with mathematics difficulties 
The purpose of this study is to explore the efficacy of inquiry-based instruction for students 

with mathematics difficulties (MD). Having spent some time discussing the nature of inquiry-

based instruction, I shortly review how the literature has explored the effectiveness of this 

approach for students with MD. To effectively do so however, it is worth discussing what 

‘mathematics difficulties’ means and how educators might identify such students. 

 

The idea that a student can be deficient in a domain of knowledge is well understood and 

evidenced by the widespread acceptance of reading difficulties such as dyslexia. However, 

the application of this notion to mathematics has been emergent over the last decade. Terms 

such as mathematics disability, mathematics difficulties, and dyscalculia are used, somewhat 

interchangeably, to describe poor mathematics performance.  

 

The literature on MD has been criticised for using a fluid definition of ‘mathematics 

difficulties’. More generally MD is recognised as a learning disability and as such is 
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considered by many to be a brain disorder with neurological, cognitive or congenital roots in 

the same way as dyslexia (Shalev et al., 2000). Some studies have supported this idea through 

identification of familial lineages (Shalev et al., 2001). The specific mode of action within the 

brain that is impacted in MD is unclear. Studies which have looked at the brain have 

identified certain regions in the parietal lobes that are associated with arithmetic performance 

that when damaged through injury or underdeveloped due to premature birth result in reduced 

arithmetic abilities (Butterworth, 1999; Isaacs et al., 2001). Ansari (2010) argues that we are 

unsure the exact regions of the brain that relate to mathematical cognition, however they are 

numerous and developmental deficits in any of these could manifest in phenotypically poor 

mathematic performers. 

 

Whilst thinking about MD within this cognitive context is useful there is evidence within the 

literature that this purely cognitive view is insufficient. A longitudinal study of three 

thousand U.K. pre-schools demonstrated that students from low socio-economic backgrounds 

were more likely to underperform in arithmetic tasks and be classified as having MD 

(Sammons et al., 2002). Further evidence supports the idea that lack of exposure to 

mathematics within the environment at a young age, as is often the case in students from low 

socio-economic backgrounds, impacts student performance in mathematics (Baroody & 

Dowker, 2003; Geary, 2004). This would seem to suggest that MD could result from simply 

not learning the required skills early enough. The publishing of successful intervention 

techniques that seek to teach fundamental concepts to children with MD would seem to 

support this view. Kaufmann, Handl, and Thöny (2003) found that ‘children with 

developmental dyscalculia benefit from a numeracy intervention program that focuses on 

basic numerical knowledge and conceptual knowledge’ (p. 564). 

 

As such, the view of MD as a learning disability, limited to congenital and cognitive factors, 

is the subject of active debate as the literature explores a more complex set of contributors 

including social and environmental factors. The study of mathematics difficulties ‘involves 

various disciplines, such as cognitive psychology, child development, and curriculum based 

assessment’ (Gersten et al., 2005, p. 293) in addition to cognitive and neurological factors 

(Mazzocco, 2005). Despite its growing recognition as a distinct phenomenon, no definition of 

MD has been accepted within the literature. In fact most of the literature is mixed on how it 

refers to what may be the same construct, with studies using terms such as mathematics 

disabilities (e.g. Geary, 1993, 2004; Murphy et al., 2007), mathematics difficulties (e.g. 
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Gersten et al., 2005; Isaacs et al., 2001; Lucangeli & Cabrele, 2006; Raghubar et al., 2009), 

and dyscalculia (e.g. Kosc, 1974; Shalev et al., 2000, 2001). In a separate review of forty 

years of research in this area, K. E. Lewis and Fisher (2016) argue that attempts to combine 

these different terms into a single construct are at the root of the confusion. They conclude 

that mathematics learning disability is a cognitive construct and distinct from non-cognitive 

ideas such as mathematics difficulties.  

 

To understand MLD [mathematics learning disability] it is necessary to 

differentiate between cognitive and non-cognitive sources of mathematics 

difficulties. Conflating students with an MLD and students with low 

achievement due to another cause makes it difficult to draw conclusions about 

either group of students. (K. E. Lewis & Fisher, 2016, p. 340) 

 

Therefore, the extent to which these are the same or different constructs is still being 

explored, and for my purposes, I use the term mathematics difficulties (MD) which is in line 

with the recommendation discussed by K. E. Lewis and Fisher (2016).  

 

Those studies that do not report demographic differences between groups 

might more accurately classify students as having ‘mathematics learning 

difficulties’ or as being ‘at risk for mathematics learning disabilities’ rather 

than students with an MLD. The label of disability connotes a cognitive 

difference not warranted in studies that are not attending to the existence of 

potential confounding environmental factors. In keeping with this 

recommendation, some researchers tend to use the term difficulties rather than 

disabilities to refer to students classified with achievement measures alone. 

(K. E. Lewis & Fisher, 2016, p. 364) 

 

Assuming these different terms refer to the same construct, there is further debate into the 

actual processes that are deficient in MD. Suggested characteristics include poor number 

comprehension (Butterworth, 2005), executive functioning (Bull & Scerif, 2001), arithmetic 

fact retrieval (Jordan et al., 2003; Raghubar et al., 2009), and number sense (Landerl et al., 

2004). These latter characteristics of arithmetic fact retrieval and number sense are repeating 

themes in the literature. This lack of consistent characteristics has been commented upon by 

some researchers as questioning whether MD is merely a loose term representing the lower 



 22 

end of the performance continuum rather than a truly distinct construct (Baroody & Dowker, 

2003; Macaruso & Sokol, 1998). In her review into dyscalculia, Gifford (2006) asserts ‘there 

seems to be no differences between children with a specific difficulty, those who are 

generally low achievers and those merely poor at arithmetic’ (p. 38). 

 

Some studies estimate that the prevalence of MD is as low as three to six percent, similar to 

that of reading disabilities and attention deficit disorder. They also report that MD is 

persistent (meaning students demonstrate the characteristics consistently over time) for 

around half of affected students (Shalev et al., 2000). However, these studies have tended to 

limit the definition of MD to the more cognitive focused ‘mathematics disability’, rather than 

the broader definition which includes non-cognitive sources of mathematics difficulties. 

Crucially, MD has been shown to be distinct from other learning disabilities such as dyslexia, 

and attention deficit disorder. However, co-morbidity between MD and dyslexia is around 40 

percent, although this number varies between studies (Landerl & Moll, 2010; C. Lewis et al., 

1994). Further, co-morbidity between MD and attention deficit disorder has also been 

explored within the literature and studies show similar co-morbidity rates to reading 

disabilities, although the general body of evidence is less conclusive (Lucangeli & Cabrele, 

2006; R. M. Marshall et al., 1997). 

 

Having no clear definition for MD has hindered the development of diagnostic tools. Even 

limiting the discussion to neuro-genetic and cognitive factors does not help, since these 

hardly provide practical means for diagnosis in the field. An often-used method for detection 

is the use of students’ standardised test scores (Berch & Mazzocco, 2007). The validity of 

using standardised test scores as a differential diagnosis tool for MD has been explored in 

several studies (D. H. Bailey et al., 2012; Murphy et al., 2007). These studies, along with 

others, have supported the use of standardised tests scores, with the 10th to 25th percentile 

emerging as common cut-offs. However, their sole reliance is not universally accepted or 

without criticism.  

 

The first challenge with using cut-offs on standardised tests is the implicit assumption that 

MD represents the low end of a distribution, as is typically agreed upon for dyslexia 

(Shaywitz et al., 1999). This assumption is supported somewhat in the literature (Girelli et al., 

2000; Mazzocco & Myers, 2003). Secondly, cut-offs fail to recognise the volatility within test 

results by which students can move in and out of the cut-off criteria from one school year to 
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the next. Mazzocco (2005) reported that ‘of 24 kindergartners meeting strict criteria for MD, 

13 also met criteria in first grade, and 11 did not. An additional 6 children who had not met 

criteria for MD in kindergarten did meet these criteria in first grade’ (p. 320).  

 

Thirdly, usage of single point cut-off criteria ignores other diagnosed or undiagnosed learning 

difficulties. For example, students with low IQ are possibly exhibiting poor mathematics 

performance for reasons that should not be characterised as mathematics difficulties. 

Fourthly, students can often compensate for difficulties with other strategies and therefore 

may not be identified as having MD based on standardised tests (Jordan et al., 2003). Finally, 

the content of typical standardised tests is not designed to provide a diagnosis of mathematics 

difficulties (Mazzocco, 2005). 

 

Despite these limitations, the use of standardised tests is practical in the field due to their 

ubiquitous use in modern schooling. Therefore, to increase their effectiveness as a diagnostic 

tool, researchers supplement the standardised scores with other factors such as multiple years 

of test scores (to identify students persistently underperforming in mathematics), or 

eliminating students with pre-diagnosed learning disabilities or IQ below some threshold 

(Fuchs & Fuchs, 2002; Geary et al., 2000; Mazzocco & Myers, 2003). Incorporating teacher 

input is also used (Fuchs & Fuchs, 2002). In critique of using standardised test scores, K. E. 

Lewis and Fisher (2016) argue that MD is a not a single construct and that mathematics 

disability is distinct from low achievement due to non-cognitive causes (such as MD). The 

authors state that ‘commonly used cut-offs (10th percentile and 25th percentile) identified 

groups of students with different cognitive profiles’ and ‘students classified as having an 

MLD in one study might not be similarly classified in another, which limits our ability to 

meaningfully compare and synthesize findings across studies’ (p. 340). 

 

In summary, there is a growing body of research into mathematics difficulties, however there 

is still much to learn in this developing field. As is typical in an emerging area of research the 

broad array of definitions and inclusion criteria makes comparisons between studies 

troublesome (Gifford, 2006). It is generally accepted that (1) MD is a construct distinct from 

other learning difficulties; (2) cognitive and non-cognitive factors may play a role, (3) poor 

arithmetic fact retrieval and number sense are common characteristics; and (4) existing 

standardised test scores should be supplemented with other screening criteria in 

identification. 



 24 

 

2.6 Inquiry for all? A vision left unrealised 
Despite the popularity of IBI, evidence for its effectiveness for students with mathematics 

difficulties has been mixed, and teachers have demonstrated a reluctance to use these 

techniques with this group of students (Darragh & Valoyes-Chávez, 2019; Lambert, 2018; 

Louie, 2017). In particular, teachers of students with MD are less familiar with and feel less 

equipped to teach this type of mathematics (Maccini & Gagnon, 2002). In addition, 45 

percent of teachers believe that higher order thinking is inappropriate for low achieving 

students (Zohar et al., 2001). Teachers are likely to engage in unhelpful discourses of ‘ability’ 

when referring to students with MD (Alderton & Gifford, 2018) and often characterise them 

as ‘dependent’ learners who require more direct models of instruction (Mazenod et al., 2019). 

Even in the event inquiry tasks are selected by the teacher, these tasks often get reduced to 

simpler tasks focused on skill development. However, as Foster (2013b) argues, ‘When 

reduction takes place for the student, rather than by the student, it may be experienced as 

dangerously disempowering’ (p. 564). 

 

A yearlong study of 104 primary students in the U.S. looked into the effectiveness of inquiry-

based teaching approaches on mathematics performance (Woodward & Baxter, 1997). They 

found that students with learning disabilities and similar academically low achieving peers 

made only marginal gains when given IBI. The authors conclude that inclusive environments, 

in which children with learning disabilities as well those at risk for special education are 

mixed into general education classrooms, required teachers to provide considerable assistance 

and guidance to the low achieving learners. This is not compatible with the inquiry-based 

models embodied in reform mathematics. 

 

In a meta-analysis of 58 intervention studies focused on primary mathematics between the 

years 1985 and 2000, Kroesbergen and van Luit (2003) concluded direct, explicit instruction 

was the most effective instructional approach for students with learning disabilities or 

identified as having MD. Most of the studies included in the meta-analysis used cut-off points 

on students’ mathematics achievement scores as inclusion criteria. Similar results were 

replicated in other meta-analyses (Dennis et al., 2016; Gersten et al., 2009). 
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The specific group of students that have MD is heterogeneous and therefore researchers must 

be careful in drawing broad inferences. Students with MD often demonstrate poor 

generalisation and transfer skills and suffer from problems in applying both cognitive and 

metacognitive skills (Kroesbergen & van Luit, 2003). Therefore, it is not clear from the 

literature which factors contribute to the supposed poor response to the inquiry interventions.  

 

The above data would seem to give support to the recommendation that students with 

mathematics difficulties are best instructed in an explicit manner, and instructional methods 

captured in reform curricula are not suitable for the needs of students with MD because they 

are too discovery-oriented (Carnine et al., 1994). However, before making this conclusion, I 

believe an important area of research has been neglected. Namely, how do student beliefs 

interact with the way students with MD perceive and perform in an inquiry-based classroom? 

The next section of this literature review explores the area of epistemological beliefs. 

 

2.7 Students’ personal epistemologies 
Epistemology is the term used within philosophy to describe the nature of knowledge and 

justification of beliefs. It concerns questions that relate to the source and limits of human 

knowledge. These questions have become of central interest to educational psychologists 

under the term ‘personal epistemology’, wherein psychologists seek to explore ‘how 

individuals acquire knowledge, the theories and beliefs they hold about knowing, and how 

these beliefs are a part of and influence cognitive processes, especially thinking and 

reasoning’ (Muis, 2004, pp. 317–318). 

 

The origins of personal epistemology within educational psychology draw roots from the 

work of Piaget (1970a) and Perry (1970). Piaget’s work focused on whether an individual’s 

epistemology can be viewed separately from the process of intellectual development. By 

approaching these questions from the view of developmental biology, Piaget (1970a) 

explored the relationship between knowledge and the knower. He sought to answer such 

philosophical questions as, ‘Does knowledge depend on the individual (idealism), is it 

completely independent of the individual (realism), or is truth somewhere between these two 

extremes (constructivism)?’ (Muis, 2004, p. 319).  
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Perry (1970) explored the epistemological question through a two-decade-long study of 

university students as they progressed through their studies. Perry argued that students move 

through nine different epistemological beliefs, organised into four phases. Students begin in 

the phase he called ‘dualism’, which is the belief that all problems have a correct solution, 

and this solution is only known to authority figures who represent the source of knowledge. 

Secondly, students move into the phase called ‘multiplicity’, wherein they believe that there 

are two kinds of problems, those for which we have solutions and those for which we do not. 

Students in this phase believe that people may differ in their views and for a student to gain 

knowledge they must develop their own position. Next, students progress to the phase of 

‘relativism’, in which knowledge of solutions must be contextualised and supported by 

reasoning. The final progression is to the phase of ‘commitment’, in which students accept 

the ambiguity of knowledge and integrate what they learn from others with their own 

experiences. 

 

Others have argued that these unidimensional models which focus on cognitive development 

are too simplistic and a student’s personal epistemology is complex and multidimensional. 

Schommer (1990, p. 498) said, ‘a more plausible conception is that personal epistemology is 

a belief system that is composed of several more or less independent dimensions.’ 

 

Schommer puts forward five dimensions of personal epistemology: (1) structure of 

knowledge–beliefs of knowledge as simple or complex; (2) certainty of knowledge–beliefs of 

knowledge as certain or tenuous; (3) source of knowledge–beliefs that knowledge is derived 

from an authority figure or from one’s own critical reasoning; (4) control of knowledge–

beliefs about one’s ability to learn; and (5) speed of learning–beliefs about the speed at which 

one can learn and the role of effort in that speed. While Schommer may argue that her 

multidimensional model differs from the Perryan view, it is clear to see common ground 

between the two. The first three dimensions of Schommer’s (1990) personal epistemology 

align well with Perry’s (1970) cognitive development view of epistemology. The final two 

dimensions align well with the work on implicit theories of intelligence (Dweck, 1986; 

Dweck & Leggett, 1988). I discuss implicit theories of intelligence in more detail in Section 

2.9, as it is central to this study.  

 

Along each of Schommer’s dimensions, she identified beliefs as being either ‘naïve’ or 

‘sophisticated’ (1990). Students’ beliefs about sources of knowledge can range from the 
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‘naïve’ belief that knowledge can only come from an authority figure to the more 

‘sophisticated’ belief that knowledge is constructed through critical assimilation of 

information into one’s own experiences and contexts. The use of labels in this area is not 

universally agreed upon, with some terms being more emotive than others. Terms such as 

naïve or sophisticated incorrectly suggest that educational psychologists agree which end of 

these epistemological views is best. Muis (2004) argues for the more neutral terms ‘availing’ 

and ‘non-availing’.  

 

Much of the early research into personal epistemology defended a global view, wherein 

students’ beliefs were general across all domains. However, based on the idea that academic 

domains can fundamentally differ in the nature of problem-solving and knowledge, as well as 

the idea that schools mirror these domain differences in their curriculum designs, it became 

clear that epistemic dimensions of students’ beliefs might themselves be domain-specific (Op 

’t Eynde et al., 2006). There have been several studies which have supported this idea (Buehl 

& Alexander, 2002; Hofer, 2000; Schommer & Walker, 1995). Based on this research, it 

seems that elements of students’ epistemic beliefs exist at a domain-specific level. However, 

this does not mean that global beliefs are not also present, but rather the explanatory power of 

domain specificity is higher in certain contexts. Accepting this view, Buehl and Alexander 

(2001) argued for a multidimensional and a multi-layered view of epistemic beliefs. They put 

forward a hierarchical view containing three levels ‘nested within each other: (1) domain-

specific beliefs, (2) academic epistemological beliefs; (3) general epistemological beliefs’ 

(Op ’t Eynde et al., 2006, p. 60). 

 

2.8 Beliefs in mathematics 
As discussed above, the idea that a student may have a mathematics domain-specific personal 

epistemology is supported by the literature. Within the field of mathematics education, the 

idea of personal epistemology has been studied more typically under the general term 

‘mathematics beliefs’ (Muis, 2004). In his seminal paper, McLeod (1992) clearly placed 

mathematics beliefs within the broader construct of student affect. McLeod’s 

conceptualisation of affect put forward three constructs–beliefs, attitudes, and emotions. 

These are summarised with examples in Table 2.2. McLeod’s framework suggests that 

emotions are the most intense, least stable, and least cognitive of the three constructs, while 

beliefs are the least intense, most stable, and most cognitive. Attitudes sit in the middle. 
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Goldin (2002, p. 61) added a fourth dimension, values, and summarised the McLeod states of 

affect as: 

 

• emotions (rapidly changing states of feeling, mild to very intense, that are 

usually local or embedded in context) 

• attitudes (moderately stable predispositions toward ways of feeling in 

classes or situations, involving a balance of affect and cognition) 

• beliefs (internal representations to which the holder attributes truth, 

validity, or applicability, usually stable and highly cognitive, may be 

highly structured) 

• values, ethics, and morals (deeply-held preferences, possibly characterized 

as ‘personal truths’, stable, highly affective as well as cognitive, may also 

be highly structured). 

 

Other researchers have built upon these ideas. For example, Hannula (2011) describes the 

temporal dimension of the affective constructs. Under Hannula’s framework, a distinction is 

made between trait-type affect constructs describing stable dispositions and state-type 

constructs describing more dynamic and rapidly changing dispositions. Different research 

methodologies suit the measurement of different temporal aspects. Quantitative methods can 

reveal stable trait-type constructs, whereas qualitative observational methods may allow the 

researcher to study more volatile state-type affect constructs (Di Martino, 2019). 

 

Table 2.2: McLeod’s framework for affect 

Category Example 

Beliefs about mathematics ‘Mathematics is based on rules’ 

about self ‘I am able to solve problems’ 

about mathematics teaching ‘Teaching is telling’ 

about the social context ‘Learning is competitive’ 

Attitudes ‘I dislike geometric proof’ 

Emotions ‘I feel frustrated with this problem’ 

 

Another addition to the affect construct was the introduction of motivation (Hannula et al., 

2007). Within the McLeod (1992) framework motivation was addressed as part of the beliefs 
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construct (motivational beliefs). However, the literature has since established motivation as a 

core concept within the field of mathematical affect.  

 

The purpose of my study is to evaluate whether students’ beliefs are associated with the 

effectiveness of inquiry-based instruction. As such this literature review focuses on the 

beliefs construct within the broader affective domain. In his pioneering work on 

mathematical beliefs, Schoenfeld (1985) states that ‘belief systems are one’s mathematical 

world view, the perspective with which one approaches mathematics and mathematical tasks’ 

(p. 45). Before addressing beliefs further, it is worth briefly highlighting the evidence that 

links beliefs to academic performance.  

 

Beliefs and academic performance 

Many studies have explored the effects of beliefs on mathematical performance. Through a 

series of case studies Schoenfeld (1985, 1988) illustrated how students’ mathematics 

worldviews (their beliefs about mathematics) impacted how they performed on mathematical 

problems. For example, students’ performance was negatively impacted if the students held 

what Schoenfeld called inappropriate beliefs about mathematics. Such inappropriate beliefs 

include the belief that mathematical problems can be solved quickly, the belief that only 

geniuses can thrive in mathematics, and the belief that proofs in mathematics only confirm 

that which is obvious (Schoenfeld, 1985). In her work on epistemic beliefs (discussed in 

Section 2.7), Schommer (1990) categorised beliefs into those which are ‘naïve’ or 

‘sophisticated’. She found that holding ‘naïve’ beliefs was associated with poor academic 

performance (Schommer, 1990; Schommer et al., 1992). 

 

It is clear from work using either research methodology that the idea of 

sophisticated beliefs embraces evolving knowledge, multiple approaches to 

the justification of knowledge, integration of knowledge, and for those willing 

to entertain a broader conception of epistemological beliefs, gradual learning, 

and ever growing ability to learn. (Schommer-Aikins, 2002, pp. 112–113) 

 

The belief that the source of mathematical knowledge is an authority figure is also linked to 

poor performance on problem solving tasks (Schoenfeld, 1985). Others have called this 

phenomenon learned helplessness, ‘the perceived inability to surmount failure’ (Diener & 

Dweck, 1978, p. 451).  
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A focus on beliefs 

A focus of this thesis is on understanding how students’ beliefs interact with their perceptions 

as well as the effectiveness of inquiry-based instruction. As such, this section centres upon 

the belief component of the affect construct. The research on beliefs is perhaps the most 

extensive amongst the dimensions of affect (Di Martino, 2019). Despite this, however, a 

universally accepted definition of beliefs has yet to come forward. For the purposes of this 

study, I adopt a broad definition of beliefs in line with that of Philipp (2007) in which beliefs 

are viewed to be ‘psychologically held understandings, premises or propositions about the 

world that are thought to be true’ (p. 259).  

 

McLeod’s framework (see Table 2.2) focuses heavily on beliefs and highlights that the role 

of beliefs is central to the attitudes and emotions experienced by students when learning 

mathematics. Within this framework, McLeod puts forward four subdomains of beliefs: 

beliefs about mathematics, beliefs about self, beliefs about mathematics teaching, and beliefs 

about the social context. I discuss each of these below. 

 

Beliefs about mathematics 

Research suggests that students hold many beliefs about mathematics. Examples include the 

belief that mathematics is important, difficult, and based on rules (C. A. Brown et al., 1988), 

mathematics is the domain of excellence (Op ’t Eynde et al., 2006), mathematical problems 

can be solved in ten minutes or less (Schoenfeld, 1985), mathematics involves following 

rules and memorisation (Dossey et al., 1988), mathematics is skill-orientated (Greenwood, 

1984), mathematics is about computation and all problems can be solved in just a few steps 

(Frank, 1988), the goal of mathematics is to get the correct answers (Frank, 1988), and 

mathematics cannot be easy (Kouba & McDonald, 1987). The body of research has pointed 

out that holding inappropriate beliefs impacts upon students’ abilities to solve non-routine 

problems (Schoenfeld, 1988). When contrasting beliefs about mathematics to other 

subdomains of affect, McLeod states that ‘these beliefs about mathematics, although not 

emotional themselves, certainly would tend to generate more intense reactions to 

mathematical tasks than beliefs that mathematics is unimportant, easy, and based on logical 

reasoning’ (1992, p. 579). 

 



 31 

Beliefs about self 

Students hold various beliefs about themselves as mathematics learners. Examples of self-

beliefs include one’s belief that they are good at mathematics (Dossey et al., 1988), self-

efficacy (Bandura, 1997), confidence (Reyes, 1984), intrinsic motivation (Schoenfeld, 1987), 

and Attribution Theory (Jones et al., 1987). Also within this subdomain I include the beliefs 

that students hold about intelligence, that is, their ‘implicit theories of intelligence’ (Dweck, 

1986; Dweck & Leggett, 1988) otherwise known as ‘mindset’ (Dweck, 2017b). Both of these 

are discussed in Section 2.9. 

 

Beliefs about mathematics teaching 

McLeod argues that students hold many beliefs about how mathematics should be taught, 

which they develop through exposure to mathematics teaching in school (McLeod, 1992). 

While the research in this area is not as developed as some of the other beliefs, examples are 

seen within the literature, such as the belief that teaching mathematics should involve a range 

of tasks (Yackel & Rasmussen, 2003), the teacher should help students learn mathematics 

(Kloosterman et al., 1996), the role of the teacher is to transmit knowledge whilst that of the 

student is to receive knowledge (Frank, 1988), mathematics learning is done individually 

(Kloosterman et al., 1996), and mathematics involves mainly seatwork (Stodolsky, 1985).  

 

Beliefs about the social context 

McLeod’s framework suggests that the beliefs students hold about the social context of 

mathematics impacts the way students tackle mathematical problems. Examples here include 

the belief that mathematics is a socially valuable skill, mathematics is competitive, peers are 

able to help with mathematics, and mathematics is part of one’s out-of-school life (Cobb et 

al., 1989; Grouws & Cramer, 1989; McLeod, 1992).  

 

The breadth of the McLeod framework is helpful in that it covers a wide range of possible 

beliefs that could interact with how students learn mathematics. However, the four 

subdomains are not mutually exclusive and can overlap. For example, the belief that 

mathematics is an individual activity could relate to one’s beliefs about the social context as 

well as beliefs about mathematics teaching.  

 

Another influential voice within this area is that of Schoenfeld (1983), who argues that 

cognitive behaviours that underpin learning rest upon an individual’s beliefs about the task at 
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hand, the social context in which that task occurs, and themselves as individuals performing 

the task in the current social context. It is easy to see overlap with McLeod’s subdomains of 

beliefs. 

 

2.9 Mindset as an epistemological belief 
An aim of this study is to explore whether the effectiveness of inquiry-based methods for 

students with mathematical difficulties is influenced by students’ implicit theories of 

intelligence (called mindset). Within the McLeod framework, discussed in Section 2.8, these 

beliefs fall under the category of beliefs about self. An important contribution to this 

discussion was made by Dweck (2017b) in her review of several decades of research into the 

effect of differing implicit theories of intelligence on achievement. As a result of these 

studies, Dweck proposes the idea that mindset can be categorised in two ways. Individuals 

with ‘growth mindset’ believe that intelligence is not fixed but malleable. They view learning 

as a process governed by effort, as opposed to ingrained ability (Boaler, 2013). By framing 

their learning within this context individuals are able to perform at a higher level (Dweck, 

2017b). Alternatively, individuals that have a ‘fixed mindset’ believe that intelligence cannot 

be altered, and that ability or ‘smartness’ is something a person is born with. Individuals with 

fixed mindsets tend to focus on performance and set objectives around demonstrating strong 

ability in the areas they believe they are superior. As such, they avoid challenges that might 

compromise this view (Dweck, 2017b; Yorke & Knight, 2004). Students with growth 

mindsets, however, see challenges as learning opportunities and implement flexible learning 

goals. As such, students with growth mindsets typically respond positively to failure and see 

it as an opportunity for increased learning and effort (Dweck, 2017b; Yorke & Knight, 2004). 

Studies have shown that approximately 40 percent of students in the U.S. have growth 

mindsets and 40 percent have fixed mindsets. The residual population demonstrate mixed 

mindsets (Dweck, 2017b). 

 

2.9.1 Criticisms of mindset  

Emerging in literature as a result of a series of studies co-authored by Carol Dweck (e.g. 

Dweck, 1986; Dweck et al., 1995; Dweck & Leggett, 1988; Elliott & Dweck, 1988; Mueller 

& Dweck, 1998), mindset has reached an almost cult status, with a large number of schools 

regularly incorporating growth mindset material into their lessons. However, there are some 

notable objections put forward, which I discuss below. 
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‘Lack of replicating research’ 

Critics argue that much of mindset research is based upon a few isolated studies, and most 

attempts to replicate these have failed to generate the same results (e.g. Y. Li & Bates, 2019). 

Whilst it is true that one might expect more supporting literature, especially given the 

popularity of the construct, I disagree with this criticism. Many studies have been able to 

replicate the positive correlation between mindset and academic performance (e.g. Aditomo, 

2015; Aronson et al., 2002; Blackwell et al., 2007; Claro et al., 2016; Rattan et al., 2012; 

Sahlberg, 2011). More recently, a few larger-scale studies have added to the support in favour 

of this correlation. Notable examples of this include a study of 160,000 tenth-grade students 

in Chile (Claro et al., 2016). 

 

Part of the challenge of replicating previous mindset results is the magnitude of the observed 

effect. In Mueller and Dweck’s (1998, p. 36) study, 67 percent of students who received 

praise for their intelligence (thought to induce a fixed mindset) chose to work on ‘easy’ 

problems that could show how ‘smart’ they are, compared to only 8 percent of students who 

received praise for their effort (thought to induce a growth mindset). These are exceptional 

results and have led many to question the rigour of the analysis. Several recent meta-analyses 

of mindset research have generally supported the claim that incremental theories (growth 

mindset) are positively associated with academic goal setting and performance, albeit to a 

lesser extent than Dweck suggested (e.g. Burnette et al., 2013; Sisk et al., 2018). 

 

Several studies, however, have failed to generate the above effect. Furnham, Chamorro-

Premuzic, and McDougall (2003) conducted a study of U.K. university students and found 

personality traits were a predictor of academic performance, and whilst mindset was 

correlated with personality traits, the relationship between mindset and academic 

performance was not significant. Two separate studies of 222 and 211 Chinese pupils aged 9 

to 13 years old also failed to find any effect of mindset. The authors found that ‘the predicted 

association of growth mindset with improved grades was not supported’ (Y. Li & Bates, 

2019, p. 1640). Furthermore, a mixed methods study of 12 high school students with reading 

difficulties reported no effect of mindset on self-reported motivation and only a small effect 

on learning, although the author acknowledges the small scale of the study (Baldridge, 2010). 
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It is clear that further research into the construct of mindset is needed, particularly when it 

comes to the idea of teaching mindset. In response to criticisms of her work, Dweck (2017a, 

para. 1) said, ‘Growth mindset is on a firm foundation, but we’re still building the house’. 

 

‘Mindset studies lack context’ 

One of the criticisms of mindset research is that it fails to properly account for contextual 

factors, such as socioeconomic status. For example, the prevalence of fixed mindset has been 

shown to be higher in students with ‘lower prior academic achievement, English learner 

students, and Black students’ (Snipes & Tran, 2017, p. i). Other studies have shown the 

almost opposite result. Hwang, Reyes, and Eccles (2019) found that students from more 

advantaged backgrounds (e.g. White or higher SES) tended to have fixed mindsets as they 

preferred to be recognised as ‘naturally intelligent’ as opposed to ‘hard workers’ (p. 262). 

 

Recent evidence has further brought to light the importance of contextual factors such as SES 

in mindset research. A study by Claro et al., (2016) indicated that the positive effect of 

mindset was present across all socioeconomic levels, however the prevalence of fixed 

mindset was correlated with poverty. 

 

Students from lower-income families were less likely to hold a growth 

mindset than their wealthier peers, but those who did hold a growth mindset 

were appreciably buffered against the deleterious effects of poverty on 

achievement: students in the lowest 10th percentile of family income who 

exhibited a growth mindset showed academic performance as high as that of 

fixed mindset students from the 80th income percentile. (Claro et al., 2016, p. 

8664) 

 

There is evidence a growth mindset intervention can help minority students guard against 

stereotype threat and materially improve their academic performance (Aronson et al., 2002). 

Similarly, when considering students with ‘lower prior academic achievement’ a double 

study by Blackwell, Trzesniewski, and Dweck (2007) demonstrated that student belief that 

intelligence was malleable was an accurate predictor of subsequent academic performance 

over the following two years. In a second study, Blackwell and colleagues (2007) also 

demonstrated that providing an intervention targeted at teaching a growth mindset resulted in 

increased student achievement in mathematics over the subsequent 18 months, as compared 
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to a control group. Perhaps most interestingly, this second study focused on students with 

MD (as determined by falling below the 35th percentile on the national test; see Section 2.5 

for a discussion of MD), indicating that changes in beliefs about intelligence are possible in 

these students. The fact that students have been shown to respond favourably to growth 

mindset interventions has garnered much interest from teachers and parents. However, 

Yeager, Paunesku, Walton, and Dweck (2013) argue that our understanding of how to teach 

mindset is still in its infancy and more study is needed before attempting to scale such 

interventions. 

 

‘It is too simplistic’ 

Many studies have shown that a short intervention which focuses on students’ thoughts and 

beliefs rather than academic knowledge can yield improvement in academic performance. In 

the previously mentioned study by Blackwell et al. (2007) the intervention was only eight 

sessions yet yielded stark improvements in academic performance for the entire school year. 

How can something so simple, that did not even focus on academic content, generate such 

large results? As of yet there is no clear answer to this question. In a review by Yeager and 

Walton (2011) the authors argue that huge effect-size of seemingly ‘small’ interventions have 

been demonstrated in other fields, such as the introduction of a one-page checklist in 

operating rooms that reduced surgical deaths by 47 percent. The authors argue that a similar 

phenomenon in education is beginning, with numerous studies of small interventions showing 

substantial improvement in student outcomes. However, the comparability of the checklist 

example is questionable as the impact of a tangible tool used for every procedure is hard to 

compare to an intervention which is supposed to have effects that persist long after. 

 

The three categories of mindset (fixed, mixed, and growth) are certainly a simple concept, but 

are there really such hard delimitations between them? Proponents of mindset are rarely 

advocating for such hard delimitations. ‘All of us have elements of both—we’re all a mixture 

of fixed and growth mindsets’ (Dweck, 2017b). Moreover, mindset can vary by subject: 

 

People can also have different mindsets in different areas. I might think that 

my artistic skills are fixed but that my intelligence can be developed. Or that 

my personality is fixed, but my creativity can be developed. We’ve found that 

whatever mindset people have in a particular area will guide them in that area. 

(Dweck, 2017b, p. 47) 
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The idea of subject-specific mindsets is not surprising given the general acceptance of 

domain-specific epistemic beliefs, discussed in Section 2.7. 

 

Whilst Dweck may be credited for coining the term growth mindset, her work is very much 

grounded in a broader field of study that has its origins in Attribution Theory (Jones et al., 

1987), which discusses the ways in which individuals explain the causes of outcomes, and 

Personal Construct Theory (Kelly, 1955) which argues that people see the world as a 

‘scientist’ who builds constructs to explain certain events. Despite these deeper roots, the 

literature around mindset is still emerging. A search of literature discussing mindset in the 

decade before Mueller and Dweck’s 1998 study found c18,000 articles. In the two decades 

since there have been c240,000 articles. Despite this, the number of large-scale studies 

conducted by independent research teams has been thin and further such studies are needed.  

 

2.10 Fixed messages in mathematics 
Inquiry-based instruction relies upon students attempting, often unsuccessfully, to solve 

problems. How a student responds to this failure might determine the effectiveness of the IBI. 

Given that students with fixed mindsets respond poorly to failure, and often see it as further 

evidence that they lack mathematics ability (Boaler, 2016; Dweck, 2017b) it would seem 

plausible that students with fixed mindsets would respond poorly to IBI. 

 

Teacher attitudes towards low achieving students has been shown to propagate a fixed 

mindset (Boaler, 2013; Marks, 2013). The strong preference for mathematics ability grouping 

in the U.S. and the U.K. further drives the stereotype that abilities are somehow genetic and 

hence fixed (Plomin et al., 2007). It is estimated that 83 percent of pupils in England are 

grouped by ability for maths by the time they reach Key Stage 3 (Kutnick et al., 2005). It has 

been suggested in the literature that teachers adopt fixed mindsets in the way they instruct 

these groupings, even if they believe they are adopting mixed-ability mindsets (Marks, 2013). 

The effect of ability grouping on students’ self-esteem, engagement, and perceived ability 

leave many students feeling like their academic performance is something out of their control 

(Braddock & Slavin, 1992). Boaler (2010) suggests that mathematics is the worst offender 

when it comes to perpetuating a fixed mindset. A comprehensive meta-analysis of research 

from 1970 to 2000 found that labelling a student with a ‘learning disability’ significantly 
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changed teachers’ attitudes and behaviours towards the student and resulted in lower 

expectations and fixed mindsets (Osterholm et al., 2007). The consequence is clear; students 

who demonstrate MD are more likely to encounter teaching practices that propagate fixed 

mindset through a combination of teacher beliefs and institutional ability grouping. 

 

2.11 Summary of literature review 
A review of the literature suggests that IBI can be an effective instructional approach for 

enhanced mathematical proficiency. The benefits of IBI are possibly metacognitive, in that 

the learner becomes aware of gaps in his or her knowledge and is therefore primed to learn 

better from subsequent instruction. However, the results of studies into the effectiveness of 

these inquiry-based approaches for students with MD have been mixed (see Section 2.6). 

Studies into mindset show that students with MD can fall into an educational system that 

propagates fixed mindsets, the result being these students are less likely to respond to failure 

as positively as students with growth mindsets. Given the prevalence of failure within an 

inquiry-based curriculum it might be possible that holding a fixed mindset reduces its 

effectiveness. Could it be that mindset is associated with the effectiveness of IBI for students 

with MD? 

 

Little literature has looked into the ways in which mindset and other beliefs may influence 

students with MD in inquiry-based classroom environments. As part of this dissertation, I 

explore two research questions: 

 

RQ1. How do students with mathematics difficulties perceive IBI? 

RQ2. Are students’ beliefs (e.g. mindset) associated with the effectiveness of IBI for 

students with mathematics difficulties? 
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3 Methodology 
The principal objective of research is concerned with learning and understanding new 

information. However, in undertaking this goal, researchers make several key assumptions. 

Such assumptions include fundamental questions regarding what the researcher will learn 

new things about. This is not the same as the research question(s), but rather the researcher’s 

fundamental philosophy about the nature of reality and to what extent research output is 

generalisable. A second assumption concerns how the researcher believes knowledge of 

reality comes to be known. These two groups of assumptions are respectively called a 

researcher’s ontological and epistemological beliefs. A good methodology will do more than 

state the researcher’s assumptions but will also provide an analysis of these assumptions and 

acknowledge that they are likely to influence methodology choices, from study design to data 

collection and analysis (Taber, 2013).  

 

3.1 Epistemology and ontology 
It is important to note that there is no ‘right’ ontological or epistemological view to adopt. 

Therefore, it is crucial for researchers to maintain an open mind in order to appreciate the 

value of peer research. Regardless of the choice of theoretical framework it is important that a 

researcher’s views flow logically throughout their study from the focus of their research 

questions through to the design of their methods.  

 

From an ontological perspective, the two dominant schools of thought are realism and 

relativism. Classic natural sciences, with the belief that there exists a single objective reality, 

align with the views of realism. Under this viewpoint knowledge can be generalised around 

this single reality or truth. The difficulties applying such views to social animals led to the 

ideas of relativism, which rejects the central tenets of realism and proposes the view that no 

single version of the truth or reality exists. Absent a single reality, any attempts to generalise 

are hampered. The consequences of these different views can drive different methodological 

approaches.  

 

More recently mixed approaches, and subsequently mixed methods, have risen in popularity. 

Researchers who do not adopt one of these two dominant schools have sought refuge in ideas 
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of pragmatism and critical realism. It is under the latter view that this study is conducted. 

Critical realism attempts to ‘reconnect social theory with research practice’ (Lipscomb, 2011, 

p. 4) and stems from the belief that a single version of reality exists but the complexity of 

social structures mean knowledge of it is unattainable. Under this philosophy, research 

methods should be selected that seek to triangulate around reality by measuring a 

phenomenon from multiple angles, collecting data at multiple levels, and mixing quantitative 

and qualitative tools to address research questions. One of the goals of research should be to 

reduce the possibility of incorrect conclusions, whilst acknowledging that such errors cannot 

be entirely eliminated. Therefore, critical realism seeks to deploy a variety of data collection 

techniques with the aim of reducing this error. In reference to critical realism, Scott (2005) 

explained, ‘holding a belief that an independent reality exists does not entail the assumption 

that absolute knowledge of the way it works is possible’ (p. 635). The ‘critical’ dimension of 

critical realism could be argued to provide an uncontentious way to hold a constructivist 

epistemological and a realist ontological view. Scott further summarises critical realism as: 

 

… realist, because it is accepted that there are objects in the world, including 

social objects, whether the observer or researcher can know them or not. 

Critical … because any attempts at describing and explaining the world are 

bound to be fallible, and also because those ways of ordering the world, its 

categorisations and the relationships between them, cannot be justified in any 

absolute sense, and are always open to critique and their replacement by a 

different set of categories and relationships. (Scott, 2005, p. 635) 

 

One’s epistemology and choice of methods ought to be connected. Epistemology addresses 

the philosophy of how we come to know truth while methods address the practicalities. Some 

researchers argue that one’s ontological assumptions and epistemological choices can be 

connected (Gee, 2011). A realist might design methods to discern between different 

hypotheses and build samples large enough to approximate the ‘true’ population. Such a 

realist’s methods may focus on quantitative studies with statistical tests designed to 

differentiate what can be said to be true from what cannot. If the phenomena of interest 

cannot be measured, it cannot be known, and therefore should not be studied. Such views are 

popular amongst behaviourists, and the epistemological approach of these realists is called 

positivism. 
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In contrast, by rejecting that ‘truth’ (in a social setting) can ever be known, relativists often 

adopt constructivist and interpretivist epistemologies. Methods under these schools of 

thought seek to contextualise the research question and may prefer more idiosyncratic, 

qualitative approaches. Observations, interviews, and open ended questions feature heavily, 

as constructivists are concerned with ‘interpretation, multiplicity, context, depth, and local 

knowledge’ (Ramey & Grubb, 2009, p. 80). Such studies allow the researcher to gain detailed 

insights in a tight context. One challenge with these approaches is their usefulness in 

designing applications. In the case of educational research this can make translating 

constructivist research into teaching frameworks more difficult. It should be noted that some 

versions of the epistemology of constructivism are not incompatible with ontological realism. 

Constructivists challenge the empiricists’ monopoly on the ability to describe social reality, 

not necessarily the existence of a real world (Sayer, 1997). 

 

A critical realist might adopt a post-positivist epistemology which rejects the positivist view 

that only measurable things can lead to knowledge and instead recognises that studies are 

fallible, and data have limitations. By believing that researchers should deploy a broader 

range of tools to triangulate, a post-positivist might use a mixture of both quantitative and 

qualitative methods where appropriate. Such a study might be said to be using ‘mixed 

methods’. By using several different fallible methods researchers seek to triangulate around 

reality, accepting that it can never be truly known. While this thesis has been conducted 

under a post-positivist framework, it does not go so far as to propose a mixed methods 

approach and rather focuses on qualitative methods, supported and supplemented by 

quantitative tools. 

 

Some researchers seek to move views of post-positivism closer to those of constructivism by 

defining post-positivism to align with a relativist ontological view. O’Leary (2004) explains, 

‘What might be “truth” for one person or cultural group may not be “truth” for another’ (p. 

6). This paper adopts Creswell and Poth’s interpretation of post-positivism. ‘In practice, 

postpositivist researchers view inquiry as a series of logically related steps, believe in 

multiple perspectives from participants rather than a single reality, and espouse rigorous 

methods of qualitative data collection and analysis’ (2017, p. 23). 
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3.2 Multiple case study design 
Before laying out a suitable set of methods, it is important to establish the methodological 

approach that has informed the research design. As discussed earlier, my interpretation of a 

post-positivist epistemology permits a broad use of methodologies collecting qualitative and 

quantitative data. Methodologies that might be considered suitable would include 

phenomenology, grounded theory, and case study. There are elements of a phenomenological 

methodology which are relevant to my research question and epistemological view, however 

as Creswell and Poth (2017) suggest, the best criteria to determine the use of phenomenology 

is when the research problem requires a profound understanding of human experiences 

common to a group of people. Hence, whilst a phenomenological approach does have merit 

in helping understand how a student experiences IBI, it is not useful in assessing student 

performance and therefore a pure phenomenological methodology does not feel appropriate. 

Although, it is acknowledged there is some truth to the statement that ‘all qualitative research 

has a phenomenological aspect to it, but the phenomenological approach cannot be applied to 

all qualitative researchers’ (Padilla-Díaz, 2015, p. 103). Grounded theory as a methodology 

requires the researcher to permit the design to emerge from the study itself and avoid 

preconceived ideas (Glaser & Strauss, 1967). This approach feels inappropriate given this 

study has developed a detailed scope as a result of a literature review and my personal 

background and experiences as a mathematics teacher.  

 

Another methodology would be the use of case studies. Yin (2017) defines a case study as 

‘an empirical method that investigates a contemporary phenomenon (the “case”) in depth and 

within its real-world context, especially when the boundaries between phenomenon and 

context may not be clearly evident’ (p. 15). As such, a case study is often used to develop a 

rich picture, using various data collection methods to capture the perceptions, experiences, 

and ideas of the cases’ components. A case study design is appropriate for classroom research 

since ‘teaching and learning present the kind of complex phenomena that are most suitable 

for case studies’ (Taber, 2013, p. 145). This methodology aligns with my epistemological 

view and is appropriate for the research questions proposed. 

 

Accepting that a case study is the most appropriate methodology leads to the question, what 

is used as a case? In the context of this study the most obvious options were a school, a class 

(a group of students), or a student. The focus of this study is targeted at the classroom 
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context, specifically how classroom-based IBI is perceived by students with mathematics 

difficulties, how it contrasts to their everyday experiences in the mathematics classroom, how 

mindset features, and how much learning occurs. Choosing a whole school as representing 

the case would have prevented the development of a deep understanding of the contextual 

factors that are most relevant to the students’ experiences of inquiry mathematics. My focus 

is not at the program or curriculum level, which would have made the choice of school a 

more appropriate one. At the other extreme, selecting a single student as representing a case 

would have seemed to be a suitable choice, however this would have restricted the data 

collection. The goal of this research is to understand how students with mathematics 

difficulties perceive IBI and the role of beliefs (e.g. mindset). This is best served by 

collecting data on numerous students, and therefore I chose to use the class as the case. 

 

A common criticism of case studies is that researchers cannot generalise from small sample 

sizes in a reliable way (Gomm et al., 2009). This challenge to reliability is hard to avoid. 

However, the use of a case study is not intended to establish a generalisation (Stake, 1995) 

but rather to put forward findings that may form the basis of a future framework, which 

through future research may emerge into a reliable generalisation (Yin, 2017). Case studies 

do not seek absolutism but recognise the contextual limitations. 

 

To further respond to challenges of reliability the use of additional cases is a commonly used 

technique to add to the weight of arguments. ‘Multiple-case sampling adds confidence to 

findings. By looking at a range of similar and contrasting cases, we can understand a single-

case finding, grounding it by specifying how and where and, if possible, why it behaves as it 

does’ (Miles et al., 2019, p. 29). 

 

In choosing additional cases a researcher may either select similar cases (‘replication cases’) 

or different cases (‘contrasting cases’). For the purposes of this study I have selected two 

‘replication cases.’ Yin (2017) defines ‘replications’ as any two or more cases that ‘predict 

similar results’ (p. 55). However, the use of the word ‘replications’ is problematic since no 

two classes of students are truly alike. Here the term ‘replications’ is used to refer to two 

classes who share relevant features to the study, e.g. from a secondary school, located in the 

U.K., taught by a mathematics teacher, and characterised as having mathematics difficulties 

(please see Section 3.3). While this approach increased the complexity of the study, the 
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increased strength of the design allowed for triangulation and a more robust understanding of 

the phenomena. 

 

3.3 Identifying students with MD 
Having established that a class represents the case, this section discusses how students with 

mathematics difficulties (MD) were identified in the study. Within the literature, no 

consensus has emerged concerning whether chronic difficulty in mathematics can be 

explained entirely through cognitive factors, contextual factors (e.g. SES, race, gender), or 

some combination of both (see Section 2.5). One diagnostic approach emerging within 

literature is to identify students with MD by reviewing scores on a relevant standardised test 

(such as the National Curriculum Assessments in the U.K.) and using the 25th percentile as an 

appropriate cut-off (D. H. Bailey et al., 2012; Murphy et al., 2007). Using this approach, 

students who score below the 25th percentile could be identified as having MD. The merits of 

this approach are discussed in Section 2.5. 

 

Drawing such a cut-off from a large-scale standardised test, as opposed to a school-specific 

test, does have some advantages. Whilst a standardised test is still a relative measure its 

principal advantage is the avoidance of idiosyncratic, school-specific testing conditions. 

These standardised scores are often an essential consideration used by schools to categorise 

students into attainment based ‘sets’ in mathematics (Wiliam & Bartholomew, 2004). As a 

result, selecting the lowest set within a school could be a helpful starting point in finding a 

valid case. However, doing so does not guarantee students within that set would have scored 

below the 25th percentile on the relevant standardised test. 

 

I, therefore, considered two options. Option one was to select only students who scored 

below the 25th percentile from a year group and form a separate class for the purposes of the 

study. This has the obvious drawback that the case environment would differ from the normal 

environment of the case components (the students and teacher). Alternatively, a second 

option considered was to select a lower set classroom and acknowledge any students within 

the class who did not score below the 25th percentile, if this information is available. This has 

the advantage of providing a familiar class environment but the disadvantage that a portion of 

the students may be illegible for full inclusion in my analyses (e.g. lesson observations and 
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student interviews). To keep the case studies as naturalistic as possible, I decided to 

implement this second option. 

 

An important consideration is the presence of non-mathematics disabilities, such as dyslexia 

or ADHD, as these may confound any observations. Such confounding disabilities are 

acknowledged in each case description and taken into consideration in all analyses according 

to the recommendation of Ansari (2019). 
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4 Methods 

4.1 Case study 
This thesis includes two case studies, with each case representing a class of students with 

mathematics difficulties (MD). These cases were selected from two U.K. comprehensive 

secondary schools. The advantage of a case study approach is the breadth of data that can be 

collected, such as observations, interviews, and pre- and post-tests. These data serve to 

triangulate the findings (Yin, 2017). Please see Section 3.2 for a discussion of the advantages 

of the case study approach.  

 

Within each case study I: (1) surveyed the students using the Attitudes Towards Mathematics 

Inventory (ATMI), the Implicit Theories of Intelligence Scale (ITIS), and the modified 

Implicit Theories of Intelligence Scale (m-ITIS); (2) assessed procedural and conceptual 

understanding using a pre- and post-test; (3) observed each lesson and rated it against the 

Electronic Quality of Inquiry Protocol (EQUIP); and (4) interviewed the students about their 

perceptions. Figure 4.1 represents how each data source contributed to an understanding of 

the cases and was used to address the research questions.  

 

 
Figure 4.1: Mapping methods and research questions 

Each case study took place over approximately 10 weeks, from initial contact with the 

teacher to completion of the post-test. The pre-test, ATMI, ITIS, and m-ITIS were 

administered one week before the IBI intervention. Student interviews began about halfway 

RQ1: How do students with 

MD perceive IBI? 
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(e.g. mindset) associated with 

the effectiveness of IBI for 

students with MD? 

