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Abstract
In static analysis, two frameworks have been studied extensively: monotone data-flow analysis and
type-and-effect systems. Whilst both are seen as general analysis frameworks, their relationship has
remained unclear. Here we show that monotone data-flow analyses can be encoded as effect systems
in a uniform way, via algebras of transfer functions. This helps to answer questions about the
most appropriate structure for general effect algebras, especially with regards capturing control-flow
precisely. Via the perspective of capturing data-flow analyses, we show the recent suggestion of
using effect quantales is not general enough as it excludes non-distributive analyses e.g., constant
propagation. By rephrasing the McCarthy transformation, we then model monotone data-flow effects
via graded monads. This provides a model of data-flow analyses that can be used to reason about
analysis correctness at the semantic level, and to embed data-flow analyses into type systems.
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1 Introduction

Static program analysis is the bedrock of optimising compilation, extracting program proper-
ties from syntax to inform semantics-preserving program transformations. Throughout the
history of program analysis it has been repeatedly noticed that various analyses have similar
forms and can thus be unified into more general frameworks. Notably, the early data-flow