Lesson 

observations 

Pre-test and 

post-test 

EQUIP 
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and m-ITIS 

Student 

interviews 
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through the unit and continued until the last lesson. The post-test was administered one week 

after the completion of the unit.  
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Figure 4.2: Study timeline for both cases studies 

A timeline for both case studies, with the IBI unit and data collection methods indicated, is 

presented in Figure 4.2. The detail for each of the methods, along with their common 

critiques, is discussed below. However, before expanding on these data collection methods, it 

is worth reviewing how the cases were selected as well as the IBI unit itself. 
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4.2 Selection of the cases 
In May 2017 I contacted 31 comprehensive secondary schools in the United Kingdom. I 

emailed each school’s Head of Mathematics (or equivalent) using the contact information I 

found on each school’s website. Teachers at six of the schools expressed an interest in taking 

part. I visited each of these schools to meet with the teachers and explain more about what 

their participation in my study would involve. After the introductory meeting, four teachers 

(one teacher from each of four schools) wished to take part. I chose two of these teachers 

from two different schools to take part in the case studies. I chose these teachers primarily 

based upon ease of access to the school. 

 

4.3 IBI unit 
In each case, the classroom teacher chose the topic for the IBI unit, ensuring it was suitable 

for the selected class, given their position in the curriculum at the time of the study. Neither 

teacher had access to suitable inquiry lesson materials for the selected topics, so we 

developed them together according to the design principles set out by previous research (see 

Section 2.2). The duration of the IBI unit was determined alongside the teacher and 

influenced by the topic chosen. In the first case study there were seven inquiry lessons, and in 

the second case there were eight. 

 

I observed and rated each lesson using the EQUIP (see Appendix A; J. C. Marshall, Smart, & 

Horton, 2010). The EQUIP is an inquiry-based observation protocol that contains four rubrics 

designed to assess a lesson’s instructional, discourse, assessment, and curriculum factors. For 

example, the item ‘student role’ (considered an instructional factor) could be given a score of 

one to indicate ‘students were consistently passive as learners (taking notes, practising on 

their own)’, or alternatively, a score of four to indicate ‘students were consistently and 

effectively active as learners (highly engaged at multiple points during lesson and clearly 

focused on the task)’. The four levels are described as pre-inquiry (level 1), developing 

inquiry (level 2), proficient inquiry (level 3), and exemplary inquiry (level 4). The teacher’s 

questioning level is assessed using the revised Bloom’s Taxonomy (Krathwohl, 2002). 

 

I chose to use the EQUIP over other observation protocols (e.g. the Reformed Teacher 

Observation Protocol [RTOP] or the Scholastic Inquiry Observation [SIO] instrument) 

because it is one of the only protocols designed and field-tested for use in mathematics 
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classrooms. The EQUIP is also superior for its use of a descriptive rubric in addition to a 

Likert scale, making it an ideal choice for use with teachers. While it is true that most of the 

literature cited in the validation paper for the EQUIP (J. C. Marshall et al., 2010) comes from 

science education, the constructs used in the protocol are equally supported by literature in 

mathematics education (see Table 4.1). 

 

Table 4.1: EQUIP constructs supported by research in mathematics education 

EQUIP 

Factor 

EQUIP  

Construct 

Selected supporting evidence from 

mathematics education literature 

Instructional Instructional strategies (Rittle-Johnson et al., 2016) 

Order of instruction (DeCaro & Rittle-Johnson, 2012) 

Teacher role (Lampert, 1990)* 

Student role (Cobb et al., 1990)* 

Knowledge acquisition (Stein et al., 2009) 

Discourse Questioning level (Yackel & Cobb, 1996) 

Complexity of questions (Stein et al., 2008) 

Questioning ecology (Stein et al., 2008) 

Communication pattern (Ruthven et al., 2011) 

Classroom interaction (Lampert, 1990)* 

Assessment Prior knowledge (Fyfe et al., 2012) 

Conceptual development (Hiebert & Grouws, 2007) 

Student reflection (Labuhn et al., 2010) 

Assessment type(s) (Heritage & Wylie, 2018) 

Role of assessing (Mason, 2000) 

Curriculum Content depth (Makar, 2012) 

Learner centrality (Hassi & Laursen, 2015) 

Integration of content 

and investigation 

(Jessen et al., 2017) 

Organising and recording 

information 

(Swan et al., 2013) 

* indicates original evidence provided by Marshall, Smart, and Horton (2010) 
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The lessons in both case studies were designed to a proficient level of inquiry, or higher, as 

per the EQUIP. However, the quality of the overall IBI units ultimately relied on the 

teachers’ implementation. For this reason, the teacher in both cases taught a practice IBI 

lesson before commencing the study, followed by a lesson debrief. In order to ensure the 

teacher maintained a high level of inquiry throughout the IBI unit, the teacher and I 

developed an atmosphere of ongoing feedback between lessons. In both case studies, the IBI 

unit as a whole achieved the level of ‘proficient.’ Please see Section 5.4.1 for the EQUIP 

ratings of Mr Scott’s case and Section 6.4.1 for the EQUIP ratings of Ms Silver’s case. 

 

4.4 Questionnaires 
All students within each case were asked to complete three questionnaires one week before 

the start of the IBI units. The students’ attitudes towards mathematics were assessed using the 

Attitudes Towards Mathematics Inventory (ATMI; Appendix C; Tapia, 1996; Tapia & Marsh 

II, 2004), and their mindsets were assessed using both the Implicit Theories of Intelligence 

Scale (ITIS; Hong, Chiu, & Dweck, 1995) and a modified Implicit Theories of Intelligence 

Scale (m-ITIS). Both mindset instruments are presented in Appendix B. The ATMI, ITIS, 

and m-ITIS are discussed further below.  

 

Evaluation instruments measuring attitudes must overcome several challenges, not least of 

which is the fact that attitude is a psychological construct and, therefore, difficult to measure. 

‘[Society] has not agreed upon what constitutes psychological constructs such as anxiety or 

interest. As such, quantifying them is maximally problematic, but not impossible’ 

(Chamberlin, 2010, p. 169). 

 

Such evaluation instruments often require specialist analysis and skills to administer, and the 

training hurdle pushes the tools out of reach for most teachers. Researchers have developed 

several instruments which, with some success, address these concerns. In a review of six 

instruments, Chamberlin (2010) identifies the ATMI as an instrument demonstrating 

excellent reliability and ease of use. According to Chamberlin, ‘…the mathematics education 

community has not engaged this instrument to the extent that it has other similar instruments 

and its long-lasting effect may yet be realized’ (p. 174). The instrument comprises four 

subscales and forty questions. 
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Table 4.2: Summary of the subscales of ATMI 

ATMI subscale Measurement 

Enjoyment How much a student likes or dislikes mathematics 

Motivation How likely a student is to engage or disengage with mathematics 

Self-confidence How good or bad a student believes he/she is in mathematics 

Value How useful or useless a student thinks mathematics is 

 

Students’ mindsets were assessed using the ITIS. This is a three-question instrument 

validated through numerous studies (Dweck et al., 1995; Hong et al., 1995). The instrument 

has demonstrated good reliability ranging from 0.94 to 0.98 and is not correlated with self-

esteem, self-preservation, optimism, political view, religion, or cognitive or motivation needs 

and styles (Dweck et al., 1995).  

 

The ITIS asks participants to rate how much they agree with each of the following statements 

on a six-point Likert scale: (1) You have a certain amount of intelligence, and you really 

can’t do much to change it; (2) Your intelligence is something about you that you can’t 

change very much, and; (3) You can learn new things, but you can’t really change your basic 

intelligence. Given the existence of domain-specific mindsets, the m-ITIS was developed to 

include three mathematics specific statements: (1) You have a certain amount of MATHS 

intelligence, and you really can’t do much to change it; (2) Your MATHS intelligence is 

something about you that you can’t change very much, and; (3) You can learn new things, but 

you can’t really change your basic MATHS intelligence. This wording is in line with recent 

studies of mathematics-specific mindset (e.g. Adhitya & Prabawanto, 2019; Bostwick, 

Martin, Collie, & Durksen, 2019; Sun, 2018). The study included both the ITIS and the m-

ITIS in the event a student’s general mindset differed from his or her mathematics-specific 

mindset. 

 

As a data collection method, questionnaires are limited by their inability to cover: (1) the 

breadth of topics which could be relevant, nor (2) the depth to explore beyond a few 

questions. Students’ attitudes and beliefs about mathematics and their response to an IBI 

intervention are likely to be multidimensional and unlikely to be knowable a priori in a 

manner permitting the design of a questionnaire. However, questionnaires do have clear 

advantages in permitting the researcher to collect substantial amounts of data quickly and 
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simultaneously (Groves et al., 2009). Furthermore, the resulting data is readily analysable and 

amenable to making comparisons across groups. Moreover, questionnaires are useful when 

the scope and context are limited, such as diagnostic instruments. Finally, questionnaires, 

when used in conjunction with observations and interviews, can be a significant source of 

triangulation, as was the case in the present study. 

 

The students in each case completed the questionnaires one week before the first IBI lesson. 

This helped establish a baseline for the students’ attitudes and mindsets towards mathematics 

and avoided the possibility that the IBI unit itself or subsequent data collection methods, 

unduly influenced the questionnaire results. The students in both cases completed the 

questionnaires on a computer using SurveyMonkey5.  

 

4.5 Pre-test and post-test 
All students were given an assessment, designed in collaboration with their classroom 

teacher, to assess conceptual and procedural knowledge before and after the IBI unit. A 

problem was considered to be conceptual if it tested ‘abstract or generic ideas generalised 

from particular instances’ or ‘knowledge of problem structures’ (DeCaro & Rittle-Johnson, 

2012, p. 555). For example, the following test item was selected to assess students’ 

conceptual understanding of volume (see Figure 4.3). For this question students were asked 

to determine whether the volume of the object on the right is greater than, less than, or equal 

to the volume of the object on the left. The students had not seen any question like it during 

the IBI unit.  

 
Figure 4.3: Test item for conceptual understanding of volume 

 
5 SurveyMonkey is an online survey platform that allows participants to complete 

questionnaires electronically. 
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A problem was considered procedural if it tested ‘the ability to execute action sequences to 

solve problems’ (Rittle-Johnson et al., 2016, p. 577). For this type, I selected questions for 

which the students had learned a specific procedure in order to solve. For example, the 

following test item was selected to assess students’ procedural knowledge for calculating 

volume (see Figure 4.4).  

 
Figure 4.4: Test item for procedural knowledge of volume 

 

It was anticipated that this assessment would take the students 30 to 40 minutes to complete. 

Please see Appendix F for the pre- and post-test used in the first case and Appendix G for the 

pre- and post-test used in the second case.  

 

In each case, the pre-test and post-test were given to the entire class under the normal testing 

conditions of each school. The goal of the pre-test was to establish a baseline level of 

knowledge from which to assess the effectiveness of the IBI unit. Following the IBI unit, the 

students were given a post-test to assess their procedural and conceptual understanding of the 

topic. The results of these tests provided insight into the amount and nature of learning that 

took place over the course of the IBI unit.  

 

The pre- and post-tests were constructed using identical problems. It is therefore possible that 

a practice effect might be observed (Lezak et al., 2012). However, given the length of time 

between the pre-test and the post-test in each case (approximately 6 weeks) this was felt 

unlikely.  

 

Please see Section 5.4.4 for the results of the pre- and post-test in the first case, and Section 

6.4.4 for the results of the pre- and post-test in the second case.  
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4.6 Observations 
A crucial part of the data collection phase was to observe the students throughout the IBI 

unit. These observations were open-ended with attention paid to behaviours and reactions to 

the task (e.g. putting head down on the desk). Observations were instrumental in helping to 

anchor and shape one-on-one interviews with students. 

 

During observations, I followed the note-taking procedure put forward by Creswell and Poth 

(2017) who recommend the observer take both descriptive (objective) and reflective 

(subjective) notes. Please see Appendix D for an example of the notes I took during the Case 

of Mr Scott’s Class. During observations, I mostly moved around the room eavesdropping, 

taking notes, and identifying instances to follow up on in student interviews. I interacted 

directly with the students (much like the teacher) in order to obtain a better sense of the 

students’ progress and conversations. 

 

The lessons throughout each IBI unit were video recorded to supplement my observation 

notes and act as an additional data collection source. Replaying the video during data analysis 

helped to highlight salient points that were missed within my field notes. Video recordings 

were also instrumental in assessing each unit’s overall EQUIP scores (see Section 5.4.1 for 

Mr Scott’s case and Section 6.4.1 for Ms Silver’s case).  

 

4.7 Interviews  
I interviewed ten students in the first case study and 12 students in the second case study. All 

students interviewed were identified as having MD (see Section 3.3). Each student was 

interviewed once for up to 30 minutes in a one-on-one format. These students were chosen 

for interview because (1) they had indicated their willingness to be interviewed on their 

returned consent forms, and (2) their schedules allowed for the interview to take place. 

Interviews began about halfway through the IBI unit and continued until just before the 

students took the post-test. 

 

The interview process was crucial as it allowed me to investigate further the behaviours I 

observed throughout the lessons (e.g. ‘I saw you put your head down on your desk today. 

What was going through your mind?’). The interviews also gave students a chance to share 

their thoughts and perceptions about the IBI unit.  
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The interviews followed a semi-structured format, meaning the discussions were 

conversational in style but addressed important ideas related to the research questions. Each 

interview was audio recorded to facilitate later transcription. Example interview questions 

included: 

 

• How do you feel about your maths class? 

• Did you find anything in maths class difficult today? Why or why not? 

• Is there anything you would change about your maths class? 

• During class, I noted [insert behaviour]. How were you feeling at this moment? 

 

Facilitating students’ recall of previous lessons can be a challenge. There are advantages to 

using video footage from the lessons (called ‘video-stimulated recall’) to help refresh 

students’ memories. Showing relevant clips of key moments may have encouraged the 

student to share more. However, because the audio was not always discernible from the video 

recordings, I opted to have the students review their relevant notes and worksheets instead. 

Reviewing their notes from previous lessons facilitated good recall of the lessons and resulted 

in lengthier and more vivid student reflections than could have been achieved otherwise. 

 

In conducting an effective interview it is essential to acknowledge the inherent power 

imbalance between the interviewer and interviewee (Kvale & Brinkmann, 2015). For the 

most part this inequity is unavoidable, as the interviewer controls the context and content of 

the interview. However, reducing this imbalance and creating a comfortable atmosphere is 

often desirable in collecting authentic data (Seale et al., 2004). Establishing a rapport and 

trust-based relationship can help, such as showing an interest in the student and sharing 

previous experiences that do not compromise the study or interview (J. Johnson & Rowlands, 

2012). I sought to build relationships with the students in each case by establishing a friendly 

presence in the classroom throughout the IBI unit. Taking opportunities to join in on informal 

discussions helped me build trust with the students. In addition, I made sure to casually talk 

to the student before the interview as we walked to the room and got settled in our seats to 

put them at ease. Once in the room, I re-explained the purpose of the interview and ensured 

they were aware of their right to withdraw at any time. 
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One of the challenges in conducting good interviews is developing a high level of rapport 

with students quickly, and I found the above methods to work well. At the end of each 

interview I made sure to thank the student for their time and to also allow them to ask me 

questions about myself and my research. 

 

4.8 Theoretical sampling 
Real-world contexts make prescriptive methods challenging, especially as it relates to 

qualitative data collection methods such as observations and interviews. Overprescribing 

such collection methods upfront may lead to the researcher missing valuable insights that fall 

outside of tightly predefined collection parameters or failing to capture contexts that were not 

originally envisaged. Several methods can be used to minimise this. The first is to collect as 

much data as possible, while at the same time bearing in mind the ethical imperative not to 

collect data that is unlikely to be analysed. The second is to use a theoretical sampling 

approach. This study sought to achieve both. By using theoretical sampling, I continuously 

reflected upon the nature of the collection methods being used as well as the data being 

collected and modified the methods as needed. For example, within interviews, I altered my 

initial interview structure to allow for more open discussions with each student. Allowing 

such flexibility within the research design ensured useful data was not lost.  

 

4.9 Threats to trustworthiness 

A common criticism of case studies is the propensity for biases. The reliance on the 

researcher for large portions of the qualitative elements of the studies is where bias is likely 

to manifest. Within interviews and observations conducted under a post-positivist framework, 

researchers must seek to remain impartial and objective (to the extent that it is possible) while 

also retaining the flexibility to ensure sufficient data is collected. An overly structured 

interview would limit the ability of the researcher to engage with the subject and hear the 

‘story’. 

 

Conversely an unstructured interview can lead the interviewer to interpret data and change 

the substance of the interview on the fly, thus increasing the opportunity for bias to taint the 

data (C. R. Bailey, 2006). For this study, I used semi-structured interviews, in which I 

defined key objectives, pace, and language without pre-scripting. Within observations ‘the 
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qualitative case study researcher keeps a good record of events to provide a relatively 

incontestable description for further analysis and ultimate reporting’ (Stake, 1995, p. 62). The 

goal is ‘not to interpret relationships along the way, wary that moving to that level of thinking 

might alter the objectivity’ (p. 62). During the proposed study, I implemented such 

approaches to mitigate the risk of bias.  

 

Finally, as discussed above, the use of multiple data sources and different levels allowed me 

to triangulate findings from each case study, thereby increasing the trustworthiness of 

outcomes (Lincoln & Guba, 1985).  

 

4.10 Analytical approach 

As discussed above, case studies represent a broad class of research designs and, as in the 

present study, can provide a blend of quantitative and qualitative collection techniques. This 

inherent complexity in design also presents challenges in the analysis. 

 

In Yin’s (2017) comprehensive review of case study design he outlines the importance for 

researchers using case studies to approach data analysis with an ‘analytical strategy’ and an 

awareness of the ‘analytical techniques’ that may follow. Yin proposes four analytical 

strategies and five analytical techniques. I conducted the analysis using what Yin calls 

‘Relying on Theoretical Propositions’. Under this approach the analytical means are 

determined through the theoretical propositions that generated the research study.  

 

The theoretical framework used within this study calls upon ideas presented by Dweck 

(2017b) in which students’ implicit theories of intelligence can influence their academic 

performance and responses to certain types of mathematical problems. Also, I draw upon 

ideas by McLeod (1989, 1992, 1994) which describe the different beliefs that students may 

hold about mathematics. McLeod provides four main categories of beliefs: (1) beliefs about 

mathematics, (2) beliefs about self (under which I include mindset), (3) beliefs about 

mathematics teaching, and (4) beliefs about the social context. These four components 

provide the framework under which I explore whether the students’ beliefs were associated 

with their perceptions of the IBI unit or its effectiveness. The resulting framework for 

analysis is shown in Figure 4.5. 
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Figure 4.5: Categories used to describe student beliefs 

When analysing the data within each of the four categories, I sought to explore, where 

appropriate, whether the students’ beliefs were associated positively or negatively with the 

effectiveness of the IBI unit. This was done by evaluating the students’ attention on the task 

at hand, the depth of discussion (including level of questioning) within their groups or during 

whole-class discussions, responses to questions or challenges given by the teacher or myself, 

and the workings in their notebooks or worksheets.  

 

The McLeod framework guided the analysis by focusing my attention primarily on the ways 

students’ attitudes and beliefs affected their response to the IBI unit. An alternative approach 

to ‘Relying on Theoretical Propositions’ includes a ‘ground-up analysis’ (Corbin & Strauss, 

2015) in which no theoretical propositions are put forward, and data is analysed freely with 

the aim of noticing patterns. Given the extent to which the literature review has influenced 

my methods this approach feels inappropriate. Researchers using analytical strategies that 

rely on theoretical propositions must guard against the introduction of bias within their 

analysis. Such safeguards might include clear documentation of all data collected and 

rigorous use of rival explanations and propositions.  

 

In addition to Yin’s analytical strategy of ‘Relying on Theoretical Propositions’ I also make 

use of Yin’s analytical technique of ‘Explanation Building’ (2017, p. 141) in which ‘the goal 

is to analyze the case study data by building an explanation about the case’… ‘to “explain” a 

phenomenon is to stipulate a presumed set of causal links about it, or “how” or “why” 

something happened’ (see Figure 4.6). 

 

Beliefs about 
mathematics

Beliefs about 
self

Self-efficacy

Mindset

Beliefs about 
maths teaching

Beliefs about the 
social context
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Figure 4.6: An outline of the steps undertaken in analysing the data obtained 

Explore the data 

The rich data that lies at the heart of the case study design necessitates a substantial period of 

exploration and familiarisation. Table 4.3 outlines the various types of data that were 

collected in each case study, split between that which is natively amenable to quantitative 

analysis and that which is more qualitative.  

 

The collection of quantitative data took place at a whole class level, meaning all students 

within each case took the pre-test, post-test, ATMI, ITIS, and m-ITIS. Descriptive statistics 

of these tests and questionnaires were inspected to shed light on the association between 

student beliefs and the effectiveness of IBI. The results of these analyses supplemented the 

overall picture and helped to form propositions that shaped the exploration of the qualitative 

data. 

 

Table 4.3: Examples of data types collected 

Qualitative data Quantitative data 

Observation transcripts 

Interview transcripts 

Discussions with teacher 

Historic student records 

Environmental notes 

Scores on the latest standardised test 

Pre-test data 

Post-test data 

ATMI 

ITIS 

 

Explore the data

Make a theoretical statement or an initial explanatory 
proposition based on review of literature

Compare the finding of a case to this statement

Test rival explanations

Compare other cases
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All interviews and lesson observations were transcribed using the software ExpressScribe. 

Linguistic fillers, such as ‘err’ and ‘uhm’, were not included in the transcripts, however other 

paralanguage elements were documented. For the lesson observations, only talk that was 

clear and identifiable was transcribed (e.g. the teacher giving directions, a student explaining 

his or her solution to the rest of the class). This means most of the talk which took place 

among the students during the explore portions of each lesson could not be transcribed.  

Once the first round of transcribing was complete, I reviewed the written transcripts and 

listened to the audio recordings several more times. From this, I was able to ensure the 

quality of the transcription, as well as better internalise the tone the students used when 

speaking.  

 

I then applied an initial coding structure (Merriam, 2016). Under Yin’s ‘Theoretical 

Propositions’ strategy (2017) the initial coding structure was influenced by the research 

questions and the literature review as well as the data collection itself, and then gradually 

refined. The coding structure was first developed by interpreting each transcript line by line 

(within the context) and applying a code to each. However, subsequent steps and reworking 

of explanatory propositions (as well as rival propositions) necessitated multiple revisits and 

refinement to this coding structure. As Merriam (2016) points out, during the initial 

exploration the goal is to gain familiarity with the dataset, reduce the dataset, and begin to 

identify themes. I did this by looking for patterns across all the transcripts, consolidating and 

reorganising the codes as necessary. This process was repeated until several primary themes 

emerged. Please see Section 5.4.3 for the themes resulting from the interviews in the first 

case and Section 6.4.3 for the themes resulting from the interviews in the second case.  

 

In both cases, the same theme appeared to be expressed by multiple students but to different 

extents. In order to distinguish the relative strength of a particular theme expressed by 

multiple students, I employed intensity scoring (Boyatzis, 1998). Intensity scoring, in its 

simplest form, requires a researcher to simply count the number of times a code for a 

particular theme occurs in a person’s interview transcript. The greater the number of codes 

then the greater the intensity of the theme. However, this approach to intensity scoring feels 

inappropriate since some students spoke more than others and, moreover, segments of text 

coded to a particular theme varied. For these reasons, I chose to employ intensity scoring as 

the percentage of transcribed words in a given transcript coded to a particular theme. For 

example, if a student spoke about mathematics using 400 words and 100 of these were coded 
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to the theme ‘disaffection’ then this student would be assigned an intensity score of 25 for the 

theme ‘disaffection’. Please see Table 5.3 and Table 6.3 for the intensity scores presented in 

case 1 and case 2 respectively. 

 

Make a theoretical statement or an initial explanatory proposition 

The purpose of this stage is to formally acknowledge that through my literature review, I 

have formed some theoretical propositions. By stating these, they can be assessed as part of 

the analysis and modified or abandoned as needed. The goal of the proposition is to offer up 

an explanation as to how or why a phenomenon occurred, e.g. students with fixed mindsets 

give up on challenging problems sooner than those with growth mindsets. 

 

Compare the finding of a case to this statement 

The initial propositions were derived from an understanding of the literature and then 

compared to the data obtained in each case. In cases in which the data failed to support the 

proposition, it was necessary to consider a different proposition. 

 

This approach to analysing the data is not without risk, and it is possible that the researcher, 

through numerous iterations, may devise new theoretical statements which are incompatible 

with the purpose of the study and the research questions (Vaughan, 1992). Alternatively, the 

researcher may be accused of allowing the proposition to distort the interpretation of the data. 

To guard against this critique, I have kept comprehensive documentation of the data and have 

made thorough use of rival explanations. 

 

Test rival explanations 

Rival explanations are alternative hypotheses that explain the observed data. For example, 

when exploring the proposition that growth mindset is associated with positive student 

perceptions of IBI (see Section 5.4.3 and Section 6.4.3) several rival hypotheses were tested. 

For example, the four factors measured using the ATMI (enjoyment, motivation, self-

confidence, and value) were inspected to see if they were also associated with positive 

student perceptions of IBI. It turned out that these rival hypotheses did not fit the data 

(Section 5.2.2 and Section 6.2.2). 

 

Being mindful of rival explanations during the data-gathering phase helped to ensure data 

was collected that could address those rivals in the analytical phase. Rival explanations were 
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sought from the literature or emerged from the data itself. During this stage of the analysis 

rivals were considered, and the data were analysed to reject or not reject these rivals. In some 

cases, rival explanations could not be rejected, and these are put forward as areas for future 

study (see Section 7.5).  

 

Compare other cases 

The goal of a successful case study should be to advance an explanation or theory that fits 

each of the cases. In this regard, each case is powerful, and a single contradictory case can 

disprove a theory. Therefore, any propositions emerging from the data analysis should be 

supported or at least not contradicted, by both cases. Finding a theory is supported by 

multiple cases adds weight to its trustworthiness (see Section 4.8). 

 

Before moving on, it is worth highlighting an important consideration when looking at case 

study data, namely that a researcher should address all the data. If an explanation is to 

withstand critique it must avoid the accusation of selectively ignoring data that was not in 

support of it. The use of well-crafted rival propositions is one safeguard for this. 

 

4.10.1 Contextual factors 

There is an inexhaustible array of contextual factors that bear upon the external validity of 

this study. For example, both case studies were conducted in English-speaking schools in the 

United Kingdom. The proximity to influential centres of research (e.g. nearby universities) 

may have afforded a culture within these schools that was supportive of research studies 

within classroom ecologies. This affordance may constrain the applicability to other parts of 

the world. In addition, all classroom environments are unique and students’ previous 

exposure to IBI varied within each case. Furthermore, each case focused on secondary school 

mathematics and therefore its relevancy for other contexts is subject to future study.  

 

As a further contextual consideration this research required me to interact with the students 

during lesson observations and during interviews. The Hawthorne effect says that when 

human beings are aware they are being observed their behaviour is modified (Landsberger, 

1958). 
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Overall, the unique factors present within these case studies limit the extent to which 

conclusions may be applied to wider contexts. Furthermore, I cannot claim an unbiased 

interpretation of my data despite efforts to remain objective. As described previously (Section 

4.5), I interacted with students in both case studies much like their classroom teacher. I 

therefore adopt an attitude of reflexivity, in which I acknowledge my active role throughout 

the research process and the direct effect my presence and ongoing interpretations had on the 

results of both case studies. My choice of research questions, methods, and what should count 

as a finding have all been directly influenced by my past experiences as a student and teacher 

of mathematics and should, therefore, be viewed as a limitation of this thesis. 

 

4.11 Ethical considerations 

This study followed the BERA ethical guidelines (2018) and conformed to the ethics 

procedures laid out by the University of Cambridge. Central to the BERA guidelines is the 

idea of ‘voluntary informed consent’ (p. 9). According to BERA, participants ‘should be told 

why their participation is necessary, what they will be asked to do, what will happen to the 

information they provide, how that information will be used and how and to whom it will be 

reported’ (p. 9). The teacher in both cases determined the content of the mathematics 

instruction, and therefore, consent was not required for attendance throughout the IBI unit. 

However, participation in the questionnaires and interviews required consent. I, therefore, 

informed students and teachers of the research aims and obtained necessary consent (see 

Appendix E for consent documents). The only exception was that students were not informed 

of their attitude and mindset results as this was thought to unduly alter their behaviours. 

Students were made aware of their right to withdraw at any time. Any participant looking to 

exit the study would not have been influenced or coerced into remaining, though this 

situation never arose. The above information was written in simple language and reviewed 

with participants in advance (see Appendix E). 

 

The BERA guideline state that ‘all social science should aim to maximise benefit and 

minimise harm’ (2018, p. 4). As described in Chapter 2, it is thought that IBI approaches are 

unsuitable for students with mathematics difficulties. Therefore, the design of this research 

study could be accused of being unethical since it required students with MD to be instructed 

under an inquiry approach. Similarly, BERA states ‘researchers should take steps to minimise 

the effects of research designs that advantage or are perceived to advantage one group of 
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participants over others’ (p. 20). At the outset of this study, it was preconceived that students 

with fixed mindsets would underperform during IBI. Therefore, one could argue that the 

present study was unethical since it subjected students to an intervention that was predicted to 

be more advantageous to some students than others. However, these drawbacks are 

unavoidable as they hit at the central purpose of the study. As I outlined in Section 2.5, the 

definition of MD is poorly defined, yet teachers are regularly using such terms and student 

groupings to decide who gets exposed to IBI and who does not. Therefore, I argue that this 

research is necessary to ensure potentially inequitable practices do not take place in schools. 

However, in undertaking this study it is important to put in place methods to address any 

lingering concerns. Ensuring the intervention took place over a short period of time 

minimised these potentially harmful effects (see Section 7.4). Moreover, I shared growth 

mindset materials with the cooperating teacher at the end of the unit, which each teacher then 

shared with their students. 

 

4.12 Pilot study 
Before implementing the proposed methods in a full-scale study, it is beneficial to test if 

critical elements of the design are viable by running a pilot study (Yin, 2017). This is also an 

opportunity to trial some of the materials and methods to identify learning opportunities. 

Hence a small-scale pilot study was conducted in June 2017 (Rice, 2018).  

 

This pilot study was conducted over two IBI lessons in two U.K. secondary schools (one 

lesson per school). Students were given the ITIS, m-ITIS, and ATMI before the IBI lesson.  

Each lesson was observed by me. Following the lesson, several students were interviewed to 

determine their perceptions of the IBI. Overall, the pilot study was limited in scope but 

helped to address the following four key questions. 

 

Can the questionnaires be effectively administered and yield analysable data? 

The distribution of the questionnaire was effective in both paper and electronic form via 

SurveyMonkey. Outputs were analysable and yielded insightful content. Interestingly, the 

proportion of students identified as growth, fixed, and mixed mindset did not align with 

findings within the literature (Dweck, 2017b). There was a greater representation of mixed 

mindset than expected based on data collected during the pilot study. 
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Am I able to effectively observe a class experiencing IBI? 

The pilot study flagged some concerns regarding the ability to video a small group within an 

active classroom. While the video was not without useful material, at best it served as a 

supplement to extensive field notes. Also, the pilot led me to identify opportunities to 

increase the level of inquiry within the interventions and improve the EQUIP scores. This 

experience highlighted the need to engage with the teachers ahead of time to ensure a 

common understanding of the main features of an inquiry lesson. I incorporated these 

learnings into the main study.  

 

Does interviewing students yield insightful information into their beliefs about 

mathematics and IBI? 

Having conducted only four interviews, the insight from the pilot was limited; however, the 

material collected suggested that students were able to effectively reflect on their beliefs 

about mathematics and articulate their perceptions of IBI. 

 

Does the pilot study confirm the effectiveness of the proposed methods as a means to 

answer the research questions?  

Overall, I was encouraged to see several themes emerge from the discussions with students. It 

was clear that some students felt that IBI was empowering and fostered persistence and 

engagement. Other students felt the opposite and saw the lack of direction as a form of 

neglect by the teacher. Moreover, it appeared, from this limited study, that students with 

different mindsets expressed views of IBI as empowering to different extents (Rice, 2018). 

The fact that I was able to conduct the proposed methods on this small pilot and obtain results 

which appeared relevant to my research questions led me to conclude that the proposed 

methods would be an effective way to address the research questions as part of this more 

extensive thesis. 

 

4.12.1 Lessons learned and modifications to methods  

Following the pilot study, I modified several aspects of the methods. The use of video as a 

recall stimulant was ineffective. In light of the pilot study, the video footage was chiefly used 

to assess the EQUIP scores for the lesson and to supplement fieldnotes. In the place of the 

video footage, recall was stimulated by reviewing the student materials used during the 

lesson.  
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It was clear that the selected teachers had historically avoided inquiry-based teaching for this 

student group. As a consequence, the implementation of IBI was challenging, and EQUIP 

scores left space for improvement. For the full study, I was sure to discuss with the teacher 

how he or she might effectively administer IBI and what strategies might increase the EQUIP 

scores. The teacher also gave a practice IBI lesson with substantial feedback from myself 

based on the EQUIP. Finally, during the full study, the teacher and I established feedback 

discussions following each lesson to ensure opportunities to improve the inquiry score were 

implemented.  

 

Under the instruction of the headmaster, the interviews at one of the pilot schools were 

conducted under supervision from a teacher’s aide. This likely created a dynamic that 

impacted the data gathered. In the full study I engaged with the headmaster to address any 

concerns they had and ultimately ensured all interviews were conducted in private in a place 

suitable to the headmaster.  

 

4.12.2 Limitations of the pilot study 

Several elements of the full study were not tested in the pilot. The leading example of this is 

the use of a pre- and post-test to measure the students’ procedural and conceptual 

understanding. The pilot study included just one IBI lesson, so it was thought to be too short 

to measure learning effectively. The full study took place over a more extended period and 

consisted of seven lessons in Mr Scott’s case and eight lessons in Ms Silver’s case. 

 

In addition, the use of the bottom set as a proxy for students scoring below the 25th percentile 

on the standardised test, and therefore being within the criteria I have defined for MD, is 

problematic. Access to historical student test scores was not provided in the pilot study. It is 

possible that the lower sets I observed during the pilot were above average on a national scale 

and no students within either case fell below the 25th percentile. Of course, the requirement 

for access to student test scores must be balanced against the school’s consent. A justification 

for the class chosen in the first case is provided in Section 5.1.2 and a justification for the 

class chosen in the second case is provided in Section 6.1.2. 
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5 The Case of Mr Scott’s Class 
In this chapter I examine the results of a case study in which a class of secondary school 

students with mathematics difficulties were taught seven inquiry-based lessons (from now on 

referred to as the IBI unit). All students were observed throughout the unit and ten students 

were interviewed. Students completed a pre-test and post-test as well as three questionnaires 

designed to evaluate their attitudes towards mathematics, implicit theories of intelligence 

(also known as mindset), and mathematics-specific implicit theories of intelligence. For more 

details about the methods used in this study, please refer to Chapter 4.  

 

The study was designed to explore two research questions: (RQ1) How do students with 

mathematics difficulties perceive IBI? and (RQ2) Are students’ beliefs (e.g. mindset) 

associated with the effectiveness of IBI for students with mathematics difficulties? 

 

5.1 The setting 
The study took place at Harrison School6, a U.K. comprehensive secondary school, in the 

autumn term of 2017. Six months prior to the start of the case study, I sent an email sent to 

the Head of Mathematics7 at Harrison School, and several teachers expressed interest in 

learning more about the case study. After meeting with these teachers in the summer term of 

2017 and explaining what the case study would entail, Carl Scott volunteered to take part. He 

explained he was eager to learn more about IBI and was confident he would have the time to 

take on the additional responsibility. 

 

A recent Ofsted report rated Harrison School as a ‘good school’. The report described the 

school as having a positive culture in which pupils respect each other’s differences and 

exhibit good behaviour. Ofsted commended the school for the quality of its teaching and 

learning. 

 
6 All names, including school names, teacher names, and student names, have been changed 

to protect the identity of those involved in the study. 
7 The email address for each Head of Mathematics was found on their school’s online staff 

directory. 
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5.1.1 The teacher 

Mr Scott served as a mathematics teacher at Harrison School throughout the duration of the 

case study. Before joining the mathematics department at Harrison School, Mr Scott received 

his undergraduate degree in a mathematics related field. The case study was conducted during 

Mr Scott’s second year at Harrison School and fifth year teaching overall.  

 

Mr Scott described himself as a passionate teacher invested in his students. He explained he 

thinks it is important to get to know his students well before reading any historical reports. 

He incorporated light-hearted games into each of his lessons in order to get to know the 

students better. From a pedagogical point of view, Mr Scott described himself as a hands-on 

teacher who enjoys planning lessons that are interactive and incorporate plenty of student 

choice.  

 

5.1.2 The class 

Harrison School sets students into six sets for mathematics based on a combination of factors 

including their Key Stage 2 results, yearly Cognitive Abilities Test (CAT) results, and 

mathematics teacher recommendation. At the time of the case study, Mr Scott taught eight 

classes which spanned all sets and ranged from year 7 to year 13. In selecting the appropriate 

class, Mr Scott and I reviewed his lowest three sets (set 4, set 5, and set 6 classes). Please see 

Section 3.3 for more on how students with mathematics difficulties were identified in this 

study.  

 

Mr Scott and I considered the class size and instance of disability in each group. We also 

considered Mr Scott’s overall schedule and when during the week would be most manageable 

for him to meet with me. Mr Scott’s year 9 set 5 class was selected for the case study. There 

were 18 students in the class ranging in age from 12 to 13. 

 

Of the 18 students, ten were female and eight were male. Mr Scott shared with me that four 

students qualified for free school meals and seven for the pupil premium. On reviewing the 

school records for this class, it was identified that three students had Special Educational 

Needs (SEN) indicators, one with a speech and language disability, one with an emotional 

disability, and one with dyslexia. Thirteen students in the class had received literacy support 
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in the past. All students in the class met my criteria for MD (discussed in Section 3.3), 

meaning they were placed in a lower set and scored below the 25th percentile on the most 

recent standardised test. 

 

Mr Scott taught the selected class five times in every two weeks. He saw them every 

Wednesday morning, every other Thursday morning, and every Friday afternoon. Each lesson 

lasted for one hour. Following each Wednesday session Mr Scott had a one-hour planning 

period, therefore we agreed this would be used as an opportunity to discuss and reflect on the 

IBI lessons and student progress.  

 

First and second lesson 

 

Third lesson onward 

 

Figure 5.1: Mr Scott’s classroom arrangement during the IBI unit 

The classroom contained a large white board, table-desks, and student work hung around the 

room. The room benefited from ample sunlight with two of its four walls lined with large 

windows. A SmartBoard8 was mounted to the whiteboard at the front of the classroom, 

although Mr Scott said he did not use it for much more than displaying PowerPoint 

presentations and other media. 

 

 
8 A SmartBoard is an interactive display designed for use in classrooms 
(www.smarttech.com). 
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Student desks were typically arranged in rows, consisting of between four and eight students 

per row. The total student capacity of the room was 32. Whilst this was the typical 

configuration, the classroom was rearranged after the second IBI lesson to include table-

groups of four students each (see Figure 5.1). Mr Scott thought this would facilitate greater 

collaboration and discussion. 

 

5.1.3 Voluntary informed consent 

I introduced myself to the class in October 2017, explaining that I was a PhD researcher from 

the University of Cambridge and that I had previously been a mathematics teacher in the 

United States. I distributed and read the information sheet to the class which outlined the 

purpose of the study as well as what would be involved (see Appendix E for a copy of the 

consent materials). Students were asked to review the information sheet with a parent or 

guardian and then return the signed consent form indicating their willingness to participate in 

the study and interview by the following week. Having introduced myself, I stayed for the 

remainder of the lesson to answer any questions and make some preliminary observations. I 

noted the flow of the lesson led by Mr Scott and the good rapport between him and the 

pupils. 

 

Before the start of the study, all students returned the consent forms signed and indicated 

their wish to be included in the study. Ten students wished to be included in the interview 

process, with the remaining eight wishing to be excluded. 

 

5.2 Lesson development 
Mr Scott and I met several times before the start of the case study to plan lessons and 

assessments. All teachers within the school used subject specific ‘schemes of work’ which 

provided a timeline of the specific topics and learning standards the students were to cover. 

Accordingly, Mr Scott’s scheme of work indicated the pupils were scheduled to cover the 

topic measurement during the month in which the case study was to take place. Therefore, Mr 

Scott and I discussed the major learning objectives for the study’s IBI lesson sequence to 

cover the topic of measurement. These were aligned to the Pearson KS3 Maths Progress and 
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Edexcel GCSE (9-1) Mathematics curriculum9 being used at Harrison. This curriculum is 

aligned to Key Stage 3 of the National Curriculum. We agreed that, by the end of the unit, 

students should be able to: (1) recognise perimeter as a ‘distance’ (in cm for instance); (2) 

recognise area as a ‘space’ (in cm2 for instance); (3) calculate perimeters and areas of 

rectangles; and (4) calculate volumes and surface areas of cuboids.  

 
Figure 5.2: Mapping Mr Scott’s LO's to the National Curriculum 

It was anticipated that it would take at least six full lessons (60 minutes each) to achieve these 

learning goals. Mr Scott developed each lesson plan, typically one week in advance. 

Together, we reviewed the lesson plans to ensure they complied with a high level of inquiry. 

This was done with reference to the Electronic Quality of Inquiry Protocol (EQUIP; Section 

4.3), which gives guidance on the instructional, discourse, assessment, and curriculum factors 

related to quality inquiry teaching. 

 

Mr Scott’s teaching style might be best described as experiential. He preferred leading 

lessons that required students to be active. As such, many of the inquiry activities we 

 
9https://www.pearsonschoolsandfecolleges.co.uk/AssetsLibrary/SECTORS/Secondary/SUBJ

ECT/Mathematics/11-16-maths-story/W38411-16MathsGuideA424pgWEB.pdf 
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designed together required students to get out of their seats and engage in an activity. 

However, to provide a more balanced IBI experience across the case study we agreed to 

incorporate at least two lessons in which students engaged with purely desk-based inquiry. 

The purpose of this was to avoid students conflating IBI with simply getting out of their 

seats.  

 

5.2.1 Pre-test and post-test development 

Having selected the topic of measurement for the IBI unit, Mr Scott and I then constructed 

the pre-test and post-test (see Section 4.5). In all, the pre-test and post-test were composed of 

six questions of procedural knowledge and six questions of conceptual understanding. Mr 

Scott and I selected all six conceptual questions from previous National Curriculum 

assessments (known as ‘SATs’) which had been aligned to the Key Stage 3 programme of 

study. We selected two procedural questions from previous National Curriculum assessments 

and wrote four additional procedural questions. We did this by mimicking the form of 

procedural problems we knew the students would complete during the unit. Please see 

Section 4.5 for the definitions of procedural and conceptual knowledge used in this paper. 

 

The assessment duration was designed to take approximately 30 minutes (half of one lesson). 

Both the pre-test and post-test were administered under exam conditions within the students’ 

normal mathematics classroom. The pre-test was administered one week before the first IBI 

lesson. The post-test was administered one week following the last IBI lesson.  

 

5.2.2 ATMI, ITIS, and m-ITIS 

The Attitudes Towards Mathematics Inventory (ATMI), the Implicit Theories of Intelligence 

Scale (ITIS), and a modified Implicit Theories of Intelligence Scale (m-ITIS) were given one 

week before the start of the IBI unit, however on a different day to the pre-test (see Section 

4.4 for more details on the ATMI, ITIS, and m-ITIS). Students completed these 

questionnaires individually in the computer lab using the online platform SurveyMonkey. Mr 

Scott supervised the students while they completed the questionnaires.  
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5.2.3 Observation protocol 

To ensure detailed observations, I took handwritten notes in addition to audio recording and 

video recording each lesson. As described in Section 4.6, my notes were both descriptive and 

reflective (Creswell & Poth, 2017; see Appendix D for a sample of my observation notes). 

The main purpose of my written notes was to capture observations that would facilitate 

subsequent interviews as well provide a record of the lesson’s flow for future documentation 

and analysis. I also audio recorded the lesson. An audio recorder was placed on the teacher’s 

desk since this was located towards the front of the room where the teacher normally stood to 

give whole class directions (see Figure 5.1). As such it provided a valuable record of the 

instruction the students received as well as any verbal feedback and questions directed 

towards the teacher. Finally, I used a video camera set up at the back of the classroom 

(furthest from the white board) to record the lesson. This video aided my post-lesson 

reflections as well as development of tailored interview questions and later analysis. 

 

5.2.4 EQUIP rubric 

The purpose of the EQUIP rubric was to assess the level of inquiry in each lesson on a scale 

of 1 to 4: (1) ‘pre-enquiry’, (2) ‘developing enquiry’, (3) ‘proficient enquiry’, and (4) 

‘exemplary enquiry’ (please see Appendix A for copy of the rubric and Section 4.3 for a 

discussion of its use). One of my goals was to ensure that the majority of the lessons of the 

IBI unit met or exceeded the criteria for ‘proficient’. To this end, Mr Scott and I reviewed the 

rubric before each lesson was developed and discussed ways in which to achieve a high level 

of inquiry. In addition, I observed Mr Scott teach an IBI lesson before the intervention began. 

Following this lesson, we debriefed to grade the lesson as per the rubric and discuss 

improvement areas. The principal feedback from this practice lesson was to increase the 

amount of classroom discussion following the inquiry activity. 

 

5.2.5 Interview protocol 

All interviews were conducted at Harrison during the school day. A small meeting room near 

the reception desk was reserved for the interviews. Since only a few interviews were able to 

take place during Mr Scott’s lesson, most interviews took place during the student’s 

alternative maths lesson, or occasionally during their Art or Physical Education lesson. In 

every instance, I was given permission from the class teacher for the student to miss 

approximately 30 minutes of the lesson that day in order to be interviewed. Student consent 
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to miss class was also obtained. Scheduling conflicts meant it was not possible to avoid 

students missing classes. 

 

All students who consented to an interview were interviewed. I began each interview by 

reminding the student of the purpose of the study as well as their right to skip questions or 

end the interview at any time at their request. I also checked with the student that it was still 

okay for me to audio record the interview. The interview followed a semi-structured 

approach, with the five main topics to cover being: (1) feelings about mathematics, (2) 

perceptions of the IBI lessons, (3) impressions of teaching in IBI, (4) self-reported 

effectiveness of IBI on learning, and (5) handling impasses. 

 

For all interviews, I began with the question, ‘In general, what do you think about the subject 

of mathematics?’ Based on the student’s response to this initial question, I allowed the 

interview to flow naturally, being sure to keep the discussion broadly on track and cover the 

five main topics.  

 

5.2.6 Other data collection 

In addition to the questionnaires, pre-test, post-test, observations, and interviews, I also 

collected the students’ worksheets to supplement my observation data and analysis. These 

worksheets were also helpful in facilitating recall of the IBI lessons during student 

interviews. 

 

5.3 Overview of the IBI lessons 
Several IBI problems were chosen that aligned to the learning objectives (see Table 5.1). The 

problems were selected from a variety of sources including curricular websites, textbooks, 

and Mr Scott’s prior teaching experience. Each problem is presented in the table below 

alongside the lesson number in which the task appeared (L1 stands for Lesson 1, L2 stands 

for Lesson 2, and so on). Each lesson’s primary learning objective is also indicated. 
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Table 5.1: Overview of the seven IBI lessons at Harrison School 

 Learning Objective IBI Task 

L1 Assess prior 

knowledge of 

perimeter, area, and 

volume 

Stations problem 

1) Find the area of the following shapes. 

 

 

 

 

 

2) Find the perimeter of                 3) Find the circumference 

     the following shape.                      and area of the circle. 

 

 

 

 

4) Find the surface area and volume of the given cuboid. 

(Students given a manipulative like the one shown below.) 

 
L2 Recognise 

perimeter as a 

‘distance’ (in cm 

for instance) 

Basketball problem (part 1) 

Measure your school’s basketball court using any method. 

Describe how your group measured the basketball court. 

 

L3 Recognise area as a 

‘space’ (in cm2 for 

instance) 

Basketball problem (part 2) 

What is the court’s perimeter? How did you determine this? 

What is the court’s area? How did you determine this? 

 

 

 

 

 

5 5 

2 2 

3 
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Table 5.1 (continued) 

L4 Calculate 

perimeters and 

areas of rectangles 

Area and Perimeter PowerPoint 

   

   
L5  Calculate 

perimeters and 

areas of rectangles 

Equable problem 

Charlie has been drawing rectangles: 

 
The first rectangle has a perimeter of ___ units and an area of 

___ square units. 

The second rectangle has a perimeter of ___ units and an area 

of ___ square units. 

  

Charlie wondered if he could find a rectangle, with a side of 

length 10 units, whose perimeter and area have the same 

numerical value.  

 

Is it possible to construct a shape in which the numerical 

values of its area and perimeter are the same? 

(NRICH, n.d.) 
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Table 5.1 (continued) 

L6 Calculate surface 

areas of cuboids 

Toblerone problem 

Toblerone are making a new family sized bar. Each piece will 

have the following dimensions. 

 
The bar will consist of 12 equal pieces.  

What will the total surface area of the wrapper need to be? 

 

L7 Calculate volumes 

of cuboids 

Classroom volume problem 

How many of these water bottles do you think it would take to 

fill up our classroom? (Students given a 500 ml water bottle) 

 

 

5.4 Analysis 
This case study seeks to address the following research questions: (RQ1) How do students 

with mathematics difficulties perceive IBI? and (RQ2) Are students’ beliefs (e.g. mindset) 

associated with the effectiveness of IBI for students with mathematics difficulties? The 

following aspects of the data collected were analysed to address the above two research 

questions. Firstly, the lessons as implemented by the teacher and enacted by the students are 

analysed using the four rubrics of the EQUIP (Appendix L and Section 5.4.1). Then, evidence 

of students’ beliefs throughout the IBI lesson observations are analysed using McLeod’s 

(1992) framework (RQ2; Section 5.4.2). Next, students’ perceptions of IBI are analysed using 

Merriam's (2016) approach to coding (RQ1; Section 5.4.3). Finally, students’ learning 

outcomes as measured by the pre- and post-test are analysed using descriptive and bivariate 

statistics (RQ2; Section 5.4.4). Please see Section 4.10 for a complete description of my 

analytical approach.  
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5.4.1 An analysis of the quality of inquiry instruction 

With a view towards understanding students’ perceptions of inquiry instruction in 

mathematics, it is important to first establish whether the observed teaching unit could be 

characterised as inquiry (see Section 4.3). In Appendix L, I present a detailed assessment of 

the quality of the overall IBI unit, which consisted of seven lessons. I do so according to the 

four factors of EQUIP: Instructional factors, Discourse factors, Assessment factors, and 

Curriculum factors. I present a summary of this analysis in Table 5.2. As previously 

discussed in Section 4.3, the EQUIP is an instrument that has been validated for use in 

mathematics classrooms. For a copy of the EQUIP, please see Appendix A.  

 

Table 5.2 Assessment of the quality of the inquiry instruction in Mr Scott’s case 

Factor Sub-factor Level assessed Section 

Instructional 

Factors 

Instructional strategies Proficient Appendix L.1.1 

Order of instruction Proficient Appendix L.1.2 

Teacher role Exemplary Appendix L.1.3 

Student role Proficient Appendix L.1.4 

Knowledge acquisition Proficient Appendix L.1.5 

Discourse 

Factors 

Questioning level Proficient Appendix L.2.1 

Complexity of questions Proficient Appendix L.2.2 

Questioning ecology Proficient Appendix L.2.3 

Communication pattern Pre-inquiry Appendix L.2.4 

Classroom interactions Developing Appendix L.2.5 

Assessment 

Factors 

Prior knowledge Proficient Appendix L.3.1 

Conceptual development Proficient Appendix L.3.2 

Student reflection Developing Appendix L.3.3 

Assessment type Proficient Appendix L.3.4 

Role of assessing Proficient Appendix L.3.5 

Curriculum 

Factors 

Content depth Developing Appendix L.4.1 

Learner centrality Proficient Appendix L.4.2 

Integration of content and investigation Proficient Appendix L.4.3 

Organising and recording information Proficient Appendix L.4.4 
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As is shown in Table 5.2, the most common score assigned to the different components of the 

EQUIP was that of proficient inquiry. Therefore, the unit as a whole could be best described 

as meeting the requirements of proficient inquiry. 

 

Mr Scott was successful in leading instruction, discourse, assessment, and curriculum that 

met many of the goals of inquiry. Students were routinely asked to explore problems before 

instruction and discuss their ideas with peers. The classroom was highly student-centred, and 

Mr Scott assessed students’ understanding frequently. To have achieved a higher level of 

inquiry, Mr Scott could have provided more opportunities for students to interact directly 

with one another during whole-class discussions (without these interactions needing to be 

mediated by the teacher). In addition, students could have had more opportunities to reflect 

on their learning. 

 

One of the most important aspects of an inquiry lesson is the amount of time the students 

spend exploring the problem. EQUIP states that during proficient inquiry teachers ‘only 

occasionally lecture’. During the seven lessons observed, Mr Scott allowed students to 

explore the problems (either individually or with a group) for a substantial part of the lesson 

time, with the exception of L4 since this lesson was intended to serve as the ‘explanation 

phase’ of the two previous lessons.  

 
Figure 5.3: Time dedicated to administration, explanation, and exploration at Harrison 
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Figure 5.3 shows how the lesson time throughout the IBI unit was divided among 

administration, explanation, and exploration. Administration was considered to be tasks that 

the teacher and students completed in order to prepare to begin or progress the lesson, for 

example, taking the register or passing out papers. Explanation was considered any time a 

person (the teacher or a student) spoke to the entire class. This included explanations of the 

task or solution methods. Exploration was considered any time the students freely explored 

the IBI task. However, distinctions between explanation and exploration in a classroom 

context are not clear cut. It is possible that elements of exploration took place during the 

phases I coded as ‘explain’ and elements of explanation took place during the phases I coded 

as ‘explore’. 

 

5.4.2 An analysis of student beliefs throughout the unit 

In Section 5.2 I provide an overview of the seven one-hour lessons organised around the topic 

of measurement. These lessons were observed, video recorded, and detailed field notes were 

kept. In addition, student work (e.g. worksheets) was collected and reviewed. These data 

were used to analyse how students’ beliefs were evidenced and whether these beliefs were 

associated with their perceptions of the IBI unit as well as its effectiveness. In addition, the 

results of students’ responses to the questionnaires are used within this analysis to help 

consider the extent to which mindset impacted the effectiveness of the inquiry-based 

approach. The results of this analysis are presented in Section 5.4.3. 

 

Before discussing the beliefs that students expressed throughout the unit, it is useful to briefly 

present the results of the questionnaires the students completed prior to the commencement of 

the IBI unit: Attitudes Towards Mathematics Inventory (ATMI), Implicit Theory of 

Intelligence Scale (ITIS), and modified Implicit Theory of Intelligence Scale (m-ITIS). 

Please see Section 4.4 for a discussion of these instruments.  

 

5.4.2.1 Results of the ATMI, ITIS, and m-ITIS 

Eighteen students completed the two versions of the ITIS, one for general mindset and 

another for mathematics-specific mindset. The results of these are shown in Figure 5.4. 

 

Just over half of the students reported as having a fixed general mindset, which is higher than 

the 40 percent suggested in the literature (please see Section 2.9), but somewhat unsurprising 
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given it has been demonstrated that low attaining students tend to hold more fixed views 

(Snipes & Tran, 2017). The number of students with growth general mindsets is also different 

than literature would suggest, at only 11 percent. Alternatively, looking at the students’ 

reported mathematics-specific mindsets, the distribution is more aligned to the 40-20-40 

(fixed-mixed-growth) split expected from the literature. Somewhat surprisingly, students held 

more growth orientations according to the mathematics-specific instrument than they did 

according to the general instrument.  

 
Figure 5.4: Harrison School ITIS results 

 
Figure 5.5: Harrison School ATMI results 

The ATMI assessed students along four sub-scales: enjoyment of maths, motivation in maths, 

self-confidence in maths, and value of maths (please see Table 4.2 for a description of each 

term). Figure 5.5 shows the students’ responses to the ATMI categorised into low, mid, and 

high by sectioning the possible scores for each construct into thirds. For example, students’ 
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responses to the motivation construct could range from five to 25. Therefore, any score less 

than 12 was labelled ‘low’ and any score greater than 18 was labelled ‘high’. The remaining 

scores were labelled ‘mid’. This somewhat crude segregation of the data into thirds, while not 

based upon any established authority, allows for simple visualisation of the students’ views 

towards the ATMI categories. The students’ responses on each construct were mainly neutral 

(‘mid’), however a relatively large proportion of students expressed high value of maths and 

relatively low motivation in maths. 

 

5.4.2.2 Student beliefs emerging from observations 

As previously discussed in Section 4.10, I use McLeod’s framework of student beliefs to 

analyse how students beliefs were expressed throughout the IBI unit and to what degree these 

beliefs may or may not have been associated with the effectiveness of the IBI unit. The 

McLeod framework breaks students’ beliefs into four constructs: (1) beliefs about 

mathematics, (2) beliefs about self, (3) beliefs about mathematics teaching, and (4) beliefs 

about the social context. 

 

5.4.2.2.1 Beliefs about mathematics 

In this section I explore how students’ beliefs about mathematics were observed during the 

seven IBI lessons. These beliefs tended to fall within two sub-categories, the idea that 

mathematics is unrelated to reality and the idea that mathematics is something one ‘does’. 

 

Mathematics is unrelated to reality 

Across the seven lessons students were exposed to questions that varied from abstract 

mathematical problems (e.g. find the perimeter of a rectangle with given side lengths) to real 

world challenges (e.g. determine the amount of fencing needed to enclose a basketball court). 

By analysing the observations across these different problems, I was able to identify instances 

in which students’ beliefs about the nature of mathematics may have been implied. For 

example, during L1 a student questioned the usefulness of determining the area of several 

shapes.  

 

This is pretty useless. When are we ever going to need this? (Irene, L1) 
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The above quote by Irene, the sentiment of which was common amongst the students, 

suggests that Irene believed that the question bore no connection to her real life. Her 

engagement in the activity was low, despite several of her group members appearing to take a 

more active role. It is possible that Irene’s inability to connect the problem to something 

useful contributed to her apparent poor engagement. 

 

Conversely, there were several points across the unit in which students made connections 

between the nature of the mathematical problem they were facing and situations they had 

encountered in the real-world. Others have noted that this close connection between real-life 

situations and mathematics problems seems to provide an opportunity for greater engagement 

(Wang et al., 2018). For example, L2 and L3 required the students to tackle a real-world 

problem, namely how much fencing would be required to surround the perimeter of the 

school basketball court.  

 

T: We have a basketball hoop in our garden, but I can only use it when 

 dad is at work. 

R: Why is that? 

T: When I miss a shot the ball often hits dad’s car. 

R: So maybe you could work out how much fence you’d need at home 

too? 

T: We already have a fence around the bottom bit, just not up where my 

dad’s car is. 

(Tyler and Researcher, L2) 

 

The above exchange suggests Tyler has made a connection between the abstractness of the 

mathematical concept of perimeter with the realities of his own home life. He continued to 

talk excitedly about his garden and even drew out an imaginary line with his feet to 

demonstrate to his other classmates how big his home court was. Tyler stood in the middle of 

the basketball court and held out his arms, as if to pretend he was a human corner fence post. 

 

T: This would be about the size of my basketball garden.  

D: That’s a lot smaller. You’d definitely need less fence than this one. 

(Tyler and Daniel, L2) 
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This exchange highlighted not only that Tyler was beginning to apply the concept of 

perimeter to his real-life situations, but that this was having an effect on his classmate Daniel, 

who was able to relate to the discussion and join in.  

 

Making connections between the mathematics and the real world outside of the classroom 

might be one way in which students can challenge a belief that mathematics is unrelated to 

reality. Another approach might be to make the mathematics problem itself suitably 

authentic. For example, during L7 students were asked to estimate how many water bottles 

would be needed to fill their classroom. Whilst this task is more artificial than the basketball 

court task used in L2, it has the advantage of connecting the problem with the real-world 

space in which the students spend their time. When asking students for ways to measure the 

volume of the room in water bottles, the students were highly engaged in exploring the 

problem and making suggestions which connected to real life activities (e.g. swimming, 

going to the store).  

 

We could fill the room like a swimming pool! (David, L7)  

 

We could buy as many bottles as possible and just count how many will fit. 

(Michelle, L7)  

 

The exploration phase of this lesson was productive, and students applied a variety of 

approaches to solve the question of volume by measuring the dimensions of the room. In this 

case it appeared the real-world aspect to the problem resulted in greater exploration of the 

problem. The subsequent explanation phase led by the teacher suggested the students had 

developed an improved concept of volume, describing it as the amount of ‘stuff’ inside a 

space. Disappointingly, however, a review of the students’ handwritten notes suggest that 

most were not able to use the data they collected to develop a meaningful estimate.  

 

Despite these fleeting episodes of seeing maths as connected to real life, some students’ 

belief that maths is unrelated to reality persisted. Students often communicated ideas that 

maths, or at least the particular question under investigation, was not relevant to their real 

lives. The following exchange took place in L7 when students were attempting to find the 

volume of the classroom.  
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M: This is dumb. 

R: Why’s that? 

M: Because when are we ever going to fill a room with water? 

I: And with water bottles? It’s pretty pointless really. 

R: I agree it’s not likely, but one day you will want to fill something up. 

Like maybe your car for example? 

I: My mum lets me fill up the car every week, and I just keep pulling 

until it stops. 

R: Just the other day I used the volume of a box to figure how much 

packing peanuts I should buy to protect my friend’s present. And 

besides, the point might be to just investigate the problem for the fun 

of it. 

M: [laughing] So swotty.10 

I: [laughing] Yeah, that’s not for us. 

R: What does ‘swotty’ mean? 

M: Like kids in the top set.  

(Maddie, Researcher, and Irene, L7) 

 

This exchange continued for a few more moments before I left the students, who appeared to 

start working on the problem but contributed little to the follow up class discussion and 

whose written notes suggested little exploration had taken place. This exchange suggests that 

the students had poor motivation to understand the task in L7. In this case, their lack of 

motivation might have stemmed from seeing little connection between the task and their real 

lives.  

 

Mathematics is something one ‘does’ 

The second subcategory of beliefs about mathematics relates to the belief that mathematics is 

a series of procedures that are ‘done’, rather than concepts to be understood. As an example, 

during L1 I approached a group of six girls who were trying to solve the area of a rectangle. 

 

 
10 The term ‘swotty’ is an informal word sometimes used to describe someone who is overly 

concerned with academics, often to the exclusion of other activities such as socialising. 



 88 

L: What does area mean? 

E: Pretty sure that’s when you add up all the sides. 

(Linda and Erica, L1) 

 

The above exchange typifies the belief that mathematics means applying a procedure rather 

than a concept to which procedures can be applied. In this case Erica demonstrated her belief 

that ‘area’ is a procedure, rather than applying the more conceptual definition of area as a 

measure of space within a two-dimensional shape. This belief could impact the effectiveness 

of IBI, as students see the inquiry activity as a means of determining prescribed steps to solve 

the problem, rather than understanding the deeper concepts underlying the problem.  

This recurring belief emerged in other ways, such as students frequently asking for the 

answer or necessary procedure to apply. For example, when exploring the volume of the 

classroom the following exchange took place: 

 

E: We measured the sides of the room and this one here [pointing to a 

 diagram of the room]. 

L: So, do we add them? 

E: I don’t know, I don’t know what it means. 

L: When we did stuff like this the other day, we added them. 

E: Let’s ask Sir. 

(Erica and Linda, L7) 

 

The students were unable to get the teacher’s attention and subsequently disengaged from the 

activity to discuss off-task topics. Their belief that mathematics was a procedural ‘doing’ task 

meant that, absent the procedure, they were unable to engage further and therefore missed 

potential further learning opportunities.  

 

Later in the same lesson (L7), Mr Scott began to lead a discussion about how to find the 

volume of the room now that they had measured its length, width and height. One student 

called out during classroom discussion. 

 

Do we multiply them together? (David, L7) 
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Again, students were eager to know the required procedure. The curious tone under which 

David asked his question suggests he may have simply guessed at what the procedure could 

be without an underlying understanding of why.  

 

Another example occurred during L1 when a group of boys were exploring the concept of 

perimeter for a compound shape. One student was overheard saying: 

 

We haven’t been taught this. This looks different to that other one where we 

just added. (Timothy, L1) 

 

Whilst I was unable to continue observing the group’s conversation, a subsequent review of 

their worksheets indicated no attempt, and subsequently no observable learning, had 

occurred. Like previous students, Timothy seemed to believe that mathematics is primarily 

about ‘doing’ something with the numbers. In addition, he seemed to have the expectation 

that mathematics needs to be taught, with the teacher being the primary agent of knowledge. 

This may have contributed to the student’s failure to explore the problem further. Beliefs 

about mathematics teaching is discussed in Section 5.4.2.2.3. 

 

Another aspect to the belief that mathematics is something one ‘does’ is the idea that 

mathematics cannot emerge from collaboration. It was clear that some students felt that the 

procedural aspects to mathematics precluded the need for collaborative exploration. Student 

collaboration was often stunted when students realised no one in their group knew the answer 

or could recall a procedure. For example, when working on problems relating to area in L5 a 

group of boys appeared off-task. I approached to discuss their work. 

 

R: Do you know what you need to do? 

T: Not really. 

R: Does anyone in your group know? 

T: Nope. [The group laughs] 

R: Have you tried discussing it together? 

T: Not really, no. [Looks around at group members] 

R: Well what does everyone here think? What are we trying to do for this 

 problem? 
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D: We need to find a rectangle where the perimeter and the area are the 

same number. 

T: But Sir hasn’t told us the trick yet. 

(Researcher, Timothy, and Daniel, L5) 

 

This exchange suggests these students felt mathematics was something transmitted from 

someone who knew (in this case the teacher or possibly a peer) to someone who did not 

know. It would appear the students felt there was a correct way to approach each problem and 

it only remained for them to be taught the way, i.e. the ‘trick’. They failed to view the 

importance of exploration and as such missed out on the opportunity to develop an 

understanding of area. Again, this is closely linked with students’ beliefs about mathematics 

teaching which is discussed in Section 5.4.2.2.3.  

 

It is worth noting, however, that the belief that mathematics is not something that can result 

from collaboration was not universally adopted. There were times during the IBI unit when 

students acknowledged that their collective group was able to explore the problem more 

completely than if they were left to work on their own. They seemed to appreciate 

collaborative exploration was able to generate more ideas. When solving the perimeter of a 

compound shape in L1 a group had successfully arrived at the solution after an active 

discussion. 

 

R: Tell me about your group’s approach. 

E: Well I didn’t get this bit at first [pointing to upper left region of the 

compound shape (see Figure 5.6)] but then Linda had the idea, she 

said– 

L:  I thought you had to make sure you didn’t count this bit twice 

[pointing to the top side of the shape]. 

E: That got us the answer, but then Michelle did it another way. I mean 

we checked it a different way too. 

R: What did you do, Michelle? 

M: Well the whole thing looks a bit like a square with the corner folded 

down. So if you just do the long side times four it’s the same. 

R: Wow, great work. Sounds like you guys really worked well together. 
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E: Yeah, we figured that if we all looked at something a bit different then 

we’d eventually figure it out. 

(Researcher, Erica, Linda, and Michelle, L1) 

 

 
Figure 5.6: Perimeter problem from L1 

It would appear that these students were able to see that, through collaboration, they could 

explore the problem more effectively and construct new approaches that led to greater 

understanding. In addition, these students were demonstrating an understanding that there 

was more than one way to approach the problem and that a single ‘correct’ procedure was not 

present. In this instance the IBI approach had allowed the students to step away from the idea 

of mathematics as ‘doing’ towards mathematics as constructing understanding through 

collaboration. Students’ views of their peers throughout the IBI unit would later emerge as a 

central theme from the interviews (please see Section 5.4.3). 

 

A belief that is also closely linked to mathematics as ‘doing’ is the belief that to be excellent 

in mathematics requires extensive practice (e.g. ‘skill and drill’). This view of mathematics 

implies that memorization of seemingly unconnected procedures is required to be highly 

successful. As others have observed, students often nuanced their beliefs about their skills in 

mathematics across the multidimensionality of the subject (Leder, 1987). For example, they 

might say they were ‘good at fractions’ but ‘bad at algebra’. 

 

5.4.2.2.1.1 Summary of beliefs about mathematics 

The above section highlights instances when students’ beliefs about mathematics, as outlined 

by McLeod (1992), were observed and how some of these beliefs may have interacted with 

the perceptions and effectiveness of the IBI unit. Students initially struggled to connect the 

relevancy of mathematical problems to their real lives, and this behaviour was often 

associated with low motivation and engagement levels. However, the IBI lessons appeared to 
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create opportunities for students to make connections between the mathematics and real-

world problems, thereby breaking down some of the abstract barriers that students may have 

held. These connections appeared to stimulate the exploration phase of the problem solving. 

However, it was not abundantly clear this led to increased learning. 

 

Students frequently felt that mathematics was something one ‘does’, in the form of a series of 

procedures, rather than something one understands on a deeper conceptual basis. Although 

this was not universally true, and some students were able to use the collaborative group 

exploration part of IBI to recognise that mathematics need not be limited to carrying out 

procedures but rather could include developing new ideas with their peers. 

 

5.4.2.2.2 Beliefs about self 

In the following section, I present observations of students’ behaviours indicative of beliefs 

about self in two primary categories: student self-efficacy toward mathematics (Bandura, 

1997) and student mindset (Dweck, 2017b). 

 

5.4.2.2.2.1 Self-efficacy 

IBI requires students to explore novel problems without having a clear understanding of the 

mathematics concepts or procedures needed, but for which they have some prior knowledge 

(e.g. the properties of rectangles), as discussed in Section 2.2. Success with this type of 

instruction calls upon students’ self-efficacy towards mathematics, sometimes referred to as 

confidence. Students with low self-efficacy in mathematics might find the exploration aspect 

of IBI challenging. In observing the IBI unit, there were several times when students’ beliefs 

about their ability manifested, typically with the result that learning or engagement in the task 

was reduced. For example, during L4: 

 

T: Do you know what you are supposed to be doing? 

K:  [shrugs] 

T: Which question are you on? 

K: I don’t know… 

T:  It looks like you’re on this one. 

K:  Yeah, but I don’t know what to do. 

T: This is just like the one we did last lesson. Do you remember? 
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K: I didn’t get it last time either. I’m not good at these. 

(Teacher and Kevin, L4) 

 

This interaction, which typifies several similar interactions with different students, suggests 

that Kevin’s self-efficacy for this problem type is low. The result of this belief appears to be a 

diminished willingness to engage in the task. Following the above exchange, Kevin placed 

his head on the table for several minutes, after which he distracted others around him by 

making faces. An alternative explanation is that Kevin’s inability to engage fully with the 

task is due to his having a fixed mindset (as measured by the mathematics-specific ITIS). 

Students’ mindset beliefs are discussed further in Section 5.4.2.2.2.2. 

 

In a separate exchange during L1, I observed a group of three boys and one girl handling a 

rectangular prism manipulative. The boys were off task while the girl, Heather, was diligently 

working on her worksheet.  

 

R: Are you all finished? 

H: Heather knows how to do it. 

T: That’s great, but it's important that you understand how to do it too. 

 Make sure you are talking and checking with each other, please. 

(Researcher, Henry, and Teacher, L1) 

 

In this example, Henry does not seem to believe he knows how to complete the problem so 

defers to Heather. Perhaps he and the other group members (James and Steven) doubted their 

abilities to add value to the activity (i.e. low self-efficacy) and allowed their more competent 

peer to shoulder the work. Mr Scott’s interjection was timely and helpful in reminding these 

students a key element of IBI is that of exploration (in this case through collaboration with 

peers). The effect of the teacher’s prompting was favourable, and the group appeared to be 

discussing things together after proceeding to the next problem. An inspection of Henry’s 

notes suggested increased working during the problem immediately after the rectangular 

prism problem.  

 

An alternative explanation for Henry’s actions is that he believes the only thing that matters 

in mathematics is getting the correct answer. Henry might have high self-efficacy for the 

problem they are working on, but what does it matter when the correct answer is already in 
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hand thanks to Heather? With this view, allowing Heather to work on the problem while 

Henry and the other group members do something else is perfectly acceptable. It might even 

be viewed as a more economical use of their energies.  

 

Often the students exhibited high self-efficacy in ‘doing’ mathematics as it pertains to 

procedural knowledge, but low self-efficacy in understanding mathematics on a deeper level. 

They were uncomfortable exploring the problems and were frequently seeking the formula 

(the procedure). In the below exchange John and Alex discuss how to use the measurements 

for width, height, and length of the classroom to determine the volume.  

 

J: I don’t get what we do with this now. 

S: Add them together? 

J: But for the area we timesed them together, like this one and this one 

 times together [pointing to the length and width]. 

S: But then what about this? [pointing to the height and the width]. 

J: Multiply again? 

S: Or maybe you add them? 

J: Sir, we aren’t sure what to do. 

T: Alright, tell me what you’re thinking so far. 

S: We were thinking maybe you add them together … or-- 

T: Maybe think about just the height for a moment. How does just the 

height help you here? Think about that and you’ll be closer to finding 

the formula. 

(James, Steven, and Teacher, L7) 

 

In this exchange the boys exhibited some positive behaviours, by exploring and discussing a 

few different ways in which volume may be calculated. However, the discussion quickly 

focused on the procedure and guessing what to do with the numbers rather than trying to 

conceptualise what the numbers meant. As such, the boys’ exploration was shallow and 

terminated with the incorrect idea that adding the product of length times width with the 

product of height times width. Mr Scott’s response could have had an unhelpful effect by 

reinforcing the boys’ beliefs. By telling the boys they will get ‘closer to finding the formula’ 

he implied that the formula was the ultimate goal. This might serve to deepen the boys’ 
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beliefs that success in this problem, and perhaps maths more broadly, is to find the correct 

procedure. 

 

A similar event was observed during L1 when students were exploring the perimeter of a 

compound shape.  

 

T: What has this group found about the problem? 

D: Nothing really. 

T: What sort of things have you tried? 

D: None of us gets any of it. 

(Teacher and David, L1) 

 

Mr Scott proceeded to instruct the boys by redrawing the shape on their worksheet. He 

labelled each side and worked through the process of solving. David, assuming the role of 

spokesperson for the group, responded. 

 

D: Oh yeah, I get it. It makes loads more sense when you explain it like 

 that. 

T: Okay, that was one way to solve it. Can you think of another slightly 

different way? 

(David and Teacher, L1) 

 

Under the IBI philosophy, the decision of Mr Scott to show the students the solution, as in the 

above exchange, may have taken away an important learning opportunity. IBI relies on these 

impasses as valuable learning opportunities (Doerr & Tripp, 1999; Goldin, 2014; also see 

Section 2.3). By overcoming these impasses students develop an awareness of their 

knowledge gaps, thereby facilitating subsequent explanation. Therefore, the decision of the 

teacher, whilst appropriate under a direct instruction teaching model, was arguably a poor 

choice in the case of IBI since students had not had sufficient opportunity to explore the 

problem and gain awareness of gaps in their knowledge.  

 

The teacher’s willingness to solve the problem for the group may propagate learned 

helplessness amongst the students (Dweck, 1975; Yates, 2009). Learned helplessness is the 

idea that a student’s self-efficacy can be reduced through teaching practices that promote the 
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over reliance upon others as the source of knowledge, and the under reliance upon their own 

abilities. However, Mr Scott did attempt to re-inject a sense of self-efficacy and inquiry with 

his parting comment, encouraging students to try and find ‘another slightly different way’ of 

solving the problem. Sadly however, this was insufficient to stimulate the group, who 

neglected to attempt any further approaches having felt satisfied that they had the answer.  

 

There were also observed instances where students appeared to hold high self-efficacy for 

mathematics, and these were typically associated with a more positive reaction to the IBI 

problems. 

 

S: Miss, is this right? 

R: Well, do you think it’s right? 

S: I think it’s right because it’s similar to the one on the board but this 

 one is just bigger. 

R: Well I think it looks right too. How did you feel about the problems? 

S: They are okay, I find them quite easy. We did harder stuff last year. 

R: You did harder topics with Mr Scott last year? 

S: No, not Mr Scott. I was dropped down a set last year because my tests 

weren’t good. It’s not that I can’t do maths, I just don’t do good on the 

tests and miss my homework. 

R: How do you feel about that? 

S: It’s alright, I miss my old mates a bit. I’m pretty good at maths, so 

hopefully I can get back up to middle set next year. 

(Susan and Researcher, L4) 

 

In this example Susan clearly expressed a favourable view towards her mathematics ability, 

and this manifested as an expressed desire to do well. Her efforts on the problem set as well 

as her expressed desire to move up a set are possible sources of motivation. As discussed in 

Section 2.3, there is a positive correlation between motivation and performance, and in this 

case, Susan stood out as being one of the most motivated across the entire IBI unit. 

 



 97 

5.4.2.2.2.2 Mindset 

The above discussion explores how students’ self-efficacy beliefs may have been associated 

with the way they perceived and performed during the IBI unit. Here, I discuss observations 

that suggest students' mindsets and the ways these mindsets may have been associated with 

their perceptions and performance during the IBI unit (see Section 2.9 for a discussion of 

mindset). In addition, I bring together student observations with the results from the ITIS and 

m-ITIS where relevant. One of the most common ways in which students expressed mindset 

is typified in the below exchange, which took place during L5. 

 

R: Have you made any progress? 

D: No. 

R: Okay, where are you struggling? 

D: I don’t know. I think I’m supposed to work out the area and the 

 perimeter? 

R: Yes, for different rectangles. 

D: Yeah, but I don’t know what numbers to put in. 

R: You are trying to find a shape where the area and perimeter are the 

same number. You did something similar earlier [pointing to earlier 

workings]. 

D: Yeah, I was good at that bit. I don’t work like this though. 

(Researcher and Daniel, L5) 

 

Here Daniel is expressing a view that suggests, at this point in time, he is holding a fixed 

mindset about this task. His final comment, ‘I don’t work like this,’ was a common sentiment 

that others expressed and suggested that Daniel believed he had some inherent way of 

working, and that this problem conflicted with that inherent way. It is worth noting that 

Daniels’s m-ITIS results suggested that he held a fixed mindset, so the above comment was 

consistent with that result. The above interaction with Daniel might also suggest yet another 

example of a student’s belief that mathematics is something one ‘does’, by which Daniel 

viewed the problem as searching for formula inputs, rather than searching for meaning or 

understanding.  

 

In a separate example, during L6, the following exchange took place. 
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L: Is it done like that? 

S: I don’t think so. You have to add them all up. 

L: How do you remember this stuff? 

S: [shrugs] 

L: You’re dead good a maths. It’s not my thing, but you’re dead good. 

(Linda and Susan, L7) 

 

Here Linda, who obtained a fixed general mindset and a mixed mathematics mindset, 

expressed what could be viewed as fixed mindset views towards the subject of mathematics. 

Linda’s suggestion that maths is not her ‘thing’ might be indicative of a belief that people 

have inherent, immutable ‘things’ they are good at, rather than the view that people can 

become good at things they put time and effort into. In this case, Linda is commenting 

holistically on mathematics as a subject (‘…maths. It’s not my thing’) rather than limiting her 

statement to the unit at hand. The suggestion that Linda might be expressing a fixed 

mathematics-specific mindset, despite having appeared as mixed from her responses to the 

m-ITIS, is consistent with the idea that students’ mindsets can oscillate over time (see Section 

2.9). In this collaboration, Linda frequently deferred to Susan when reaching an impasse, 

contributed few ideas to the group’s discussions, and tended to limit her contribution to 

praising others or off topic discussions. 

 

Another observation which seemed to suggest student mindset appeared in the following 

exchange during L4.  

 

T: How are we getting on here? 

J: I don’t know, not great. 

T: Do you know what you are supposed to be doing? 

J: We have to put numbers in here. 

T: What numbers do you think the question is asking for? 

J: I don’t know … my brain’s not very good at this. 

(Teacher and Jackie, L4) 

 

Mr Scott then helped to explain the major vocabulary terms in the question and went on to 

discuss some of the work done in the prior lessons. This had a favourable effect, and the 

student demonstrated improved effort. The exchange might suggest that Jackie holds a fixed 
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mindset. Jackie outsourced the blame to her ‘brain’ which suggests she felt the struggle she 

was facing was inherent. It is possible that this mindset led Jackie to not fully engage with the 

task, which reduced her opportunity to learn. 

 

The exchange in L1 between Erica, Linda, and Michelle (Page 91) might also suggest how 

mindset drives behaviour. Erica’s comment (‘…we figured that if we all looked at something 

a bit different then we’d eventually figure it out.’) is indicative of a student who believes that 

successful outcomes can result from time and effort. This is a key feature of growth mindset. 

Erica recognised that with enough trying this group would eventually succeed or ‘figure it 

out’. This apparent observation of Erica’s mindset, however, does not fully align with her m-

ITIS result which indicated a mixed mindset in mathematics. It might be possible that Erica’s 

beliefs about her own intelligence, coupled with her perceptions of the IBI challenge, allowed 

her to see the benefit of the group’s initial struggle and effort. Her fellow group members, 

Linda and Michelle, obtained m-ITIS scores which indicated a mixed and fixed maths 

mindset respectively. From my observation records it is unclear how the group interacted 

prior to this discussion as the audio and video quality at this time were poor. It would be 

interesting to explore how small groups with participants of varied mindsets interact. Could 

cooperative groups develop collective mindsets? Areas for further study are discussed in 

Chapter 7. 

 

The teacher can play an important role in priming students’ mindsets (Burns & Isbell, 2007). 

There were occasions when Mr Scott said things during the lesson which might have 

encouraged fixed beliefs.  

 

Excellent, Heather. Did everyone hear that? [pause] You should all be 

listening. Heather is our top student. (Teacher, L6) 

 

Unknowingly the teacher’s reference to Heather as the ‘top student’ could perpetuate a belief 

that mathematics is something that some people can do well, and others cannot. Without 

knowing the wider context of this classroom beyond this study I am unable to be sure that the 

use of the phrase ‘top student’ was not a regular, equitably distributed, title given out by Mr 

Scott. However, over the course of my observations, this was the only time this specific term 

was used. 
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Another example of this came following L1 when students gave a thumbs-up or thumbs-

down as part of the whole class reflection. Several students held their thumbs down, 

indicating they did not feel the lesson went well. 

 

Some of you probably found that difficult, and that’s okay. It’s probably just 

not your thing. You will find other stuff which is your thing. (Teacher, L1) 

 

Clearly this comment does not help students build a belief that mathematics is a learnable 

discipline.  

 

5.4.2.2.2.3 Summary of beliefs about self 

In the above sections, I have discussed several observations which suggest students’ beliefs 

about self. Students often demonstrated low self-efficacy. This seemed particularly true when 

it came to the exploration of novel problems and developing deep understanding of 

mathematical concepts. Students frequently attempted to jump to the formula as a means of 

answering the problem. The fact that IBI shies away from providing the formula upfront 

meant students’ low self-efficacy became particularly evident. This overlaps with the above 

discussion about students’ beliefs about mathematics.  

 

Furthermore, the role of the teacher in propagating these beliefs was observed during several 

lessons. On more than one occasion the teacher may have stunted opportunities for deeper 

thought by intervening with direct instruction to a struggling group or individual. Finally, 

students’ fixed mindset views were often expressed through comments such as ‘my brain 

doesn’t work that way’ or ‘maths is not my thing’. These fixed views were frequently 

associated with underperformance on the IBI tasks. Growth mindset comments were also 

observed, with some students suggesting a recognition of the link between effort and 

outcomes. These instances were frequently associated with students or groups that had 

persisted through difficulties on a given task.  

 

5.4.2.2.3 Beliefs about mathematics teaching 

Through many years of schooling students begin to develop a series of beliefs about the way 

in which mathematics should be taught. These beliefs typically revolve around the role of the 

teacher (Boaler, 1998; Makar & Fielding-Wells, 2018; Op ’t Eynde et al., 2006). In direct 
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instruction, the role of the teacher is seen as the excerpt in the room and the source of 

knowledge. This type of instruction tends to focus on skill transmission and procedural 

understanding, without necessarily a heavy focus on conceptual understanding, as might be 

found in inquiry based environments (J. C. Marshall & Horton, 2011). At various points 

during the IBI unit students expressed views that demonstrated their beliefs about the way in 

which maths should be taught.  

 

Mr Scott had explained to me before commencing the unit that this group of students had 

little previous exposure to IBI, particularly within a mathematics context. He echoed this 

sentiment to the students when he introduced the unit during L1, emphasising they were 

about to experience a ‘different’ type of learning. In some cases, I was able to observe 

students expressing favourable views towards the new working style. For example, below is 

an excerpt from a discussion between a small group of students whilst waiting to rotate to the 

next station during the L1 exercise.  

 

L: These are hard. 

M: Yeah, kind of. This one wasn’t too bad. 

L: I’m not sure I get it. I’ll get it better when he [the teacher] explains  it. 

M: It’s better than bookwork. 

L: Yeah. 

(Lisa and Maddie, L1) 

 

The above discussion suggests several examples of the students’ beliefs about the way in 

which maths should be taught. Firstly, Lisa, a student who is unsure of the relative value of 

the exercise, made the comment, ‘I’ll get it better when he [the teacher] explains it’, 

suggesting the student felt she would develop a better understanding for the subject from the 

direct instruction of the teacher, and not from the shared knowledge of her peers or from her 

own exploration. Perhaps this student felt that the role of the teacher is that of explaining and 

the role of the student is that of understanding, and that by learning via inquiry they were not 

really learning (at least not until the explanation phase). Others have noted this behaviour, 

whereby students seem reticent to learn via IBI (Makar & Fielding-Wells, 2018). 

 

In addition, the excerpt suggests that students found the IBI approach different and, in the 

case of Maddie, more enjoyable than their normal classes which were more focused on 
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completing exercises from the textbook. These students’ comments suggest they enjoyed the 

new structure, despite apparent difficulty with the task. This is a theme I explore further 

within the analysis of the interview data (Section 5.4.3). 

 

During L2 and L3 the students spent most of the time exploring the question, ‘What is the 

perimeter and area of the basketball court’? Towards the end of L3 one student called out, 

‘Do these always take so long? We’ve only done one problem’. Similar sentiments were 

repeated by other students and highlight the different nature of IBI activities as compared to 

the maths lessons they were accustomed to. Students may have been familiar with teachers 

breaking down problems and providing focused instruction followed by shorter practice 

exercises. Perhaps for this reason, students seemed to believe this was how all mathematics 

teaching should be done. The students did not appreciate the role of exploration in learning 

and perhaps felt that by taking so long over a single problem they were not learning as much 

as they would if they covered more problems. This could also be linked to the belief that all 

mathematics problems can be solved in less than ten minutes (Schoenfeld, 1985).  

 

During a discussion between the teacher and a group of girls, the teacher probed the students’ 

feelings about the lesson.  

 

T: How are you guys finding this today? 

J: It’s a bit different really. 

T: What is different exactly? 

J: Well we aren’t just sitting down doing questions, we are up and 

 about. 

T: And is that good or bad? 

J: Well it’s mostly just different. I suppose it’s good because I like 

moving about in class and you get to really understand the question by 

talking it out. It’s tricky but it’s good, and it’s a bit different. 

E: I like the moving about bit, but don’t like when you don’t know what 

to do or when others don’t know either. It’s hard because you said we 

can’t ask you and normally we’d ask you. I mean it’s good and all, but 

if we’re stuck– Like in a normal lesson we’d ask you, but today we 

can’t really, and we just have to try figure it out. 

(Teacher, Jackie, and Erica, L2) 
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This exchange suggested a series of beliefs students held. In the first instance students 

repeated the view that the lesson was different to their normal classes. Through probing, the 

teacher was able to explore the nature of these differences. Jackie suggested a view that the 

new ways of working were enjoyable, partly due to the collaboration, movement-based 

activities, and partly because the style of working allowed for a deeper understanding of the 

material. This student had made a connection between the investigation and being able to 

‘really understand’. Erica, however, raised some beliefs that were common during the IBI 

unit. It seems Erica was accustomed to using the teacher as the agent of knowledge when she 

got stuck. It appears she expected the teacher to facilitate her overcoming any impasses, and 

therefore felt ill equipped to tackle these impasses alone during the IBI. Clearly this belief 

would have an impact upon how the students perceived the IBI lessons. 

 

In some cases, it appeared that students felt the lesson so strongly violated their 

understanding of the role of the teacher that the result was a total refusal to engage in the 

task. For example, during L5, whilst the students were exploring rectangles with perimeters 

and areas that were numerically the same, the following exchange took place.  

 

R: Have you had any success with this one? 

T: No. 

R: What have you tried so far? 

T: Dunno. 

R: Do you understand the question? 

T:  Not really. 

R: We already saw an example where the area was bigger than the 

perimeter. That one is on the board, and we have seen rectangles 

where the perimeter is bigger than the area. We are now trying to find 

an example where the perimeter and area are the same number. 

T: He hasn’t told us how though… 

R: Perhaps you could try it out anyway. 

T: If he’s not gonna bother explaining it then why should we bother 

 trying to work it out? 

(Researcher and Timothy, L5) 
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Following the above exchange Timothy placed his head on the table and refused to reengage 

with work. Sensing that further persistence might be counterproductive I left Timothy, but 

observations from across the room indicated he remained disengaged until the teacher began 

discussing possible solutions. Perhaps the IBI approach so conflicted with Timothy’s 

understanding of his role within the classroom (as the recipient of knowledge), and that of the 

teacher (as the transmitter of knowledge), that he was unable to adapt to the new instructional 

approach. 

 

5.4.2.2.3.1 Summary of beliefs about mathematics teaching 

This section discussed whether students’ beliefs about mathematics teaching were associated 

with their perceptions and the effectiveness of IBI. Students appeared to hold a number of 

beliefs, the first of which was that learning mathematics is best done by solving many short 

problems rather than one long one. Students seemed surprised that a single problem, such as 

finding the area and perimeter of the basketball court, could take two whole lessons. 

 

The second belief centred around the role of the teacher as the transmitter of knowledge and 

the role of the students as the recipients. IBI seemed to challenge this belief, and as such, 

some students struggled with the shift in responsibility. Several students felt that the new 

approach allowed them to develop deeper knowledge, or ‘really understand [the problem]’, 

which aligns with the views of IBI proponents.  

 

5.4.2.2.4 Beliefs about the social context 

The social context includes the way students interact with each other, as well as the way they 

see mathematics as part of the broader society (McLeod, 1992). IBI requires students to 

challenge their beliefs and the beliefs of others. Challenge was frequently observed between 

group members, such as the below exchange whilst finding the area of a triangle in L6. 

 

S: Why do you have 8? Isn’t it 16? 

J: It’s a triangle, so you have to halve it. 

S: But I thought for area you have to multiply. 

J: Yeah, but it’s not a rectangle. The ends are triangles. 

S: I still can’t see how you got 8. I’m going to stick with 16. 

(Steven and James, L6) 
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The students in this group appeared to feel comfortable with challenging each other when 

they disagreed. Steven’s final comment would seem to suggest that he was happy to ‘agree to 

disagree’ and stick with his answer. However, despite his apparent resignation Steven 

actually revisited this problem quietly and eventually proclaimed, ‘I see how you got 8 now. I 

was counting this bit two times.’ The feeling of being challenged, and the social context, in 

which Steven had clearly and publicly disagreed with his peer, led him to re-work his 

approach. This sort of interaction may help reinforce the sense that mathematics is something 

that can be shared and collaborated on in a social way, with the result being an improved final 

answer.  

 

The above exchange highlights how IBI may have allowed students to move towards a whole 

group consensus through discussion. There were occasions, however, when the outcome was 

less consensus and more socially democratic. For example, when exploring how to approach 

the volume question in L3, Michelle and her group were debating how to best measure area. 

 

M: We could walk all over the court and count footsteps again? 

J: Maybe, but how would you keep track of where we stepped already? 

K: Can we choose something that won’t take forever!  

M: But Sir said to think of measuring area like we did with perimeter… 

J: We could use something big like bedsheets maybe…? 

M: I like that! 

K:  Brilliant, done. 

(Michelle, Jasmine, and Kevin, L7) 

 

The above exchange shows students taking a more democratic approach to a problem. This 

type of debate may suggest students believe mathematics to be less black and white and more 

socially derived. Such opportunities are common with IBI and allow students to develop a 

more nuanced view of the mathematical world, one in which people’s opinions can differ and 

this difference can influence the solution.  

 

A similar example was seen during L2 when a group of girls were attempting to measure one 

side of the basketball court. The girls initially attempted to measure by estimating the length 

of a metre. Through a combination of arm stretches and leg paces they were debating just 
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how long a metre was. However, the group observed a separate group of students measuring 

the length in feet (heel-to-toe). Upon contrasting their approach with that of the other group, 

the girls decided to abandon their original idea and instead adopt that of their peers. Whilst 

neither group were outright challenging each other, the girls were comfortable with seeing a 

contrasting method which conflicted with their own and adapting their approach in response. 

Perhaps the IBI lesson created opportunities for these students to realise that aspects of their 

social context, namely their peers, might be able to help them when tackling mathematical 

problems.  

 

During L7 the students were estimating how many water bottles it would take to fill the 

classroom. 

 

D: Let’s measure using my height again. 

J: But how does that help? We should measure in bottles. When would 

we ever want to fill a room with you? [laughing] 

D: When would we ever fill this room with water! 

T: Can you think of a time when you might want to know how much 

water it would take to fill something? 

D: I have a fish tank at home. 

T: And how do you fill it? 

D: Well you don’t fill it really. You empty half out and then use a bucket 

to fill it back up again. 

J: We do the same with my sister’s fish tank, but she uses the hose. It’s a 

big tank. 

D: Yeah, it takes a while. I usually need to fill like four buckets. 

(David, Jess, and Teacher, L7) 

 

On the one hand the above exchange is an example of students making connections between 

the task and their real worlds, which could align with the previous discussion regarding the 

belief that mathematics is unrelated to reality. However, this example is also suggestive that 

the students can take advantage of opportunities during IBI to have conversations about the 

mathematics being done, and to do so socially by interweaving their own lives and the role of 

mathematics in society. This creates opportunities for students to see how mathematics is 

important for society by thinking of ways people use mathematics in the world. It also brings 
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up the notion of practical approaches to solving maths problems. David’s suggestion was that 

the best way to know how much water the fish tank needed was to simply start filling the tank 

and counting. These sorts of conversations align with Jaworski's (2006) view that inquiry 

mathematics creates opportunities for deeper mathematics conversations than might not be 

possible in direct instruction.  

 

The inaccuracies of the real-world mathematics came up several times during the unit, 

particularly as students made connections to sampling error work which they were 

encountering in science lessons (according to Mr Scott). When evaluating why two groups 

obtained different perimeters for the basketball court, as measured in toe-to-heel feet, the 

class was quick to identify different people having different shoes sizes being the culprit. 

Furthermore, when critiquing their estimate for the number of bottles that would fit into the 

classroom, they were able to identify measurement errors such as the omission of windows 

and the lack of right angles in the room.  

 

Another example of the social context for these students comes from an awareness of the 

attainment-based groups the school deploys. Other researchers have highlighted the 

challenges that setting can have upon students’ outlooks (Francis, Connolly, et al., 2017). 

Within this case, the students were aware that they were placed amongst the lowest groups. 

For example, whilst completing the end of unit post-test, one student (Irene) called out, ‘Are 

we doing all this because we are bottom set?’ This awareness of their social position seemed 

to impact their motivation and beliefs. Also, as previously discussed, Maddie identified with 

being bottom set and not ‘swotty’ like ‘the top set’.  

 

M: [laughing] So swotty. 

I: [laughing] Yeah, that’s not for us. 

R: What does ‘swotty’ mean? 

M: Like kids in the top set.  

(Maddie, Irene, and Researcher, L7) 

 

The students seemed aware of their social positioning within the pool of mathematics 

students at the school. In the exchange the students appear to identify with what they believe 

to be the normal behaviour of their peers in this lower set, namely that mathematics is not 

enjoyable. The choice of the word ‘swotty’ in this social context is meant negatively, much 
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like ‘geek’ or ‘square’. This point of view may have impacted the students’ levels of 

engagement throughout the IBI unit. 

 

However, there were examples of setting having the opposite effect, for example by 

providing motivation to work hard. Typically, this would be expressed as students wanting to 

move up a set, as voiced by Susan in L4 (Page 96). Further examples are discussed in the 

analysis of the interviews (Section 5.4.3). 

 

5.4.2.2.4.1 Summary of beliefs about the social context 

This section has explored how students’ beliefs about the social context interacted with the 

IBI unit. IBI seemed to encourage social interactions, with students debating and challenging 

each other as well as deploying democratic approaches to working together. These sorts of 

rich conversations can help students develop a deeper understanding of mathematics 

(Jaworski, 2006). Students were also aware of their position within the attainment-based 

groups of the school. This awareness may have driven students to behave in ways that were 

consistent with their understanding of the social norms for this group, e.g. students in lower 

sets of mathematics do not enjoy mathematics. On some occasions these beliefs meant 

students disengaged from the IBI; on others it was a source of motivation. 

 

5.4.3 An analysis of student perceptions of inquiry instruction 

This section provides an analysis of ten student interviews following the IBI lessons. These 

interviews were designed to explore the students’ perceptions of the IBI unit as well as 

mathematics more generally. For a detailed discussion of the analysis methods please refer to 

Section 4.10. Several themes emerged: (1) IBI as a form of empowerment, (2) IBI as a form 

of neglect, (3) Importance of teacher, (4) Importance of peers, and (5) Mathematics 

disaffection. Table 5.3 presents the intensity of these themes for each student, organised by 

mathematics mindset. For a discussion of intensity scoring, please see Section 4.10. 
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Table 5.3: Intensity scores for interview themes at Harrison 

 Student IBI 
empower 

IBI 
neglect 

Teacher 
importance 

Peer 
importance 

Maths 
disaffection 

Fi
xe

d  

Kevin 12 25 15 10 9 
Jackie 8 30 9 9 7 
Michelle 14 29 5 7 3 
Lisa 5 19 14 3 4 
Daniel 7 23 16 3 5 
Timothy 13 32 10 7 4 

M
ix

ed
 Erica 18 11 27 11 1 

Linda 28 5 22 3 4 

G
ro

w
th

 Henry 31 12 5 8 8 
James 29 10 13 2 1 

 

5.4.3.1 IBI as a form of empowerment 

Across all the interviews a consistent theme emerged around the view that IBI was a form of 

empowerment. These views align with comments made within the literature that IBI gives 

students a chance to ‘have a go’ and ‘engage their brain’. For example, when discussing his 

approach to inquiry-based problems, Daniel made the following comment: 

 

Well I try and work it out myself, and see if I understand it, and if I don’t 

understand I’ll ask Sir. But if I do, I’ll just carry on with the work and see how 

far I get into it. If I get something wrong, I just keep trying again. (Daniel) 

 

Here Daniel expressed a view that mathematics requires him to demonstrate persistence. 

Whilst Daniel later expressed a slight preference for direct instruction (Page 118) he appeared 

to appreciate the exploration component of IBI. A similar example was noted during the 

interview with Lisa. When asked how she felt about the exploration portion of the lessons she 

said: 

 

It was hard [L5], but I kept trying and I found ways of doing it. (Lisa) 
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It is interesting to note that the idea of persistence, hinted at by Lisa in the above quote, did 

not necessarily imply the student had high self-efficacy. Some students expressed views that 

they understood their role as a student was to try, but at the same time believed this effort 

would ultimately lead to failure.  

 

I was just like, ‘I’ll have a go’ [L1]. But I wasn’t sure of myself. I didn’t think 

I’d be able to. I kind of had doubt in myself, because I’ve never done it before 

and most likely was probably going to fail at some things or not have the right 

idea. But I was alright. I didn’t really understand it, but there were some 

things that I got more than I thought I would. I was a step closer to actually 

getting it right. I enjoyed that lesson. That was a good lesson. (Erica) 

 

On the one hand, Erica expressed a view that she understands her role is to ‘have a go’, but at 

the same time she appeared to exhibit low self-efficacy. Perhaps her initial willingness to try 

was a kind of ‘resigned acceptance’ as described by Nardi and Steward (2003, p. 346) rather 

than an intrinsic motivation to solve the problem. Her comments also suggest that, despite her 

low confidence, she enjoyed the lesson and was able to recognise where she was improving 

and where her knowledge gaps were. This aligns with the view from the literature in which 

IBI helps students become aware of their knowledge gaps and readies them for the direct 

instruction that follows (Chi et al., 1994; Schwartz & Martin, 2004). 

 

In the above quote, Erica seems aware of her low self-efficacy. Other students seemed to be 

similarly aware of their beliefs about themselves. For example, when asking James how he 

felt about the IBI unit he said: 

  

I think it [the IBI unit] made me feel more confident in the subject and the 

topic we’re doing. (James)  

 

It appears the students may have felt an increased confidence as a result of the IBI lessons. 

 

In addition to expressing views of increased confidence, students also felt that IBI afforded 

them greater independence. James’s comment during his interview is one example of this: 

 

You’re learning better, because you’re more independent I’d say. (James) 
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It is possible that as students explored the IBI problems in an unconstrained and unguided 

way this fostered greater ownership of their learning. It is interesting to note that when 

introducing each IBI problem, Mr Scott never suggested that inquiry learning was ‘better’. 

Furthermore, the students had little experience with IBI in the mathematics classroom. 

Despite this, however, James was able to express a dual view that IBI prompted more 

independence and that independent learning for mathematics was better.  

 

During several of the interviews, students drew a contrast between the direct approach (often 

described as ‘PowerPoint and practice’) and the IBI approach (often described as ‘try and 

discuss’). In the below extract, I asked Kevin if he had a preference for one type of 

instruction over the other. Kevin expressed a preference for the IBI approach since he sees it 

as an opportunity to ‘have a challenge’. 

 

R: Which of those two do you like more? Between the PowerPoint and 

practice or the try it on your own and then we’ll discuss.  

K: Try it on your own and then discuss about it. 

R: Why do you like that more? 

K: Because I like to be able to have a challenge and not just know what it 

is. Because if he’s going to discuss after, like what has happened and 

all that, then it’s a lot easier. And then he can go through it with us 

after to explain how to do it. And then we could try it again after that 

to get it right. 

 (Researcher and Kevin) 

 

Timothy expressed a similar preference for the challenging aspects of IBI during his 

interview.  

 

It was challenging [L1] because you normally think if someone doesn’t know 

that another person will, but then for one of them none of us knew what to do. 

And then we kept trying and trying, but we couldn’t figure out what to do. 

…It was fun, because it was challenging. (Timothy) 
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Here, Timothy expressed his surprise that none of his group members knew how to solve the 

given problems. But instead of feeling overwhelmed or frustrated by this, Timothy reported 

feeling enjoyment (‘it was fun because it was challenging’). This is somewhat surprising 

given Timothy’s fixed result on both the general and mathematics-specific mindset 

questionnaire.  

 

As discussed previously in the analysis of the lesson observations (see Section 5.4.2.2.1), 

many students held the belief that mathematics is about ‘doing’ something with the numbers, 

usually applying the formula or procedure (Kouba & McDonald, 1987). However, during the 

interviews it was not uncommon to hear comments that suggested the IBI approach was able 

to challenge this belief. As an example:  

 

I like that because you got to try and do it yourself [L1]. Instead of getting 

told what to do you could try different ways to find out how you liked to do it. 

It’s like there is not just one way to do it, not just the way teacher does it. You 

can give-- well like try different ways and maybe you find a different way that 

gets it right too. (Henry) 

 

Henry’s comments suggest that the IBI was able to challenge the idea that mathematics is a 

search for a single solution method. Furthermore, it might indicate that Henry was able to see 

mathematics as something which is not necessarily black and white, and something in which 

the teacher is not necessarily the sole source of knowledge.  

 

Student engagement with a task is a key component to learning in mathematics (Fung et al., 

2018). Proponents of IBI have argued that lessons which incorporate inquiry-based activities 

and exploration of novel problems can generate greater engagement. Feedback from the 

student interviews during this case would support this view, with many students expressing 

that they felt engaged by the IBI task and believed this engagement had a favourable impact 

upon their learning. Two excerpts from interviews with Jackie and Henry highlight this: 

 

Well, there was a lot more work going on, and I could engage more with the 

learning, and I could actually get into it [the IBI unit]. (Jackie) 
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That was an alright lesson [L1], but it was like-- we learnt stuff we didn’t 

really know. So, it was a bit more thinking, and we concentrated a bit more. 

(Henry) 

 

As discussed in the analysis of the lesson observations (Section 5.4.2), students often held the 

belief that mathematics problems should be quick, and that speed and accuracy were good 

measures of doing well in mathematics. Clearly different students learn and operate at 

different speeds, and highly proficient IBI lessons can accommodate this pace by allowing 

students time to deeply explore a single problem, often from multiple angles. During the IBI 

unit students who seemed to complete the task quickly were encouraged to find alternative 

solutions or to discuss their solutions with peers. For example, during the interview, Timothy 

was asked to pretend he was the teacher and to decide whether to adopt an IBI or direct 

instructional approach: 

 

R: Why do you think that would be a better way of ordering your lesson, 

rather than just telling them [the students] upfront? 

T: Because they [the students] wouldn’t really learn anything. Sometimes 

if you tell them straight away, they have to do some stuff on their own. 

Because it’s challenging. So, they could get good stuff on it but then if 

I help them out first thing they will just say, ‘Oh I get it,’ but then no, 

they forget about it when the test comes. They should do it themselves. 

And do it at their own pace at times, because good people go at it 

really fast and they think, ‘Oh I’ve got to do it really fast,’ but then 

they get [it] horribly wrong, because they don’t really know what to 

do. They just guessed everything which is- you can guess because 

sometimes you might be lucky and win or get the right answer, but 

sometimes you can guess and rush and won’t get anything right. 

 (Timothy and Researcher) 

 

Timothy’s comments seem to suggest an understanding that students operate at different 

paces and that an IBI approach could empower the students with greater control over this 

pace. 
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Of the ten students who were interviewed, all ten expressed the view that IBI was 

empowering in some way (see Table 5.3). This varied between IBI created greater 

engagement, improved understanding, improved control over the pace, and led to greater self-

efficacy. Examples of these have been outlined in this section. However, when looking at the 

frequency with which students expressed these views there were notable differences between 

students of differing mindset groups. Students who, at the time of taking the m-ITIS, scored 

as growth mindset expressed views of IBI as empowering with greater intensity (Boyatzis, 

1998) than those who scored as fixed mindset, as measured by the percentage of the interview 

that was coded to this theme (please see Section 4.10 for a discussion of intensity scoring). 

 

5.4.3.2 IBI as a form of neglect 

At some point during the interview process all students expressed the view of IBI as a form 

of empowerment. However, every student also expressed the contrary impression of IBI as a 

form of neglect, albeit to different intensities. These views revolved around the lack of 

teacher support and explanation. Students perceived the absence of these explanations as 

neglectful and increasing the difficulty of the task. For example: 

 

If he tells you what to do then you have more of a chance of getting the 

question right, if you get what I mean. You have more understanding of what 

you have to do than if he just gave you a hint because maybe you didn’t fully 

understand what you had to do. (James) 

 

In the above excerpt, James expressed his view that the teacher’s failure to explain the 

solution reduced his capacity to understand the task. As discussed earlier in Section 5.4.2.2.1, 

many students viewed mathematics as a ‘doing’ subject, often doing something procedural 

(Kouba & McDonald, 1987). James’s comments might have been an expression of this belief 

and his view that without being told the procedure to ‘do’ he was not really understanding. A 

similar view arose during Daniel’s interview. 

 

D: I enjoyed it [L5], but I would have done a different lesson.  

R: Why is that? 

D: I don’t know. Because like say if you didn’t understand it then you 

 didn’t know what to do. 
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 (Daniel and Researcher) 

 

This excerpt from Daniel could be said to reflect a belief about mathematics similar to James, 

namely that the purpose of mathematics is to ‘do’ problems. Daniel’s last sentence suggested 

he saw understanding as a prerequisite for ‘doing’, which is somewhat contrary to the IBI 

approach in which students explore problems as means to develop understanding. It seems 

Daniel did not believe that understanding of mathematics could arise from exploration. 

 

The most common theme to emerge under the idea of IBI as neglectful was simply that the 

approach made mathematics ‘harder’. This is typified as: 

 

Because doing it without knowing what you are doing is hard, and when you 

know what you are doing it’s easier. (Lisa) 

 

When asked to explain how the IBI lesson made them feel students provided a range of 

responses. For example, Jackie, who in the previous section on ‘IBI as a form empowerment’ 

(see Section 5.4.3.1) expressed views of positive engagement, found herself being annoyed. 

 

Yeah, I got annoyed because I couldn’t do it [L7], because I couldn’t find-- 

because it was like taking forever. (Jackie) 

 

Jackie also expressed a common belief that mathematics problems can be solved quickly. 

Whilst Jackie’s choice of the word ‘annoyed’ was a strong expression of her feeling, other 

students expressed the same sentiment through the choice of phrases such as ‘frustrated’ or 

‘confused’. For example: 

 

I was quite confused [L5]. And I was kind of listening to everyone else’s first 

and seeing if I could pull it together. But I didn’t really understand it very 

much, so I was kind of listening to them, and I still didn’t understand it. 

(Erica) 

 

In Section 5.4.2, I explored how students frequently expressed the belief that the purpose of 

mathematics is to get the answer, typically by doing the procedure. I heard elements of this 

belief during some of the interviews. For example: 
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Like just explains to you what to do like how to do it and how to get the 

answer. (Daniel) 

 

Daniel seemed fixated on the procedural aspects of mathematics. His apparent focus on 

getting the answer quickly could bias him towards a search for the procedure rather than a 

search for understanding. Given the lack of up-front procedures in an IBI approach, it is 

possible this contributed to Daniel’s negative feelings towards the IBI unit.  

 

In a discussion with Erica about what mathematics lessons she prefers, instruction followed 

by practice versus exploration followed by instruction, she made the following comment: 

 

I do like to be told first because my mind processes it better instead of after 

where I’m like really confused. It takes longer for me to understand it. We 

normally do it that way with Mr Scott but not those ones. (Erica) 

 

Here Erica suggested that the order of instruction in the IBI unit, with exploration preceding 

direct instruction was a source of confusion. It seemed her expectation of the teaching of 

mathematics was two-fold. Firstly, that it should minimise her confusion, and secondly that it 

should minimise the amount of time it takes for her to understand. Proponents of IBI would 

argue that confusion minimisation should not be an aim of optimal instruction and that being 

confused is part of the exploration process. Erica repeated her sentiments later with the 

comment: 

 

I don’t know, it’s just something about knowing what we are doing instead of 

like being introduced to something new but not learning about it first. (Erica) 

 

Taken together Erica’s comments suggest that her preferences are not compatible with IBI, 

which she described as confusing. Her perception of the IBI unit seems to conflict with how 

she believes she learns best. Likewise, Lisa also reported feeling neglected by the IBI unit. 

 

Some of it was confusing, and why would he not explain the topic first, and 

why would he make us do it first and not explain it to us? It wasn’t helpful. 

(Lisa) 
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Lisa reported confusion with a tone almost to the point of bewilderment that Mr Scott would 

not explain the new topic before assigning problems to solve. When asked why she thought 

Mr Scott made those choices she responded that she did not know.  

 

The desire for explanations (and the apparent lack of them during the IBI unit) was also a 

feature of several interviews. For example, when discussing how he felt about Mr Scott’s IBI 

approach compared to how he would teach the lesson, Kevin said: 

 

He [Mr Scott] just didn’t explain it enough. I’d teach them so that they 

understand, would understand, and wouldn’t get frustrated, so that I would 

explain it. And if they didn’t get it the first time, I would explain it again and 

again and again until they got it. (Kevin) 

 

Kevin expressed a desire for Mr Scott to explain material more since he ‘didn’t explain it 

enough’. Moreover, Kevin felt the explanation should be persistent until all the students 

achieve understanding (‘until they got it’) and avoid feeling ‘frustrated’. In this exchange, 

Kevin did not appoint responsibility for learning to the student. Instead, Kevin seemed to 

believe that failures to achieve understanding are due to a lack of persistence on the part of 

the teacher.  

 

In the previous example, Kevin suggested that a lack of explanation during IBI could lead to 

frustration. This was echoed during Linda’s interview, when she made the following point: 

 

I prefer when we got told what it is and then we have to answer the questions 

because then you won’t be stuck and then people won’t get frustrated because 

you won’t be able to answer it. Like in that lesson with the worksheets in the 

corners of the room [L1], it would be better to know before so I could do them 

straight away. I prefer that I know how to answer it, so I can do it straight 

away. (Linda) 

 

In the above comment, Linda suggested that failure to answer the questions can lead to 

frustration. In addition, Linda communicated that the goal of mathematics is to do it ‘straight 

away’. But, because the IBI approach requires students to explore problems before 
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instruction, Linda was not able to solve the problems ‘straight away’, which may have 

resulted in her feelings of frustration and perhaps neglect by the teacher. 

 

Some students took a more balanced view, recognising that the IBI approach may have 

created opportunities for engagement but failing to make the connection that this 

engagement, or the lesson in general, might lead to improved understanding.  

 

It was fun [L7], but I don’t really know what you’re going to learn from that 

to be honest. (Kevin) 

 

Many studies have demonstrated that engagement in mathematics improves learning (Fung et 

al., 2018) and therefore Kevin’s recognition that the IBI approach was fun should indicate it 

created an opportunity for improved understanding. However, if learning did occur it was not 

at a conscious level for Kevin. A similar comment was made by Daniel during his interview: 

 

I enjoyed it [L1], but I would have liked for him [Mr Scott] to just have 

explained it a bit first. I felt a bit … stranded. (Daniel) 

 

Much like I discussed in the previous section, ‘IBI as a form empowerment’ (see Section 

5.4.3.1 and Table 5.3), all ten students interviewed expressed views of IBI as neglect at some 

point during their interview. Some students expressed this view numerous times, such as 

Kevin who made seven separate references to this theme, whereas others expressed this view 

only once, such as Henry. When considering the students’ mindset scores, there were again 

differences between those students who scored as growth mindset when assessed with the m-

ITIS as compared to those who scored as fixed mindset (Table 5.3). Students with fixed 

mindsets expressed views that were associated with ‘IBI as a form of neglect’ with greater 

intensity (Boyatzis, 1998) than those with growth mindsets. This is the opposite of what was 

seen in the theme ‘IBI as a form of empowerment’. Please see Section 4.9 for a discussion of 

intensity scoring. 
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5.4.3.3 Importance of the teacher 

A clear and persistent theme to emerge was around the role of the teacher throughout the IBI 

unit. Two subthemes emerged around the importance of the teacher in (1) creating 

engagement and (2) providing support. 

 

The teacher’s role in creating engaging experiences was expressed by all students 

interviewed. For instance, Daniel stated:  

 

I quite liked the one where we measured the basketball court [L2], because it 

was something that we were—like it wasn’t something I had no idea about. I 

play basketball with my mates all the time… It’s nice when Mr Scott does 

problems like that with sport.  

 

Daniel’s comments appear to suggest he feels best engaged in a mathematics problem when 

the problem is something to which he can relate, and he attributes this good choice of 

problem to his teacher. This also aligns with the discussion in Section 5.4.2.2.1 in which 

students expressed beliefs that mathematics is unrelated to reality but were able to make 

connections to their real lives throughout the IBI unit. Here Daniel may have looked upon the 

IBI lesson as more enjoyable because his teacher selected a context that was familiar to him. 

This suggests Daniel sees the teacher as a key factor in creating engaging content. Another 

example of this same view came from James. 

 

Mr Scott is a really good teacher, and he made the lessons interactive. (James) 

 

When discussing how he might run the classroom if he were the teacher Henry made the 

following comments.  

 

H:  I’d want the students to really get into it. I’d do lessons that let them 

do that. 

R:  What would you do to help achieve that?  

H:  Like give them a chance to get stuck in, not just writing on the board, 

or doing stuff out of the textbooks. Sometimes going through it on the 

board is good, but I’d let students have a good go first and try figure it 
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out and maybe, if some don’t get it, I’d go through it on the board to 

make sure everyone gets it before moving on. 

(Henry and Researcher) 

 

Henry suggested he understood the role of the teacher to make lessons engaging and to help 

students ‘get into it’. When probed further Henry appeared to describe what sounded like an 

IBI approach, with students trying to ‘figure it out’ first with possible direct instruction to 

follow. 

 

During Linda’s interview, she also seemed to express the idea that the teacher made the IBI 

lessons engaging.  

 

Like Mr Scott he is good because he’s supportive and wants everyone to 

understand, and he can make it fun at the same time. It’s not all textbooks and 

boring worksheets. (Linda) 

 

Judging by Linda’s comment, she seemed to enjoy the IBI unit because of Mr Scott’s 

decision to limit his use of textbooks and worksheets. In her view this made the lesson more 

fun. In this comment, Linda also brought up another common idea to emerge regarding the 

role of the teacher, namely the teacher’s role to provide support. 

 

Throughout the interviews, many students spoke positively of Mr Scott’s role during the IBI 

unit to support them and how this support was frequently a source of motivation. For 

instance: 

 

That’s what some teachers do, they just focus on one lesson and then move 

on. But, this time it’s not like that. Mr Scott has focused on it for a week and 

then moved on, because everyone understood it. (Erica) 

 

Erica explained that Mr Scott performed his role as a teacher well because he adjusted the 

pace of the lesson throughout the IBI unit and provided enough time for students to 

understand the topic. Erica saw Mr Scott recognising that each student needs to achieve 

understanding before the lesson should move forward. 
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Other students noted Mr Scott’s support by having high expectations for his students. 

 

He [Mr Scott] doesn’t give up until you have done it really well, because he 

doesn’t want us to fail and have a really bad mark or anything. (Linda) 

 

In the above comment, Linda recognised that Mr Scott cares about each of his students and 

he does this by not giving up on them or allowing them to hand in work which does not 

reflect their best. Linda may see the high expectations of Mr Scott as indicative of his 

dedication to his students’ education and success in mathematics.  

 

Other students noted Mr Scott’s support by communicating clear directions.  

 

Yeah now, Mr Scott, he’s much better because Ms Brown like she just gives 

the work out. She doesn’t explain it well. But Mr Scott writes on the board 

and explains it [the directions] and then we have to do the work. (Daniel) 

 

Here Daniel seemed to communicate a clear preference for Mr Scott’s approach. He, like 

many of his peers, felt that teachers who clearly explain the material before asking the 

students to ‘do the work’ were superior. Initially, this seemed to suggest that Daniel preferred 

a direct approach over an IBI approach, but further questioning revealed Daniel was referring 

to Mr Scott’s clear directions at the start of each class. Frequently Mr Scott clarified to the 

students the directions for the task without telling them how to solve the problem (e.g. ‘Talk 

with your group’, ‘Try it out’, ‘Compare your answers’).  

 

Many of the students felt that teachers should provide support to students. In addition to this, 

some students seemed to suggest that teachers need not just provide support during IBI, but 

that this support should be equitable. For example, when discussing the IBI unit:  

 

Yeah, sometimes he’d explain to a certain group like what they had to do. But 

never really explained to the whole group. (Henry) 

 

My observations of the class suggest that Mr Scott rarely entered into explanation-based 

discussion with individual groups. When he did engage with a group it was usually to provide 

prompts to remain on task or to clarify what the students were supposed to be doing. 
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Therefore, Henry’s comments more likely reflect his perception that Mr Scott was helping 

others but not him. Possibly this, compounded with Henry’s confusion regarding the IBI task, 

may have led to feelings of inequality. 

 

5.4.3.4 Importance of peers 

One of the themes which students most frequently expressed during the interviews was the 

importance of peers throughout the IBI unit. The expression of this theme was not limited to 

using peer groups as a means to spend time with friends socially. Moreover, the discussions 

suggested the presence of two sub-themes: (1) peers as a knowledge sharing network and (2) 

peers as source of enjoyment. 

 

The first sub-theme, peers as a knowledge-sharing network, often revolved around the idea 

that, if a student is struggling on a task, they can leverage the knowledge of the group.  

 

Usually asking someone on my table helped because sometimes teacher is 

seeing someone else. So, I’ll ask my friends first what they think. (Erica) 

 

Erica’s comment shows how she saw her peers as a source of knowledge throughout the IBI 

unit, in much the same way as the teacher. When the teacher was busy attending to other 

students (which was often, given Mr Scott’s role as facilitator), Erica looked to her peers for 

support. When asked whether this had always been the case, Erica explained in the past she 

was used to working by herself in maths. 

 

Occasionally students shared that the IBI unit provided them with an opportunity to share 

knowledge when they believed their peers could benefit. 

 

I don’t know, I find it better to work with someone so if someone gets it 

wrong you can try and help them, and if you get it wrong someone can try and 

help you. (Henry) 

 

In this excerpt Henry expressed how he saw opportunities for a two-way sharing of 

knowledge when exploring the IBI problems. The IBI unit had a strong emphasis on small 
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group and class discussion, which may have created opportunities for Henry to see the benefit 

of exploring problems with his peers. In a separate interview Jackie expressed a similar idea: 

 

It was good [L1] because other people were figuring it out like you were and 

you could help. And if you got stuck you could ask them, because they were 

doing the same thing as you and they might have been stuck as well. So, 

combining your ideas with someone is really good because you’re sort of 

doubling the learning by your knowledge and their knowledge. (Jackie) 

 

Here Jackie expressed a similar view to Henry regarding the bi-directional nature of learning 

when exploring problems in a collaborative way. This speaks to the social interdependence 

which collaborative learning researchers suggest is crucial to effective group work (D. 

Johnson & Johnson, 2016). In addition, Jackie seems to be making a tangible connection to 

her own learning being enhanced as a result (‘doubling the learning’). Daniel expressed a 

similar view. 

 

Well I found you can work together and try and work it out instead of one by 

one, because it makes it harder for yourself. (Daniel) 

 

In addition to peers providing additional avenues to developing understanding, there was also 

evidence that students felt a sense of reassurance when their peers were struggling with a 

problem in the same way they were. When discussing which aspect of the IBI unit she liked 

Michelle said: 

 

It’s better that way, because if they don’t know it either then it sort of makes 

you feel good. Well not good as in happy, but you don’t feel as bad that you 

are struggling. And you can both sort of try stuff. Even though you both don’t 

know what you are doing you can talk it out. (Michelle) 

 

Here Michelle expressed that she felt reassured by the apparent failings of her peers. Perhaps 

by seeing her peers struggle with the problems this challenged any assumptions she may have 

held that mathematics is an inherent skill which some people have, and some people lack. 

This might be one reason to explain why Michelle felt she was able to work with an equally 
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confused peer to explore the problems in L1 and discuss possible solutions (‘talk it out’). 

When Michelle was questioned further, she said: 

 

Because we had to try and like work with a team [L1] but then if someone 

didn’t really agree with your answer then it would just – you just have to try 

and battle to see who was really right and who was wrong. (Michelle) 

 

Michelle appeared to suggest that when students within a collaborative IBI setting disagree a 

mathematical debate may ensue. This would seem to align with the views of D. Johnson and 

Johnson (2016) who suggest that during inquiry activities students tend to move towards a 

general consensus around a solution. These sorts of debates, or ‘battles’ are a strong 

opportunity for students to develop deeper conceptual understanding of the mathematical 

constructs.  

 

Several students suggested that peers could be an important source of creativity. A good 

example of this sentiment was expressed by Jackie during her interview: 

 

If you’re stuck or like don’t know what to do next, then you can ask your 

mates and they might know a way. Or maybe you think your way is best, but 

by chatting with your mates they may look at it in a better maybe more 

creative way. So, you can have a better understanding. (Jackie) 

 

Jackie expressed that she valued her peers as a source of alternative ways to tackle the IBI 

problems. From her perspective, these approaches were creative and by exploring them 

together her understanding improved. It is also possible that Jackie’s statement reflects an 

element of ‘free-riding’ as discussed earlier, in which Jackie need not engage in an 

exhaustive search for alternate approaches, since her peer network can be relied upon to do 

this for her. 

 

The second subtheme after peers as a knowledge sharing network was peers as source of 

enjoyment. Here students viewed IBI as more fun when working in groups. For example: 

 

Doing the volume one that was fun because you got to engage with other 

people who you wouldn’t normally engage with, so you see it from different 
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perspectives. And you got to do questions with them as well. So, you’re still 

working but you’re having fun whilst working. (Jackie) 

 

Here Jackie expressed two views. Firstly, the IBI unit allowed her to interact with peers 

beyond those with whom she normally interacts, and perhaps this allowed her to access 

networks with more varied approaches (‘see it from different perspectives’). Secondly, the 

peer interactions during the IBI exploration are enjoyable (‘having fun whilst working’). It is 

possible this enjoyment created greater engagement and discussion in the mathematical 

concepts being investigated.  

 

In explaining his preference for the IBI unit during his interview, Timothy expressed a view 

that he enjoyed the opportunity to work with peers. When pushed to give more clarity he 

made the following statement:  

 

Because when I’m on my own sometimes I don’t know, so I just like sit there 

and like panic. Well not panic, but like guess what to do and normally I’ll get 

it wrong or not even bother. But I like working with my friends because they 

know what to do and then it’s just fun working with them. (Timothy) 

 

There were frequent instances during the observations in which students were disengaged 

with the task, often placing their heads on the desk or engaging in off-topic conversations. 

When challenged these students would typically explain they were confused about the 

problem and didn’t know what to do. It is therefore interesting to hear Timothy’s response 

above which suggested that, during the IBI unit he viewed his peers as a source of motivation 

despite his apparent lack of understanding of the problem.  

 

Across both subthemes references to working with peers in IBI were broadly positive and 

referenced the enhancing effect of peer interactions on the student’s perceptions of the IBI 

lessons. Occasionally, however, students would indicate a preference to work alone or an 

issue with working in a group. When asked how she felt about exploring novel mathematics 

problems with peers Jackie said:  

 

It kind of depends on who you’re with. So, like, not pointing the finger at 

anyone but James, he is quite annoying sometimes. And if you’re in a group 
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with him then he doesn’t really shut up. And you’re trying to work and that 

just gets annoying. But then if you’re with someone like Linda then she’ll get 

on with it, but she’ll have a laugh at the same time. (Jackie) 

 

Here Jackie shared how working with a group during the IBI unit could be a source of 

distraction (or even annoyance) at times. Students are individuals, and therefore, it is natural 

that some group compositions will work better than others. Groups with poor interaction 

(such as the one Jackie described) may hinder learning. Perhaps, James himself put it best 

when he said: 

 

I prefer sometimes to work on my own than with a group, and sometimes I 

prefer to work in a group than on my own. It’s like 50-50. (James) 

 

There appeared to be no difference between how students expressed the views of peer 

importance across the different mindsets. 

 

5.4.3.5 Mathematics disaffection 

A final theme that emerged from the analysis of the interviews was the idea of mathematics 

disaffection. All ten students expressed views of mathematics disaffection. Although it is 

worth noting that these disaffection comments were sometimes directed towards mathematics 

in general rather than the IBI unit. Most comments referenced a general sense of disaffection 

with the way mathematics is taught. 

 

They [mathematics lessons] were just really boring. You just sit there in the 

back of the classroom writing down questions from the sheet and answering 

them. (Henry) 

 

Henry’s comment that mathematics is boring seemed to be aimed at two aspects of how he 

sees mathematics teaching. Firstly, that mathematics is mostly seatwork and that mathematics 

is mostly worksheet based. Prior to commencing the IBI unit, the students within Mr Scott’s 

class had little exposure to IBI in mathematics. The relatively short duration of the IBI unit 

apparently did not change Henry’ expressed views towards mathematics. Figure 5.7 

graphically represents the words the students used when asked to describe mathematics in 
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three words, with the size of the word representing its frequency of occurrence across the 

interviews. This figure shows the general trend toward disaffection. This view was similarly 

expressed during Timothy’s interview. 

 

I don’t like it. Honestly, I think it’s boring. (Timothy) 

 

 
Figure 5.7: ‘What three words would you use to describe maths?’ at Harrison School11 

 

On the one hand, disaffection can result in a lack of engagement and missed opportunities to 

learn. In more extreme cases, disaffection may cause students to abstain from their 

mathematics lessons altogether.  

 

At my primary school I kept on skipping maths classes and I kept on walking 

out of them. (Jackie) 

 

When addressing the question of how he felt about mathematics Kevin made the following 

comment. 

 

 
11 Generated using https://www.wordclouds.com/ 
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It’s alright. It’s like when I have got maths next it’s not like it’s a bad thing. 

It’s just normal. When it’s with Ms Brown it’s quite bad, but Mr Scott is 

alright. (Kevin) 

 

This comment, which was similar to those made by others, suggests that disaffection towards 

mathematics might be amplified by disaffection towards certain mathematics teachers. The 

different teaching approaches of different teachers is known to play a meaningful role in 

students’ overall attitudes towards mathematics (Boaler, 2002; Boaler & Greeno, 2000; De 

Corte et al., 2010). Jackie also touched on the idea of teachers having an influence over how 

enjoyable mathematics is.  

 

The teachers that I’ve had they’ve made the work fun, but you still learn. So 

that people do actually enjoy maths, because it’s not a very enjoyed subject. 

(Jackie) 

 

Here, Jackie expressed a societal view that mathematics is ‘not a very enjoyed subject’ but 

that it is possible to enjoy maths if the teacher makes the work fun.  

 

When expressing views of mathematics, the predominant opinion was not always one of 

disaffection. In some interviews, students expressed the contrary opinion that mathematics 

could be enjoyable, indicating mathematics affection. However, unlike the comments around 

disaffection, those expressing affection tended to isolate their comments to small instances, 

such as a particular lesson or topic. This suggests that students may see pockets of enjoyment 

within the broader IBI unit, whilst still retaining a view of disaffection towards mathematics 

in general. Examples include: 

 

Like we did that lesson the other day with Mr Scott. I really enjoyed that. I 

just got that straight away. Some lessons, like fractions, I just struggle with. 

(Erica) 

 

In secondary school you get more into the aspect of algebra and the more 

complicated stuff. That’s quite interesting. (Henry) 
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In the case of Erica her comments suggested a very binary point of view between affection 

for those topics which she can do, and disaffection for those in which she struggles. Henry, 

however, shows affection for areas that are complicated, suggesting his feelings of 

disaffection might arise from material that is not complicated enough.  

 

Throughout the interviews, students also spoke about the value of mathematics. The below 

comments by Henry and Linda typify the way in which these sentiments were expressed. 

 

It’s not the funnest subject, but it’s a subject which you need to learn. Like to 

get on in life. (Henry) 

 

I think it's a very strong subject, like you need it in your life on an everyday 

basis. But it can be quite hard. (Linda) 

 

Henry’s comment suggested he does not find mathematics fun, and Linda’s suggested she 

finds it hard. However, both students seem to acknowledge the value of mathematics in their 

future lives. This is reminiscent of the utilitarian view held by participants in Nardi and 

Steward’s (2003) study of mathematics disaffection. 

 

5.4.3.6 Summary of student perceptions 

Students’ perceptions of the IBI unit were varied across five main themes: inquiry as a form 

of empowerment, inquiry as a form of neglect, importance of the teacher, importance of 

peers, and mathematics disaffection. Notably, students’ views of inquiry were somewhat 

conflicted between feelings of empowerment and feelings of neglect. On the one hand, the 

inquiry approach was empowering. Without a prescribed method for solving problems 

students felt open to trying out different methods, or ‘having a go’, and this challenge was 

engaging. On the other hand, students felt neglected by their teacher’s reluctance to present 

explanations up-front. Absent a prescribed method, students felt ‘stranded’ and at times 

‘frustrated’. For all students, though, an appreciation for their peers was evident. And despite 

Mr Scott’s decentralised role as facilitator, students still expressed appreciation for his role in 

designing engaging activities and holding high expectations for them. For all students, 

however, mathematics disaffection was evident.  
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5.4.4 An analysis of student learning outcomes 

The pre-test and post-test results were analysed to determine the extent to which students’ 

knowledge had improved (see Table 5.4). Overall the students’ scores improved from 5.8 to 

6.3 out of a maximum possible score of 12. The procedural and conceptual scores improved 

by a similar amount (8.7 percent and 8.6 percent respectively).  

 

Table 5.4: Pre- and post-test results for Mr Scott’s class 

 Test 

component 

 Pre-test Post-test 

Max M SD M SD 

All 

students 

(n = 18) 

Overall 12 5.8 1.9 6.3 1.5 

Procedural 6 2.3 0.8 2.5 0.8 

Conceptual 6 3.5 1.7 3.8 1.2 

Fixed 

mindset 

(n = 8) 

Overall 12 5.5 2.2 5.8 1.2 

Procedural 6 2.3 1.0 2.5 0.9 

Conceptual 6 3.3 2.1 3.3 0.9 

Mixed 

mindset 

(n = 4) 

Overall 12 5.9 1.6 7.0 0.8 

Procedural 6 2.3 0.5 2.3 0.5 

Conceptual 6 3.6 1.3 4.8 1.0 

Growth 

mindset 

(n = 6) 

Overall 12 6 2.0 6.5 2.1 

Procedural 6 2.3 0.8 2.8 0.8 

Conceptual 6 3.7 1.6 3.8 1.3 

 

Separating the results by maths mindset shows that students with growth, fixed, and mixed 

mindsets all made improvements during the intervention. Students with growth mindsets 

slightly outperformed their peers with fixed mindsets on the post-test (see Table 5.5). 

 

Looking across test items from the pre-test to post-test suggests some patterns in how 

students’ understanding of the unit topic changed (see Appendix F for a copy of the test 

items). Since the pre-test and the post-test were composed of identical questions it is possible 

that any observed changes are due to a practice effect (Lezak et al., 2012). However, this is 

thought to be unlikely since over a month elapsed between each assessment. 
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Table 5.5: Growth and fixed post-test results for Mr Scott’s class 

 

Test 

component 

 Fixed 

n = 8 

Growth 

n = 6 

 Max M SD M SD 
Po

st
- te

st
 Overall 12 5.75 1.2 6.5 2.1 

Procedural 6 2.5 0.9 2.8 0.8 

Conceptual 6 3.3 0.9 3.8 1.3 

 

An increase from pre-test (M=0, SD=0) to post-test (M=.41, SD=.49) was observed on test 

item 2a, which measured procedural calculation of volume. This is noteworthy because 

students only spent about ten minutes during L7 specifically practicing this procedure. The 

majority of the class time was spent in the ‘explore’ phase of inquiry with students measuring 

and estimating how many water bottles it would take to fill up their classroom. When it came 

time to discuss how to calculate or estimate the volume of the classroom (i.e. the ‘explain’ 

phase) the discussion was cut short by a student’s early venture that the correct method was 

‘to multiply’. Rather than probing this student’s thinking further or opening up a class 

discussion about why this procedure might be effective, Mr Scott swiftly accepted the answer 

and passed out a worksheet for students to practice. The students then spent the remainder of 

the class multiplying the three dimensions of given cuboids to find their volumes. It is 

unusual that this alone could have resulted in such a boost in the students’ scores. The 

‘explain’ phase was limited, and the ‘explore’ phase provided few explicit connections to the 

big idea. The increase in score might simply be because L7 was the last lesson of the unit and 

therefore the freshest in the students’ memories. Future research may wish to incorporate the 

use of a delayed post-test to address potential recall bias. 

 

By contrast, the improved performance observed in calculating the volume of a rectangle on 

item 2b fell away on similar test item 4a, possibly due to the given rectangular prism being 

presented in a different way. Rather than a line drawing of a rectangular prism with a given 

length, width, and height, item 4a presented students with a drawing of a prism constructed 

using unit blocks with no labelled dimensions. It is possible the students’ difficulties with this 

problem shows not a lack of procedural knowledge but rather a lack of knowledge transfer. 

This explanation seems more plausible when taken together with test item 4c, which showed 

no change in students’ conceptual understanding of volume. 
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The most consistent improvement observed from pre- to post-test was students’ conceptual 

understanding of area. Every test item of conceptual understanding of area saw an increase. 

This is compatible with observations made of the students throughout the unit. In the 

beginning, students described area as merely an operation (e.g. ‘to multiply’) however by the 

end of the unit their description of area was more conceptual and varied, e.g. area as the 

amount of space inside a shape, or area as the number of squares that cover a surface.  

 

Test items which covered surface area saw either no change or a decrease in accuracy. This is 

unsurprising since students spent relatively little time on this concept. The most common 

error was for students to confuse calculating surface area with calculating volume, possibly 

because both measures pertain to rectangular prisms. Perhaps with more time students could 

have increased their scores in this content area as well. 

 

Neither mindset nor any of the constructs measured by the ATMI (enjoyment, motivation, 

self-confidence, value) were strongly correlated with the students’ post-test scores. Please see 

Table 5.6 for the results of this analysis.  

 

Table 5.6: Spearman’s rank correlation for post-test, mindset, and ATMI 

 Post-test 

n = 18 

 rs 

Maths mindset .33 

Enjoyment .05 

Motivation .08 

Self-confidence -.04 

Value .20 

 

5.5 Summary of the Case of Mr Scott’s Class 
Analysis of the implementation of the IBI unit was conducted using the EQUIP rubric. The 

scores assigned to each factor of the rubric (instructional, discourse, assessment and 
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curriculum) indicate the teacher was successfully able to implement an IBI unit for students 

with MD. The unit as a whole met the level of proficient inquiry. 

 

The students’ beliefs towards mathematics (as evidenced by the lesson observations) were 

analysed using McLeod’s (1992) framework. It was observed that many of the students held 

the belief that mathematics is a procedural activity. This was often expressed as mathematics 

is something one ‘does’. As such, students unduly focused on obtaining the formula or the 

procedure needed rather than on developing their understandings of the problem. This belief 

conflicts with the principles of IBI which may have led to task disengagement.  

 

Many students appeared to have low self-efficacy in their mathematics abilities. These 

students disengaged from student-led investigations claiming they were not good at the task 

or attempting to outsource the activity to a more knowledgeable peer. Often this low self-

efficacy would be directed towards problems that challenged students’ conceptual 

understanding of the problem, whereas problems of procedural application did not elicit 

similar self-efficacy views. Similarly, many students expressed fixed mindset beliefs such as 

mathematics is not their ‘thing’, or their brain does not ‘work that way’. These students 

frequently disengaged from the investigations and as such struggled to gain much from the 

exploratory component of the IBI lessons. 

 

Beliefs about how mathematics should be taught appeared to be two-fold. Firstly, students 

felt that learning mathematics is best done by solving many short problems rather than one 

long one. Secondly, students believed that the teacher was the primary transmitter of 

knowledge, with the students serving as recipients. IBI challenged both these beliefs and, as 

such, some students struggled with the shift in responsibility. Conversely, several students 

felt that the IBI approach allowed them to develop greater knowledge, or ‘really understand 

[the problem]’, which aligns with the views of IBI proponents.  

 

Students’ beliefs about the social context also appeared to interact with the IBI unit. Students 

appeared to hold the belief that social interactions could be a source of mathematical 

knowledge, and this may have led students to debate each other as well as deploy democratic 

approaches to working together. These sorts of interactions can help students develop a 

deeper understanding of mathematics (Jaworski, 2006). Students were also aware of their 

position within the attainment-based groups of the school. This awareness may have driven 
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students to behave in ways that were consistent with their understanding of the social norms 

for this group, e.g. the belief that students in lower sets of mathematics do not enjoy 

mathematics.  

 

Analysis of the interview transcripts suggested that the students in Mr Scott’s class perceived 

the IBI unit according to five themes. These were: 

 

1. IBI as a form of empowerment 

Students felt that IBI provided them with interesting challenges and forced them to 

think deeply. They felt the lessons were more engaging and encouraged students to 

‘have a go’. 

2. IBI as a form of neglect 

Students felt the lessons were frustrating and confusing, and believed it was the 

teacher’s responsibility to explain content before trying it on their own. 

3. Importance of the teacher 

Students felt the teacher took responsibility for (1) creating engagement and (2) 

providing support. 

4. Importance of peers 

Students felt that peers played an important and positive role in their learning during 

the IBI unit. These feelings tended to fall into two sub-themes: (1) peers as a 

knowledge sharing network; and (2) peers as a source of enjoyment. 

5. Mathematics disaffection 

Students expressed a dislike for mathematics as ‘boring’ or ‘hard’. Additional views 

of mathematics as a ‘necessary evil’ were common. 

 

Interestingly, the intensity of the theme IBI as empowerment was substantially greater in 

those students with growth mindsets (see Section 4.10 for a discussion of intensity scoring 

and Table 5.3 for the results). Likewise, the intensity of the theme IBI as a form of neglect 

was greater in those students with fixed mindsets than those with growth mindsets.  

 

Students’ beliefs about their intelligence were measured on both a general as well as a maths-

specific basis. The results of these measurements align with the theory of mindset in which 

students may hold domain specific beliefs (e.g. a student may be growth mindset generally 

but fixed mindset in mathematics), as discussed in Section 2.9. 
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Despite the differences in the perceptions of IBI for students with differing mindsets, the 

actual learning outcomes as measured by the pre- and post-test suggest little difference in 

learning between the two groups in this case. Students with growth mindsets scored only 

slightly higher than those with fixed mindsets on the post-test. 

 

When separating learning between procedural and conceptual, as set out in Section 4.5, both 

measures increased by similar amounts. This would seem to contradict other studies, which 

suggested that conceptual understanding would increase to a greater extent than procedural 

knowledge. In addition, separating the students by mindset did not provide any evidence that 

students with growth mindsets outperformed those with fixed mindsets on either conceptual 

understanding or procedural knowledge. 
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6 The Case of Ms Silver’s Class 
In this chapter I report the results of a case study in which a group of secondary school 

students with mathematics difficulties (MD) were taught eight inquiry-based lessons (hereon 

referred to as the IBI unit). All students were observed throughout the unit and 12 students 

were interviewed. Students completed a pre-test and post-test designed to measure any 

change in their understanding of linear relationships as well as three questionnaires designed 

to evaluate their attitudes towards mathematics (ATMI) and their implicit theories of 

intelligence (ITIS and m-ITIS). For more details about the methods used in this study, please 

refer to Chapter 4.  

 

The study was designed to explore two research questions: (RQ1) How do students with 

mathematics difficulties perceive IBI? and (RQ2) Are students’ beliefs (e.g. mindset) 

associated with the effectiveness of IBI for students with mathematics difficulties? 

 

6.1 The setting 
The study took place at Stratham College12, a U.K. secondary school, in the spring term of 

2018. This school was chosen after I sent an email to its Head of Mathematics13 and they 

expressed their interest in participating. After meeting with several interested teachers to 

explain what the case study would entail, Mary Silver volunteered to take part. She explained 

she had recently completed her master’s thesis on the topic of mindset and was keen to 

further her studies in this area. Several months before the full case study commenced, Ms 

Silver participated in a pilot study which helped her to gain familiarity with the selected 

methods. 

 

 
12 All names, including school names, teacher names, and student names, have been changed 

to protect the identity of those involved in the study. 
13 The email address for the Head of Mathematics was found on their school’s online staff 

directory. 
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A recent Ofsted report described Stratham College as a ‘good’ comprehensive secondary 

school and commended the school’s staff for their strong planning, content knowledge, and 

behaviour management.  

 

6.1.1 The teacher 

Ms Silver served as a mathematics teacher at Stratham College throughout the duration of the 

case study. Before joining the faculty, Ms Silver received her master’s degree in Mathematics 

Education from a respected university. Some years prior to that she earned her undergraduate 

degree in Mathematics. The case study was conducted during Ms Silver’s first year teaching 

at Stratham College and second year teaching overall.  

 

Ms Silver described herself as an enthusiastic teacher who holds high expectations for her 

students. Having completed her master’s dissertation on the topic of mindset, Ms Silver 

reported that she taught her students about the importance of a growth mindset at the 

beginning of the school year. She self-reported that she emphasised to them the importance of 

perseverance and ‘having a go’ in the face of a challenge. Ms Silver said that she continued 

giving the students positive mindset messages throughout the year. 

 

6.1.2 The class 

Stratham College sets students into three sets for mathematics based on a combination of 

factors including Cognitive Abilities Test (CAT) results, Key Stage 2 results, and 

mathematics teacher recommendation. The three sets were called top, middle, and bottom.  

 

At the time of the case study, Ms Silver taught nine classes which spanned all sets and ranged 

from year 7 to year 11. In selecting the appropriate class, Ms Silver and I initially reviewed 

her middle and bottom sets, however upon learning that her bottom sets included a large 

majority of students with special educational needs (e.g. dyslexia, social emotional disorders) 

we decided to narrow our selection to only her parallel middle sets.  

 

Middle sets at this school included students from a wide range of prior attainment. For each 

class, I was able to review their Fischer Family Trust Band (FFTB), which is a type of prior 

attainment measure based on the students’ Key Stage 2 exam results. A FFTB of ‘higher’ 

indicates a score in the top third of all students in the U.K. who took the exam the same year. 
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Likewise, ‘middle’ indicates a score in the middle third, and ‘lower’ indicates a score in the 

lower third. Upon reviewing the FFTB indicators in Ms Silver’s two middle sets, about half 

the students were indicated as ‘lower.’ In other words, half of the students in the middle sets 

had Key Stage 2 results that were among the lowest third of all students who took the exam 

that year in the United Kingdom. For this reason, about half of the students in the middle sets 

could be described as having mathematics difficulties (MD) according to the definition used 

in this study. As described in Section 3.3, previous studies of MD have used a similar 

approach, for example by selecting students at the 25th percentile or below on a national 

assessment.  

 
Figure 6.1: Ms Silver’s classroom arrangement 

In addition to incidence of disability and FFTB, Ms Silver and I also considered her overall 

schedule. Ms Silver’s year 8 middle set class was selected for the case study. There were 30 

students in the class ranging in age from 11 to 12. The class included 18 students in the 

‘lower’ FFTB, nine students in the ‘middle’ FFTB, and three students in the ‘higher’ FFTB. 

 

Of the 30 students, 21 were female and nine were male. No specific reason was given to 

explain why the majority of the class was female. Ms Silver shared with me that four students 

qualified for free school meals and six for the pupil premium (an indicator of SES). On 

reviewing the school records for this class, it was identified that two students had Special 

Educational Needs (SEN) indicators, one with a moderate learning difficulty and another 

labelled as social, emotional, and mental health. 
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Ms Silver taught this class twice a week on Wednesday mornings and Friday afternoons. 

Each lesson lasted for 50 minutes. Following each Wednesday and Friday session Ms Silver 

and I discussed and reflected on the IBI lessons and student progress. We also exchanged 

emails before and after sessions to do additional planning.  

 

The classroom contained a Promethean ActivPanel14 with small whiteboards on either side of 

it, table-desks, and several motivational posters. The room had one full wall of windows. 

Some parts of the room appeared in need of repair. For instance, when it rained water leaked 

from the ceiling onto the students’ desks. Student desks were arranged in rows. The total 

student capacity of the room was 34 (see Figure 6.1). 

 

6.1.3 Voluntary informed consent 

I introduced myself to the class in February 2018, explaining that I was a PhD researcher 

from the University of Cambridge and that I had previously been a mathematics teacher in 

the United States. I distributed and read the information sheet to the class which outlined the 

purpose of the study as well as what would be involved (see Appendix E for a copy of the 

consent materials). Students were asked to review the information sheet with a parent or 

guardian and then return the signed consent form indicating their willingness to participate in 

the study and interview by the following week.  

 

Having introduced myself, I stayed for the remainder of the lesson to answer any questions 

and make some preliminary observations. I noted the flow of the lesson led by Ms Silver and 

some apparent behaviour difficulties. 

 

Before the start of the study, all students returned the consent forms signed and indicated 

their wish to be included in the study. Nineteen students wished to be included in the 

interview process, with the remaining 11 wishing to be excluded. 

 

 
14 A Promethean ActivPanel is an interactive display designed for use in classrooms 

(www.prometheanworld.com). 
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6.2 Lesson development 
Ms Silver and I met several times before the start of the case study to plan the IBI unit. At 

Stratham College the mathematics teachers had developed their own curriculum aligned to 

the National Curriculum. According to the school’s year 8 scheme of work, the selected class 

Ms Silver and I chose were scheduled to learn about the topic of linear relationships during 

the month in which the case study was to take place.  

 

 
Figure 6.2: Mapping Ms Silver’s LO's to the National Curriculum 

To begin planning, Ms Silver selected a set of learning objectives (LOs) for her students. The 

learning objectives were that students should be able to: (1) construct expressions and 

equations; (2) solve linear equations using pictures and an abstract method; (3) solve linear 

equations which lead to non-integer solutions; (4) solve linear equations which have non-

integer coefficients; and (5) solve linear equations where the unknown appears on both sides. 

How each of these learning objectives align to the National Curriculum is shown in Figure 

6.2.  
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Ms Silver and I reviewed each lesson plan about one week in advance to ensure each 

complied with a high level of inquiry. This was done with reference to the Electronic Quality 

of Inquiry Protocol (EQUIP; Section 4.3). As mentioned above, Ms Silver had participated in 

a pilot study the previous school year, so she was already familiar with the EQUIP. 

 

Ms Silver’s teaching style might be best described as demonstrative. Based on previous 

observations, it seemed to me that she preferred leading lessons in which she had control and 

was the primary demonstrator in the classroom. As such, I anticipated that Ms Silver would 

need additional support in facilitating classroom discussions throughout the IBI unit.  

 

6.2.1 Pre-test and post-test development 

Having selected the topic of linear relationships for the IBI unit, Ms Silver and I then 

constructed the pre-test and post-test (see Section 4.5). Ms Silver and I selected test items 

from previous National Curriculum assessments (known as ‘SATs’) which had been aligned 

to the Key Stage 3 programme of study. To assess conceptual knowledge, 12 questions were 

identified, and to assess procedural knowledge, 21 questions were identified. Please see 

Appendix G for a copy of the pre- and post-test. As previously described (Section 4.5) the 

test items on the pre- and post-test were identical. 

 

Both the pre-test and post-test were administered under exam conditions within the students’ 

normal mathematics classroom. Each assessment took the students approximately forty 

minutes to complete. The pre-test was administered one week before the first IBI lesson. The 

post-test was administered one week following the last IBI lesson (i.e. six weeks later).  

 

6.2.2 ATMI, ITIS, and m-ITIS 

The Attitudes Towards Mathematics Inventory (ATMI), the Implicit Theories of Intelligence 

Scale (ITIS), and the modified Implicit Theories of Intelligence Scale (m-ITIS) were given 

one week before the start of the IBI unit, however on a different day to the pre-test (see 

Section 4.4 for more details on the ATMI, ITIS, and m-ITIS). Students completed these 

questionnaires individually in a computer lab using the online platform SurveyMonkey. Ms 

Silver supervised the students while they completed the questionnaires.  
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6.2.3 Observation protocol 

To ensure detailed observations, I took handwritten notes in addition to audio recordings and 

video recordings of each lesson. As described in Section 4.6, my notes were both descriptive 

and reflective (Creswell & Poth, 2017; see Appendix D for an example of my observation 

notes). The main purpose of my written notes was to capture observations that would 

facilitate subsequent interview sessions as well provide a record of the lesson’s flow for 

future documentation and analysis. Finally, I used a video camera set up at the back of the 

classroom (farthest from the white board) to record the lesson. This video aided my post-

lesson reflections as well as development of tailored interview questions and later analysis. 

 

6.2.4 EQUIP 

The EQUIP was used to assess the level of inquiry in each lesson on a scale of 1 to 4: (1) 

‘pre-enquiry’, (2) ‘developing enquiry’, (3) ‘proficient enquiry’, and (4) ‘exemplary enquiry’ 

(please see Appendix A for copy of the rubric and Section 4.3 for a discussion of its use). 

One of my goals was to ensure that the majority of the lessons of the IBI unit met or 

exceeded the criteria for ‘proficient’. To this end, Ms Silver and I reviewed the rubric before 

each lesson was developed and discussed ways in which to achieve a high level of inquiry. In 

addition, I observed Ms Silver teach an IBI lesson before the intervention began. Following 

this lesson, we debriefed to rate the lesson as per the EQUIP and discuss improvement areas. 

The principal feedback from this practice lesson was to provide the students more time to 

explore the IBI problem and to allow for discussion of the problem afterward. 

 

6.2.5 Interview protocol 

All interviews were conducted at Stratham College during the school day. A small meeting 

room next to the Headmaster’s office was reserved for the interviews. Since only a few 

interviews were able to take place during Ms Silver’s lesson, most interviews took place 

during one of the students’ alternative maths lessons. Occasionally it was not possible to 

schedule the interview during any of the students’ mathematics lessons, so some students 

missed lessons outside of mathematics (e.g. art). In every instance I was given permission 

from the class teacher for the student to miss approximately 30 minutes of the lesson that day 

in order to be interviewed. Student consent to miss class was also obtained in order to partake 

in the interview. Scheduling conflicts made it impracticable for students to avoid missing 

some class time during the interviews.  
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Nineteen students consented for an interview. I excluded seven students since their FFTB was 

not ‘lower’ and therefore did not meet my criteria for MD. As a result, 12 students were 

interviewed. I began each interview by reminding the student of the purpose of the study as 

well as their right to skip questions or end the interview at any time at their request. I also 

confirmed that they still consented to having the interview recorded. The interview followed 

a semi-structured approach, with the five main topics to cover being: (1) feelings about 

mathematics, (2) perceptions of the IBI lessons, (3) impressions of teaching in IBI, (4) self-

reported effectiveness of IBI on learning, and (5) handling impasses. 

 

6.2.6 Other data collection 

In addition to the questionnaire, pre-test, post-test, observations, and interviews, I also 

collected the students’ worksheets to supplement my lesson observations as well as stimulate 

the students’ recall of the IBI lessons when being interviewed. 

 

6.3 Overview of the IBI lessons 
Several IBI tasks were chosen that aligned to the learning objectives (see Table 6.1). The 

problems were selected from a variety of sources including curricular websites and textbooks. 

Each problem is presented in the table below alongside the lesson number in which the task 

appeared (L1 stands for Lesson 1, L2 stands for Lesson 2, and so on). Each lesson’s primary 

learning objective is also indicated. Each problem took approximately one lesson to explore 

and then discuss, with the exception of the Henri and Emile problem which took two lessons 

(L5 and L6). 

 

Table 6.1: Overview of the eight IBI lessons at Stratham College 

 Learning Objective IBI Task 

L1 To solve linear 

equations using 

pictures and an 

abstract method. 

Laila and Julius problem 

Laila tells Julius to pick a number between one and ten. ‘Add 

three to your number and multiply the sum by five,’ she tells 

him. Next, she says, ‘Now take that number and subtract seven 

from it and tell me the new number.’ ‘Twenty-three!’ Julius 

exclaims. 
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Table 6.1 (continued) 

  a. Write an expression that records the operations that 

Julius used. 

b. What was Julius’ original number? 

c. In the next round Laila is supposed to pick a number 

between 1 and 10 and follow the same instructions. She 

gives her final result as 108. Julius immediately replies: 

‘Hey, you cheated!’ What might he mean? 

(Illustrative Mathematics, n.d.-a) 

L2 To construct 

expressions and 

equations. 

Expressions problem 

Write an expression for the sequence of operations. 

a. Add 3 to x, subtract the result from 1, then double what 

you have. 

b. Add 3 to x, double what you have, then subtract 1 from 

the result. 

(Illustrative Mathematics, n.d.-b) 

L3 To solve linear 

equations which 

lead to non-integer 

solutions. 

Fibonacci problem 

A certain man proceeded to Lucca on business to make a 

profit, doubled his money, and he spent there 12 denari. He 

then left and went through Florence; he there doubled his 

money, and spent 12 denari. Then he returned to Pisa, doubled 

his money, spent 12 denari, and it is proposed that he had 

nothing left. It is sought how much he had at the beginning. 

(Sigler, 2002) 

L4 To solve linear 

equations which 

have non-integer 

coefficients. 

Pizza problem 

Below are the prices for a medium 2-topping pizza and a 

medium 4-topping pizza from Domino’s. 

Medium (12”) Hand Tossed Pizza 

Whole: Pepperoni, Green Peppers 

£16.79 

Medium (12”) Hand Tossed Pizza 

Whole: Ham, Chicken, Mushrooms, Green Peppers 

£19.59 
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Table 6.1 (continued) 

  a. How much do you think Domino’s is charging for each 

topping, and how much would you expect to pay for a 

plain cheese pizza with no toppings? 

b. Write an equation you could use to determine the price 

of a pizza for a given number of toppings. 

c. If you ordered your favourite medium pizza, how much 

would you expect to spend? 

d. If you had £20 to spend on a medium pizza, how many 

toppings could you get? 

(Mathalicious, n.d.) 

L5 

and 

L6 

To solve linear 

equations which 

have non-integer 

coefficients. 

Henri and Emile problem 

In Ms Chang’s class, Emile found out that his walking rate is 2 

meters per second. That is, Emile walks 2 meters every 1 

second. When he gets home from school, he times his little 

brother Henri as Henri walks 100 meters. He figures out that 

Henri’s walking rate is 1 meter per second. Henri walks 1 

meter every second. 

 

Henri challenges Emile to a walking race. Because Emile’s 

walking rate is faster, Emile gives Henri a 45-meter head start. 

Emile knows his brother would enjoy winning the race, but he 

does not want to make the race so short that it is obvious his 

brother will win. 

 

How long should the race be so that Henri will win in a close 

race? 

(Pearson Connected Mathematics 3, n.d.) 

L7 To solve linear 

equations where 

the unknown 

appears on both 

sides. 

Ichiro problem 

It has been one month since Ichiro’s mother entered the 

hospital. He has decided to give a prayer with his small brother 

at a local temple every morning so that she will be well soon.  
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Table 6.1 (continued) 

  There are 18 ten-yen coins in Ichiro’s wallet and just 22 five-

yen coins in his smaller brother’s wallet. They have decided 

every time to take one coin from each of them and put them in 

the offertory box and continue the prayer up until either wallet 

becomes empty. One day after they were done with their 

prayer, when they looked into each other’s wallet the smaller 

brother’s amount of money was bigger than Ichiro’s. How 

many days has it been since they started praying? 

(The TIMSS Video Study, n.d.) 

L8 To solve linear 

equations where 

the unknown 

appears on both 

sides. 

Foster problem 

�	𝑥 + � = �	𝑥 + �	
Can you construct an equation of the form above in which 

a. the solution for	𝑥 is an integer? 

b. the solution for	𝑥 is a non-integer? 

c. there is no solution for 𝑥? 

(Foster, 2013a) 

 

6.4 Analysis 
This case study seeks to address the following research questions: (RQ1) How do students 

with mathematics difficulties perceive IBI? and (RQ2) Are students’ beliefs (e.g. mindset) 

associated with the effectiveness of IBI for students with mathematics difficulties? The 

following aspects of the data collected were analysed to address the above two research 

questions. Firstly, the lessons as implemented by the teacher and enacted by the students are 

analysed using the EQUIP (Section 6.4.1). Then, evidence of students’ beliefs throughout the 

IBI unit are analysed using McLeod’s (1992) framework (RQ2; Section 6.4.2). Next, 

students’ perceptions of IBI are analysed using Merriam's (2016) approach to coding (RQ1; 

Section 6.4.3). Finally, student’s learning outcomes as measured by the pre- and post-test are 

analysed using descriptive and bivariate statistics (RQ2; Section 6.4.4). All analyses have 

been limited to the 18 students in the class identified as having MD (Section 6.1.2). Please 

see Section 4.10 for a more complete description of my analytical approach. 
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6.4.1 An analysis of the quality of inquiry instruction 

To ensure the IBI unit met the criteria of proficient inquiry (discussed in Section 4.3) I 

evaluated the lessons within Ms Silver’s case using the four factors of EQUIP: Instructional 

factors, Discourse factors, Assessment factors, and Curriculum factors. As previously 

discussed in Section 4.3, the EQUIP is an instrument that has been validated for use in 

mathematics classrooms.  

 

Table 6.2 Assessment of the quality of the inquiry instruction in Ms Silver's case 

Factor Sub-factor Level assessed Section 

Instructional 

Factors 

Instructional strategies Proficient Appendix M.1.1 

Order of instruction Proficient Appendix M.1.2 

Teacher role Developing Appendix M.1.3 

Student role Proficient Appendix M.1.4 

Knowledge acquisition Proficient Appendix M.1.5 

Discourse 

Factors 

Questioning level Proficient Appendix M.2.1 

Complexity of questions Proficient Appendix M.2.2 

Questioning ecology Proficient Appendix M.2.3 

Communication pattern Pre-inquiry Appendix M.2.4 

Classroom interactions Proficient Appendix M.2.5 

Assessment 

Factors 

Prior knowledge Proficient Appendix M.3.1 

Conceptual development Proficient Appendix M.3.2 

Student reflection Proficient Appendix M.3.3 

Assessment type Proficient Appendix M.3.4 

Role of assessing Proficient Appendix M.3.5 

Curriculum 

Factors 

Content depth Exemplary Appendix M.4.1 

Learner centrality Proficient Appendix M.4.2 

Integration of content and investigation Proficient Appendix M.4.3 

Organising and recording information Proficient Appendix M.4.4 

 

A detailed discussion of this analysis is presented in Appendix M. However, in this section I 

present a summary of this evaluation (Table 6.2). As can be seen in Table 6.2 the most 

common score assigned to the different components of the EQUIP was that of proficient 
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inquiry, therefore the unit as a whole could be best described as meeting the requirements of 

proficient inquiry. For more details, please see Appendix M. 

 

Ms Silver was successful in leading instruction, discourse, assessment, and curriculum that 

met many of the goals of inquiry. Students were always given time to explore the IBI 

problems before receiving instruction. In addition, students were given many opportunities to 

explain and justify their ideas both with a partner and with the class. Ms Silver assessed 

students’ understanding frequently, and she was especially skilled at providing depth of 

content. 

 
Figure 6.3: Time dedicated to administration, explanation, and exploration at Stratham 

 

An important aspect of an inquiry lesson is the allocation of time between teacher-led 

instruction and student-led exploration, with the goal that teachers ‘only occasionally lecture’ 

(see Appendix A for a copy of the EQUIP). Figure 6.3 illustrates how the time in each lesson 

was divided between administration, explanation, and exploration for Ms Silver’s IBI unit. 

Administration was considered to be tasks that the teacher and students completed in order to 

prepare to begin a lesson, for example, taking the register or passing out papers. Explanation 

was considered any time a person (the teacher or a student) spoke to the entire class. This 

included explanations of the task or solution methods. Exploration was considered any time 

0 10 20 30 40 50

L8

L7

L6

L5

L4

L3

L2

L1

admin
explain
explore



 150 

the students freely explored the IBI task. However, distinctions between explanation and 

exploration in a classroom context are not clear cut. It is possible that elements of exploration 

took place during the phases I coded as ‘explain’ and elements of explanation took place 

during the phases I coded as ‘explore’. 

 

6.4.2 An analysis of student beliefs throughout the unit 

In Section 6.3, I present an overview of eight 50-minute lessons organised around a single 

mathematics unit on the topic of linear relationships. These lessons were observed, video 

recorded, and detailed field notes were taken. In addition, student work (e.g. worksheets) was 

collected. These data were used to analyse whether students’ beliefs were evidenced and how 

these beliefs may have been associated with their perceptions of the IBI unit as well as its 

effectiveness. In addition, the results of students’ responses to the questionnaires were used 

within this analysis to help consider the extent to which beliefs (e.g. mindset) were associated 

with the effectiveness of the inquiry-based approach. An analysis of the students’ perceptions 

is presented in Section 6.4.3. 

 

Before discussing the beliefs that students expressed throughout the unit (Section 6.4.3), it is 

useful to briefly present the results of three questionnaires the students completed prior to the 

commencement of the IBI unit: Attitudes Towards Mathematics Inventory (ATMI), Implicit 

Theories of Intelligence Scale (ITIS), and modified Implicit Theories of Intelligence Scale 

(m-ITIS). Please see Section 4.4 for a discussion of these instruments.  

 

6.4.2.1 Results of the ATMI, ITIS, and m-ITIS 

All 18 students with MD completed two versions of the ITIS, one for general mindset and 

another for mathematics-specific mindset (m-ITIS). The results of these are shown in Figure 

6.4. 

 

Five students reported as having a fixed general mindset while nine reported as having a 

growth general mindset. This is a different picture than the 40-20-40 split between fixed-

mixed-growth mindsets that is suggested in the literature (please see Section 2.9). The 

distribution is somewhat different when looking at mathematics mindset with a smaller 

number showing as mixed and a greater number showing as growth. The relatively high 

number of students with growth mindsets might be due to Ms Silver’s self-reported explicit 
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teaching of growth mindset early in the year and daily growth mindset messages. Although, it 

is possible that students might hold a ‘false growth mindset’, meaning they report as having a 

growth mindset only because they believe this is socially desirable (Gross-Loh, 2016, para. 

2). 

 
Figure 6.4: Stratham College ITIS results 

 
Figure 6.5: Stratham College ATMI results 

The students’ attitudes towards mathematics mainly clustered around neutral positions of 

enjoyment, motivation, and self-confidence. Value, on the other hand, was viewed favourably 

by the students with seven students rating the value of mathematics highly. Please see Table 

4.2 for the definition of each attitudinal measure. Students’ attitudes towards mathematics 

were categorised into low, mid, and high by sectioning the possible scores for each construct 

into thirds (Figure 6.5). 
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6.4.2.2 Student beliefs emerging from observations 

As previously discussed in Section 4.10, I use McLeod’s framework of student beliefs to 

analyse how students’ beliefs were expressed throughout the IBI unit and to what degree 

these beliefs may or may not have been associated with the effectiveness of the IBI unit. The 

McLeod framework breaks students’ beliefs into four constructs: (1) beliefs about 

mathematics, (2) beliefs about self, (3) beliefs about mathematics teaching, and (4) beliefs 

about the social context. 

 

6.4.2.2.1 Beliefs about mathematics 

In this section I explore the ways in which the students appeared to express beliefs about 

mathematics, and whether these beliefs were associated with the effectiveness of the IBI unit. 

Beliefs which emerged from the analysis include the idea that (1) mathematics is something 

one ‘does’; (2) mathematics problems should not take long to solve; and (3) mathematics 

problems should have a single solution pathway. 

 

Throughout much of the IBI unit the students appeared to feel that the correct approach to 

tackling the novel problems was to combine the salient information with the correct 

procedure, suggesting the belief that mathematics is something one ‘does’. An example of 

this can be seen in the following extract. 

 

E:  We’re not sure if we have everything. 

R: What do you mean? 

E: We wanted to get all the numbers out first. Like, before we go on to 

the next bit. 

R: I see. Is that what this means? [pointing to numbers the student had 

underlined] 

E: Yeah, that’s what we did in year 7 with these kinds of problems. Find 

the numbers first, then we can … add them or whatever. 

(Ekko and Researcher, L3) 

 

In the above exchange, Ekko suggested that the process of solving the IBI problems relied on 

being able to clearly identify all the numbers and then apply a simple procedure. When 
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presented with IBI problems, however, this approach may prove challenging since students 

are not provided with a procedure. 

 

R: How are we getting on here? 

C: We know we have to do something with this number and this one 

[pointing to circled numbers on the worksheet], and it has something 

to do with brackets, but we can’t remember how to solve these. 

(Researcher and Cayleigh, L5) 

 

Like Ekko previously, Cayleigh seemed to believe the correct way to approach the problem 

was to firstly find the numbers (by circling) and then do something with them. Cayleigh and 

her peers struggled with the problem for several more minutes before getting off-task. This 

exchange was not uncommon as students frequently focused on finding a step-by-step 

approach to solving the IBI problems, namely: Step 1, identify the numbers, and Step 2, 

apply a known procedure. This approach is generally in conflict with IBI, which requires 

students to work on problems for which they have not been taught a procedure, a point that 

Ms Silver had emphasised to the students during each IBI lesson. 

 

While exploring the Ichiro problem (L7) a group of students had correctly identified two 

expressions for the number of coins in each of the brothers’ wallets. The students were 

discussing what to do next and were overheard saying the following: 

 

K: But hold on, the smaller brother is supposed to have more. 

D: What? 

K: If this one here is Ichiro’s and this one here is the smaller brother’s 

then this [smaller brother’s amount] must be bigger than this [Ichiro’s 

amount]. 

D: Right, yeah. 

K: Yeah. So, we can’t put the equals then. 

D: So that’s not right. What do we do then? 

K: I don’t know. We let Ms explain it [laughs]. 

(Karson and Donald, L7) 
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At this point I attempted to encourage the group to continue exploring the problem, and if 

they did not feel they could solve the problem using their expressions, to try some alternative 

approaches. After some discussion, the students began to explore several other solution 

pathways, including working through the story day by day and keeping a record of the 

amounts in a table. However, prior to some coaxing from myself, the above exchange 

between Karson and Donald suggested they may have been about to give up. Perhaps the 

students were more familiar with a direct teaching approach and hence were tempted to rely 

on the teacher to explain (‘let Ms explain it’).  

 

One interpretation of the above interaction might be that the students’ unwillingness to 

engage in solving the problem further without explicit help from the teacher is an example of 

learned helplessness (Dweck, 1975; Yates, 2009). Some studies argue that IBI can help 

students overcome learned helplessness (Di Martino & Zan, 2009) and the ability of the 

group to re-engage with the problem after some coaxing from myself might be evidence of 

this. In this case, the students did demonstrate good effort and progress by finding two 

expressions for the amount of money each brother had. However, the students failed to 

ultimately make these expressions useful for solving the problem (for example, by writing an 

inequality or by interpreting their equation in a meaningful way).  

 

Taken another way, perhaps the above extract is an example of these students simply 

reaching the limits of their cognitive stamina. Exploration of novel problems is a cognitively 

demanding task, utilising high levels of working memory and cognitive load. Cognitive Load 

Theory (CLT; Sweller, 1988) suggests that working memory is a limited resource and, when 

taxed, reduces performance. 

 

Another belief about mathematics that these students expressed during the IBI unit related to 

the length of problems. 

 

D: Why are these always so wordy? 

T: Sometimes maths problems are not all tied up in a neat little bow. You 

have to go looking for them. 

D: But these ones take ages. 

 (Dax and Teacher, L7) 
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Dax appeared to notice that the problems throughout the IBI unit took longer to solve than 

those he normally associated with mathematics. McLeod (1992) and Schoenfeld (1985) argue 

that many students believe that problems in mathematics can be solved in less than ten 

minutes and, moreover, students who held this view struggled to persevere when solving 

inquiry problems. The comments from Dax were not dissimilar to other comments made by 

students throughout the IBI unit. My observations were that these sentiments were often 

associated with signs of frustration and boredom, such as students placing their heads on their 

desks or defacing their paper (see Appendix K). 

 

In addition to believing that problems should not take long to solve the students often 

expressed beliefs about how problems can be solved: 

 

R: That’s a nicely drawn table. Can you explain to me what you’ve done? 

E: Yeah, we said we thought he would start out with 10.5 denari. Is that 

the answer? 

R: Let’s put the answer to the side for a moment. Can you please explain 

what you’ve done here? [pointing to drawn table]  

E: But we’re not sure if that’s the answer though. 

R: Well, if you’re not sure then maybe try a different approach and see if 

you get the same answer. 

(Researcher and Edith, L3) 

 

Despite my prompting, Edith was hesitant to explain her group’s approach. The group instead 

seemed fixated on getting the correct answer but at the same time were reluctant to try out 

other approaches to confirm the answer. A review of their written work suggested there was 

no evidence of further working. It is possible that the students held the naïve belief that 

mathematics problems only have one correct solution pathway. This may have resulted in this 

group of students feeling like they had completed the task and any further attempts were 

pointless. Other research has argued that questions which encourage students to explore 

multiple solution pathways allow students to be more innovative and to think about a wider 

range of alternatives (Makar, 2012). 
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6.4.2.2.1.1 Summary of beliefs about mathematics 

In the above section I discuss my classroom observation which might evidence some of the 

beliefs the students held about mathematics. Students seemed to believe that mathematics is 

something that is done via a procedure, rather than by developing and applying an 

understanding of the concepts. As such, students sought guidance on ‘the formula’ or ‘how to 

do it’. In addition, students felt the question length conflicted with their beliefs about maths 

problems, claiming that the IBI problems took too long. 

 

Finally, prior experiences in school may have resulted in the students’ belief that mathematics 

problems have a single solution pathway. Some students struggled with the idea that 

problems could be solved or confirmed using different approaches. The result was that 

students stopped exploring once they felt they had found a solution pathway. 

 

6.4.2.2.2 Beliefs about self 

There were several observations in which students appeared to express their self-beliefs 

during the IBI unit. In this section I discuss these under the groupings of student self-efficacy 

(Bandura, 1997) and student mindset (Dweck, 2017b). 

 

6.4.2.2.2.1 Self-efficacy 

Student self-efficacy for mathematics has been shown to impact how long students will 

persist at a task and how much efforts they will expend (Bandura & Cervone, 1986; Schunk, 

1995). During the observations of the IBI unit, students expressed views that might have 

indicated their self-efficacy. Indications of low self-efficacy were closely associated with task 

disengagement or disruptive behaviour. For example: 

 

T: I hear lots of noise coming from this group but most of it isn’t about 

maths. Can someone show me where we are on the problem? 

E: We don’t know what to do Ms. 

T: Were you listening before? 

S: We were, but we just can’t do them. I don’t get any of it. 

 (Teacher, Elayne, and Sirena, L1) 
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Following this exchange, the teacher spent several minutes recapping some key terms and 

coaxing the students to try and reengage with the problem. This had little success and 

ultimately the teacher needed to move on to the next group. The exchange seemed to suggest 

that the students were exhibiting low self-efficacy. The students felt they could not do the 

problems, which possibly led to their poor engagement with the problem. A review of their 

worksheets suggested little progress before or after Ms Silver’s coaching.  

 

In a separate incident I observed two students working on the Ichiro problem. Upon closer 

inspection it appeared that one student, Elayne, was copying the work of her peer, Clay. 

When I questioned Elayne, the following exchange took place: 

 

R:  Can you explain for me how you got this answer? 

E:  [Shrugs shoulders and looks at Clay]. 

(Researcher and Elayne, L7) 

 

Student collaboration can be an important part of problem exploration. However, the above 

example shows how ‘collaboration’ can sometimes be one-sided. It appeared Elayne felt she 

lacked the ability to tackle the problem (suggesting low self-efficacy). However, an 

alternative explanation for Elayne’s actions could be that she held the belief that the most 

important thing in mathematics is to get the correct answer, and therefore there is no harm in 

copying a peer’s work (students’ beliefs about mathematics are covered in Section 6.4.2.2.1). 

Elayne’s actions might also be indicative of a fixed mindset, as she might have felt that her 

effort would not lead to improvement. Student mindset is discussed in more detail below.  

 

Situations in which one student within a group appeared to do most of the work were 

frequent. Another example was observed during L4. 

 

R:  It looks like you guys have finished over here. 

K:  Not really. I don’t get it, but Sirena has been helping me. 

S:  We get pizza every Friday at my house, so I guess you could say I’m 

sort of an expert on this.  

 (Researcher, Kent, and Sirena, L4) 
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These students worked together well, and while both failed to find a valid solution pathway, 

they approached the impasses they each encountered within the problem differently. Kent 

appeared to exhibit low self-efficacy, claiming he did not ‘get it’. A review of his worksheets 

suggested that little written exploration had taken place, perhaps indicating that his low self- 

efficacy caused him to disengage with the task. Alternatively, it is possible Kent spent a 

majority of the class time talking with his peers in an attempt to make sense of the problem 

and did not have time to write down his thoughts. In contrast, Sirena appeared to make a 

personal connection with the subject matter of the problem explaining that she orders pizza 

every week. Prior studies have suggested that students who make connections to the problems 

(such as a family connection) exhibit greater ownership of their learning (Wang et al., 2018). 

A review of her worksheet, and my own observations, indicated that Sirena tried a variety of 

approaches to solving the problem, and her closing remark suggests that it was an overall 

positive experience. 

 

When tackling the Henri and Emile problem (L5) I overheard Opal make the following 

comment. 

 

I felt like I was doing okay on these the other day but this one makes no sense 

at all. Help me. (Opal, L5) 

 

It seems that Opal held a low belief in her ability to solve the IBI problem of L5 and believed 

the only way to overcome her inability was for someone to help her. Opal’s view may be an 

example of learned helplessness (Dweck, 1975; Yates, 2009). Her peer’s subsequent 

interjection of help may have inadvertently reinforced Opal’s feeling of helplessness. The 

students’ beliefs about teaching are addressed in Section 6.4.2.2.3. 

 

6.4.2.2.2.2 Mindset 

In the previous section I explored how students’ beliefs about their self-efficacy appeared to 

manifest during the IBI observations, with some impact upon the students’ performance. I 

categorise self-efficacy as a belief that students hold about themselves. Another belief that 

students can hold about themselves is mindset, which I explore in this section.  
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During the observations, students frequently made comments which suggested they held a 

fixed mindset. Perhaps one of the clearest examples of this was during a discussion between 

one student and me regarding the Ichiro problem (L7). 

 

R:  Are you having some trouble over here? 

E:  Yeah… 

R:  What have you tried so far? 

E:  Nothing really, I don’t get any of it … These types of problems just 

really confuse me. My mum said she was the same way when she was 

in school.  

(Researcher and Eleri, L7) 

 

The above comment typifies similar observations I made during the IBI unit. Eleri appeared 

reluctant to try out the problem and seemed to almost give up on the problem as soon as she 

began. This behaviour might indicate a fixed mindset, in which students ‘view their abilities 

as representing fixed traits over which they have little control’ (Schunk, 2012, p. 257). It is 

worth noting that Eleri measured as mixed mindset on the general ITIS and yet growth 

mindset on the mathematics-specific ITIS. As I discussed in Section 6.4.2.1, Ms Silver 

undertook an explicit teaching of mindset at the start of the school year, and students were 

often exposed to mindset messages within the classroom. Therefore, one explanation of the 

conflict between Eleri’s comment above (suggesting a fixed mindset) and her ITIS score 

(suggesting a growth mindset) is that Eleri had been trained to respond to the mindset 

questionnaire in a more growth orientated way. Dweck called this phenomenon ‘false 

mindset’ (Gross-Loh, 2016, para. 2). In addition, Eleri’s unprompted raising of her mother's 

perceived abilities in mathematics might suggest Eleri believes her poor performance in 

mathematics might be inherited. This view also aligns with those of a fixed mindset. A 

potentially similar view was observed during a discussion with Zelda during L2. 

 

R:  How did you come up with this answer? 

Z:  I didn’t really. Harper got the answer. 

R:  I see, did you try the problem for yourself? 

Z:  Not really … I’m rubbish at this stuff. Harper has got the brains 

[laughing]. 

 (Researcher and Zelda, L2) 
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Zelda makes several references to performance in mathematics as a fixed trait (e.g. ‘I’m 

rubbish at this’ versus ‘Harper has got the brains’). She suggests that Harper has some innate 

ability which makes her superior in mathematics. This aligns with the views of a fixed 

mindset in which students feel their abilities are largely outside of their control. This belief 

may have contributed to Zelda’s low engagement in the IBI problem, as evidenced by my 

observations as well as her worksheet which, aside from the copied answer from Harper, 

showed no evidence of working. Zelda measured growth on the general ITIS and fixed on the 

m-ITIS. It is therefore possible that Zelda was expressing fixed messages in this instance 

because she was operating in the domain of mathematics.  

 

Another potential manifestation of student mindset occurred during the pizza problem of L4. 

In a discussion with a pair of students the following exchange took place: 

 

R:  You guys have a lot written down. 

S:  Yeah! We think we got it. Is £1.40 correct? 

R:  Yes, but how did you get there? 

C:  We tried a few different bits, like if this one has two toppings and this 

one has four the difference is only two toppings. So, we divided by 

two and kind of went from there. 

R:  Well that sounds like a very sensible approach. Nice work. 

C:  Thanks, I liked this problem. I’ve always been quite good at maths. 

(Researcher, Simon, and Clay, L4) 

 

This pair of students engaged well with the problem. My observations, as well as a review of 

their worksheets (see Appendix J), suggested they had attempted several different solution 

pathways, eventually finding one which led them to their final answer. Given Clay scored as 

fixed mindset on both the general and mathematics specific scales, his comment that he has 

‘always been quite good at maths’ could relate to how he sees his perceived high abilities in 

mathematics as fixed. It is therefore possible that Clay’s fixed mindset actually helped him 

succeed on the IBI problem, since he identified so strongly as someone who succeeds in 

maths. This phenomenon has been observed in other studies (Hwang et al., 2019). Despite 

this, it appeared that Clay had expended a lot of effort on this problem and yet did not 

connect his success with his effort. Perhaps, when faced with evidence which might conflict 
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with students’ beliefs about their intelligence, some seek out mitigating explanations (e.g. 

innate ability) rather than change their beliefs. 

 

6.4.2.2.2.3 Summary of beliefs about self 

In the previous section, I outlined several observations which might indicate the beliefs the 

students held during the case study. Students held a belief that they lacked the ability to 

perform well in mathematics, and this low self-efficacy may have contributed to poor 

engagement by some students. IBI problems that students were able to connect to the real-

world seemed to counter this issue and result in greater effort.  

 

On occasion, students seemed able to simultaneously hold two beliefs. The first was that 

mathematics is important (and the students need to have the correct answer). The second was 

the belief that they lacked the ability to explore the problems themselves. The result of 

students holding these two beliefs appeared to be cheating by copying answers. 

 

Students’ mindsets were suggested at several points throughout my observations, with several 

students suggesting that effort plays little role in their understanding. The idea that 

mathematics ability was innate and genetic was expressed by several students throughout the 

case and this was used as a reason for their disengagement. When students with fixed 

mindsets succeeded through effort, they were apt to seek mitigating explanations (e.g. innate 

ability, luck) rather than change their beliefs. 

 

6.4.2.2.3 Beliefs about mathematics teaching 

In preparing for the IBI unit Ms Silver informed me that it was unlikely that her students had 

received much exposure to IBI in the past. Furthermore, before commencing the IBI unit, Ms 

Silver said that she suspected the students would ‘give up quite easily’ when faced with the 

selected tasks. She acknowledged that her own teaching style is quite direct, and she tends to 

help students when they struggle. Through the consistent application of these teaching 

approaches students develop certain expectations and beliefs about how mathematics is 

taught (Boaler, 1998; Makar & Fielding-Wells, 2018; Op ’t Eynde et al., 2006). I explore this 

interaction in this section. 

 

During the pizza problem (L4) I had the following exchange with a group of students. 
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R:  How are you girls doing here? 

I:  I think we are doing okay, thanks. 

R:  How do you like these types of problems? 

E:  I like them. It’s good variety. 

I: Yeah. 

R:  What do you mean? 

E:  Like, everyone’s different, so it's good they [the problems] are always 

different. 

I:  Yeah, and I’m really visual, but some people can read these and just 

get them because they are more, like, ‘wordy’ learners. I like the 

pictures and diagrams. 

 (Researcher, Ida, and Edith, L4) 

 

Ida’s and Edith’s references to ‘variety’ and ‘different’ suggest the students saw the IBI 

problems as different to their normal mathematics lessons. The comment, ‘It’s good they are 

always different’, suggests Edith believed the IBI teaching approach was positive. 

Alternatively, Edith could have been referring to the variety within the IBI problems. Ida 

seemed to have some awareness of the concept of learning styles and the idea that different 

students can learn best in different ways. Perhaps this awareness is what allowed her to 

recognise the changed approach during the IBI unit. 

 

Other students made comments throughout the IBI unit that suggested they saw the IBI 

approach as different. In addition to the previous example, the following exchange helps to 

highlight this. 

 

W: Is it like this because you’re here, Miss? 

R:  What do you mean? 

W:  Like normally Ms Silver would explain everything at the board, but 

she doesn’t do that anymore. 

R:  And how do you feel about that? 

W:  To be honest, I miss it. I felt like everything used to be a lot clearer.  

(Winston and Researcher, L5) 
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Teacher feedback indicated that Winston had been performing well for much of the year 

despite his low prior attainment. However, Winston frequently expressed that he felt the IBI 

style of teaching was ineffective. Perhaps his historically strong performance using the direct 

teaching approach led him to believe this was the best teaching method. The idea that 

students might be reluctant to learn via IBI is discussed within the literature (Makar & 

Fielding-Wells, 2018). The extract suggests Winston feels the IBI approach is not as clear 

and he is not learning as much as before.  

 

Favourable views of IBI were also observed within the IBI unit. During the Ichiro (L7) 

problem the following exchange occurred between me and a group of students. 

 

O:  I wish Ms would just do an example with us first.  

E:  Yeah, but I can sort of see how it might be better. 

R:  What do you mean? 

E:  Well you have to put more into it, and that makes it stick a little better.  

O:  I don’t know. I think it’s a waste of time to keep trying stuff and then 

you never get it right.  

(Opal, Ekko, and Researcher, L7) 

 

Both of these students appeared to agree that the IBI approach was more difficult. 

Interestingly, however, Ekko appeared to align with proponents of IBI who say that the 

increased attention to the problem in an IBI lesson may help develop deeper and more 

permanent understanding. It is worth noting that Ekko scored as growth mindset on the ITIS 

for both general and mathematics specific mindset. This would seem to align with her 

comments that effort, or putting ‘more into it’, can drive successful outcomes. Opal also 

scored as growth mindset on both ITIS assessments, although during this extract she appeared 

to demonstrate a more fixed view. Opal appeared to believe that the teaching of mathematics 

should follow the more traditional pattern in which the teacher uses direct instruction and 

then the students subsequently practice the material. To explore a novel problem without first 

being shown an example is therefore a ‘waste of time’. 
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6.4.2.2.3.1 Summary of beliefs about mathematics teaching 

In the previous section I explored how students’ beliefs about the way mathematics should be 

taught were observed during the IBI unit. Students were sensitive to the change in 

mathematics teaching, with many able to articulate how they saw the new approach as 

different to their usual maths lessons. Students appeared to believe that mathematics 

problems should be short and the IBI problems were excessively long, thus reducing the pace 

at which they might be able to learn new material. This might suggest that the students 

believed mathematics teaching should be volume orientated. 

 

Given the students’ prior experiences of mathematics, it is unsurprising that some students 

believed teaching should follow a traditional transmit-receive relationship, in which the 

teacher, acting as the expert, transmits knowledge to the students. Recognition of the value of 

effort and exploration was mixed, with some students feeling it was a waste of time and 

others feeling it encouraged deeper understanding.  

 

6.4.2.2.4 Beliefs about the social context 

The social context relates to the beliefs the students hold about the interactions between 

mathematics and society (McLeod, 1989). This includes the role of mathematics in the wider 

world and the role of social interactions within mathematics. This section explores how these 

beliefs may have manifested themselves during my observations of the IBI unit.  

 

During the second lesson of the IBI unit, a group of students were overheard discussing the 

utility of the task and mathematics more broadly. 

 

K1:  I don’t know but my dad always says no one ever uses the maths they 

learn at school. 

K2:  Well, I wanted to be a programmer, but I got knocked down a set last 

year so that’s unlikely now. 

K1:  Why not? 

K2:  Employers look for that, don’t they, like if they compare two people 

and one was in lower set maths and one in higher set, they will choose 

the higher set.  

(Karson and Kent, L2) 
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The above exchange suggests several possible beliefs that these students held about the social 

context. Karson’s initial comment highlights an important social setting, namely the family 

unit. It seemed within Karson’s social context, mathematics was not a valued pursuit, and 

Karson’s observed poor engagement with the task may have been informed by this social 

context. Separately, Kent appeared to recognise the real-world application of mathematics in 

his stated future career. Making connections to real-world applications can create 

engagement, and Kent’s awareness that employers might expect to see evidence of 

mathematics achievement, could offer a source of engagement and motivation. However, in 

this exchange, Kent appeared to see the situation more negatively. He seemed to believe that 

within the school social context lower set students are not as proficient at mathematics, and 

therefore his expectation for his mathematics achievement might be lower (Francis, Archer, 

et al., 2017). He seemed to also believe that within the real-world social context future 

employers might have a negative view upon his recent demotion from a higher set. These 

factors might have combined to reduce his motivation.  

 

Looking back at Section 6.4.2.2.2.2 in the excerpt with Eleri on Page 159, there was a similar 

instance of the family social context impacting a student’s belief. In that instance the student 

felt that difficulties in mathematics were something she shared with her mother (‘My mum 

said she was the same way when she was in school’).  

 

Another way in which students may have expressed their beliefs about the social context was 

in how they interacted with their peers while exploring the IBI problems. When tackling the 

Henri and Emile problem (L5) the following discussion between a pair of students was 

observed.  

 

T:  If he walks twice as fast, he will be done twice as quick. 

E:  Yeah but we need to know how far not how quick. 

T:  Well what if we try 100 meters like here. 

E:  No, but we were doing it with formulas and brackets before. 

T:  That sounds harder. 

E:  Yeah, but it would take forever to try all the lengths. 

T:  I’m gonna try 100 since it says that. You try your way. 

E:  Alright. 
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(Theresa and Ekko, L5) 

 

In this exchange the students appeared to demonstrate a democratic style of interacting. The 

students seemed to understand that challenging each other, as well as themselves, was part of 

the process of exploration. The outcome of the exchange was that each student attempted the 

problem for several minutes before reconvening to discuss what they had done. The students 

appeared to understand that, within the classroom context, new knowledge could emerge 

through social interactions with peers. This sort of social collaboration and compromise while 

working on the problems could have had a positive impact on motivation (Brough & Calder, 

2012). 

 

Bringing real-world problems and experiences into the classroom has been shown to improve 

student performance (Lowrie & Clancy, 2003). There were observed instances within the IBI 

unit in which students seemed to make connections between the IBI problems and their out-

of-school experiences. For example, when discussing the pizza problem (L4) I noted the 

following exchange. 

 

D1:  They don’t really price it like that in real life. 

D2:  What do you mean? 

D1:  Well some toppings will cost them more so they would have to charge 

more. My uncle owns a takeaway and he’s always saying he makes 

more money on some food than others. 

(Dax and Dori, L4) 

 

Discussions with the teacher prior to the commencement of the IBI unit had identified Dax as 

a student whose performance was towards the bottom of the class. My previous observations 

of Dax noted that he typically failed to engage with the problems, often producing no visible 

work and contributing little to class discussion. However, his engagement with the pizza 

problem was noticeably different and his worksheet suggested he had attempted several 

solution pathways. Problems that students can relate to their real-world social contexts can 

foster increased ownership (Lowrie & Clancy, 2003; Wang et al., 2018). The previous extract 

suggests that Dax was able to connect this problem with the real-world, out-of-school 

experiences of his uncle, and it is possible this connection contributed to his observed 

increase in engagement. It is also interesting that Dax shared this view with his peers. 
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Jaworski (2006) argues that IBI promotes greater social discussion around mathematics than 

traditional classroom contexts. 

 

6.4.2.2.4.1 Summary of beliefs about the social context 

In the previous section I discussed my observations of how students’ beliefs about the social 

context for mathematics were evidenced during the IBI unit. Students appeared to be aware 

of multiple social contexts which influenced their beliefs. These included the family context 

(in which views of mathematics were expressed at home), the world of work and employment 

(relating to how employers might view mathematics achievement), the attainment-based 

setting of the school (relating to beliefs about the expectations their school holds for different 

sets), and the classroom context (wherein peers might democratically explore problems and 

develop knowledge). These social contexts provided a range of motivating and demotivating 

outcomes.  

 

6.4.3 An analysis of student perceptions of inquiry instruction 

This section provides an analysis of 12 student interviews following eight IBI lessons. These 

interviews were designed to explore the students’ perceptions of the IBI unit as well as 

mathematics more generally. All 12 students were identified as having MD (Section 6.1.2). 

 
Table 6.3: Intensity scores for interview themes at Stratham 

 Student IBI 
empower 

IBI 
neglect 

Teacher 
importance 

Peer 
importance 

Pace and 
format 

Fi
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et

 Cayleigh 18 23 7 6 7 
Clay 12 12 5 4 8 
Eleri 10 22 11 12 5 
Karson 2 17 13 13 5 
Zelda 13 23 6 4 7 

G
ro

w
th

  
m

at
hs

 m
in
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et

 

Adele 19 7 10 10 7 
Elayne 16 12 13 19 4 
Elva 14 8 11 11 5 
Ethel 31 14 8 10 4 
Harper 32 1 6 4 5 
Opal 18 9 18 7 18 
Sirena 19 11 15 7 9 
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For a detailed discussion of the analysis methods, please refer to Section 4.10. Several themes 

emerged: (1) IBI as a form of empowerment, (2) IBI as a form of neglect, (3) Importance of 

teacher, (4) Importance of peers and (5) Lesson pace and format. Table 6.3 presents the 

intensity of these themes for each student, organised by mathematics mindset. For a 

discussion of intensity scoring, please see Section 4.10. 

 

6.4.3.1 IBI as a form of empowerment 

Through one-to-one interviews I encountered students who expressed views that best aligned 

with a sense of empowerment. Students expressed ideas that the IBI unit allowed them to 

‘engage their brains’ and ‘get stuck in’. 

 

I mean, it was a bit frustrating because I guess I was sort of thinking, ‘I’m just 

gonna have to guess it’, because I haven’t really done much on it. But once 

you get one idea, it makes you have another idea. And you can sometimes 

pick it up a bit easier like that. But when I first got it I was like, ‘Whoa.’ 

(Ethel) 

 

In the above extract Ethel seemed to recognise that, despite the problem being novel, she had 

the power to explore. At first, she felt like this exploration was ‘guessing’, perhaps because of 

the unfamiliarity of the problem or perhaps because of low self-efficacy in this area of 

mathematics. However, as the exploration continued and fruitful lines of inquiry emerged, 

Ethel appeared to appreciate that her ‘guessing’ could equate to new learning and that her 

struggle might yield success. Ethel’s comment, and the many similar comments from other 

students, could be viewed as an expression of persistence and might also suggest a growth 

mindset. It is possible that, in this instance, IBI helped to promote persistence and its effect 

on learning. Ethel expressed these views again when she said:  

 

It was hard. I think there were a lot of steps to it. But I realised that you kind 

of try different things out and they might not work, but if you try lots of things 

out then one of them might work. (Ethel) 
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Students also expressed the idea that not all problem explorations led to a correct solution. 

Indeed, it was anticipated that the students would make mistakes while they explored the IBI 

problems.  

 

That one [L8], I couldn’t quite get. I don’t think I got that right, but sometimes 

it’s not about getting it right. It’s about doing your best and trying to get 

better. (Sirena) 

 

In the above except, Sirena expressed the idea that mathematics is not simply about finding 

correct answers, but rather mathematics includes the exploration of problems that may or may 

not lead to a correct answer. Kouba and McDonald (1987) suggested that many students feel 

that mathematics is a ‘doing’ activity, typically by applying a single procedure to derive a 

successful outcome. It is possible that the IBI problems helped Sirena challenge this notion 

and develop her view that success in maths is not about ‘doing’ a known procedure but can 

also be about the pursuit of knowledge and deep understanding.  

 

In addition to the idea that mathematics might not solely be about finding solutions, the 

students also expressed the idea that problems might have many solution pathways. 

 

There’s normally an easier way or a harder way, and if you know more 

methods and have time to try different ones and figure them out, you can work 

it out in different ways, so you really know it. (Adele) 

 

Adele appeared to believe that there might be multiple ways to solve IBI problems and being 

able to look at problems from multiple angles might result in improved understanding.  

 

The previous two quotations suggest that IBI might have helped the students in Ms Silver’s 

class understand that mathematics is not solely about finding one correct solution using one 

specific procedure. Rather the students seemed to express that problems often have multiple 

solutions and that exploration of problems is part of the learning process.  

 

The following extract suggests that students might have made another connection during the 

IBI unit. Namely that solutions to maths problems might not be a simple one-step process. 
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Yeah, I would get more used to it and there’s more than one step, because 

when we got the first one, I was sort of expecting just to do one thing and 

solve it, and then I realised that no, it’s more like five or six different things 

that make you solve the problem. (Ethel) 

 

Through exploring the IBI problems Ethel seemed to become aware of the fact that 

mathematics problems can sometimes be complex and require multiple steps before reaching 

a solution. 

 

Another way the students appeared to perceive IBI as a source of empowerment was through 

a sense of positive self-fulfilment and achievement. This feeling typically came after the 

students experienced some success while exploring a problem. 

  

You kind of think that you’re proud of yourself because you figured out the 

question, or at least you got closer or got some bits. And then if you talk it out 

with Ms you might pick up the bits you didn’t get. (Adele) 

 

In the above extract, Adele expressed feelings of pride as a result of working through the IBI 

problems. It is possible that the IBI created an opportunity for Adele to develop a sense of 

agency in the lesson and that this led to increased fulfilment. This is consistent with the 

literature which shows that IBI can lead to a sense of personal empowerment (Hassi & 

Laursen, 2015). In addition, Adele acknowledged she felt proud even when she did not find a 

solution but rather got ‘some bits’. This suggests that IBI might have helped Adele see value 

in learning even when that learning was not complete. Furthermore, Adele explained that the 

follow up instruction helped her to understand the rest of the problem. These views align 

closely with that of Schwartz and Martin (2004) wherein IBI can help students identify gaps 

in their knowledge and that this awareness primes the student for more effective follow-up 

direct instruction. 

 

A related sentiment regarding this increased personal empowerment and sense of agency was 

expressed by Elva.  

 

I liked that it [the Ichiro problem] was so clearly laid out to me, and I got it 

and I felt proud of myself. I liked that one, even though it’s in a massive 
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paragraph and that was hard to me. I like it because it was clear when I’ve 

worked it out. I think that was my favourite. (Elva) 

 

Like Adele, Elva also used the word ‘proud’ to describe her feelings about the IBI problem, 

although in this case she used it to define the feeling she got when she found the correct 

solution. Therefore, it is unclear if the positive feelings are associated with effort and learning 

or simply with successful outcomes. 

 

As well as the above references to improved agency, some students appeared to understand 

that the IBI approach may have influenced another metacognitive area, that of self-efficacy.  

 

I didn’t really like it [the IBI unit], because it was a massive change. Because 

literally every lesson, she was like, ‘Okay, you have to do this and that and 

then that and then this’. Then when we came in, she was like, ‘No, just do it 

yourself’. So we were all like, ‘What!’ So it was very different. We had to 

think differently. I think she was at the same time trying to boost our self-

confidence. (Elayne) 

 

In the above quote, Elayne described her negative feelings toward the IBI unit. She seemed to 

view the IBI approach as a big change from how her maths class usually was in which her 

teacher would tell her exactly what to do (‘do this and that’). It is evident from Elayne’s 

quote that this change was initially difficult for her. She described needing to ‘think 

differently’. Elayne doesn’t seem to think her teacher has negative reasons for taking such an 

approach. Instead, she ventured that Ms Silver was using IBI as a means of increasing her 

self-confidence. This comment is interesting because Ms Silver rarely discussed IBI in the 

context of self-efficacy with the students, often limiting her introduction to, ‘I just want to see 

how you get on with these’. This effect has been seen within the literature, whereby studies 

have demonstrated that inquiry based approaches can increase students’ self-efficacy (Kogan 

& Laursen, 2014). 

 

One final way in which students expressed their views of IBI as empowering is best 

represented in the following extract. 
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In the end, all of us did know how to do it. I think it was easier, but it did take 

me the whole lesson just to do that. … and then I actually did understand it in 

the end. I think if I did do that topic, I would be able to do it but just a bit 

quicker this time. (Elayne) 

 

In the above extract, Elayne expressed several views. Firstly, she seemed surprised that a 

single problem could have taken an entire lesson. It would seem elements of the IBI unit 

challenged Elayne’s view that problems in mathematics should be short. This idea is 

discussed further in Section 6.4.3.5. Secondly, Elayne said that everyone (herself included) 

understood the problem in the end, suggesting that the IBI was empowering because of its 

effectiveness. 

 

Of the 12 students who were interviewed, all 12 expressed the view that IBI was empowering 

in some way. However, when looking at the intensity with which students expressed these 

views (see Boyatzis, 1998) there were notable differences between students of different 

mindset groups. Students who scored as growth mindset on the m-ITIS expressed views of 

IBI as empowering with greater intensity than those who scored as fixed mindset, as 

measured by the percentage of transcribed words in a given transcript coded to this theme 

(please see Section 4.10 for a discussion of intensity scoring and Table 6.3 for the results). 

 

6.4.3.2 IBI as a form of neglect 

The previous section explored how students perceived IBI as an empowering method of 

teaching. Whilst all students expressed this view to some extent there were also times the 

students interviewed expressed the somewhat contrasting view that IBI was neglectful. This 

perception was expressed in various ways such as IBI created frustration, made the task more 

difficult, promoted failure, or resulted in a lack of teacher support. For example: 

 

C: It was odd because it’s the first question and we already haven’t been 

told how to do it. You can’t really do them if you’ve not been shown 

how.  

R: What would your teacher normally do? 

C: Ms would normally talk it through on the board. 

(Cayleigh and Researcher) 
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In this excerpt Cayleigh expressed a view that was common amongst those students 

interviewed, the idea that mathematics instruction should begin with explanation. This is 

contrary to the principles of IBI which emphasise the importance of exploration before 

explanation. Cayleigh was able to identify this difference in approach but did not seem to 

embrace it. Cayleigh expanded her thinking with the following sentiment.  

I think there could have been more explanation right at the start and then 

throughout. Say if it was like A, B and C. A should be explained well at first 

because, like, it carries on. The questions would carry on from the first answer 

and if there was more explaining in A, then B would be easier, C would be 

easier, D would be easier. Because you kind of get your head around it. 

(Cayleigh) 

 

Cayleigh explained why she felt that explanation upfront is a superior teaching method. 

Cayleigh seemed to see mathematics in a linear fashion, with problems clearly connected to 

each other. When faced with a series of problems ‘like A, B and C’ Cayleigh suggested that 

the purpose of mathematics is to progress linearly through these challenges, and this should 

commence with a thorough explanation which would allow students to move through the 

remaining problems. In her mind she is doing well in mathematics when she can tackle these 

problems easily and in order. In many ways, this mirrors some non-IBI approaches in which 

students are carefully scaffolded through a series of problems, perhaps with increasing 

complexity. 

 

Even when the IBI approach did result in increased knowledge many students were unable to 

recognise the change and seemed to feel they had stumbled upon the solution by luck rather 

than by focused perseverance. 

 

I don’t know how I got there, just lucky I guess. (Karson) 

 

The idea that IBI breaks the students’ expectations of how a lesson should flow by neglecting 

to explain first is also reflected in the following quote. 
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You know you’ve got into the routine of doing the worksheets, and things like 

this [the IBI unit] are quite different because … sometimes it’s not quite 

straightforward because it’s quite wordy. You sort of have to think more about 

it. But with the worksheet it’s normally just doing one-step things, so you kind 

of – it doesn’t involve as much thinking. (Ethel) 

 

In the above quote, Ethel highlighted that complex problems inherent in IBI are different to 

the normal ‘routine’ of her mathematics lessons. It is interesting to note that she feels that IBI 

requires her to think more, which would seem to align with the views of IBI proponents. 

Despite this, Ethel seemed to have a preference for upfront explanation which ‘doesn’t 

involve as much thinking.’ Elayne expressed a similar view when suggesting feedback for Ms 

Silver, explaining that she should explain more and not disrupt the typical mathematics 

‘experience’. 

R:  Would you change anything about the teaching of the [IBI] problem?  

E:  Probably Ms helping us a bit more or going through it at the beginning 

of the lesson, instead of just handing us the paper and going, ‘There 

you go, try and work that out.’ I think it was a different experience to 

try and adapt to. 

 (Researcher and Elayne) 

 

Students expressed a range of reactions to the IBI unit (the words students used to describe 

maths are presented in Figure 6.6). One of the most common reactions described was of 

panic, as evidenced by the below extract. 

 

I was like, ‘Oh my God, why aren’t we going through it? I don’t know why’. 

(Zelda) 

 

Zelda appeared to be both panicking and also confused. She was unable to understand why a 

teacher would expect students to do novel exploration without ‘going through it’ first. From 

my observations of the class, I was able to see what appeared to be instances of students 

panicking as a result of the new approach. For example, during L5 the following exchange 

took place between the teacher and Ekko during a whole class discussion. 
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E: I had it and then I lost it completely. 

T: Keep going then, because I think you’ve got it. Ekko, don’t panic. 

 (Ekko and Teacher) 

 

In another interview Cayleigh also touched upon a similar but slightly different idea. 

You know when you get a block, it’s like there’s something there and you 

can’t move. It’s hard to understand some things. (Cayleigh) 

 

Listening to the way Cayleigh described her perceptions of IBI one might conclude she was 

feeling anxiety. Her description of feeling like she ‘can’t move’ is akin to the physiological 

response demonstrated in those with mathematics anxiety, who have been shown to respond 

to mathematics much like someone facing a tiger (Carey et al., 2019). 

Another, perhaps more extreme, example of this came up in my interview with Eleri. 

R:  What does that feel like when you’re in class and you’re stuck on 

problems like these?  

E:  It makes you want to cry, and I used to cry a lot … and you try and 

hide it, but you can’t. 

R:  What happens then? … What do you do? 

E:  It just embarrasses you a bit, because you can’t do it and everyone else 

can. 

(Researcher and Eleri) 

 

During the interview, Eleri described feeling embarrassed and like she wanted to cry whilst 

working on the IBI problems. Whilst she did not state the specific IBI questions that resulted 

in this emotional response, she was left with the impression that she was the only person in 

the classroom who could not solve the problems. But this was never the case. Many students 

did not solve the problems successfully during the exploration phases of the lessons. It is 

unclear why Eleri had this impression, but the negative effect it had on her emotions was 

apparent. 

 

In addition to the above emotional responses to IBI, students often reached a point at which 

their lack of understanding led to frustration.  
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It felt frustrating, because I couldn’t really understand it, and I didn’t know 

what to do. (Zelda) 

 

 
Figure 6.6: ‘What three words would you use to describe maths?’ at Stratham College15 

 

The above discussion, that IBI could lead students to feel a sense of panic or frustration might 

explain why students also expressed feelings of disengagement. 

 

I didn’t know what to do with that one, so I just started doodling. (Adele) 

 

I don’t think I’ve solved that one yet. I just said I don’t know, because I just 

got so distracted … I was just bored, because I couldn’t do it. (Elva) 

 

The link between engagement levels and learning has been well covered within the literature 

(Fung et al., 2018). Therefore, students' descriptions of the IBI unit as disengaging at multiple 

points is concerning.  

 

A common perception was that IBI simply made the problems harder, as expressed by 

Karson and Sirena below. 

 

 
15 Generated using https://www.wordclouds.com/ 
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I don’t see the point in trying to have a go at something that you haven’t learnt 

about. (Karson) 

 

I’m a lazy person, so I didn’t really think much on it. I just didn’t really like 

the fact that I had to do something that I didn’t understand. (Sirena) 

 

In these exchanges both students appeared to express the idea that the purpose of 

mathematics is to execute what has been taught. IBI challenges this notion. The apparent 

consequence of this challenge was that Karson felt the activity was pointless and Sirena felt 

disaffection. These were common views amongst those interviewed and align with the ideas 

discussed in Section 6.4.2.2.1 that students view mathematics as a ‘doing’ subject (Kouba & 

McDonald, 1987). In a similar discussion with Elayne, she said: 

 

I was just staring at this green sheet and it was not giving me any answers, so I 

kind of lost patience a bit at the end. I have a very short attention span as well, 

and I was looking at it and the first five or ten minutes, I was like, ‘Okay’, and 

then after that I was like, ‘This is too hard!’ (Elayne) 

 

Elayne appeared to mirror the idea that mathematics is about applying knowledge that has 

been directly taught. When that knowledge is not present it leads to disengagement. In 

addition, she appeared to feel that mathematics problems should be doable within a short 

amount of time and that when she was unable to answer the question within that short time, 

she concluded that the problem was beyond her capability. She therefore sought to 

supplement her knowledge gaps from the expert in the room, the teacher. Elayne did not 

appear to believe in her ability to derive new knowledge through exploration beyond ‘five or 

ten minutes’. 

 

Elayne’s previous comment appeared to indicate a student who sees mathematics as a search 

for answers rather than a search for understanding. Another, perhaps clearer, example of this 

came from Elva. 

 

I thought, ‘What’s happening here? I don’t know the answer. What do I do?’ 

When I ask Courtney, she’s trying to work it out as well, and I’m just, I don’t 
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know, waiting for someone to tell me the answer because I can’t work it out 

anymore. (Elva) 

 

Elva recounted her feelings during one of the IBI problems. Her comments suggested that 

Elva was focused solely on obtaining the answer. Without knowing what to do or the 

procedure to apply, Elva disengaged from the task and possibly missed vital learning 

opportunities.  

 

In the above two extracts, Elayne expected the answers to emerge from the problem (‘it was 

not giving me any answers’) and Elva expected to know the answer and what to do before she 

would engage with the problem. These ideas appeared in other interviews, as students seemed 

to feel that mathematics was mainly about getting the correct answers. However, this 

approach may be ill suited for IBI, which requires students to attend more to the process of 

problem solving rather than to the product. This conflict may have contributed to Elva and 

Elayne’s lack of engagement. 

 

I just want the teacher to show me, because it’s just easier than hints. If you 

kind of get it, that’s when you could have a hint, but when you don’t get it at 

all, when you’re completely stuck, that’s when they should help you how to 

solve it. Like, say there’s multiple questions, they show you how to do the 

first one, then you can get the rest of them. (Cayleigh) 

 

Cayleigh seemed to feel her role was to ‘get’ the answers. Possibly the more answers 

Cayleigh gets right the more she feels she is doing well. This score-keeper mentality is in 

conflict IBI which emphasizes depth over breadth, with students spending longer on fewer 

problems. Taken to its extreme, this mentality could encourage students to cheat, as in the 

following example. 

 

I would think, ‘I don’t know this. Oh look, Courtney has sorted this out. I 

don’t think she’s got it right, but why not.’ Especially when you don’t have 

anything else and I’m not that great at equations, so I sort of struggled. 

Something that I can’t figure out so why don’t I just copy? (Sirena) 
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Students perceived the neglectful nature of IBI through many lenses. In some cases, they felt 

failure to provide upfront explanations made the problems unnecessarily difficult and robbed 

them of the ability to work through problems and get answers. In other cases, IBI failed to 

adhere to their notion of how a mathematics lesson should flow. The IBI approach led to a 

range of emotional reactions from students which frequently centred on feelings of frustration 

and panic. Every student in some way expressed ideas that IBI was neglectful. However, 

students who scored as fixed mindset on the m-ITIS expressed views of IBI as neglect with 

greater intensity than those who scored as growth mindset (please see Section 4.10 for a 

discussion of intensity scoring and Table 6.3 for the results). 

 

6.4.3.3 Importance of the teacher 

Students expressed views that related to the role of the teacher within the IBI unit. These 

perceptions of the teacher included the role of the teacher in making engaging lessons, 

providing individual and equitable support, and keeping order.  

 

The view that teachers should create interesting and engaging lessons was strongly expressed 

by all students. Examples of this were numerous but perhaps best summarised by Clay when 

discussing how Ms Silver taught the IBI lessons: 

 

She made it fun, and she doesn’t tell you off as much if you talk in lessons. 

She doesn’t just give you a sheet and tell you to fill it in. She does it … 

different and more fun, and you try harder when it’s not boring. (Clay) 

 

Clay seemed to express a view that was raised by many students, that by creating lessons 

which are fun the teacher can generate greater engagement and students will ‘try harder’. 

Clay went on to expand upon this point.  

 

I liked the stories. They were better than just doing worksheets as you got to 

read a bit. I like reading. It was hard to find out the bits you needed in the 

story though. That bit was tricky. (Clay) 

 

Researchers have discussed how teachers can generate higher engagement by creating 

problems that connect mathematics with real-life situations (Wang et al., 2018). Clay seemed 
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to express this view in the above extract. Several of the IBI problems were set in a story (e.g. 

L4, L5, L6). Perhaps these IBI stories created greater engagement for some students. It is 

interesting to note that Clay simultaneously described these problems as ‘hard’ (because of 

the difficulty of identifying the important parts of the story), but still seemed to enjoy them. 

This is in contrast with several of the points discussed in Section 6.4.3.2 (IBI as a form of 

neglect), wherein students typically felt disengaged when problems were viewed as difficult.  

 

Karson was able to articulate the importance of teachers in creating engaging experiences by 

contrasting Ms Silver with teachers who failed to do so:  

 

They just said, ‘Copy what was on the board,’ and then how are we supposed 

to learn by copying what he’s just writing? He told us to copy it as soon as 

he’d written it, so we’d be copying and if you were a bit behind, he’d scream 

at you. And then I just didn’t understand how that was helping us learn by us 

copying what he had written. It just confused me. Ms Silver is much better. 

She tries to involve you more. (Karson) 

 

Another commonly held view was that the teacher was there to provide support. When asked 

what Cayleigh thought Ms Silver’s role was during the IBI unit, she said: 

 

I think her role is to help the students that need help when they don’t get it. 

So, if they need explaining again, they should maybe get one-to-one, sort of 

thing. They can come up to you and help you. (Cayleigh) 

 

Cayleigh’s perception of the teacher appears to be one of providing the students with 

sufficient help. This is perhaps in conflict with the approach of IBI used in this case, where 

little support was offered until after the exploration phase. Cayleigh’s comment extended 

beyond classroom-wide support and called upon the teacher to provide individualised (‘one-

to-one’) support. This individualised comment was echoed by other students who seemed to 

perceive that Ms Silver should have dedicated personal time to them whenever they hit an 

impasse. For example, when explaining effective teaching Zelda said:  

 

If I don’t understand something I’ll literally just say, ‘Ms, I don’t get it,’ even 

if she’s addressing the class, and she’ll be like, ‘Oh, I’ll come to you in a 
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minute.’ And she does come to us really quickly. That’s another good thing 

about her, she doesn’t make you wait 20 minutes and then forget your 

question. She just straightaway is like, ‘Oh, what’s wrong?’ And then she 

does explain it. If you still don’t understand it, she’s like, ‘Try a different 

method of doing it,’ and then she gives a different method as well. So, it’s 

quite helpful. (Zelda)  

 

This view would again conflict with the IBI unit as Ms Silver would not have been able to 

provide this level of support to students during problem exploration. It is possible that this led 

to students relying on others for this support or disengaging from the task. It is interesting to 

consider Zelda’s above comment alongside the one she made in Section 6.4.3.4 (Page 184), 

where she admitted that she relied on her peers to provide support. 

 

In addition to providing individualised support, teachers were also expected to provide this 

equitably. As can be seen in the below extract, Elva felt that Ms Silver should ensure 

everyone receives help at some point in the lesson. Again, this would have been hard to 

achieve within an IBI setting. It is possible a student may feel neglected as a result of the 

limited instruction implicit in IBI exploration, and this student may misconstrue the teacher’s 

encouragement to one group of students as inequitable support.  

 

But yeah, just help everyone and be equal in the amount of help you give. I 

know some people are lower than others and can use more help, but I think as 

long as you’re giving help to everyone that needs it, I think I’ll just be fine 

because everyone needs a little bit of help sometimes. (Elva) 

 

Many students discussed the importance of the teacher through a lens of classroom 

management.  

 

I feel like there is enough people being relocated, though, because they’re 

really annoying and it’s not really that helpful when you’re trying to do some 

work or something. Sometimes, in some lessons, they’re okay to shout but just 

most of them, they’re not very nice. And they don’t usually do any work. I 

think that they’re okay at the moment with what we’re doing because it’s 
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quite enjoyable. They haven’t really shouted out for a while or, I don’t know, 

thrown something across the class or something. That’s good. (Harper) 

 

Harper’s comments seem to align with my own observations of the class, which I discuss in 

Section 6.4.1. In my view, classroom management was a problem, especially at the start of 

the IBI unit, in which several students were sent to relocation (meaning dismissed from the 

class) by the end of each lesson. It is possible Harper saw the role of the teacher to keep the 

class under control. The IBI unit frequently required students to explore problems in groups 

or pairs. As such the classroom environment could be noisy and difficult to manage. My 

observations were that classroom behaviour improved as the unit progressed, which Harper 

seemed to also recognise. Perhaps the IBI unit created enjoyable experiences which caused 

classroom behaviour issues to reduce.  

 

When discussing the importance of the teacher within mathematics instruction, Elayne 

explained her view with the following quote. 

 

I don’t really see her [Ms Silver] as a teacher, more as a supervisor to make 

sure that we didn’t get too rowdy or whatever. I think she was more like a 

supervisor than a teacher. (Elayne) 

 

It seemed Elayne felt that the teacher’s primary role was that of classroom management and 

keeping order. Perhaps Elayne felt that students should take agency over their learning and 

that teachers create a suitable classroom environment to facilitate learning.  

 

While the role of the teacher was a prominent theme, there was little evidence to suggest that 

this frequency was influenced by the students’ mindsets as students with both growth and 

fixed mindsets dedicated similar percentages of their interviews to this theme (please see 

Table 6.3).  

 

6.4.3.4 Importance of peers 

The principal feature of IBI, as opposed to direct instruction, is the exploration of a novel 

problem before formal instruction. This exploration can take place individually or in groups. 

Ms Silver used a mixture of whole-class, small-group, and individual work when deploying 
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the IBI unit. During interviews a common theme to emerge revolved around the importance 

of peers during the exploration phase. The nature of this importance was varied and included 

the ability to obtain support, share knowledge, be creative, and have fun.  

 

Exploration of novel problems can result in students reaching individual impasses. The 

awareness of these impasses and subsequent bridging of knowledge to overcome them is put 

forward as a possible benefit to the IBI approach (Chi et al., 1994; Goldin, 2014; Schwartz & 

Martin, 2004). The interviews suggested that students were able to use their peers to help 

them overcome some of these impasses and subsequently advance their understanding of the 

problems. For example: 

 

If I've done all I can I ask my neighbour who’s sitting next to me and if they 

don’t get it, I will ask the teacher. First of all, I try and work it out myself. 

(Cayleigh) 

 

Cayleigh seemed to see the role of a peer as someone who could help when she felt she had 

exhausted her own efforts. In this case, Cayleigh placed the help of her peer before that of the 

teacher, possibly suggesting that the IBI task promoted peer to peer collaboration and 

discussion. A similar example was expressed by Elva. 

 

I found that one [the Fibonacci problem] hard to work out, and Courtney had 

to sit down with me and explain it to me because she got it. But I was like, 

‘How did you get that? What’s happening?’ Eventually it made sense. (Elva) 

 

While students seemed happy to explore a problem with a fellow classmate, it did appear that 

this classmate needed to be someone that the student trusted (as suggested in the below 

comment by Sirena). It is possible that when reaching what the student believes is an 

impasse, they seek someone who will provide them with clarity and new knowledge. 

 

I don’t normally ask someone that I’m not friends with because they could lie 

to me, and I wouldn’t know if they were lying. (Sirena) 

 

In addition to valuing peers as a source of knowledge, some students saw peer interactions as 

an opportunity to share knowledge. 
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I don’t think she finds it as easy as I do, so I usually try to help when I’ve 

finished doing mine…and then I can help her afterwards. So I get it a little, 

and then she’ll get it as well. (Harper) 

 

In the above quote, Harper described how she helped a fellow student on the IBI problems. 

Ms Silver encouraged the students to help each other at various times during the IBI unit and 

this likely created opportunities for Harper to help her classmate. It is also possible that by 

explaining her thinking to a peer, Harper was able to reinforce her own understanding and 

more clearly define her own strengths and weaknesses on the topic. 

 

As well as providing a platform for knowledge sharing, the peer networks were also 

highlighted as a source of support and motivation. 

 

To be honest, I got some help from my friend Harper [on the Ichiro problem]. 

I was like, ‘Okay, I’ll try and do this’, and then she explained to me how to 

look at it and was like, ‘You can do it!’ I was like, ‘Oh okay, I’ll just continue 

it on then.’ And then when I got to the answer, 15, I was like, ‘Is this the 

answer? Is it not the answer?’ And I asked Harper and she was like, ‘Yes, 

that’s the answer.’ Like, ‘Yes! I did it!’ (Zelda) 

 

The above extract highlights how peer interaction supported Zelda. By discussing the 

problem with Harper, who did not disclose the answer but provided encouragement, Zelda 

was able to be motivated enough to continue exploring the problem which ultimately led to a 

successful outcome. 

 

In addition to sharing knowledge, some students also felt that talking with peers was a good 

way to develop innovative approaches that they might not have considered in isolation. 

 

I mean, sometimes I sort of asked the people around me what they were 

thinking to see if they’re thinking the same thing as me. I suppose talking to 

someone about it can kind of help, I guess, because if they’ve got the same 

ideas then it’s kind of easier to talk to them about it. Or maybe you can talk it 

over and come up with a new way that you haven’t tried. (Ethel) 
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In the above extract, Ethel suggested that peer discussions were a valuable source of 

innovation during the IBI unit. By working together, Ethel felt that she was able to develop 

new approaches to explore the problems that might not have been considered individually. 

The students within this class had little or no prior exposure to IBI and therefore might be 

unfamiliar with how to explore a problem in a creative way. The availability of peer networks 

to supplement this creativity may have been why so many students expressed this theme.  

 

In addition, several students extended the above discussion about group creativity to one of 

group consensus.  

 

You might not have thought about it that way. Maybe they have a different 

way and you can try them both and see which one is the most right, or maybe 

the best. You can, like, suss it out. (Opal) 

 

Opal appeared to believe that the IBI problems could be solved in multiple ways and that the 

solutions might be exposed to her though peer cooperation. Through an active dialogue, a 

consensus might emerge. This is similar to the ideas put forward by D. Johnson and Johnson 

(2016) who discussed how students coalesce around a single solution during inquiry-based 

discussions. 

 

Another way in which students discussed the importance of peers was how exploring 

problems with peers was enjoyable. 

 

R:  You said it [maths] was fun, exciting and different. When is it most 

fun?  

E: When we’re working in groups with your friends, or people you’ve 

never worked with before, and you are all getting stuck in. Like, 

you’re talking about work and non-work at the same time, but you are 

working. 

 (Researcher and Eleri) 

 

Eleri expressed a preference for group work. She described group work as fun and that it 

possibly cultivated greater work ethic (‘getting stuck in’). Her suggestion that it can be fun to 
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work with new peers (‘people you’ve never worked with before’) might suggest that she sees 

value in obtaining different points of view when exploring novel problems. This idea was 

expressed again by Eleri later in the interview: 

 

R:  Is there something that could have been done better [during the IBI 

unit]? 

E: If we changed seats more often, because we have other people to work 

with. 

 (Researcher and Eleri) 

 

There were occasions in which the importance of peers was discussed in a more negative 

light. For example:  

 

Sometimes it’s helpful. But to be honest, when you come to do tests it’s only 

you that’s doing it. So, from that point of view, it’s not that helpful because 

you haven’t got your group to help you on the tests. But sometimes, it’s quite 

fun. (Opal) 

 

There are several comments worth highlighting in the above extract. Firstly, Opal seemed to 

mirror earlier comments that mathematics is a ‘doing’ subject, in this case knowing 

mathematics meant passing tests. Secondly, Opal suggested that understanding was 

ultimately individual, and the group would not always be around to supplement her 

understanding. It appeared Opal did not appreciate that exploration with peers might lead to a 

deeper individual understanding of concepts. Other students also expressed issues with peer 

exploration of the IBI problems, suggesting that a balance of individual and peer-based work 

was preferable.  

 

It depends. Sometimes it’s good to work together and try stuff as a group. But 

sometimes it’s distracting, and you want to work alone. (Clay) 

 

When analysing the prevalence of this theme between students of differing mindsets there 

was no noticeable difference (see Table 6.3). 
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6.4.3.5 Pace and format 

As already noted, the students in Ms Silver’s class had little prior experience with IBI in 

mathematics. Historically, Ms Silver tended to focus on upfront explanations or guided 

worksheets followed by a series of questions for the students to practice. Therefore, it is not 

surprising that all students expressed views which suggested they were aware of the change 

in teaching methodology. These perceptions tended to focus on the structural differences 

(exploration preceding instruction) and the time allotted to each problem. 

 

Elayne’s quote, previously discussed on Page 171, suggests that the students were aware of 

the difference between their normal mathematics lessons and were tempted to ascribe a 

motive to the teacher’s decision to change (i.e. to ‘boost our self-confidence’). Also, Elayne’s 

suggestion that this approach required them to ‘think differently’ is interesting, as it might be 

said to align with the views of proponents of IBI who argue that exploring the problem space 

allows students to develop a deeper understanding of the problem and their knowledge gaps. 

This idea was also captured in discussion with other students. 

 

S: It’s harder, well maybe not harder but different. Ms was like just keep 

trying, but we didn’t know what to do. That bit was hard for me. Me 

and Dori worked on it together. We got some bits but then sort of hit a 

dead end. When we asked Ms for help, she said… ‘just keep trying’. 

We did keep trying a few other ways, but we didn’t get it right. 

R: Did you understand it in the end? 

S: Not really, we didn’t get it. Not until Ms explained it at the end when 

we totally understood it and everything. 

R: Do you think it would have been better if Ms Silver had explained it 

for you at the beginning rather than at the end? 

S: I don’t know. It’s nice to have a go. You can figure out which bits you 

know well and which bits you don’t. 

 (Sirena and Researcher) 

 

In the above exchange, Sirena seemed to express several views towards IBI. Initially, she 

seemed to believe that the exploration portion of the lesson was more challenging than her 

usual maths lessons. Her comment that she was able to try a ‘few other ways’ suggests she 

was able to successfully engage with the task but recognised that understanding did not come 
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until ‘Ms explained it’. Sirena’s final comment, that exploration of a novel problem allows a 

person to ‘figure out which bits you know well and which bits you don’t’ would suggest that 

she was able to identify her knowledge gaps and possibly develop a better understanding of 

the content from the direct instruction that followed. This comment aligns with other 

researchers’ views that awareness of knowledge gaps facilitates learning (Chi et al., 1994; 

Schwartz & Martin, 2004). 
 

In addition to structure, many students discussed how the pacing of the IBI lessons felt 

different. There is evidence within the literature that students hold the view that problems 

should be solved in less than ten minutes (Schoenfeld, 1985). Proponents of IBI often cite the 

advantages of extended exploration of a novel problem, believing it can lead to greater 

conceptual understanding and increased engagement. These views would seem to be 

supported by the following interview extract. 

 

It was quite good that you … got a lot of time, because usually it’s hard to just 

do it in about ten minutes, because you might not be able to fully do it all and 

you might still not have finished after 20 minutes or more or the next lesson or 

something. It’s quite hard, and it’s good to get that extra time to have a proper 

go at it before going over it. (Harper) 

 

Initially, it would appear that Harper continued to hold the idea that doing mathematics meant 

finishing problems. This might be seen to align with the previously discussed point that 

students see mathematics as a ‘doing’ subject (Section 6.4.2.2.1). However, later within this 

extract Harper acknowledged that the goal might actually be to ‘have a proper go at it’ and 

that this exploration might not yield the answer. Harper’s suggestion that additional time was 

helpful for the IBI task might indicate she was moving beyond the idea that mathematics has 

to incorporate short problems that can be solved quickly. 

 

However, not all students agreed with Harper. 

 

The problems were interesting, but I think after a while you just got sick of 

looking at the same piece of paper and the same question. At the same time, it 

did give you enough time to be like, ‘Uh, I don’t understand this,’ but I think 
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it was too much time. After a while, I completely zoned out. I don’t even 

know what I’m doing anymore. (Elayne) 

 

Elayne seemed to believe that the class was given too much time to work on the IBI 

problems, and this broke with her normal expectations. Elayne and her classmates had little 

previous exposure to IBI and therefore the idea of spending 30 minutes on a single problem 

was abnormal. Elayne’s confession that she zoned out, despite reportedly finding the 

problems ‘interesting’, suggests that she might lack the persistence necessary to keep 

exploring the problem space. 

 

Perceptions of pace and format were expressed by all interviewees to some extent. There was 

no difference between student mindsets with regard to the amount of time dedicated to this 

theme (see Table 6.3). 

 

6.4.3.6 Summary of student perceptions 

The above sections analyse the results of 12 interviews with students who had taken part in 

the IBI unit. The interviews suggested that students perceived the unit within five primary 

themes. Firstly, students felt that the inquiry approach helped to empower them as they 

expressed the positive effect of exploring challenging problems. Students suggested the IBI 

increased their self-confidence and agency. Secondly, students seem to suggest that IBI was 

neglectful, since exploring a problem without prior instruction was a poor way to gain 

understanding. Thirdly, all students recognised the role that Ms Silver played in providing 

engaging content. Students also felt that part of the teacher’s role in IBI was to provide 

classroom management. Fourthly, peer networks were an important part of the inquiry 

approach, with peers providing support, motivation, and innovative ideas. Finally, the 

inexperience that these students had with IBI possibly led to many students feeling the 

method disagreed with their understanding of how a mathematics lesson should flow, with 

instruction typically preceding practice problems. Furthermore, the IBI problems challenged 

the students’ notions that problems should be short.  
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6.4.4 An analysis of student learning outcomes 

The overall scores of the students with MD increased from 16.8 to 22.7, their procedural 

scores increased from 13.1 to 17.0, and their conceptual scores increased from 3.7 to 5.7. 

Please see Table 6.4. 

 

Table 6.4: Pre- and post-test results for Ms Silver’s class 

 Test 

component 

 Pre-test Post-test 

Max M SD M SD 

Students 

with MD 

(n = 18) 

Overall 33 16.8 3.6 22.7 3.8 

Procedural 21 13.1 2.8 17.0 1.6 

Conceptual 12 3.7 2.2 5.7 2.7 

MD and 

Fixed  

(n = 5) 

Overall 33 15.2 3.3 22.4 3.5 

Procedural 21 12.0 3.2 17.2 2.2 

Conceptual 12 3.2 1.1 5.2 1.6 

MD and 

Growth 

(n = 12) 

Overall 33 17.2 3.8 22.4 4.0 

Procedural 21 13.3 2.7 16.9 1.4 

Conceptual 12 3.8 2.6 5.5 2.9 

 

Table 6.5: Growth and fixed post-test results for Ms Silver’s class 

 

Test 

component 

 Fixed 

n = 5 

Growth 

n = 12 

 Max M SD M SD 

Po
st

-te
st

 Overall 33 22.4 3.5 22.4 4.0 

Procedural 21 17.2 2.2 16.9 1.4 

Conceptual 12 5.2 1.6 5.5 2.9 

 

Separating the results of the students with MD by mindset shows that students with both 

growth and fixed mindsets made improvements over the course of the IBI unit. There was no 

difference observed on the post-test between those who reported holding a fixed mindset and 

those who reported holding a growth mindset (see Table 6.5). Furthermore, the post-test 

scores were not strongly correlated to mindset nor any of the subscales of the ATMI (see 

Table 6.6).  
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Table 6.6: Spearman’s rank correlation for the post-test, mindset, and ATMI 

 Post-test 

n = 18 

 rs 

Maths mindset -.17 

Enjoyment -.06 

Motivation .08 

Self-confidence .00 

Value .09 

 

Looking at the pre- and post-test by item shows the 18 students with MD improved on seven 

test items of procedural knowledge and six test items of conceptual knowledge. Please see 

Table 6.7 for more information. 

 

The procedural test items the students improved most on were test items 1c, 3c, 5a, 9a2, 9b1, 

9b2, and 14a (see Table 6.7). Test items 1c, 3c, 9b1, and 9b2 asked students to solve an 

algebraic equation for a single unknown variable. Each of these equations could be solved in 

just one step (for example, by multiplying 34 by 13). The students also improved on test 

items that asked them to evaluate an algebraic expression for a given value (5a and 14a) as 

well as items that asked them to write an algebraic expression to represent a given quantity 

(9a2). Improvement on these types of problems might be understandable when considering 

how much time students spent exploring linear relationships and thinking algebraically. 

 

The conceptual test items the students improved on were test items 6, 7, 8a1, 8b1, 10a, and 15 

(see Table 6.7). For test item 6, students were given a diagram of two pouches and told their 

contents were the same. Each pouch was labelled with a different algebraic expression 

containing the variable y. Students were asked to work out the value of y. Essentially this 

problem required students to solve an algebraic equation in which the unknown quantity 

appeared on both sides of the equation. By contrast, test item 7 provided students with a 

system of equations containing two unknown variables, the price of a shirt and the price of a 

jumper. Students were asked to work out the price of one jumper. Items 8a1, 8b1, and 10a 

asked students to reason about the relationship between different expressions. Test item 15 
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asked students to write an algebraic expression to represent the given shaded area. As before, 

students had many opportunities throughout the IBI unit to think abstractly in a variety of 

situations, and this may have led to increased conceptual understanding. 

 

Table 6.7: Mean pre-test and post-test scores by test item  

 Test 

item 

Pre-test Post-test 

 M SD M SD 

Pr
oc

ed
ur

al
 

1c .50 .51 .89 .32 

3c .78 .43 1 0 

5a .78 .43 1 0 

9a2 .72 .46 .94 .24 

9b1 .78 .43 1 0 

9b2 .78 .43 1 0 

14a .22 .43 .61 .50 

C
on

ce
pt

ua
l 

6 .22 .43 .56 .51 

7 .22 .43 .67 .49 

8a1 .28 .46 .67 .49 

8b1 .28 .46 .50 .51 

10a .56 .51 .83 .38 

15 .06 .24 .39 .50 

 

This study focuses on the performance of students with MD, whom in this case, happened to 

also score among the lowest on the pre-test. Therefore, it is possible that the observed 

changes, described above, are actually a result of the data regressing towards the mean 

(Marsden & Torgerson, 2012). However, because students in this study were not selected on 

the basis of their pre-test scores, this effect is thought to be minimal. 

 

6.5 Summary of the Case of Ms Silver’s Class 
The case study of Ms Silver’s class was designed to answer two research questions: (RQ1) 

How do students with mathematics difficulties perceive IBI? and (RQ2) Are students’ beliefs 

(e.g. mindset) associated with the effectiveness of IBI for students with mathematics 
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difficulties? In this section I summarise how the analysis presented in Section 6.4 addresses 

these questions.  

 

Both research questions make the assumption that the lessons within the unit were taught to a 

sufficient quality of inquiry to be called IBI. Therefore, before addressing the research 

questions, consideration has been given to the quality of inquiry actually delivered. This was 

assessed using the EQUIP rubric (Section 6.4.1). Taken as a whole, it was determined that the 

unit met the level of ‘proficient inquiry’, which meets the threshold laid out in the case study 

design (Section 4.3). Two small areas within the EQUIP rubric scored below this threshold. 

The first related to the Teacher’s Role, in which Ms Silver maintained the central role and 

missed opportunities to allow students to drive the flow of the lesson. The second related to 

communication patterns, in which discussions at a class level were typically didactic between 

a student and the teacher, providing little opportunity for direct student-to-student interaction. 

One area that exceeded ‘proficient inquiry’ related to content depth, in which Ms Silver was 

able to use her strong background in mathematics to make explicit and clear connections to 

the big picture. 

 

Over the course of 12 interviews with 12 separate students with MD, combined with my own 

observations of the lessons, a number of themes emerged from the data regarding students’ 

perceptions of the IBI unit. These themes helped me to answer my first research question, 

(RQ1) How do students with MD perceive IBI? 

 

The first of these perceptions related to IBI as empowering (Section 6.4.3.1). In this theme 

students expressed ideas that the IBI unit allowed them to ‘engage their brains’ and ‘get stuck 

in’. Students also seemed to expand their notion of mathematics beyond the simple 

application of a procedure. Some students communicated an increased sense of agency and 

pride. 

 

Secondly, and somewhat contradictory to the previous theme, students perceived IBI as 

neglectful (Section 6.4.3.2). Students appeared to hold notions that mathematics should be 

explained first and then practiced. The IBI approach therefore challenged these notions and 

left some students perceiving the change as an act of neglect. Feelings of panic and distress 

were expressed as some students struggled to tackle the exploration of problems for which 

they received minimal prior instruction. 
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Students who scored as growth mindset expressed perceptions of IBI as empowering with 

greater intensity than those who scored as fixed mindset on the m-ITIS. The inverse was true 

for the idea that IBI was neglectful, with fixed mindset students expressing this perception 

with greater intensity than those holding growth mindsets. Please see Section 4.10 for a 

discussion of intensity scoring and Table 6.3 for the results.  

 

The third theme that the students’ perceptions fell under was the importance of the teacher in 

creating engaging lessons, providing individual and equitable support, and keeping order 

(Section 6.4.3.3). Students contrasted the IBI unit with those lessons that followed a more 

traditional approach. They frequently perceived the IBI tasks to be more ‘fun’. In addition, 

many students appeared to hold the belief that their teacher should provide a high level of 

individual and explicit instruction. This belief appeared to conflict with the teacher’s role 

during the explore portion of an IBI lesson, in which the teacher refrains from explaining how 

to solve the problem until after the students have had a chance to explore.  

 

Importance of peers was the fourth theme which students perceived during the IBI unit 

(Section 6.4.3.4). The nature of this theme was varied. Students reported that they enjoyed 

collaborating with their peers because it felt good to be able to help, reinforced their own 

understanding by explaining to someone else, and encouraged them to keep going. Students 

appeared to perceive that they were able to overcome impasses by sharing knowledge, and 

that through this sharing they could generate innovative solution pathways to explore. 

 

The final theme to emerge from the case was the students’ perceptions of pace and format of 

the lesson and problems (Section 6.4.3.5). Students perceived the change in lesson format 

during the IBI unit, recognising that exploration before instruction was ‘different’. Some 

students even felt that this new format was an attempt by the teacher to ‘boost their self-

confidence’. Students were also aware that the pace of the lesson (as measured by number of 

problems given), and problem length (as measured by time spent per problem), were much 

longer under IBI. This contrasted to expressed views that mathematics problems should be 

short and straightforward.  

 

The second research question, RQ2, seeks to understand whether students’ beliefs were 

associated with the effectiveness of IBI. To answer this, I drew upon the students’ pre- and 
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post-test scores (Section 6.4.4) as well as classroom observations (Section 6.4.2). Classroom 

observations were especially critical in answering this research question since correct 

answers on the pre- and post-test had the capacity to mask misunderstanding while incorrect 

answers had the capacity to mask understanding. In this way, the pre- and post-test 

complemented classroom observations and, crucially, provided triangulation.  

 

An analysis of the pre-test and post-test results shown in Table 6.4 indicates the overall 

scores for the 18 students with MD improved from 16.8 to 22.7, the procedural scores 

improved from 13.1 to 17.0, and the conceptual scores improved from 3.7 to 5.7. Looking at 

these results in consideration of the students’ mindsets (Table 6.5) showed that holding a 

growth or fixed mindset was not associated with pre-test or post-test performance. 

Furthermore, post-test scores were not strongly correlated with scores of mindset and attitude 

(see Table 6.6). 

 

The analysis of the lesson observations was done using the McLeod (1992) framework. 

Firstly, the students appeared to hold various beliefs about the nature of mathematics. These 

included beliefs such as the idea that mathematics is something one ‘does’, the belief that 

mathematics problems should not take long to solve, and the belief that mathematics 

problems should have a single solution pathway. These beliefs were associated with task 

disengagement.  

 

Students also appeared to hold beliefs about themselves. These covered the areas of  

self-efficacy (Bandura, 1997) and student mindset (Dweck, 2017b). Students appeared to 

have low self-efficacy when they struggled to explore the given IBI task. Holding this belief 

appeared to hamper the effectiveness of the IBI, with students frequently failing to start the 

problem at all. The observed effect of mindset on student performance was mixed. Students 

holding a fixed mindset did tend to struggle on the IBI problems, sometimes blaming their 

‘brains’ or even inherited family traits. However, in some cases holding a fixed mindset 

suggested a positive impact on performance. Where this occurred, it was associated with 

students who held the view that they were ‘good at maths’, and hence, motivated to validate 

themselves as capable mathematicians.  

 

Several beliefs about the way in which mathematics should be taught seemed to emerge 

during the observations. As I discussed above, students often felt that mathematics problems 
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should be short (both in length and time), and holding this belief seemed to be negatively 

associated with IBI’s effectiveness during the observations. Some students were able to see 

the change in teaching approach as a positive, believing that the variety was helpful. 

However, many students appeared to hold firm beliefs that explicit instruction should precede 

problem exploration, especially those that performed relatively well under the traditional 

approach. This belief appeared to hinder the effectiveness of the IBI.  

 

Finally, students held beliefs about the wider social context of mathematics. Where students 

were able to make connections between the mathematics problems and their real-life social 

world, the result was increased engagement. However, holding a dim view of the value of 

mathematics in the real world seemed to lead to task disengagement on the inquiry problems. 

Such a belief might be obtained from the family social context, e.g. ‘My dad always says no 

one ever uses the maths they learn at school’. 
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7 Discussion 
A review of the literature on inquiry-based instruction (IBI), student affect, and mathematics 

difficulties (MD) is presented in Chapter 2. The literature in these respective areas is well 

established, and numerous applications to practice have emerged over the last two decades. 

However, the extent to which these three constructs interact has received less attention. 

Studies that have explored affect in mathematics have usually looked into it as an outcome of 

IBI rather than as a potential moderating factor (Kogan & Laursen, 2014; McGregor, 2014). 

Furthermore, the literature fails to explore these constructs in the context of students with 

MD. Therefore, this thesis set out to study two research questions: 

 

RQ1. How do students with mathematics difficulties perceive IBI? 

RQ2. Are students’ beliefs (e.g. mindset) associated with the effectiveness of IBI for 

students with mathematics difficulties? 

 

This chapter combines the analysis of the first case study (Chapter 5) and the second case 

study (Chapter 6) and offers a discussion of the findings in relation to each research question. 

I then discuss how these findings make a contribution to the literature. Finally, I conclude the 

chapter with implications for practice, notable limitations, and directions for future study. 

Please see Table 7.1 for a summary of the findings from case 1 and 2. 

 

Table 7.1 Summary of findings from case 1 and 2 

RQ Case 1 findings Case 2 findings 

1 Students seemed to perceive 
IBI according five themes. 

• IBI as form of 
empowerment 

• IBI as a form of neglect 
• Importance of the 

teacher 
• Importance of peers 
• Mathematics 

disaffection 

Students seemed to perceive 
IBI according five themes. 

• IBI as form of 
empowerment 

• IBI as a form of neglect 
• Importance of the 

teacher 
• Importance of peers 
• Pace and format 
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2 Several student beliefs seemed 
to be associated with the 
effectiveness of the IBI unit. 

• Mathematics is 
unrelated to reality 

• Mathematics is 
something one ‘does’ 

• Problems in maths can 
only be solved in one 
way 

• Low self-efficacy 
• Fixed mindset 
• A mathematics lesson 

should include multiple 
short problems that can 
be solved in ten minutes 
or less 

• The teacher is an 
important source of 
knowledge 

• Bottom set students do 
not enjoy maths 

Several student beliefs seemed 
to be associated with the 
effectiveness of the IBI unit. 

• Mathematics is 
unrelated to reality 

• Mathematics is 
something one ‘does’ 

• Problems in maths can 
only be solved in one 
way 

• Low self-efficacy 
• Fixed mindset 
• A mathematics lesson 

should include multiple 
short problems that can 
be solved in ten minutes 
or less 

• The teacher is an 
important source of 
knowledge 

• Some careers are only 
accessible to the top set 

 

Successful inquiry implementation 

Despite the popularity of IBI, evidence for its effectiveness for students with MD has been 

mixed, and teachers have demonstrated a reluctance to use these techniques with this group 

of students (Darragh & Valoyes-Chávez, 2019; Lambert, 2018; Louie, 2017). This reluctance 

partly comes from the idea that IBI is too discovery-oriented (Carnine, Jones, & Dixon, 1994; 

Woodward & Baxter, 1997) and that students with MD cannot engage in higher-order 

thinking (Zohar et al., 2001) or independent exploration (Mazenod et al., 2019). In addition, 

teachers who wish to implement IBI for the first time face a number of challenges, for 

instance poor student behaviour (Stylianides & Stylianides, 2014), and they tend to revert to 

the direct teaching approaches that they used previously (H.-C. Li & Stylianides, 2018). 

 

Despite the teachers of both case studies having little prior experience with IBI, both were 

able to deliver mathematics instruction to a proficient level of inquiry based on the EQUIP 

(see Appendix L and M for an analysis of the EQUIP ratings in each case). The data also 

suggest that, as the study progressed, both teachers improved their proficiency for inquiry 

instruction, spending more time facilitating discussions and explorations (see Figure 5.3 and 

Figure 6.3). H.-C. Li and Stylianides (2018) saw a similar effect when studying Taiwanese 

teachers implementing inquiry-based teaching of mathematics for the first time. In H.-C. Li 
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and Stylianides’s study, the teacher initially embraced the facilitator role, then reverted to 

traditional instruction, before finally embracing the facilitator role again in the final third of 

the 19-lesson intervention. In my study, both Mr Scott and Ms Silver gained proficiency 

quickly and sustained this proficiency throughout the IBI unit. 

 

Overall, I draw several conclusions from this. Firstly, teachers new to IBI can implement 

inquiry to a proficient level with the help of tools such as the EQUIP. Secondly, contrary to 

some of the literature, both teachers were able to establish proficiency quickly and 

consistently over the course of the IBI units. 

 

7.1 Research questions revisited 

In this section I discuss how the analysis across both cases addresses the two research 

questions.  

 

RQ1: How do students with mathematics difficulties perceive IBI? 

Across the two cases a total of 22 interviews were conducted (ten in Mr Scott’s case and 12 

in Ms Silver’s case). Numerous themes emerged from these interviews, the analyses of which 

are presented in Section 5.4 and Section 6.4. By comparing the findings across the cases, I 

categorise the students’ perceptions of IBI into several themes: (1) IBI as a form of 

empowerment, (2) IBI as a form of neglect, (3) importance of the teacher, and (4) importance 

of peers. 

 

IBI as a form of empowerment  

Across both cases, students perceived that IBI was an empowering way of doing 

mathematics. This perception has been discussed in the literature. For example, Hassi and 

Laursen (2015) found that mathematics teaching that focused on inquiry and student 

collaboration resulted in undergraduate students’ transformation towards ‘personal 

empowerment’ (p. 316). The results of this thesis extend Hassi and Laursen’s finding to 

secondary school students with MD. This finding is also complementary to that of Foster 

(2013b) who claimed reductionist teaching practices can be ‘dangerously disempowering’  

for students (p. 564).  
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One of the ways in which students felt IBI was empowering was the way it gave them more 

confidence (‘I think it made me feel more confident in the subject and the topic we’re doing’, 

James, Mr Scott’s class). This echoes findings of other researchers, such as Kogan and 

Laursen (2014) who suggested that mathematics courses which focused on IBI increased the 

confidence of undergraduate students as well as the likelihood they elected to take further 

maths courses. Kogan and Laursen’s work focused on university level students and used 

students’ course selections as a measure of confidence. My finding, that students perceived 

IBI to improve their confidence, aligns with this literature and extends the finding to include 

secondary students with MD. 

 

Within the theme of IBI as empowering, students in both cases perceived IBI to give them 

greater control over their learning and as a result increased their motivation. Increased 

motivation has been suggested as one of the primary benefits of IBI (Glogger et al., 2013; 

Hmelo-Silver, 2004). In addition, it has been found that students are more motivated when 

they believe they have control over their learning (Bandura, 1997). Therefore, the perception 

of increased motivation across these two cases is consistent with previous research and 

suggests that students with MD experience this reportedly favourable effect. 

 

Students across both cases felt that IBI promoted a deeper understanding of the mathematical 

concepts. My observations of the students in their lessons (see Section 5.4.1 and Appendix 

L.1.5 for Mr Scott’s case and Section 6.4.1 and Appendix M.1.5 for Ms Silver’s case) as well 

as my analysis of their pre- and post-tests support this view (see Section 5.4.4 and 6.4.4). 

Enhanced conceptual understanding is an oft-cited benefit of IBI (Boaler, 1998; Cobb et al., 

1991; J. C. Marshall & Horton, 2011). The emergence of this idea within both case studies 

therefore builds upon this research in the context of secondary students with MD. 

 

Various mechanisms have been put forward to explain why IBI might be effective at 

promoting a deeper understanding of mathematical concepts. By allowing students to explore 

the problems it is proposed they become conscious of gaps in their knowledge and that this 

awareness facilitates the assimilation of the missing pieces (Loibl & Rummel, 2015; 

Schwartz & Martin, 2004). Studies also highlight that inquiry-based tasks help activate 

deeper awareness of the learning processes and prepare students for subsequent direct 

instruction (Kapur, 2010, 2011, 2014; Schwartz et al., 2011; Schwartz & Martin, 2004). I see 

evidence in both cases which align with the research in this regard. For example, in the 
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following quote, Kevin explains that he finds learning easier if he attempts the problem first 

with follow-up direct instruction from the teacher.  

 

Because I like to be able to have a challenge and not just know what it is. 

Because if he’s going to discuss after, like what has happened and all that, 

then it’s a lot easier. And then he can go through it with us after to explain 

how to do it. And then we could try it again after that to get it right. 

(Kevin, Mr Scott’s case) 

 

IBI as a form of neglect  

The previous section explored how students perceived IBI as empowering. While all students 

expressed this view, there were also times the students expressed the somewhat contrasting 

view that IBI was neglectful. The most common sub-theme to emerge under the theme of 

neglect was that the IBI approach made learning mathematics more difficult (‘Because doing 

it without knowing what you are doing is hard, and when you know what you are doing it’s 

easier’, Lisa, Mr Scott’s case). Students seemed to view mathematics as something one ‘does’ 

and IBI was difficult partly because the teacher had not told the class what to do. Students did 

not seem to see the exploration phases of the IBI unit to be part of the mathematical process. 

Research has shown that many students see mathematics as a subject based purely on rules 

and procedures that must be memorised (C. A. Brown et al., 1988; Frank, 1988; Kouba & 

McDonald, 1987). The exploration phase of IBI appeared to conflict with these beliefs as 

students were expected to explore the problem space without being told what to do (i.e. what 

rules to follow or calculations to perform). This prevented the students from quickly 

obtaining the correct answer, which was often viewed by the students as the goal of the 

lesson. This finding is echoed by previous research (e.g. Schoenfeld, 1985). It seemed this 

left many of the students in both case studies feeling neglected. 

 

Students across both cases perceived the order of instruction as confusing and unhelpful (‘It 

was confusing, and why would he not explain the topic first, and why would he make us do it 

first and not explain it to us? It wasn’t helpful’, Lisa, Mr Scott’s case). This type of response 

might stem from the change in teaching order, from a tell-and-practice model of teaching 

towards an explore-and-discuss model of teaching. However, as an alternative explanation, 

one might argue that the increased confusion stemmed from a fundamental conflict between 

IBI and Cognitive Load Theory (CLT; Kirschner et al., 2006). CLT states that complex 
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learning situations such as IBI result in excessive extraneous load that make it difficult for 

students to acquire long term learning. The extraneous load created by the IBI in both cases 

could account for why some students reported feelings of confusion. 

 

Across both cases, students were asked to describe how they would have taught the IBI 

lesson or what they would change about the way their teacher taught it. In response, students 

frequently suggested the neglectful nature of not explaining first. Statements such as Elayne’s 

comment below are illustrative of this perception: 

 

…going through it at the beginning of the lesson, instead of just handing us 

the paper and going, ‘There you go, try and work that out.’ (Elayne, Ms 

Silver’s case) 

 

Importance of the teacher 

Students across both cases expressed comments which suggested they perceived the teacher 

to have an important role within IBI. Their perceptions of the teacher’s role within IBI was 

multi-dimensional.  

 

Firstly, students felt that the teacher's role was to create engaging lessons. Typically, this 

meant working on real-world problems. This seemed to translate into students feeling the 

problems were more fun and resulted in increased persistence and effort. This finding, while 

not previously explored for students with MD in the literature, is perhaps unsurprising given 

the literature linking engagement with the use of real-world mathematics problems (Boaler, 

1998; Wang et al., 2018). 

 

Another commonly held perception was that the teacher should provide individual support 

and help when students reach an impasse (‘I think her role is to help the students that need 

help when they don’t get it’, Cayleigh, Ms Silver’s case). This perception has the potential to 

conflict with the exploration phase of IBI, in which help from the teacher is meant to be 

delayed. This finding could be argued to overlap with the previously discussed perception of 

IBI as neglectful, suggesting that these themes may not be entirely mutually exclusive. 

Furthermore, this finding might also align with what others have found when exploring 

students’ views about mathematics teaching, for example, the view that the teacher's role is to 

help the students learn mathematics (Kloosterman, Raymond, and Emenaker, 1996), or the 
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view that the teacher’s role is to transmit knowledge whilst that of the student is to receive 

knowledge (Frank, 1988). 

 

In addition to providing individualised support, teachers were also expected to provide this 

equitably. This perception was commonly expressed negatively, meaning students felt that 

the teacher was inequitable in how they assisted students (‘Just help everyone and be equal in 

the amount of help you give’, Elva, Ms Silver’s case). It is possible a student may 

misconstrue the teacher’s encouragement to one group of students as inequitable support. 

Overall, this finding is interesting, as the literature has tended to suggest that IBI leads to 

increased equity (Boaler, 2002). Laursen and Rasmussen (2019) argue that one of the four 

pillars of effective IBI is that instructors foster equity in their design and facilitation choices. 

The finding that students might view IBI as inequitable is somewhat at odds with this 

literature and a potential area for further study. 

 

In both cases, students perceived the role of the teacher was to provide classroom 

management and maintain order. The emergence of this perception is interesting as previous 

literature has highlighted that teachers can struggle to maintain good classroom management 

when implementing IBI, and this leads to many teachers avoiding this pedagogical practice 

(Stylianides & Stylianides, 2014). Students’ perceptions of this issue may demonstrate their 

awareness of classroom management concerns and see this as the teacher’s responsibility. 

The EQUIP describes the role of the proficient inquiry teacher as one that is primarily 

facilitative. It therefore does not explicitly address the teacher’s role in classroom 

management, and this presents one area in which the EQUIP might be developed. 

 

Importance of peers 

Cross-case analysis of the data suggests a common set of perceptions that students held about 

their peers. These seemed to fall into subthemes of (1) peers as a source of knowledge; (2) 

peers as a source of motivation; and (3) peers as a source of innovation.  

 

Some researchers have suggested that students can hold the belief that mathematics learning 

is done individually (Kloosterman et al., 1996). However, across both of the case studies 

students tended to perceive their peers as important sources of knowledge (‘If I've done all I 

can I ask my neighbour who’s sitting next to me’, Cayleigh, Ms Silver’s case). Researchers 

have suggested that students’ early epistemological beliefs about mathematics are that 
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knowledge is transmitted from an authority figure (Perry, 1970; Schommer, 1990). Therefore, 

the common perception of peers as a source of knowledge is somewhat surprising. Moreover, 

students seemed to view this knowledge sharing as bi-directional. Students suggested they 

could share knowledge with peers as well as receive. D. Johnson and Johnson (2016) might 

have considered this bi-directional sharing of knowledge as an example of positive social 

interdependence, with groups believing they can reach their goals if others within their group 

also meet their goals. 

 

Across both cases, peers were frequently cited as a source of enjoyment and motivation when 

exploring IBI problems. This is especially positive given increased motivation has been 

associated with greater learning outcomes (Belenky & Nokes-Malach, 2012). 

 

Finally, many students felt that peer discussions were a valuable source of innovation during 

the IBI unit. By working together, students felt they were able to develop new approaches to 

explore the problems. This finding connects with the work of D. Johnson and Johnson (2016) 

who assert that outputs from group work are greater than what can be achieved individually. 

Even though my study did not include a control group to contrast students that worked 

together versus students that worked individually, the students’ perceptions of greater 

innovation as a result of group work could be an indication of the kind of enhanced outputs 

described by D. Johnson and Johnson (2016). The students within these cases had little to no 

prior exposure to IBI and therefore might be unfamiliar with how to explore a problem in a 

creative way. The availability of peer networks to cultivate this creativity (D. Johnson & 

Johnson, 2016) may explain why so many students expressed this theme. 

 

Other perceptions 

Two further themes emerged when analysing the students’ perceptions of IBI across the two 

case studies, although each theme emerged within only one of the cases. The first is 

mathematics disaffection, which was a theme from Mr Scott’s case, and the second is pace 

and format, which was a theme from Ms Silver’s case. Therefore, a cross-case comparison 

suggests a lack of triangulation for these findings. However, it is worth touching briefly on 

these and considering why they may not have been expressed as strongly across both cases. 

 

Perceptions of mathematics disaffection emerged strongly within Mr Scott’s case, although it 

was not clear whether this was a result of the IBI or prior experiences with mathematics. 
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Most comments referenced a general sense of disaffection with the way mathematics is 

taught, such as mathematics is boring and all about completing worksheets and seatwork. 

This finding is not surprising given others have argued students view mathematics as 

something that is undertaken individually (Kloosterman et al., 1996) and involves mainly 

seatwork (Stodolsky, 1985). It is unclear why this theme was so strong within Mr Scott's case 

but less so in Ms Silver’s. My observations of the lessons do not lead me to conclude that 

either teacher was more or less engaging, and both teachers reached a proficient inquiry level 

on the EQUIP rubric. I note that, within Mr Scott’s class, many of the comments regarding 

mathematics disaffection seemed to draw from prior experiences that extended beyond their 

time with Mr Scott. This might suggest the historic classroom experiences of the students in 

this case led them to express views of disaffection more than students in Ms Silver’s case. 

The approaches of different teachers is known to play a meaningful role in students’ overall 

attitudes towards mathematics (Boaler, 2002; Boaler & Greeno, 2000; De Corte et al., 2010). 

 

With regards to the theme of pace and format, students felt that IBI lessons took longer than 

they expected based on past experiences. This is consistent with the literature that students 

believe mathematics problems should be solvable in less than ten minutes (Schoenfeld, 

1985). In addition, students in Ms Silver’s class perceived the change in the order of 

instruction within the IBI lessons. Students were aware that the exploration seemed to 

precede direct instruction. It is possible that students were more aware of the change in 

format given Ms Silver’s more demonstrative teaching style prior to enacting the IBI unit 

(discussed in Section 6.1.1). This contrasts with Mr Scott’s alleged preference for 

experiential learning prior to beginning the IBI unit (discussed in Section 5.1.1).  

 

The association of mindset and perceptions of IBI 

The analysis of student interviews was essential in evaluating the students’ perceptions of 

IBI. The students selected to partake in these interviews were broadly balanced across the 

mindset categories (see Table 5.3 and Table 6.3). Perceptions of the importance of the teacher 

and the importance of peers were expressed to similar extents by students with growth, mixed 

and fixed mindsets. However, this did not appear to be the case for the themes of IBI as 

empowerment and IBI as neglect. Students with growth mindsets expressed the theme of IBI 

as empowerment with greater intensity (Boyatzis, 1998) than those with fixed mindsets in 

both cases. Conversely, students who held fixed mindsets expressed the theme of IBI as 

neglect with greater intensity than those with growth mindsets in both cases. 
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This finding is potentially important as the ideas contained within the theme of IBI as 

empowerment include self-efficacy, motivation, agency, and engagement, all of which are 

associated with improved mathematical performance in the literature (Bandura, 1997; Boaler, 

1998; Dweck, 2017b; Glogger et al., 2013; Hmelo-Silver et al., 2007; Kogan & Laursen, 

2014). Conversely, the ideas within the theme of IBI as neglect have been negatively 

associated with performance (Kouba & McDonald, 1987; McLeod, 1992).  

 

The number of students interviewed with mixed mindsets was small (only two from Mr 

Scott’s case and none from Ms Silver’s). These two students expressed IBI as empowering 

with greater intensity than those with fixed mindsets but to a similar intensity as those with 

growth mindsets. The same two students tended to express views of IBI as neglectful with 

less intensity than those with fixed mindsets but to a similar intensity as those with growth 

mindsets. It appears students with mixed mindsets perceived IBI in a similar way to their 

peers with growth mindsets. Future research should seek to further understand the views of 

students with mixed mindsets.  

 

Previous research has not thoroughly explored how students with MD perceive IBI, and the 

finding that students holding different mindsets can develop quite different perceptions is one 

of the key contributions to the literature this thesis makes. In Section 7.3, I discuss the 

implications of this finding to practice. 

 

In addition, while the intensity of IBI as empowerment and IBI as neglect varied by mindset 

it is important to note that all students, regardless of mindset, expressed both perceptions at 

some point during the interviews. This might be an example of the state-type versus trait-type 

dispositions discussed in Section 2.8. Under Hannula's (2011) framework, trait-type affect 

constructs describe stable dispositions whilst state-type constructs describe more dynamic 

and rapidly changing dispositions. My assessment of mindset, which largely relied upon the 

use of questionnaires, assumes mindset as mainly a trait-type construct (Di Martino, 2019). 

However, the observation that all students expressed these perceptions at some point during 

their interviews could be indicative of mindset as a changing, state-type construct. This can 

present issues with the classification of students as fixed, mixed, or growth. I acknowledge 

these limitations in Section 7.4. 

 



 207 

Summary of findings for RQ1 

The exploration of how students with MD perceive IBI has not been reported based on a 

systematic search of the literature. The findings of this multiple case study suggest that 

students perceive IBI through several common themes. These are: (1) IBI as a form of 

empowerment, (2) IBI as a form of neglect, (3) Importance of the teacher, and (4) Importance 

of peers.  

 

Students brought several existing beliefs with them when they entered the IBI unit. One of 

these was their belief about intelligence. I found that when students held growth mindsets, 

they expressed the perception of IBI as empowerment with greater intensity (Boyatzis, 1998) 

than those with fixed mindsets. Conversely, when students held fixed mindsets, they 

expressed the perception of IBI as neglect with greater intensity than those with growth 

mindsets. Please see Section 4.9 for a discussion of intensity scoring. 

 

RQ2: Are students’ beliefs (e.g. mindset) associated with the effectiveness of IBI for 

students with mathematics difficulties? 

Questionnaires designed to determine students’ mindsets and attitudes towards mathematics 

were used alongside pre- and post-tests to address this research question. These tests were 

used to measure student learning. In addition, classroom observations and interviews allowed 

for a qualitative view of the effectiveness of IBI in each case study. Altogether, these data 

sources enabled triangulation. 

 

Much literature puts forward the view that direct instruction is the most effective technique 

for students with mathematics difficulties. Kroesbergen and van Luit (2003) reviewed 58 

intervention studies in which researchers studied the efficacy of various teaching methods on 

the learning of students with special needs, including those with mathematics difficulties, and 

concluded that direct, explicit instruction was the most effective approach. Dennis et al. 

(2016) echoed this finding in a meta-analysis of 25 experimental and quasi-experimental 

studies of mathematics learning difficulties.  

 

My study was not designed to evaluate the effectiveness of inquiry instruction versus direct 

instruction for students with MD, and therefore it is not possible from my data to suggest 

either approach is superior; to do so would have required a different methodology (possibly 

one that incorporated a control group). However, it is worth highlighting that the findings of 
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the case studies presented in Chapter 5 and Chapter 6 provide some evidence that IBI was 

effective at increasing students’ understanding in mathematics (as measured by my 

observations and the post-tests). In the case of Mr Scott, test scores for students with MD 

improved from 5.8 to 6.3 out of a maximum score of 12. In the case of Ms Silver, the test 

scores for students with MD increased from 16.78 to 22.67 out of a maximum score of 33.  

 

The absence of a material increase in the case of Mr Scott (compared to Ms Silver) may be 

due to several factors. The first is that the IBI intervention simply did not result in much 

learning. However, given my observations of students’ enhanced understanding (see Section 

5.4.1 and Appendix L.1.5), there may be other factors to consider which mask the magnitude 

of the increase. Several factors that might be worth considering include the small class size, 

the length of instruction, and the length or nature of the assessment given. Even so, the 

absence of a larger increase in the case of Mr Scott’s class calls into question the 

effectiveness of the IBI approach, and therefore further research is required. 

 

When evaluating the effectiveness of IBI, the literature suggests its most significant benefit is 

developing students’ conceptual understanding. Cobb et al. (1991) demonstrated this effect in 

the field of mathematics through a year-long controlled study of ten second-grade classes. 

Cobb et al. (1991) and similar studies reported in the literature have tended to focus on 

general education students. The results of my thesis are mixed for students with MD. In the 

case of Ms Silver’s class, the scores on conceptual understanding increased from 3.7 to 5.7 

(Table 6.4) out of a maximum score of 12. However, in the case of Mr Scott’s class, test 

scores only increased from 3.5 to 3.8 (Table 5.4) out of a maximum score of 6. A similar 

situation is seen with regards to procedural knowledge, in which the students in Ms Silver’s 

case increased their scores from 14.4 to 16.5 (Table 6.4) out of a maximum score of 21, and 

the students in Mr Scott’s case increased their scores from 2.3 to 2.5 (Table 5.4) out of a 

maximum score of 6. Again, the results from the case of Mr Scott show only a small increase. 

Therefore, as discussed above, more research is needed to determine the effectiveness of IBI 

for enhancing conceptual and procedural knowledge. 

 

Turning to the effect of mindset, many studies put forward the idea that holding a growth 

mindset results in greater academic performance than holding a fixed mindset (Aditomo, 

2015; Aronson et al., 2002; Blackwell et al., 2007; Claro et al., 2016; Rattan et al., 2012; 

Sahlberg, 2011). So numerous are the studies to this effect that the view has almost acquired 
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consensus. However, to my knowledge, no study has tested the effect of mindset for students 

with MD in an inquiry-based environment. Therefore, this thesis makes a contribution to the 

literature. The results of my multiple case study were unable to replicate the finding that 

students with growth mindsets outperform those with fixed mindsets. There was only a small 

difference on the post-test between students holding a fixed mindset and students holding a 

growth mindset in the first case (Table 5.5) and no difference in the second case (Table 6.5). 

Admittedly, the size and scope of this case study limits the generalisability of this finding, 

and concerns of whether the mindset instrument actually reported ‘false growth mindsets’ 

(Gross-Loh, 2016, para. 2) as opposed to true growth mindsets cannot be rejected. 

Nonetheless, I am unable to conclude that holding a fixed mindset is negatively associated 

with learning during IBI for students with MD, or that holding a growth mindset is 

favourably associated with learning based on the results of the pre- and post-tests. It is 

surprising that this effect failed to take place in an inquiry-based learning environment which, 

based on mindset theory, should have exaggerated the negative effects of holding a fixed 

mindset (see Section 4.11 for the ethical considerations taken into account for this study). 

Accepting the literature as true, my findings bring up an interesting question. Could IBI 

temper the effects of holding a growth or fixed mindset for students with MD? This presents 

an area for further research. 

 

Differentiating the above analysis to inspect conceptual and procedural knowledge separately 

provides a similar result. Students with growth mindsets performed similarly to students with 

fixed mindsets on these measures (Table 5.5 and Table 6.5). Students of all mindsets 

improved their scores on both the procedural and conceptual items (Table 5.4 and Table 6.4), 

but there was no evidence from either case study that students with certain mindsets made 

greater improvements. Again, these results are interesting, as the literature would have 

predicted that students with growth mindsets should outperform those with fixed mindsets 

(Dweck, 2013). One possible explanation of this may lay in the fact that, despite their low 

attainment, students in both cases presented with a mixture of mindsets. It is therefore 

possible that existing compensatory factors helped to buffer against potential positive or 

negative effects of mindset.  

 

Nevertheless, the evidence suggests holding a growth versus fixed belief of intelligence was 

not associated with the effectiveness of IBI for students with MD, at least not from the 
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perspective of the overall test results nor from the results of the procedural and conceptual 

items. 

 

One of the greatest benefits to employing a multiple case study approach is that it allows the 

researcher to look beyond purely quantitative features. This discussion now turns to the 

qualitative data collected through detailed observations of the students during the IBI lessons. 

These lesson observations were analysed using McLeod’s framework of affect (1992). This 

framework considers beliefs as the most stable and most cognitive of the three domains of 

affect (the other two being attitudes and emotions). Under the framework, beliefs in 

mathematics are broken into four categories: beliefs about mathematics, beliefs about self, 

beliefs about mathematics teaching, and beliefs about the social context. 

 

Looking first at the beliefs students held about mathematics, a cross-case comparison of Mr 

Scott’s and Ms Silver’s cases suggest a common view among the students that mathematics is 

something one ‘does’. Comparing two examples: 

 

L: What does area mean? 

E: Pretty sure that’s when you add up all the sides. 

(Linda and Erica, L1, Mr Scott’s case) 

 

R: How are we getting on here? 

C: We know we have to do something with this number and this one 

[pointing to circled numbers on the worksheet], and it has something 

to do with brackets, but we can’t remember how to solve these. 

(Researcher and Cayleigh, L5, Ms Silver’s case) 

 

Some students in both cases appeared to believe mathematics was nothing more than 

applying procedures with given numbers. The literature on this view goes back some time, 

with research suggesting students believe all word problems can be solved in just three-steps 

(Frank, 1988). First, the student selects an operation (e.g. division) using keywords within the 

text, then they use this operation on numbers within the text, and then finally they report an 

answer (Greer, 1997; Sowder, 1988). The findings of this multiple case study suggest this 

belief has a role in how students with MD tackle IBI problems. In both cases, the students 

were unfamiliar with IBI in mathematics, so perhaps exposure to years of problems in which 
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students are taught to follow stepwise solutions has led to this non-availing belief (Muis, 

2004). Non-availing beliefs are discussed in Section 2.7. 

 

In many cases, holding the above view led students to fail to engage in an exploration of the 

IBI problem, frequently suggesting that they would await direct instruction from the teacher 

(‘let Ms explain it’, Karson, L7, Ms Silver’s case). Dweck (1975) describes this issue under 

the term ‘learned helplessness’, in which children’s experiences in school have trained them 

to expect teacher assistance when encountering difficulties. This effect has been frequently 

observed in mathematics (Yates, 2009). As such, students struggle to engage with inquiry-

based environments that expect them to explore challenging problems unaided. My 

observations from across the two cases seem to support the literature in this regard. 

 

One of the advantages of inquiry-based instruction is that the problems create opportunities 

for students to connect mathematics with their real-world, out-of-school lives. In their review 

into the literature of inquiry-based pedagogy in mathematics, Artigue and Blomhøj (2013) 

highlight that teaching should focus on helping the student ‘construct the meaning of the 

abstract concepts and methods gradually through mathematization of meaningful, real-life 

situations’ (p. 804). A cross-case analysis of the two case studies (Section 5.4.2.2.1 and 

Section 6.4.2.2.1) suggests a consistent belief that the mathematics and selected problems 

were unrelated to reality (‘This is pretty useless. When are we ever going to need this?’, 

Irene, L1, Mr Scott’s case). The observations that evidenced this belief coincided with 

reduced performance on the part of the student (e.g. talking with a peer about an unrelated 

topic), suggesting the belief that mathematics is unrelated to reality was negatively associated 

with the effectiveness of IBI. 

 

However, this belief may not have been stable, and lessons which more clearly made 

connections with the real-world coincided with observed increases in task engagement. An 

example of this was the Basketball Court lessons (L2 and L3) for Mr Scott’s case (see 

Section 5.3 for lesson overview). Hannula (2011) discusses the idea that beliefs can be 

‘rapidly changing affective states vs. relatively stable affective traits’ (p. 43). Observation-

based data can tend to provide the researcher with insights of state-type beliefs rather than the 

more stable trait-type beliefs (Di Martino, 2019). This might provide an explanation for the 

observed belief changes that occurred in both cases. The introduction of real-world problems 

possibly led to a state-type shift in beliefs about the abstractness of mathematics problems for 
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students with MD. When students in both case studies were able to connect problems to their 

real-world lives, they typically engaged better and attempted a greater repertoire of solution 

pathways. 

 

One final belief about mathematics emerged from across the two cases. Frequently students 

demonstrated a reluctance to try alternative solutions, especially when they felt they had 

already answered the question or were on the right path. When encouraged to search for 

alternative or confirmatory solution pathways students seemed either confused or fixated on 

making their chosen pathway work. For example, during the interaction with Edith and her 

group in Section 6.4.2.2.1, the students focused on validating their answer by repeatedly 

asking the teacher if it was correct as opposed to self-validating via another solution pathway. 

Students who held this view missed opportunities to engage further with the problems. A 

common observation I made across both case studies was that a student would try a single 

pathway and, if unsuccessful, they would give up. C. A. Brown et al. (1988) reported that the 

majority of secondary school students believe that mathematics is primarily based on rules 

that have to be memorised. The observations made in both case studies, that students were 

reluctant to attempt multiple solution pathways, might stem from this belief. Other research 

has argued that inquiry teaching methods that encourage students to explore multiple solution 

pathways allow students to be more innovative and to think about a wider range of 

alternatives (Makar, 2012). Overall, my observations within these two cases suggest that 

holding a belief that mathematics problems can only be solved in one way seemed to be 

negatively associated with how well a student undertook the exploration portion of IBI, at 

least within the context of this study. 

 

Turning to beliefs about self, data from both case studies presents evidence of the students’ 

mindsets. As previously discussed, students with a growth mindset did not outperform those 

with a fixed mindset on the pre- and post-test, despite previous literature suggesting they 

would. However, a qualitative comparison across the two cases suggests that mindset did 

impact upon the way students engaged with the IBI problems. I discuss this comparison 

below. 

 

Students typically indicated their mindset by making reference to their brains (‘I don’t know 

… my brain’s not very good at this’, Jackie, L4, Mr Scott’s case; ‘I’m rubbish at this stuff. 

Harper has got the brains’, Zelda, L2, Ms Silver’s case). These views align with what Dweck 
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(2017b) describes as a fixed mindset. Observed student engagement and effort on the IBI 

problems suggested that holding a fixed mindset normally resulted in worse academic 

performance (see Sections 5.4.2.2.2.2 and 6.4.2.2.2.2 for these analyses). However, there 

were times when holding a fixed mindset appeared to actually help the students perform 

better. Students who held a fixed mindset and believed they were innately good at maths 

showed perseverance in the face of challenges. In her summative book, Dweck (2017b) 

explains that fixed mindset, where the individual holds the view that they are innately good at 

something, can be a positive motivator. Holding a view that one is good at mathematics can 

help motivate one to tackle challenging maths problems. However, this fixed view of 

intelligence apparently fails to motivate students at more advanced levels, when it could 

‘reveal the limits of the student’s ability’ (Dweck, 2013, p. 12). Evidence of this did appear 

within the case studies (‘I’ve always been quite good at maths’, Clay, L4, Ms Silver’s case). 

In this example, Clay had successfully tackled the inquiry problem. It is therefore too blunt to 

say that fixed mindset beliefs always result in poor performance as the actual situation is 

more nuanced. 

 

Another aspect of beliefs about self, which is related to mindset, is self-efficacy. Schunk 

(2012, p. 146) defines self-efficacy as the ‘personal beliefs about one’s capabilities to learn or 

perform actions at designated levels’. Expanding the definition to mathematics, Ashcraft and 

Rudig (2012) describe self-efficacy as ‘an individual’s confidence in his or her ability to 

perform mathematics’ (p. 249). Cross-case analysis suggests that the students with MD in 

both case studies often held a negative view of their self-efficacy. Comments such as ‘I don’t 

get any of it’ (Sirena, L1, Mr Scott’s case) and ‘I’m not good at these’ (Kevin, L4, Ms 

Silver’s case) are representative of comments from both cases. Such non-availing beliefs 

were negatively associated with the effectiveness of the IBI. 

 

Bandura (1997) suggests that there are four sources of self-efficacy. The first of these is 

mastery experiences, meaning first-hand experiences of success or failure. Often the students 

within the case studies exhibited high self-efficacy in ‘doing’ mathematics as it pertains to 

procedural knowledge but low self-efficacy in understanding mathematics on a deeper 

conceptual level. Looking at this observation through the lens of Bandura’s first source of 

self-efficacy, it is possible that students’ prior direct instruction experiences in mathematics 

provided them with mastery experiences of the procedural aspects of problem solving but 

with little mastery experiences of inquiry-based exploration.  
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The overall observations of self-efficacy are consistent with the literature, which has 

demonstrated the correlation between beliefs about self-efficacy and student performance 

(Bandura, 1997; Gao, 2019). The same patterns were observed in both cases of students with 

MD in an IBI context. 

 

Next, I address beliefs about mathematics teaching. McLeod argued that students hold many 

beliefs about how mathematics should be taught, which they develop through exposure to 

mathematics teaching in school (1992). The research in this area is perhaps not as developed 

for some of the other beliefs. One such non-availing belief is that the role of the teacher is to 

transmit knowledge and that of the student is to receive knowledge (Frank, 1988). The cross-

case analysis suggests that this belief was present within students with MD during IBI (‘I’ll 

get it better when he [the teacher] explains it’, Lisa, L1 Mr Scott’s case; ‘If he’s not gonna 

bother explaining it then why should we bother trying to work it out?’, Timothy, L5, Mr 

Scott’s case). These observations support the literature in this regard, although extending it 

into the context of students with MD undertaking IBI. 

 

Perhaps the belief that the role of the teacher is to explain and the role of the student is to 

memorise led students to conclude that, when learning via IBI, they were not really learning 

(at least not until the explanation phase). Others have noted this behaviour, whereby students 

require new classroom norms (e.g. risk-taking) in order to make the most of inquiry-based 

lessons (Makar & Fielding-Wells, 2018). Perhaps, with further exposure to IBI, these 

students would shed such non-availing beliefs and begin to see their role as broader than a 

recipient of knowledge administered by the teacher. 

 

Makar (2012, p. 371) argues that the problems presented to students in school mathematics 

lead them to believe that mathematics teaching is based upon isomorphic problems focused 

on canonical solutions, and mathematics problems are ‘clearly stated, take only a few minutes 

to answer, include little or no use of context and have a single correct answer’. Therefore, 

students come to expect teaching that follows this model. Schommer and Walker (1995) refer 

to such beliefs as ‘naïve’ and generally unhelpful for the learning of mathematics. IBI 

problems are more open-ended and invite multiple solution pathways. Cross-case analysis 

suggests the above beliefs about teaching were present within both cases, and students were 

aware of the differences to their normal mathematics lessons. There were positive examples 
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of this belief (‘It's good they [the problems] are always different’, Edith, L4, Ms Silver’s 

case; ‘It’s better than bookwork’, Maddie, L1, Mr Scott’s case). Frequently, however, these 

beliefs interacted in a non-availing way with the exploration aspects of IBI (‘I think it’s a 

waste of time to keep trying stuff and then you never get it right’, Opal, L7, Ms Silver’s 

case). 

 

The analysis of the two case studies suggests that students held a view that mathematics 

problems should be short and not take much time (‘Do these always take so long? We’ve 

only done one problem’, Kevin, L3, Mr Scott’s case; ‘But these ones take ages’, Dax, L7, Ms 

Silver’s case). Comments like these are indicative of this belief and appeared to be associated 

with poor engagement and perseverance when solving extended inquiry problems. The 

literature is rich with research suggesting students often hold the non-availing belief that 

problems in mathematics should be short, and that this belief emerges as a result of the types 

of problems presented in school (Makar, 2012; McLeod, 1992; Schoenfeld, 1985). 

Schoenfeld (1985) suggested that students believe that all problems in mathematics can be 

‘solved in less than ten minutes, if they are solved at all’ (p. 43) and, moreover, those 

students that held this view struggled to persevere when solving inquiry problems. This thesis 

extends this observation to students with MD learning in an inquiry-based environment. This 

finding suggests the belief that maths problems should be short may be typical of students 

with MD as well. 

 

The next belief within the analysis framework relates to beliefs about the social context. 

McLeod suggested that the beliefs that students hold about the social context of mathematics 

impacts upon the way students tackle problems. Op’t Eynde, De Corte, and Verschaffel 

(2002) argue that the social context includes beliefs that students hold about handling 

disagreements and making decisions with their peers. A cross-case analysis of this study 

suggests that students held various beliefs about the role of peers in making decisions. Some 

believed it was important to build consensus in their groups while others believed it was best 

to take a democratic approach. 

 

In addition, students with MD in both cases believed that their peers could provide insight 

into mathematics. I also saw this idea emerge within the student interviews (‘If I've done all I 

can I ask my neighbour who’s sitting next to me’, Cayleigh, Ms Silver’s case). Kloosterman 

et al. (1996) conducted a 3-year study into students’ mathematics beliefs and suggested that 
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students’ beliefs about the role of peers varied depending upon classroom experiences. They 

found that many students felt mathematics was individual work. By contrast, I saw little 

evidence of this belief across the analysis of both cases. 

 

The students also seemed to hold beliefs about the social context of their schools. In both 

cases the classes were ‘lower set’ and students seemed aware of their social positioning 

within the pool of mathematics students at the school. Cross-case analysis suggested this 

awareness led to certain beliefs about the social context, specifically that they were not 

expected to perform as academically as the ‘top set’. For example, students felt that 

enjoyment for mathematics was reserved for ‘top set’ students who were ‘swotty’ (Maddie 

and Irene, L7, Mr Scott’s case). The deleterious effect of attainment grouping on students’ 

self-esteem, engagement and perceived ‘ability’ has been well documented (Braddock & 

Slavin, 1992; Francis, Archer, et al., 2017; Marks, 2013; Mazenod et al., 2019). The cross-

case analysis suggests that the students held non-availing beliefs about themselves within the 

academic hierarchy of their schools. It is possible these beliefs negatively impacted their 

exploration of the IBI problems. 

  

Students held beliefs about the broader social context beyond the school. These varied from 

the belief that mathematics has little value (‘This is pretty useless. When are we ever going to 

need this?’, Irene, L1, Mr Scott’s case) to the belief that mathematics was not an important 

part of the student’s home life (‘These types of problems just really confuse me. My mum 

said she was the same way when she was in school’, Eleri, L7, Ms Silver’s case). These 

beliefs interacted with how students viewed the IBI problems. In the case of Irene, this was 

associated with poor engagement on the task, and in the case of Eleri, she appeared reluctant 

to try out the problem and seemed to almost give up as soon as she began. No doubt 

numerous other factors could have led to these students’ poor engagement with the IBI 

problems, but the expression of non-availing beliefs regarding the social context is consistent 

with previous research (Schoenfeld, 1983). Schoenfeld argued that the beliefs of problem 

solvers ‘(not necessarily consciously held) about what is useful in mathematics may 

determine the set of “cognitive resources” at their disposal as they do mathematics’ (p. 329).  

 

Summary of findings for RQ2 

The effect of student beliefs (such as mindset) on performance in mathematics has been 

discussed in the literature. However, little research has focused specifically on students with 
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MD in an inquiry-based environment. My analysis across these two case studies serves to 

address this need, especially in the area of mindset, which has received much attention 

recently in practice as well as research. Specifically, in relation to RQ2, I found the 

following: 

• Students with MD were able to improve their procedural and conceptual knowledge 

over the course of the IBI unit 

• There was no difference in how well students with MD and growth mindsets 

performed as compared to students with MD and fixed mindsets on the pre- and post-

test 

• Students with MD held beliefs that were associated with poor performance and 

diminished engagement with the IBI unit 

• These included the belief that mathematics is something one ‘does’, mathematics 

problems should be short, there is only one correct way to solve a given problem, the 

teacher is an important source of knowledge, and mathematics is unrelated to reality. 

In addition, students held potentially negative self-beliefs including low self-efficacy, 

fixed mindset, and that students in lower sets are not meant to excel in mathematics. 

 

7.2 Key contributions to literature 

In Section 7.1 I discuss the key findings from two case studies, as well as how these findings 

interact with the literature. In this section, I summarise the principal contributions that this 

thesis makes to the existing literature. My research questions touch upon several areas. These 

are: 

1) Inquiry-based instruction 

2) The affective domain, specifically the construct of beliefs 

3) Mathematical difficulties 

 
The largest contribution this paper makes to the literature is to explore the intersection of 

these three stands of research into a single study. Figure 7.1 shows this visually, with the 

nexus of the three fields representing a gap in the literature. It is here that the findings of this 

research have made the greatest contribution. 
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Figure 7.1: Three areas of research this thesis makes a contribution to 

The first contribution to the area of inquiry-based instruction is that IBI can be effectively 

delivered to students with MD. Numerous researchers have highlighted the challenges that 

teachers face when implementing IBI, such as classroom management challenges and poor 

engagement from students (Stylianides & Stylianides, 2014). My findings add to the literature 

and demonstrate that teachers who have little history of IBI can effectively administer this 

type of instruction to students with MD with the help of EQUIP and a skilled observer. 

 

The second contribution to the area of inquiry-based instruction is that students with MD can 

improve their procedural and conceptual understanding through IBI. Aspects of the literature 

put forward the view that direct instruction is the most effective technique for students with 

mathematics difficulties (Dennis et al., 2016; Kroesbergen & van Luit, 2003). Whilst this 

study does not include a comparison group, my findings add weight to the literature that says 

students with MD can benefit from an inquiry-based approach to learning mathematics. In 

addition, it is interesting to note the observed increase in knowledge was greater for one of 

the cases (Ms Silver’s) compared to the other (Mr Scott’s). Future research should seek to 

further explore the contextual factors that contribute to the effectiveness of inquiry instruction 

for students with MD. Moreover, the size and scale of this study limit the generalisability of 

this findings and further research is recommended (see Section 7.5). 

 

In the area of affect, the primary contribution of this thesis is an exploration of the beliefs that 

students with MD can hold and whether these beliefs were associated with the effectiveness 

of the IBI. Previous research has suggested that students hold various beliefs towards 

mathematics and themselves and that holding inappropriate beliefs negatively impacts 

Inquiry-based 
instruction

Affective 
domain 
(beliefs)

Mathematics 
difficulties
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academic performance (Di Martino, 2019; Dweck, 2017b; McLeod, 1992; Schoenfeld, 1987; 

Schommer, 1990). However, prior research has neglected to explore this construct for 

students with MD, and therefore, the findings of this study make a contribution.  

 

The results of this multiple case study show that students believed mathematics is something 

one ‘does’ (Frank, 1988; McLeod, 1992), mathematics problems should be short (Schoenfeld, 

1985), there is only one correct way to solve a given problem (McLeod, 1992), the teacher is 

an important source of knowledge (Frank, 1988; Kloosterman et al., 1996), and mathematics 

is unrelated to reality. Students also showed low self-efficacy (Bandura, 1997; Schoenfeld, 

1987), fixed mindset (Dweck, 2013, 2017b), and the expectation that students in lower sets 

are not meant to excel in mathematics. The apparent result of holding these views was 

reduced observed engagement (e.g. putting head on the desk, off-task discussions with peers). 

Taken together these findings paint a picture of the beliefs students with MD may hold and 

the extent to which these are associated with performance during IBI. Implications for 

practice are discussed in Section 7.3. I acknowledge that the size and scope of this study limit 

the generalisability, and therefore, future research is needed to support these findings.  

 

A further contribution to the area of affect relates to the role of mindset. Mindset theory 

(Dweck, 2013) suggests that students with growth mindsets typically outperform those with 

fixed mindsets, especially when experiencing IBI which relies on exploration. The findings of 

this study are consistent with this literature as it relates to the students’ observed engagement 

and persistence on the IBI problems. However, my finding that students with growth 

mindsets did not outperform students with fixed mindsets as measured by the post-test is 

surprising. This might suggest that the theory of mindset does not generalise to the context of 

students with MD. Further research is recommended. 

  

Across a series of interviews, the students expressed several ways in which they perceived 

IBI. These broadly fell into four themes: (1) IBI as a form of empowerment, (2) IBI as a form 

of neglect, (3) Importance of the teacher, and (4) Importance of peers. 

 

Several aspects of these perceptions have been explored within the literature. For example, 

within IBI as empowerment, Hassi and Laursen (2015) argued university students perceive 

IBI as personally empowering. In addition, Kogan and Laursen (2014) reported IBI led to 

increased student self-efficacy and Boaler (1998) argued that IBI creates opportunities for 
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deeper engagement with mathematics. Within the theme IBI as neglect, others have shown 

that students see mathematics as a ‘doing’ subject based on rules and memorisation (C. A. 

Brown et al., 1988; Kouba & McDonald, 1987; McLeod, 1992). The perception that the 

teacher’s role is to teach and the student’s role is to learn has also been explored 

(Kloosterman, Raymond, and Emenaker, 1996; Frank, 1988). However, no prior research (to 

my knowledge) has explored how students with MD perceive IBI. Therefore, this thesis 

provides valuable insight into this gap. 

 

Finally, across both case studies students with growth mindsets expressed the theme of IBI as 

empowerment with greater intensity (Boyatzis, 1998) than those with fixed mindsets. 

Conversely, students with fixed mindsets expressed the theme of IBI as neglect with greater 

intensity than those with growth mindsets. This finding presents a central contribution to the 

literature. Research suggests that many teachers shy away from using IBI for students with 

MD, favouring direct, explicit instruction (Kroesbergen & van Luit, 2003; Maccini & 

Gagnon, 2002; Zohar et al., 2001). This finding may help to shed some light on why some 

students seem to engage more with IBI than others. I believe educators can incorporate these 

findings into their instruction when teaching inquiry. Implications for practice are discussed 

in Section 7.3. 

 

7.3 Implications for practice 
The main implication for practice that I would like to address is the use of different teaching 

practices for different groups of students (or rather, groups of students that are perceived to 

be different).  

 

The Department for Education (DfE) in the U.K. released a report titled, ‘Teacher’s 

Standards’ (2011) and it gives the following guidance to school leaders, staff, and governing 

bodies: 

 

Set high expectations which inspire, motivate and challenge pupils. …Set 

goals that stretch and challenge pupils of all backgrounds, abilities, and 

dispositions. (p. 10; emphasis added) 

 

The report goes on further to recommend: 
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Adapt teaching to respond to the strengths and needs of all pupils. … Have a 

clear understanding of the needs of all pupils, including those with special 

educational needs; those of high ability; those with English as an additional 

language; those with disabilities; and be able to use and evaluate distinctive 

teaching approaches to engage and support them. (pp. 11–12; emphasis 

added) 

 

The above recommendation by the DfE is somewhat dissonant. It begins with the goal of 

setting high expectations for all pupils, but it then somewhat contradicts this recommendation 

by suggesting those with ‘high ability’ should receive ‘distinctive teaching practices’ from 

those of presumably ‘low ability.’ In this way, the document seems to support the practice of 

teaching students in lower sets in a different way to those in top sets. The DfE likely intends 

this as a call for skilled differentiation, but such guidance could actually be one explanation 

for why research has shown lower sets receive distinctively shallow teaching compared to top 

sets (Mazenod et al., 2019). As this study has shown, students with mathematics difficulties 

(MD) can develop understanding from inquiry-based practices if they are given the 

opportunity. 

 

This study brings to light several implications for practice. 

• Teacher professional development in inquiry-based instruction should specifically 

address students with MD and work to dispel myths that these students cannot 

succeed in inquiry-based mathematics lessons 

• Teachers of students with MD should incorporate problems into their lessons that 

have multiple solution pathways or multiple answers as a means to expand their 

students’ conception of mathematics 

• Teachers should decentralise their role in the classroom by incorporating meaningful 

opportunities for students to share their knowledge with classmates, for example 

through cooperative learning or whole-class dialogic teaching 

• It has been shown that students in lower set classes can receive fixed mindset 

messages as a result of disparate teaching practices. Given the observed association 

between holding a fixed mindset and performance on IBI problems, teachers should 

work to remove fixed mindset messages from their instruction. 
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• Teachers should be explicit about the choices they make in an inquiry classroom and 

communicate the intended benefits to their students to help dispel any perceptions that 

inquiry teaching is neglectful. 

• Teachers should engage in ongoing critical reflection of their implementation of IBI 

to identify areas for increased proficiency, possibly through the use of an observation 

protocol such as EQUIP. 

 

7.4 Limitations 
The purpose of this section is to identify the primary limitations of this research. These 

limitations constrain the interpretation and generalisability of the findings. Future research 

may seek to address some of these limitations. 

 

Small sample size 

The nature of case study methodology implies a deep focus on a smaller sample size (Yin, 

2017). The most common criticism of this approach is the lack of generalisability of the 

findings (Merriam, 2016). However, in response to this limitation, I note that it is not the 

purpose of a case study to build a generalisable model but rather to deeply explore a 

phenomenon in context (Yin, 2017). Learning is idiosyncratic and therefore the extent to 

which my findings are generalisable to other contexts is limited and applications should be 

undertaken cautiously. 

 

Furthermore, this thesis makes use of a mixed methods approach by supplementing 

qualitative data with quantitative methods. This presents another limitation. Quantitative data 

such as test scores and mindset questionnaires are helpful in understanding these cases, but it 

is difficult to draw definitive conclusions from such small samples. A study with an increased 

sample size would help to add weight to the above findings. 

 

Challenge in measuring beliefs 

A substantial part of this research relies upon the identification of student beliefs. Historically 

questionnaires have been used to measure students’ beliefs, but more recently, observations 

and interviews have been used to supplement these. This poses numerous limitations. Firstly, 

it assumes that internal student beliefs can somehow be measured through external 

behaviours and that students express their beliefs in observable ways. Secondly, it assumes 
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that I, as the researcher, am able to assume an unbiased interpretation of these beliefs as a 

result of the observations. Both of these issues are implied within most studies that approach 

beliefs from a qualitative standpoint.  

 

In addition, beliefs, like other affect constructs, are not necessarily stable (Hannula, 2011). A 

distinction is made between trait-type affect constructs describing stable dispositions and 

state-type constructs describing more dynamic and rapidly changing dispositions. Different 

research methodologies suit the measurement of different temporal aspects. Quantitative 

methods can suggest stable trait-type constructs, whereas qualitative observational methods 

may allow the researcher to study more volatile state-type constructs (Di Martino, 2019). My 

analysis does not attend to this distinction and the extent to which the observed beliefs are 

state-type or trait-type is a potential area for future study. 

 

Short duration 

This study explored students’ perceptions, beliefs, and performance throughout an inquiry-

based teaching unit of a relatively short duration. The was done in an effort to minimise any 

potential harm (see Section 4.11). Given it appears no harm was caused by this short study, 

future research should seek to understand students’ experiences with inquiry-based 

instruction over a longer period of time so that longitudinal analyses can be made possible. 

 

Exploration of large qualitative data sets 

This study consisted of 15 inquiry lesson observations and 22 student interviews. This level 

of data presents the researcher with a challenge. Effectively balancing the need to synthesise, 

whilst also ensuring the authentic voice of each case is maintained, is challenging. There is an 

obligation upon researchers to attend to all the data collected. However, given its volume I 

am not able to present the true depth of the data within this thesis. In this way, I have 

attempted to balance my report between ‘the rocks of oversimplification and the rapids of the 

too-entangled-to-be-useful’ (Davis, 2019, p. 152). In doing so, I made choices about what to 

report and what to exclude. Therefore, this thesis is limited by my own participation in it. 

Adopting a reflexive view, I acknowledge my effect on the process and outcomes of this 

thesis, including but not limited to my choice of research focus, observation notes, and 

framing of key contributions to literature. 
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7.5 Directions for future research 
Future research should seek to further integrate views from generalist mathematics education 

(the body of research which speaks to the teaching and learning of mathematics for students 

in general) and specialist mathematics education (the body of research which speaks to the 

teaching and learning of mathematics for students with MD). At the moment, these two fields 

have different recommendations for best practice. Scholars of generalist mathematics 

education recommend students undertake challenging problems rooted in inquiry-based 

pedagogies. Scholars of specialist mathematics education, on the other hand, often 

recommend students receive direct, explicit instruction. These contrasting points of view can 

be problematic when terms such as mathematics difficulties, mathematics learning disability, 

dyscalculia, and low attainment are ill defined. Future research should seek to clarify under 

what conditions it is appropriate to use inquiry and non-inquiry methods in a way that moves 

beyond oversimplified notions of student ‘ability’.  

 

This study suggests that students with MD who hold fixed mindsets underperform during IBI 

compared to their peers with growth mindsets, based on in-class observations. However, this 

did not translate to the students’ performance on the pre-test and post-test. Further research 

should explore this finding across several paths. Firstly, additional observations of students 

with MD undertaking IBI may help extend my research into different contexts. Secondly, 

large sample studies which follow a longitudinal design could explore further whether 

holding a fixed mindset results in lower academic performance in inquiry-based 

environments. 

 

This research demonstrates the importance of beliefs for students with mathematics 

difficulties when taught using IBI. My study did not seek to modify these beliefs, but rather 

to observe them under inquiry conditions and identify any associations with performance. 

Given the observed deleterious effects of holding some of these beliefs, future research might 

seek to develop belief interventions targeted at changing these views in students with MD. 

Furthermore, my observation that students of differing mindsets perceive IBI as empowering 

or neglectful is novel within the literature and may support further research which aims to 

improve teacher implementation of IBI.  
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Finally, I reiterate that my research focused on students with MD taught using IBI. Future 

research should explore my findings in more contrasting studies and contexts. For example, a 

broader multiple case study could include different classes experiencing different teaching 

approaches, varying from direct instruction to IBI. Research of this kind may allow for a 

deeper understanding of the association between the beliefs of students with MD and the 

effectiveness of different teaching approaches. 
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9 Appendices 
Appendix A: Electronic Quality of Inquiry Protocol (EQUIP) 
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Appendix B: Implicit Theories of Intelligence Scale (ITIS) 
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Appendix C: Attitudes Towards Mathematics Inventory (ATMI) 
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Appendix D: Sample observation notes from Harrison School 

 

 

 



 257 

Appendix E: Consent documents 
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Appendix F: Pre-test and post-test used with Mr Scott's class 
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Appendix G: Pre-test and post-test used with Ms Silver’s class 
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Appendix H: Example of interview transcript coded using Nvivo 

 
*Names have been changed in the transcript to protect the students’ identities 
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Appendix I: Example of lesson transcript coded using Nvivo 

 
*Names have been changed in the transcript to protect the students’ identities 
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Appendix J: Clay and Simon’s worksheets for the Pizza Problem of L4 
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Appendix K: Sample worksheet showing signs of student frustration 
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Appendix L: An analysis of the quality of inquiry instruction for Mr Scott’s case 

 

With a view towards understanding students’ perceptions of inquiry instruction in 

mathematics, it is important to first establish whether the observed teaching unit could be 

characterised as inquiry. In the following section, I assess the quality of the overall IBI unit, 

which consisted of seven lessons. I do so according to the four factors of EQUIP: 

Instructional factors, Discourse factors, Assessment factors, and Curriculum factors. As 

previously discussed in Section 4.3, the EQUIP is an instrument that has been validated for 

use in mathematics classrooms. For a copy of the EQUIP, please see Appendix A.  

 

It is important to state that the lesson plans used during the IBI unit were planned in 

collaboration with Mr Scott and with reference to the EQUIP. Therefore, this analysis is 

focused on the implementation of the IBI lessons.  

 

L.1 Instructional factors 

This section discusses the Instructional factors of the EQUIP rubric. The Instructional factors 

are broken into five constructs which look at how the teacher designed and implemented 

lessons to develop students’ procedural and conceptual understanding. The constructs 

measured are Instructional strategies, Order of instruction, Teacher role, Student role, and 

Knowledge acquisition. Also included in this section is the extent to which students’ 

procedural and conceptual understanding of the topic of measurement changed throughout 

the IBI unit. 

 
Figure 9.1: EQUIP ratings for five Instructional Factors at Harrison School 

L.1.1 Instructional strategies 

In assessing proficient inquiry, the EQUIP describes high quality inquiry lessons as those that 

help students ‘develop conceptual understanding’ (see Appendix A). This was observed in 

several ways. Mr Scott selected a variety of nonroutine problems that required students to 

Instructional 
Factors

Instructional 
strategies

Proficient

Order of 
instruction

Proficient

Teacher role
Exemplary

Student role
Proficient

Knowledge 
acquisition

Proficient
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apply their knowledge in new ways. For example, in L2 the students were asked to develop a 

method to measure the perimeter of their school basketball court, and in L7 students were 

asked to estimate the number of 500ml water bottles it would take to fill their classroom, both 

of these problems were nonroutine for this class. These nonroutine problems provided the 

students with opportunities to develop greater conceptual understanding. Please see 

‘Knowledge acquisition’ below for a description of how student’s conceptual understanding 

may have changed over the course of the unit.  

 

EQUIP states that during proficient inquiry teachers ‘only occasionally lecture’ (see 

Appendix A). During the seven lessons observed, Mr Scott allowed students to explore the 

problems (either individually or with a group) for a substantial part of the lesson time, with 

the exception of L4 since this lesson was intended to serve as the ‘explanation phase’ of the 

two previous lessons. In some lessons he lectured a lot, such as L4, and in others the class 

spent nearly the entire time exploring such as in L2.  

 

Figure 5.3 shows how the lesson time throughout the IBI was divided among administration, 

explanation, and exploration. Administration was considered to be tasks that the teacher and 

students completed in order to prepare to begin or progress the lesson, for example, taking the 

register or passing out papers. Explanation was considered any time a person (the teacher or a 

student) spoke to the entire class. This included explanations of the task or solution methods. 

Exploration was considered any time the students freely explored the IBI task.  

 

To obtain a rubric score of proficient inquiry required students to be ‘engaged in activities’ 

(see Appendix A). During the early lessons, students were observed to be cooperative, but 

often lacked engagement. It was common to see students spend almost the entire lesson in 

off-task activities with little evidence of learning occurring. For example, a group of five 

pupils (Daniel, David, Kevin, Timothy, and Tyler) were off-task for nearly all of L1. 

However, as the unit progressed the engagement levels seemed to increase, and whilst 

students would still demonstrate off-task behaviours, the frequency observed was lower. This 

was evidenced by Mr Scott not having to redirect the students’ attention as much, coupled 

with an increase in the number of ‘house points’ awarded per lesson (none in the first two 

lessons compared to four in the final two lessons). The observed improved behaviour might 

be a result of students gaining familiarity with the new ways of working. 
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In consideration of the above discussion as well as my observations, the instructional 

strategies were rated as proficient inquiry (level 3): ‘Teacher occasionally lectured, but 

students were engaged in activities that helped develop conceptual understanding.’  

 

L.1.2 Order of instruction 

Not all of the classroom time during the IBI unit was used toward student exploration. 

Rather, student explorations were typically followed by explanations given by either the 

teacher or the students. What’s important to emphasise is that these explanation phases of 

instruction were always preceded by substantial student exploration, either on the same day 

or on a previous lesson (see Figure 5.3). For example, in L3 Mr Scott and several students 

explained their approach to the Basketball problem done in L2.  

 

We went around the basketball court and like counted how many times David 

could lie end to end all around it. (Daniel, L3) 

 

We had Erica walk end to end with her feet like this. [Jackie demonstrates 

walking heel to toe along a straight line]. We counted 350 steps all the way 

around. (Jackie, L3) 

 

In L4, Mr Scott led the students through a PowerPoint presentation he had prepared to review 

the key definitions and formulas for perimeter and area only after several lessons of 

exploration had preceded it. It is thought these explanations phases allow the students to 

formalise newly learned concepts (see Section 2.4). Mr Scott consistently followed this 

pattern throughout the IBI unit by allowing students time to explore new ideas prior to 

explanation. 

 

I rated the order of instruction as proficient inquiry (level 3): ‘Teacher asked students to 

explore before explanation. Teacher and students explained.’ 

 

L.1.3 Teacher role 

Mr Scott’s role throughout the IBI unit was usually that of a facilitator. Beyond creating the 

investigations and introducing the task, Mr Scott primarily acted as a facilitator by visiting 

the students as they worked individually or in groups. He spent most of the classroom time 

probing the students’ thinking in order to check their understanding and to also keep the 
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students engaged and on-task. Students’ perceptions of the teacher’s role are discussed in 

Section 5.4.3.3.  

 

Given the above, this component of the IBI unit was rated as exemplary inquiry (level 4): 

‘Teacher consistently and effectively acted as a facilitator.’ 

 

L.1.4 Student role 

The students’ role throughout the unit was that of active learners. Even during whole-class 

discussions, which were largely controlled by the questioning of Mr Scott, students were 

highly engaged and participative. At times, students would get off task (especially at the 

beginning of the unit or when posed with a challenging question), but Mr Scott demonstrated 

skill in finding ways to rephrase or adjust his questioning in order to maintain their attention. 

The delimitation between the teacher role and the student role throughout the IBI unit was in 

part maintained by Mr Scott’s frequent descriptions of how both he and the students should 

be acting at any given time. For example, in L1 Mr Scott gave the following directions:  

 

Okay, while you work, I’m going to be around if you have any questions 

about what to do. But again, I want to see what you can do, so I’m not going 

to spoil it and tell you exactly how to solve the problems. Once you have 

gotten around to each of the problems, we will go over the answers and maybe 

even have some of you present your solutions at the end. (Teacher, L1) 

 

These directions helped to set clear expectations for how the teacher’s and the students’ roles 

would differ. However, because the students were not consistently and clearly focused 

throughout each lesson this component could not receive a rating of 4, exemplary inquiry. 

 

I therefore rated the IBI unit as proficient inquiry (level 3): ‘Students were active as learners 

(involved in discussions, investigations, or activities, but not consistently and clearly 

focused).’ 

 

L.1.5 Knowledge acquisition 

The final construct measured under the Instructional factors section of the rubric is 

Knowledge acquisition. This construct looks at the depth of understanding students were 

required to demonstrate throughout the IBI unit. The IBI unit was designed to meet the 
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learning objectives set out by the school which were aligned to the National Curriculum for 

Key Stage 3 (see Section 5.2). However, since this particular group still struggled with some 

of the foundational ideas which were first introduced in Key Stage 2, Mr Scott decided to set 

flexible learning objectives for this unit that could be easily adapted for more advanced 

students. The learning objectives for the unit were: (1) recognise perimeter as a ‘distance’ (in 

cm for instance), (2) recognise area as a ‘space’ (in cm2 for instance), (3) calculate 

perimeters and areas of rectangles, and (4) calculate volumes and surface areas of cuboids. In 

reaching these objectives, the students were consistently required to apply their knowledge in 

new situations in order to demonstrate high levels understanding. 

 

Some of the greatest improvements in understanding that took place over the course of the 

IBI unit included the concepts of perimeter and area. In the beginning of the unit, the students 

attempted to define perimeter and area only in terms of mathematical operations. To them, 

the concepts of perimeter and area were something you do by either adding, subtracting, 

multiplying, or dividing. For instance, in L1 Linda asked her group members what the word 

‘area’ meant, and Erica answered by saying she was ‘pretty sure that’s when you add up all 

the sides.’ Later, during the same lesson, Mr. Scott asked the class what area meant, and a 

few students responded at the same time that it means ‘to multiply’. In both instances, the 

students viewed the concepts only in terms of mathematical operations. However, as the unit 

progressed the students’ understanding of perimeter and area became more sophisticated. In 

L4 Jenna described her method for finding the perimeter as ‘I added it up like I was walking 

around it [the rectangle]’. While Jenna still partly focused on the operation that was required, 

her understanding of perimeter was now coupled with the conceptual idea of walking around 

the shape. Likewise, in the same lesson, when James was asked about area he responded, 

‘The area is 12 because there’s 12 boxes covering the shape’. 

 

In addition to classroom observations, the students took a pre- and post-test to measure their 

learning across the IBI unit. The results of these are discussed in Section 5.4.4. The IBI unit 

reached the level of proficient inquiry (level 3): ‘Student learning required application of 

concepts and process skills in new situations’. 

 

L.2 Discourse factors 

In this section I discuss the Discourse factors of the EQUIP rubric. These are aimed at 

looking at the ways in which the teacher used questioning and discussion to promote student 
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understanding. The constructs measured are Questioning level, Complexity of questions, 

Questioning ecology, Communication pattern, and Classroom interactions. 

 
Figure 9.2: EQUIP ratings for five Discourse Factors at Harrison School 

L.2.1 Questioning level 

 

Mr Scott’s questioning level throughout the IBI unit was variable. Using the revised Bloom’s 

Taxonomy (Krathwohl, 2002), I coded the questions Mr Scott asked the students (see Table 

9.1). To do so I used the lesson transcripts, which primarily included only those questions Mr 

Scott posed to the entire class. Because of the noise level in the room it was not always 

realistic to capture the questions the teacher asked to small groups or individual students. 

Therefore, it is important to note that the distribution of the questioning levels presented 

might provide an incomplete picture.  

 

Mr Scott’s questioning typically met the ‘apply’ level or lower. However, several lines of 

questioning did reach the level of ‘evaluate’ and ‘create’ which is in line with exemplary 

inquiry (level 4) defined as, ‘Questioning challenged students at various levels, including at 

the analysis level or higher; level was varied to scaffold learning’ (see Appendix A). Higher 

level questions were typically used to help frame the entire IBI lesson, whereas lower level 

questions were used in order to scaffold student learning as each lesson progressed.  

 

I concluded that the questioning level achieved an EQUIP rubric rating of proficient inquiry 

(level 3): ‘Questioning challenged students up to application or analysis levels.’ 
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Table 9.1: Mr Scott’s questioning level according to the revised Bloom’s Taxonomy 

Questioning level n % Example 

Create 2 4% ‘Is it possible to construct a shape in which the numerical 

values of its area and perimeter are the same?’ (L5) 

Evaluate 4 8% ‘Jackie's group counted 350 steps, but Lisa's group 

counted 398. That's a difference of almost 50 steps. Why 

do you think they got such different answers?’ (L3) 

Analyse 8 16% ‘Imagine with me for a moment, how many of these 

water bottles do you think it would take to fill up our 

classroom?’ (L7) 

Apply 10 20% ‘How many square centimetres of cardboard are 

necessary to wrap the Toblerone bar?’ (L6) 

Understand 13 26% ‘Why does it make sense to multiply the two sides to find 

the area of a rectangle?’ (L1) 

Remember 13 26% ‘Who can tell me what we worked on when I saw you 

Wednesday?’ (L2) 

 

 

L.2.2 Complexity of questions 

Mr Scott’s questions typically had one correct answer, however he often made use of 

additional questioning that would challenge students to explain and justify their work. This 

was especially evident during whole class discussions in which students were asked to 

present their work to the class and in turn evaluate their peers’ reasoning. For example, in L6 

Mr Scott invited David to draw his net for the triangular prism on the white board. Once 

David had completed his drawing, Mr Scott asked the class what they thought of David’s 

sketch. Henry raised his hand and said, ‘You’re missing something.’ Mr Scott then looked 

over at David and waited for his response. David took a moment to look over his drawing, 

and then begun to talk out loud. ‘Well, this rectangle bit is the bottom. And I drew these two 

to be the long sides. …Oh, hold on. And I have this triangle for the front of the chocolate but 

I’m missing the other side.’ David then added the missing triangle face to his net. Exchanges 

such as these were common during student presentations. 
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Though many of the questions only had one correct answer, all had multiple solution 

pathways. As students worked on problems during the lesson, Mr Scott would walk around 

the room and make note of unique solutions to share and discuss during the whole class 

discussion. For example, in L4 Mr Scott had students share how they found the perimeter of a 

square. Most students added up each side while some in the class multiplied the side length 

by four. During the ensuing discussion, students were asked to reflect on the different 

solution methods their peers presented and evaluate which one they thought was the ‘best’ 

(e.g. most efficient, most memorable, most beautiful).  

 

By routinely asking the class if anyone had solved the problem in a different way, Mr Scott 

communicated the value of different solutions. 

 

I rated the complexity of the questioning as proficient inquiry (level 3): ‘Questions 

challenged students to explain, reason, and/or justify.’ 

 

L.2.3 Questioning ecology 

Another way to describe ‘questioning ecology’ is ‘questioning climate’ (Smart & Marshall, 

2013). It refers to the complexity and variety of student responses that are elicited by the 

teacher’s questioning (e.g. discussion, investigation, reflection).  

 

At the beginning of the IBI unit students demonstrated discomfort with class discussions. For 

example, during L1 only one student (Lisa) volunteered to present her work, and none 

voluntarily offered feedback. By the end of the unit, however, students were observed to be 

more active in volunteering, for instance by sharing their methods and offering feedback to 

each other. Open discussion and reflection were a bigger part of the class routine than it had 

been previously, and students seemed to adjust well to this change (though this adjustment 

took place gradually). This was best evidenced by an increase in the number of students 

volunteering to answer questions and share their ideas. 

 

Mr Scott in part achieved this by teaching the students how to give each other feedback. For 

example, in L3 when students were sharing how their group measured the perimeter of the 

basketball court, Mr Scott called on students to offer feedback. He had written a list of 

sentence frames on the board, such as ‘I like how your group did ______ because _______’ 

and ‘I think it would have been better if your group did _______ because _______.’ This 
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strategy helped the students offer each other feedback more effectively. For example, in L3 a 

group of boys shared with the class their plan to measure the area of the court using David’s 

body. When Mr Scott asked the rest of the class what they thought, Jackie said ‘That’s 

creative, but how would you make sure to cover the whole thing and not have any gaps?’ 

This led to a discussion about the importance of no gaps when measuring area, an essential 

feature of the canonical idea of tiling (also known as tessellation).  

 

Additionally, Mr Scott’s use of cold calling (when a teacher calls on a student whose hand is 

not raised) helped to communicate to the students that everyone’s input is expected and 

valued. 

 

For the above reasons I felt that the questioning ecology was proficient inquiry (level 3): 

‘Teacher successfully engaged students in open-ended questions, discussions, and/or 

investigations.’ 

 

L.2.4 Communication pattern 

The communication pattern was a weakness of the overall IBI unit, with discussion being 

controlled and directed by Mr Scott in a mostly didactic pattern. Occasionally students spoke 

directly to one another in whole class discussions, but only after the teacher spoke and then 

called on a student. For example, in L5 Jackie suggested a square with a side length of zero as 

a solution.  

 

T: What’s the problem with choosing zero? I like that you thought to try 

something different, but what’s the issue with zero? 

J: Well if you do a number times zero the answer is always zero. 

H: [speaking directly to Jackie] There’s no area. 

(Teacher, Jackie, Henry, L5) 

 

In this instance, Henry spoke directly to Jackie rather than to the teacher, but this was out of 

the norm. Typically, the group spoke to each other using a hand raising pattern which was 

always mediated by Mr Scott. Changing classroom discourse patterns in this way can be 

challenging since it is one of the most well-rehearsed school norms students experience 

(Drageset, 2015). 

 



 281 

Overall, I felt that the communication pattern was best rated as pre-inquiry (level 1): 

‘Communication was controlled and directed by teacher and followed a didactic pattern. 

 

L.2.5 Classroom interactions 

The classroom interactions throughout the IBI unit varied. Often, Mr Scott accepted correct 

answers without further questioning. These may represent missed opportunities for students 

to engage in deeper discussion about why an answer was correct, and possible alternative 

approaches to the same answer. The fact Mr Scott missed these opportunities is perhaps due 

to his lack of experience teaching using an IBI approach or perhaps due to time pressures.  

 

This pattern was not persistent however, as at other points Mr Scott would follow up student 

responses with further probing questions. He either asked the student who provided the 

answer to give an explanation or he would ask another student in the class to explain. For 

example, in L4 when the students were finding the perimeter of a rectangle, Steven provided 

a correct answer of 26 centimetres. Instead of accepting this answer and moving on, Mr Scott 

asked, ‘How do you think Steven got 26 centimetres? Jenna?’ This follow up question pushed 

students to evaluate their classmate’s thinking and achieve a higher level of classroom 

interaction. This also helped the teacher check for understanding.  

 

Most lessons Mr Scott designed incorporated features of cooperative learning. Students often 

worked in groups of two to four towards developing a solution to a novel problem. In L1 

students moved around the classroom in groups of around four to solve problems posted at 

each of four stations. Each of the four stations contained a problem unfamiliar to the students. 

Mr Scott frequently encouraged groupwork when giving instructions. When introducing the 

task in L1, Mr Scott stated, ‘What you are going to do is try them [the problems] out, ask 

each other for help, and see how you do.’ Later on, when noticing a group of students were 

not working cohesively, Mr Scott said to one of the idle group members, ‘It's important that 

you understand how to do it too. Make sure you are talking and checking with each other 

please.’ As a result, Mr Scott emphasised both individual and group accountability (D. 

Johnson & Johnson, 2016). 

 

Therefore, in the area of classroom interactions I rated the IBI unit as developing inquiry 

(level 2): ‘Teacher or another student occasionally followed-up student response with further 

low-level probe.’ 
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L.3 Assessment factors 

This section discusses the Assessment factors of the EQUIP. These look at the ways in which 

the teacher evaluated the students’ knowledge acquisition throughout the unit. The constructs 

measured are Prior knowledge, Conceptual development, Student reflection, Assessment 

type, and Role of assessing. 

 
Figure 9.3: EQUIP ratings for five Assessment Factors at Harrison School 

L.3.1 Prior knowledge 

Mr Scott assessed students’ prior knowledge in every lesson. For instance, the majority of L1 

was designed to assess prior knowledge of perimeter, area, and volume. In response, Mr Scott 

chose to deemphasise circumference and area of circles in the lessons that followed, since 

students demonstrated significant difficulty with perimeter and area of more simple shapes, 

such as squares. Another example was observed in L6, when Mr Scott assessed students’ 

prior knowledge of wrapping a present. He asked the class how many of them had wrapped a 

present before. Since only a few students raised their hands, Mr Scott chose Timothy to share 

his experience wrapping a present. Mr Scott followed this by describing a time he saw 

volunteers wrapping Christmas presents at a local shop. These lucid descriptions may have 

better prepared students for the surface area question that followed. Assessment of prior 

knowledge was integrated into every lesson. Mr Scott adjusted his questioning in light of 

student performance regularly.  

 

Therefore, I rated this component as proficient inquiry (level 3): ‘Teacher assessed student 

prior knowledge and then partially modified instruction based on this knowledge.’ 

 

L.3.2 Conceptual development 

The lessons of the IBI unit were designed to encourage a focus on ‘process’ rather than 

‘product’, meaning students were encouraged to attend more to the way (the ‘process’) they 
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solved the problem than to the answer (the ‘product’) itself. This was frequently evidenced 

when Mr Scott would ask, ‘Has anyone solve this problem in another way?’ or ‘How do these 

two solution methods differ?’  

 

However, despite Mr Scott’s encouragement, students frequently focused their energies on 

producing a correct answer rather than sound reasoning. This was often demonstrated when 

students would point to their work and ask Mr Scott or myself, ‘Is this right?’ It is possible 

that class or school norms were driving this behaviour, however it is indicative of a focus on 

outcomes over understanding. At times, students were happy to let other students do the work 

for the group and just copy the answer. This is discussed in more detail in Section 5.4.2 in 

which I describe the impact of the students’ beliefs on their performance during the IBI unit.  

 

Occasionally though, students did demonstrate genuine interest in the process without 

prompting from the teacher. For example, in L5, after Heather shared a solution, David 

asked, ‘Is it because it’s a square?’ Despite having an answer, David appeared curious to 

know more. Mr Scott and the rest of the class subsequently carried this curiosity forward via 

a further investigation into squares and other regular polygons (e.g. an equilateral triangle).  

 

In light of the above discussion as well as my observations, I rated this component as 

proficient inquiry (level 3): ‘Teacher encouraged process focused learning activities that 

required critical thinking.’ 

 

L.3.3 Student reflection 

Mr Scott occasionally asked students to reflect on their learning. For example, at the end of 

L5, he asked students to write (1) What they did well, (2) What they did not do well, and (3) 

What they could do to improve. To help the students in this process Mr Scott had students 

show their reflections to him when they were finished. Another way Mr Scott encouraged 

student reflection was by having the students show their current level of understanding with 

their thumbs: thumbs up for ‘good’, thumbs to the side for ‘okay’, and thumbs down for 

‘bad’. Students explicitly reflected on their progress only a few times throughout the IBI unit. 

One such lesson was in L1 when students were asked to respond to how well they did on the 

circle problem. Nearly all students gave a thumbs down.  
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Therefore, since student reflection was not implemented frequently enough, I rated this 

component as developing inquiry (level 2): ‘Teacher explicitly encouraged students to reflect 

on their learning but only at a minimal knowledge level.’ 

 

L.3.4 Assessment type 

Students were frequently assessed throughout the IBI unit. For instance, in L5 the students 

searched for examples of a rectangle in which the numerical value of its perimeter and area 

were the same. Instead of giving the students a group of rectangles to find the perimeter and 

area of, this problem gave students an authentic reason to generate rectangles of their own 

making and then find the perimeter and area in order to test their developing ideas. In this 

lesson Mr Scott assessed student understanding by reading their written work, asking follow-

up questions, and listening to students’ conversations with each other. Nonroutine problems 

with context were used to assess students as well, for instance in L6 when students were 

asked to determine how much cardboard would be needed to wrap a chocolate bar shaped 

like a triangular prism. Students were also assessed through the use of the pre- and post-test 

discussed in Section 5.2.1.  

 

Mr Scott made use of frequent informal assessment by asking questions and observing work. 

By walking around the classroom whilst the students worked Mr Scott was able to quickly 

identify when a student or group of students were struggling. This was done by listening to 

the level of discussion, observing the work being written down, and responding to student 

prompts. This informal assessment provided real time feedback to Mr Scott, who adapted the 

lesson in response.  

 

Assessment type was therefore rated as proficient inquiry (level 3): ‘Formal and informal 

assessments used both factual, discrete knowledge and authentic measures.’ 

 

L.3.5 Role of assessing 

Mr Scott routinely assessed the students’ understanding and regularly adjusted the pace, and 

sometimes the direction, of the lesson in response to the students’ understanding. This was 

perhaps best observed in L3 when Mr Scott discussed the area of the school basketball court.  

 

What I want you to do now is talk with your table about how you might go 

about finding the area of the basketball court. We know the perimeter of the 
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basketball court is about 88 meters. The length is about 28 meters. And the 

width is about 15 meters. What about the area? Come up with a few different 

ideas of how you might do that. I'll give you about 15 minutes or so to think it 

through, and then you can share out some of your ideas. (Teacher, L3) 

 

However, as the students discussed there was a lot of off-task behaviour and conversations 

did not seem to be about the area problem. Of the on-task conversations I heard, the students 

seemed to be guessing at what operations to do with the numbers (e.g. 88 divided by 15) 

rather than thinking conceptually about the problem. As Mr Scott made his way to each 

group, he adjusted his instruction and instead encouraged the students to ignore the quantities 

88, 28, and 15 he had emphasized earlier. Instead, he asked them to think more creatively, 

like they had when they were thinking up ways to measure the perimeter of the basketball 

court without measuring tools. This represented a turning point in the students’ group talk. 

Mr Scott’s decision to change his question made the problem more accessible to the students 

and resulted in greater engagement. 

 

In light of the above, this component was rated as proficient inquiry (level 3): ‘Teacher 

solicited explanations from students to assess understanding and then adjusted instruction 

accordingly.’ 

 

L.4 Curriculum factors 

This section discusses the Curriculum factors of the EQUIP. These look at the ways in which 

the chosen curriculum flexibly supports student exploration and understanding of the ‘big 

picture’. The constructs measured are Content depth, Learner centrality, Integration of 

content and investigation, and Organising and recording information. 
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Figure 9.4: EQUIP ratings for five Curriculum Factors at Harrison School 

L.4.1 Content depth 

Mr Scott designed and implemented the IBI lessons in a way that provided depth of content, 

but few connections were made to the big picture. Opportunities to connect to big ideas were 

missed, such as in L7 when estimating the volume of the classroom. Not enough explicit 

connections were made between estimating the area using water bottles and the canonical 

solution of multiplying the length, by the width, by the height. In the end, it seemed as though 

students had just been given the formula without there being much questioning as to why that 

is the formula.  

 

Even though Mr Scott did make some connections to the big picture at points (for example, 

during L4 when discussing why the area formula for rectangles makes sense), these 

connections were not frequent enough to achieve a rating of proficient. 

 

Content depth was therefore rated as developing inquiry (level 2): ‘Lesson provided some 

depth of content but with no connections made to the big picture.’ 

 

L.4.2 Learner centrality 

 

Each of the lessons were designed to be flexible and responsive to the students’ needs. Many 

of the lessons allowed the students to explore the problem in the way that felt best to them, 

with some resources and guidance provided by the teacher. For instance, in L2 Mr Scott took 

the students to an outside basketball court to measure its area and perimeter. The students 

were not given traditional measuring instruments and had to be creative by using the 

materials they had available to them (e.g. the long edge of an A4 paper or the length of their 
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shoes by walking heel-to-toe). One group decided to have one of their peers lay down and use 

his height to measure the basketball court heel-to-head.  

 

Mr Scott took student curiosities seriously throughout each IBI lesson. For example, in L3 

two groups had measured the basketball court’s perimeter using their feet but had obtained 

different results. Upon noticing this, the groups showed interest in understanding why. Mr 

Scott then facilitated a discussion about why the two groups could have differed so much, 

resulting in the realisation that the lower step-count must have been the result of their 

classmate’s larger shoe size. The amount of time Mr Scott dedicated to this exploration 

demonstrated his commitment to learner centrality.  

 

Learner centrality was also displayed in L7 when Mr Scott asked students to measure the 

volume of the classroom. This time students had 30-centimetre rulers available but, having 

previously experienced the basketball court problem, decided to use more creative solutions 

(e.g. a peer’s height). By contrast, the teacher could have limited the students’ participation 

and asked for only three student volunteers to measure the classroom while everyone else 

watched and recorded. This would have likely been quieter and less chaotic. But the decision 

to give students the permission to explore as they wished during investigations arguably 

allowed for greater engagement than would have been achieved otherwise. 

 

Learner centrality was rated as proficient inquiry (level 3): ‘Lesson allowed for some 

flexibility during investigation for student designed exploration.’ 

 

L.4.3 Integration of content and investigation 

 

The lessons of the IBI unit incorporated student investigation that linked well with content, 

though on occasion these links could have been made more explicit. For instance, in L2 the 

class investigated how to measure the perimeter and area of their school’s basketball court 

and made sketches. In L4 students were shown a line drawing of a rectangle. Mr Scott led a 

discussion with the class about how the line drawing of the rectangle is similar to the sketches 

they made during the basketball court investigation. This discussion helped the students to 

interpret the diagram and successfully linked the investigation of L2 with the more abstract 

content of L4. Such examples were numerous. 
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I rated the integration of content and investigation as proficient inquiry (level 3): ‘Lesson 

incorporated student investigation that linked well with content.’ 

 

L.4.4 Organising and recording information 

Throughout the IBI unit students typically organised and recorded information however they 

saw fit, such as in L7 when students measured the dimensions of the classroom. Only during 

more direct teaching elements of the unit were students provided with specific diagrams and 

solution methods to copy, such as L4 when students were asked to copy problems from the 

SmartBoard into their notebooks. Typically, students were simply provided with paper, pens, 

and measuring instruments (among other class materials) and ultimately free to record 

information however they liked. 

 

Given the above, this component was rated as proficient inquiry (level 3): ‘Students regularly 

organised and recorded information in non-prescriptive ways.’ 

 

L.5 Summary of quality of the IBI unit 

The most common score assigned to the different components of the EQUIP was that of 

proficient inquiry, therefore the unit as a whole could be best described as meeting the 

requirements of proficient inquiry. Mr Scott was successful in leading instruction, discourse, 

assessment, and curriculum that met many of the goals of inquiry. Students were routinely 

asked to explore problems before instruction and discuss their ideas with peers. The 

classroom was highly student-centred, and Mr Scott assessed students’ understanding 

frequently. To have achieved a higher level of inquiry, Mr Scott could have provided more 

opportunities for students to interact directly with one another during whole-class discussions 

(without these interactions needing to be mediated by the teacher). In addition, students could 

have had more opportunities to reflect on their learning. 

 

  



 289 

Appendix M: An analysis of the quality of inquiry instruction for Ms Silver’s case 

 

In the following section I assess the quality of the overall IBI unit. I do so according to the 

four factors of EQUIP: Instructional factors, Discourse factors, Assessment factors, and 

Curriculum factors. As previously discussed in Section 4.3, the EQUIP is an instrument that 

has been validated for use in mathematics classrooms. For a copy of the EQUIP please see 

Appendix A. 

 

It is important to state that the lesson plans used during the IBI unit were planned in 

collaboration with Ms Silver and with reference to the EQUIP. Therefore, this analysis is 

focused on the implementation of the IBI lessons. Please see Appendix I for an example of 

the lesson analysis. 

 

M.1 Instructional factors 

This section discusses the EQUIP Instructional factors of the IBI unit. The Instructional 

factors are broken into five constructs which look at how the teacher designed (in 

collaboration with me) and implemented lessons to develop students’ procedural and 

conceptual understanding. The constructs measured are Instructional strategies, Order of 

instruction, Teacher role, Student role, and Knowledge acquisition. Also included in this 

section is the extent to which students’ procedural and conceptual understanding of the topic 

linear relationships changed throughout the IBI unit. 

 
Figure 9.5: EQUIP ratings for five Instructional Factors at Stratham College 

M.1.1 Instructional strategies 

EQUIP describes instructional strategies as principally the amount of time the teacher spends 

lecturing versus facilitating student exploration.  
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At the beginning of the IBI unit Ms Silver frequently used a lecturing approach. In L1 and L2 

for instance, the students spent large parts of the lesson listening to Ms Silver’s explanations 

or copying notes from the board. Opportunities to invite student explanations were mostly 

overlooked. For example, during L2 only once was a student asked to explain his thinking 

aloud to the rest of the class. However, as the IBI unit progressed Ms Silver adapted well to 

the inquiry style and allowed the students more time for exploration and also invited more 

students to provide explanations. 

 

Figure 6.3 illustrates how the lesson time throughout the IBI unit was divided between 

administration, explanation, and exploration. Administration was considered to be tasks that 

the teacher and students completed in order to prepare to begin a lesson, for example, taking 

the register or passing out papers. Explanation was considered any time a person (the teacher 

or a student) spoke to the entire class. This included explanations of the task or solution 

methods. Exploration was considered any time the students freely explored the IBI task. 

Distinctions between explanation and exploration in a classroom context are not clear cut. It 

is possible that elements of exploration took place during the phases I coded as ‘explain’ and 

elements of explanation took place during the phases I coded as ‘explore’. 

 

As mentioned above, it is clear to see that the time allotted for student exploration increased 

over the course of the IBI unit. At the same time, administration seemingly disappeared. 

Rather than taking the register at the start of the lesson Ms Silver took the register whilst the 

students were working on the IBI task. This helped to free up more time for exploration and 

subsequent explanation. 

 

In assessing proficient inquiry, EQUIP also states that high quality inquiry lessons help 

students ‘develop conceptual understanding’ (see Appendix A). Ms Silver helped students 

develop conceptual understanding in several ways throughout the IBI unit. Firstly, Ms Silver 

taught and emphasised the importance of being flexible and applying different solution 

methods. For instance, in L2, Ms Silver taught the students a bar model, balance method, and 

abstract method for determining unknown quantities. These three different methods were 

frequently referred to throughout the IBI unit (see Figure 9.6 for an example). 
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Bar Model 

17 

x 9 

 

8 9 

x 9 

 

8 

x 
 

Balance Method 

 

 

 

 

 

 

 

 

 

Abstract 

 

x + 9 = 17 

 

x + 9 – 9 = 17 – 9 

 

x = 8 

Figure 9.6: Ms Silver's bar, balance, and abstract method for solving equations 

Ms Silver also helped students develop conceptual understanding by selecting nonroutine 

problems for the students to work on. These problems were complex because each was 

unfamiliar to the students. The problems either had unfamiliar contexts (e.g. the Denarii 

problem [L3]) or required unfamiliar solution methods (e.g. the Expressions problem [L2]). 

The selected problems had a number of possible solution pathways, ranging from simple to 

advanced. For instance, the Ichiro problem used in L7 could have been solved using at least 

five different methods: a picture, a table, a number sentence, an equation, or an inequality. 

Likewise, the Expressions problem [L2] asked students to write an algebraic expression given 

two nearly identical verbal descriptions. Students had to compare and contrast the two verbal 

descriptions to explore how the language in each connoted a different algebraic expression. 

Nonroutine problems such as these provided the students with opportunities to develop 

greater conceptual understanding of the topic of linear relationships.  

 

To obtain a rubric score of proficient inquiry required students to be ‘engaged in activities.’ 

For the most part, the students’ levels of engagement were good throughout the duration of 

the IBI unit. However, at the beginning of the IBI unit poor behaviour was occasionally a 

challenge. For example, Ms Silver sent four students out of the room at the end of the third 

lesson (L3) for being disruptive. She speculated that the students were acting out because of 

the change in routine. However, over time, the students appeared to become more 

comfortable with the new way of working. No students were sent out of the room for the last 

9 x 17 

x 9 -9 -9 17 

x 8 
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five lessons (when previously at least one student was sent out for bad behaviour during each 

of the first three lessons). This was noted during one of the student interviews. 

 

I think it [the IBI unit] was better as you got used to it. I kind of forgot that 

there was any change, so I got used to it really quickly. But I think everyone 

got used to it, and I think everyone found it easier as time went on and we 

were used to not relying on Miss. (Elayne)  

 

In consideration of the above discussion as well as further observations, the instructional 

strategies for the overall IBI unit were rated as proficient inquiry (level 3): ‘Teacher 

occasionally lectured, but students were engaged in activities that helped develop conceptual 

understanding’.  

 

M.1.2 Order of instruction  

Ms Silver consistently allowed her students time to explore new ideas prior to discussion and 

explanation. Often the discussion of the inquiry problems did not come until the next lesson, 

as the teacher felt this better suited the students (such as L4). Although this was not the 

original plan, it had the added benefit of extending the explore portion of each of the IBI 

tasks beyond the boundaries of a single lesson. On one occasion, a keen student arrived at the 

next maths lesson with a new solution to the problem he had come up with at home. 

 

 
Figure 9.7: Percentage of explanation time by the teacher versus a student 

Explanations of the solutions to the IBI tasks, as well as new concepts that emerged from the 

task, were always provided after the students had adequate time to explore the problem. 

These explanation phases were initially teacher directed with Ms Silver providing the 
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majority of the explanations. However, over time, more explanations came from the students 

(Figure 9.7). 

 

For example, in L4 Ms Silver began the lesson by leading a discussion about the previous 

problem (the Fibonacci problem). Rather than explaining the solution herself, Ms Silver 

invited Charlie to write her solution on the whiteboard and then explain it to the class. Charlie 

organised her work into a table and backtracked from the end of the story to the beginning 

(See Figure 9.8).  

 Money Workings 

Pi
sa

 0 0 + 12 = 12 

12 12 ÷ 2 = 6 

Fl
or

en
ce

 6 6 + 12 = 18 

18 18 ÷ 2 = 9 

Lu
cc

a 9 9 + 12 = 21 

21 21 ÷ 2 = 10.50 

 

Figure 9.8: Charlie’s solution to the Fibonacci problem 

I looked at the question, and I saw that he doubled his money. So, use the 

opposite of double, which is to halve. And then he spent 12 something, so add 

12 because that’s the opposite of minussing 12, which is spending something. 

(Charlie, L4) 

 

After Charlie had explained her work, Ms Silver invited the class to ask her questions. This 

prompted Charlie to show how she checked her work by starting at the beginning of the story 

when the man had 10.50 denari and following him through Lucca, Florence, and Pisa until he 

had nothing left. 

 

I rated the order of instruction as proficient inquiry (level 3): ‘Teacher asked students to 

explore before explanation. Teacher and students explained’. 

 

M.1.3 Teacher role 

Ms Silver’s role developed over the course of the IBI unit. At the start of the IBI unit Ms 
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Silver provided most of the explanations. However, as is shown in Figure 6.3 and Figure 9.7, 

the teacher gave more control to the students over time. This can be seen by the increase in 

class time devoted to student exploration as well as the increase in student provided 

explanations. Even though more time was devoted to student exploration as the unit 

progressed, the teacher still remained central to each lesson in the way that she controlled and 

directed the pace and student participation. Students’ perceptions of the teacher’s role are 

discussed in Section 6.4.3.3.  

 

Given the teacher’s role throughout the IBI unit was highly central to each lesson, I rated this 

component as developing inquiry (level 2): ‘Teacher was centre of lesson; occasionally acted 

as facilitator’. 

 

M.1.4 Student role 

The students’ roles throughout the unit were variable. At the beginning of the IBI unit the 

students were mostly passive. Students listened to the teacher and copied notes from the 

board. In L2, for example, the students were shown problems on the white board and then 

after a brief pause were shown the solution and asked to copy it. Over time, however, the 

students’ roles in the classroom changed and they were increasingly being asked to explore 

inquiry problems for extended periods of time. As shown in Figure 6.3 the amount of time 

dedicated to student exploration generally increased over the course of the unit, and as shown 

in Figure 9.7 the number of explanations provided by students also increased. 

 

Ms Silver did well to set expectations regarding how the students were to behave during the 

explore portions of the lessons. An example of this can be seen in the following extract.  

 

I’ve got another problem for you. I’d like you to think about it, do your best 

with it, don’t mess about, have a read. Don’t say, ‘I can’t do it,’ before you’ve 

had a go, because you can. (Teacher, L4) 

 

I therefore rated the IBI unit as proficient inquiry (level 3): ‘Students were active as learners 

(involved in discussions, investigations, or activities, but not consistently and clearly 

focused)’. 
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M.1.5 Knowledge acquisition 

The final construct measured under the Instructional factors section of the rubric is 

Knowledge acquisition. This construct looks at the depth of understanding students were 

required to demonstrate throughout the IBI unit. The IBI unit was designed to meet the 

learning objectives set out by the teacher which were aligned to the National Curriculum for 

Key Stage 3 (see Figure 6.2). The learning objectives that Ms Silver chose are described in 

Section 6.2. In reaching these objectives, the students were consistently required to apply 

their knowledge in new situations in order to demonstrate high levels of understanding. 

 

One of the greatest improvements observed was the students’ knowledge of writing and 

solving linear equations. When the unit first began students were reluctant to seek out 

solution methods using algebra. Most of the time students chose to use less abstract and more 

concrete solutions, such as the table Charlie used to solve the Fibonacci problem (Figure 9.8). 

However, Ms Silver encouraged students to think about the problems algebraically in order to 

meet the learning objective for each lesson. For example, in the Fibonacci problem Ms Silver 

asked the students what equation could be written to help solve the problem algebraically. 

After some discussion it was determined the expression would be 2[2(2𝑥 − 12) − 12] −

12 = 0. Then Ms Silver walked the students through the steps to solve the equation for x, 

demonstrating its similarities and differences to Charlie’s table method. Ms Silver then had 

the students discuss whether they preferred Charlie’s table or the algebraic equation. Most 

students at that time said they preferred Charlie’s method. However, by the end of the unit 

students were increasingly using algebra to solve problems by writing linear equations, 

though not always successfully.  

 

In addition to classroom observations, the students took a pre- and post-test to measure their 

learning across the IBI unit. The results of these are discussed in Section 6.4.4.  

 

The IBI unit reached the level of proficient inquiry (level 3): ‘Student learning required 

application of concepts and process skills in new situations’. 

 

M.2 Discourse factors 

In this section I discuss the Discourse factors of the EQUIP. These are aimed at looking at the 

ways in which the teacher used questioning and discussion to promote student understanding. 
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The constructs measured are Questioning level, Complexity of questions, Questioning 

ecology, Communication pattern, and Classroom interactions. 

 
Figure 9.9: EQUIP ratings for five Discourse Factors at Stratham College 

M.2.1 Questioning level 

The questioning levels referred to in EQUIP come from the revised Bloom’s Taxonomy 

(Krathwohl, 2002). The purpose of this taxonomy is to classify questions into different levels 

of difficulty. I therefore placed the questions Ms Silver asked her students into the 

taxonomy’s six categories: remember (the lowest level), understand, apply, analyse, evaluate, 

and create (the highest level). Please see Table 9.2 for examples of the questions of her 

questioning at each level.  

 

This categorisation was undertaken with reference to the lesson videos and subsequent 

transcripts. Since the classroom was too noisy during the explore phases to realistically 

capture the questions Ms Silver asked to small groups and to individual students, only 

questions Ms Silver posed to the entire class were considered. Since it is possible the types of 

questions Ms Silver asked to small groups and to individual students differed from those she 

posed to the entire class, the distribution shown in Table 9.1 should be considered 

incomplete. 

 

Although only about 20 percent of Ms Silver’s questions were at the ‘apply’ level or higher, 

these more complex questions were given the majority of the lesson time for students to 

explore and respond to. Therefore, the IBI unit’s questioning level could best be described as 

proficient inquiry (level 3): ‘Questioning challenged students up to application or analysis 

levels’. 

 

Discourse 
Factors

Questioning 
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Proficient
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of questions

Proficient
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Proficient
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Table 9.2: Ms Silver’s questioning level according to the revised Bloom’s Taxonomy 

Questioning level n % Example 

Create 2 1.6% Can you create an equation that has an integer solution? 

a decimal solution? no solution? (L8) 

Evaluate 4 3.2% Somebody other than those people who wrote on the 

board, have a look at what’s written and tell me what 

you think is going on and how it’s going to work out. 

(L6) 

Analyse 9 7.3% What’s the difference between Ariana’s idea and 

Donald’s idea? (L6) 

Apply 12 9.7% If I had a two-digit number–I didn’t know what it was 

but I knew that one digit was ‘a’ and one digit was ‘b’–

what could I say about it? (L7) 

Understand 39 31.5% How many metres do you think he would have walked 

in four seconds? He walks 2.5 metres every one second. 

How many metres would he walk in four seconds? (L5) 

Remember 58 46.8% What is an expression? (L1) 

 

M.2.2 Complexity of questions 

EQUIP distinguishes ‘Complexity of questions’ from ‘Questioning level’ since ‘Questioning 

level’ pertains more to the teacher’s questions whereas ‘Complexity of questions’ pertains 

more to the students’ responses that are elicited from the questions (ranging from one correct 

answer to an extended response).  

 

Opportunities for students to explain and justify their work appeared to increase as the unit 

progressed (see Figure 6.3). Ms Silver invited students to share their solution at the front of 

the room by first writing out their solution and then explaining it to the rest of the class. For 

example, in L6 after the students had explored the Henri and Emile problem, Donald wrote 

his solution on the white board (Figure 9.10) and then explained to his peers what he had 

done.  

 

I knew Emile took 1 second to walk 2.5 metres, so I timesed that by 5 and 

went up until I met where Henri was going, because I knew Henri was to have 
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a 45-metre head start and could walk 5 metres in 5 seconds. So I saw that 

they’d meet after 75 metres. So the race should be 74 metres. (Donald, L6)  

 

Emile Henri 

0 45 

12.5 50 

25 55 

37.5 60 

50 65 

62.5 70 

75 75 

Figure 9.10: Donald's solution to the Henri and Emile problem 

After Donald explained his work Ms Silver invited students to ask him questions and offer 

feedback. One student reminded the group that Emile had said, ‘I would like him [Henri] to 

win, but just by a little’. What students considered to be winning ‘just by a little’ was then 

debated. For this reason, this question and others like it throughout the IBI unit served as a 

basis for student explanation and justification.  

 

In addition, Ms Silver walked around the room while students worked on the IBI tasks in 

order to review their work and to invite them to share their solutions on the board. As a result, 

multiple solutions to the same problem were presented side by side. Later on, during the 

explanation portion of the lesson, Ms Silver would ask students to compare and contrast the 

solutions on the board. If no student had come up with an idea using algebra Ms Silver would 

demonstrate how it could have been used. As a result, students had ample opportunities 

throughout the IBI unit to share their reasoning in a variety of ways, whether at their desk 

with a partner or at the front of the classroom with the whole class.  

 

I rated the complexity of the questioning as proficient inquiry (level 3): ‘Questions 

challenged students to explain, reason, and/or justify’. 

 

head start 
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M.2.3 Questioning ecology 

Questioning ecology refers to the diversity of questioning used within each lesson of the IBI 

unit in order to stimulate student discussion, investigation, and reflection.  

 

Ms Silver used a variety of questioning techniques over the course of the IBI unit. As shown 

in Table 9.2, her questions ranged from Bloom’s lowest level of ‘remember’ up to the highest 

level of ‘create’. Ms Silver’s use of challenging open-ended questions and appropriate time 

for exploration led to opportunities for class discussion. Usually, though, only a few students 

would raise their hands during these discussions. In order to get additional perspectives, Ms 

Silver cold called, that is, she called on students who were not raising their hands. For 

example, after Ekko shared her reasoning with the class, Ms Silver cold called Kent and 

asked, ‘Do you agree?’ This increased the number of opportunities students had to share their 

thinking.  

 

For the above reasons I felt that the questioning ecology was proficient inquiry (level 3): 

‘Teacher successfully engaged students in open-ended questions, discussions, and/or 

investigations’. 

 

M.2.4 Communication pattern 

The communication pattern throughout the IBI unit was controlled and directed by Ms Silver 

in a didactic pattern. Even when students were presenting their work Ms Silver acted as a 

mediator between them and the rest of the class. For instance, in L4 when Charlie was 

explaining her solution to the Fibonacci problem the following exchange took place. 

 

C: Yeah. And then halved, so times by two.  

K: It says divided by 2.  

C: No, because the opposite of halving is timesing. 

K: What? 

T: Okay, keep going. 

 (Charlie, Karson, Teacher, L4) 

 

The above exchange is the only time recorded in the IBI unit that students spoke directly to 

one another during a whole class explanation. But as the above excerpt shows, Ms Silver 

asked Charlie to ‘keep going’ despite her peer not understanding her. This was possibly a 
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missed opportunity for Ms Silver to increase the inquiry level of the class communication 

pattern.  

 

In all, the communication pattern left room for improvement. Therefore, I rated this aspect of 

discourse as pre-inquiry (level 1): ‘Communication was controlled and directed by teacher 

and followed a didactic pattern’. 

 

M.2.5 Classroom interactions 

Classroom interactions refers to the extent the teacher or another student challenged students 

to provide a follow-up explanation or justification for their answers. Ms Silver often asked 

the students to justify their work. The students also had opportunities throughout the unit to 

seek justification from each other.  

 

 

 

 

 

 

For example, in L4 Harper wrote her solution to part c of the Pizza problem on the 

whiteboard at the front of the room. Part c asked, ‘If you ordered your favourite medium 

pizza, how much would you expect to spend?’ Since Harper prefers no toppings on her pizza, 

she solved the equation she wrote by replacing the variable for number of toppings with 0 

(see Figure 9.11 ). 

 

Instead of having Harper explain her work, Ms Silver opted to have other students in the class 

explain what Harper had done. This helped Ms Silver to assess understanding. Assessment 

factors are further discussed in Section M.3. 

 

In Harper’s equation what does the ‘n’ represent? What does the question say? 

Somebody read it. [Harper raises her hand]. I know you know, Harper, 

because you’ve thought of it. I’m just going to see if I can tease it out of 

everybody else. (Teacher, L4) 

 

Total = £1.4n + £13.99 

Total = £1.4(0) + £13.99 

Total = £13.99 

 Figure 9.11: Harper's solution to part c of the Pizza problem 
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This led on to a class discussion of how to label Harper’s equation. They discussed how ‘n’ 

must represent the number of toppings on the pizza, the 1.4 must be the price per topping 

(£1.40), and the £13.99 must be the price for the base. In addition to allowing Ms Silver to 

gauge the students’ levels of understanding, this approach allowed for greater student 

interaction. Ms Silver emphasized the importance of such interactions, such as the below 

example.  

 

Listen very careful when people are contributing because you might learn 

something. (Teacher, L8) 

 

As can be seen from the classroom layout in Figure 6.1, Ms Silver chose to arrange her 

classroom in rows. Consequently, this arrangement somewhat hindered cooperation among 

the students as it was only realistic for students to work with the one or two people who sat 

next to them. Despite this desk configuration, students often worked together and there were 

several points when Ms Silver explicitly supported this. 

 

Put your hand up if you’re a person that likes to work on your own. [Several 

students raise their hands]. And put your hand up if you’d quite like to work 

with the person next to you and get ideas. [Most of the students raise their 

hands]. So, we’ll do exactly that. You have a go now. (Teacher, L7) 

 

Ms Silver often asked for follow up explanation and discussion from the students throughout 

the IBI unit. Therefore, in the area of classroom interactions I rated the IBI unit as proficient 

inquiry (level 3): ‘Teacher or another student often followed-up response with engaging 

probe that required student to justify reasoning or evidence’. 

 

M.3 Assessment factors 

This section discusses the Assessment factors of the EQUIP. These look at the ways in which 

the teacher evaluated the students’ knowledge acquisition throughout the unit. The constructs 

measured are Prior knowledge, Conceptual development, Student reflection, Assessment 

type, and Role of assessing. 
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Figure 9.12: EQUIP ratings for five Assessment Factors at Stratham College 

M.3.1 Prior knowledge 

Ms Silver frequently assessed the students’ prior knowledge through verbal questioning. For 

example, at the start of the unit (L1) Ms Silver asked the students for the definition of an 

expression. Upon realising many of the students struggled to distinguish an expression from 

an equation, Ms Silver decided to do additional practice problems in which students matched 

expressions and equations to their appropriate category. This was not the original plan, but 

Ms Silver felt it necessary since the IBI task which followed required students to know the 

definition of an expression. 

 

Ms Silver also assessed prior knowledge during several IBI problems in which the context 

may have been unfamiliar to the students. For example, in L7 with the Ichiro problem Ms 

Silver asked students if they thought there was a difference between ten-yen and five-yen 

coins versus ten-pence and five-pence coins. It became evident that most of the students in 

the class had not heard of yen before and found it useful to think of the problem in terms of 

pence (their native currency). Ms Silver also assessed prior knowledge during the Henri and 

Emile problem when she asked the students if they were familiar with the concept of a ‘head 

start’. The concept of a head start is key to understanding the context of the Henri and Emile 

problem, and it was useful to talk through what the term meant. 

 

Given Ms Silver’s regular assessment of the students’ prior knowledge as well as her 

willingness to somewhat modify instruction based on this assessment, I rated the Prior 

knowledge component as proficient inquiry (level 3): ‘Teacher assessed student prior 

knowledge and then partially modified instruction based on this knowledge’. 

 

M.3.2 Conceptual development 

Conceptual development was valued over procedural development over the course of the IBI 
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unit. This is perhaps best evidenced by Ms Silver’s careful attention to multiple solution 

methods. Rather than showing the students just one way to solve an equation, Ms Silver 

regularly emphasized the usefulness of other methods including the ‘bar model’ and the 

‘balance method.’ By comparing and contrasting these three methods side by side Ms Silver 

was able to illustrate the importance of being flexible in approach when solving problems. 

Please see Figure 9.6 for an example of Ms Silver’s bar, balance, and abstract method.  

 

The importance of multiple methods was further emphasised throughout the unit when Ms 

Silver invited students to share different solution methods. Students compared and contrasted 

their classmates’ approaches. Such discussions called on students’ critical thinking skills.  

 

Despite Ms Silver’s efforts to show the value of process over product, many students still 

seemed preoccupied with just getting the answer. For example, in L7 there were a number of 

students who used a table method to determine when Ichiro would have less money in his 

wallet than his brother, and they did so successfully. Since there was additional time both Ms 

Silver and I encouraged these students to see if they could arrive at the same solution using a 

different method. However, in nearly every case the students instead engaged in off-task 

behaviour. 

 

Occasionally though, students did show curiosity in the process of problem solving even 

though they knew they already had a correct answer. For example, in L4 when writing the 

equation to solve the Fibonacci problem a student asked the teacher, ‘Why do you have 

brackets inside brackets?’ This showed the student was curious in understanding algebraic 

notation. Another example of this appeared in L8 when reviewing how a bar model could be 

used to solve linear equations. A student asked, ‘Why is the 3 at the bottom [of the bar 

model]?’ Even though the class had already reviewed the answer this student showed interest 

in understanding how the bar model could be applied.  

 

In light of the above discussion as well as my observations, I rated this component as 

proficient inquiry (level 3): ‘Teacher encouraged process focused learning activities that 

required critical thinking’. 

 

M.3.3 Student reflection 

Ms Silver encouraged students to reflect on their own learning a number of times throughout 
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the IBI unit. The principal method by which Ms Silver achieved this was through use of 

several coloured sheets in the students’ planners. For example, in L2 when Ms Silver first 

introduced the bar model, balance method, and abstract method, she asked students to display 

the colour in their planners that best represented their present level of understanding. 

 

Now I would like you to … get your planners out. If you understand 

everything we’re doing, you put it on green. If you think ‘I’m getting there’, 

it’s on orange. If you think ‘Ms is talking complete twaddle’, it’s on red. 

(Teacher, L2) 

 

All the students in the classroom then opened their planners to the colour that best 

represented how well they understood the material. Figure 9.13 provides a visual of the 

classroom after Ms Silver had asked the students to display their colours. In response to the 

number of oranges and reds displayed by the students, Ms Silver chose to present several 

more examples.  

 
Figure 9.13: Ms Silver’s student response system using coloured papers 

In addition to displaying the coloured sheets, Ms Silver also encouraged student reflection 

throughout the IBI lessons by asking students to give a thumbs up if they agreed to another 

student’s answer or if they were ready to move on.  

 

Ms Silver encouraged student reflection throughout the problem-solving process. For 

example, in L7 Ms Silver asked, ‘Out of you people who decided 16 first, who changed their 
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minds? Why did you change your mind?’ These quick assessments were useful in helping 

students frequently monitor their understanding. 

 

I rated this component as proficient inquiry (level 3): ‘Teacher explicitly encouraged students 

to reflect on their learning at an understanding level’. 

 

M.3.4 Assessment type 

Ms Silver assessed the students in multiple ways throughout the IBI unit. For example, as 

previously discussed in Appendix M.2.1, Ms Silver employed a range of questions at 

different levels of complexity in order to assess the students’ understanding of factual as well 

as abstract knowledge. She also spoke with the students individually and in small groups 

during the explore portions of the IBI lessons as a means of gauging progress. After each IBI 

lesson Ms Silver also collected their worksheets and reviewed their written work. These 

measures were mostly informal, however formal tests were also employed (e.g. the pre-test 

and post-test).  

 

Assessment type was therefore rated as proficient inquiry (level 3): ‘Formal and informal 

assessments used both factual, discrete knowledge and authentic measures’. 

 

M.3.5 Role of assessing 

Assessments were used to inform both the pace and (to a lesser extent) the content of each 

lesson. For example, in L6 Ms Silver noticed, through speaking with students, that many 

were still struggling to visualise what the race would look like in the starting position. In 

response Ms Silver chose to play the accompanying video for the problem again even though 

students had already watched it during the previous lesson. She also asked for a volunteer to 

sketch what the race would look like on the board. In this way, Ms Silver adjusted her lesson 

in response to student assessment. 

 

A further example of the role of assessing took place in L2. Upon reviewing the worksheets 

of the students from L1 it became clear to Ms Silver that the students did not yet know the 

difference between an expression and an equation. The task asked students for an expression, 

but many had written an equation (see Appendix M.3.1). Therefore, Ms Silver chose to begin 

L2 with a discussion about what makes an expression different from an equation. In this way 

student assessment helped to determine the content of the lesson. 
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In light of the above, this component was rated as proficient inquiry (level 3): ‘Teacher 

solicited explanations from students to assess understanding and then adjusted instruction 

accordingly’. 

 

M.4 Curriculum factors 

This section discusses the Curriculum factors of the EQUIP. These look at the ways in which 

the chosen curriculum flexibly supported student exploration and understanding of the ‘big 

picture’. The constructs measured are Content depth, Learner centrality, Integration of 

content and investigation, and Organising and recording information. 

 
Figure 9.14: EQUIP ratings for four Curriculum Factors at Stratham College 

M.4.1 Content depth 

Content depth was an overall strength of the IBI unit. This is perhaps due to Ms Silver’s 

strong background in mathematics (Section 6.1.1). Ms Silver demonstrated excellence in 

content knowledge and was skilled at connecting content to the bigger picture. 

 

For example, much of the topic of linear relationships and of the skill of solving equations 

relies on an understanding of equality. Ms Silver made frequent, explicit connections to the 

idea of equality and what the equal sign represents. She stressed to the students that an equal 

sign does not merely denote ‘the answer’ but instead indicates that the quantity on the left is 

the same as the quantity on the right. This was further stressed through the use of the bar 

model (same lengths) and the balance method (same weights). For example, when discussing 

how to solve an equation Ms Silver made frequent references to the idea of an equation as a 

set of balancing scales.  
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Remember, if we’re balancing scales, what we take off one side we’ve got to 

take off the other. What we add to one side, we’ve got to add to the other. 

Before we took an x off both sides and it still weighed the same, because I’ve 

taken the same off both sides. (Teacher, L8) 

 

Furthermore, when talking about equations Ms Silver repeatedly made sense of the meaning 

of the terms, for instance by describing 2x as ‘x and x’ or 8x as ‘8 lots of x’. Or when the 

problem had context, such as in the Pizza problem, 1.4x as ‘£1.40 per topping’ where x is the 

number of toppings.  

 

Another insightful teaching moment occurred in L6 when reviewing the students’ solutions to 

the Henri and Emile problem. Each of the students had come up with an answer (e.g. the race 

should be 74 meters). But Ms Silver recognised that the problem could actually have a range 

of reasonable answers which could be best represented with an inequality. Thanks to this, the 

students had an opportunity to stretch their thinking into the realm of inequalities thus 

deepening the content achieved during the lesson. Instead of saying the race should be 74 

meters the students said the race should be less than 75 metres (x < 75 where x represents the 

length of the race in metres). 

 

Given some extra time in one lesson, Ms Silver introduced a problem to the students in which 

they decomposed two-digit numbers into tens and ones. Ms Silver then connected this idea to 

writing algebraic expressions. She asked the students, ‘What is an expression I could write to 

represent any two-digit number? Let’s say one digit is a and the other is b.’ This problem was 

excellent in both reviewing basic number composition as well as writing expressions. 

 

Examples such as these were numerous. Content depth was therefore rated as exemplary 

inquiry (level 4): ‘Lesson provided depth of content with significant, clear, and explicit 

connections made to the big picture’. 

 

M.4.2 Learner centrality 

Learner centrality grew over the course of the IBI unit, as evidenced by the increase in time 

for student exploration as well as the increase in student generated explanations (please see 

Figure 6.3 and Figure 9.7). Apart from being given the IBI task, students were free to explore 

the problem in any way they saw fit. However, given the size of the classroom, and the 
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school rules, students were not allowed to freely move about the classroom or the school, so 

student exploration had its boundaries.  

 

Ms Silver supported learner centrality in her classroom by allowing students to write on the 

whiteboard whenever they felt like they had an idea they wanted to share. This technique 

facilitated student autonomy.  

 

I’ve had an idea. I’m going to put the problem on the board. Now, if you think 

of a really good idea, you could come up and write that idea on the board. If 

you think, ‘You know what, I think I know how to solve that bit, I’m going to 

write down my idea on the board.’ Now, not everybody will be solving it the 

same way as you, so it’s not for you to look and think, ‘Oh, I’ll do it that 

way.’ It’s just if you think of a good idea. … So you could look up and think, 

‘What did that person do? What could I get from that?’ (Teacher, L4) 

 

The construct of Learner centrality was therefore rated as proficient inquiry (level 3): ‘Lesson 

allowed for some flexibility during investigation for student designed exploration’. 

 

M.4.3 Integration of content and investigation 

Each investigation was well integrated with the content. Some of the IBI tasks made explicit 

use of algebraic concepts, such as in L2 when students were asked to write an expression. In 

other lessons though, the connection to the topic of linear relationships was more subtle. For 

example, in L3 with the Fibonacci problem and in L5 with the Henri and Emile problem not 

all students attempted a solution pathway that used an equation even though this was the 

primary learning objective for these lessons. To help focus the lesson back on the learning 

objective, Ms Silver would walk around the room and look for students who had solved the 

problem using algebra, such as in L7 when Ms Silver asked Elva to share her solution (Figure 

9.15). Elva was the only student to use algebra successfully. Most of the students had 

attempted using algebra, but upon failing to do so successfully, used a table to arrive at an 

answer. It was therefore valuable to have Elva present her solution. 
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Figure 9.15: Elva's solution to the Ichiro problem 

To have achieved the level of exemplary inquiry, Ms Silver could have presented an 

additional algebraic approach alongside it. She could have shown the students how the 

equation 180 – 10x = 110 – 5x could have also been used to determine the day in which the 

two brothers would have had the same amount of money in their wallets. This would have 

provided students with an opportunity to solve an equation in which the unknown appears on 

both sides (one of the stated learning objectives for the unit). 

 

I rated the integration of content and investigation as proficient inquiry (level 3): ‘Lesson 

incorporated student investigation that linked well with content’. 

 

M.4.4 Organising and recording information 

Throughout the IBI unit students were free to organise and record information as they saw fit. 

For each task the problem was briefly stated at the top of the sheet, but the rest of the paper 

was left blank. For example, when solving problems some students chose to draw a graphic 

while others preferred to organize the information into a table. The openness of the blank 

paper allowed for this level of flexibility.  

 

Given the above, this component was rated as proficient inquiry (level 3): ‘Students regularly 

organised and recorded information in non-prescriptive ways’. 

 

M.5 Summary of the quality of the IBI unit 

The most common score assigned to the different components of the EQUIP was that of 

proficient inquiry, therefore the unit as a whole could be best described as meeting the 

requirements of proficient inquiry.  

70 – 5x = 0 

70 ÷ 5 = x 

14 = x 

So, Ichiro will have less money than his brother on day 15 

the gap closes by 

5 each day 

 
Ichiro has 70 more 

than his brother at 

the start 
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Ms Silver was successful in leading instruction, discourse, assessment, and curriculum that 

met many of the goals of inquiry. Students were always given time to explore the IBI 

problems before receiving instruction. In addition, students were given many opportunities to 

explain and justify their ideas both with a partner and with the class. Ms Silver assessed 

students’ understanding frequently, and she was especially skilled at providing depth of 

content. 

 

To have achieved a higher level of inquiry, Ms Silver could have developed more in the area 

of communication pattern. Most notably, the teacher could have encouraged more student-to-

student talk during whole class discussions by asking students to address each other directly. 

 


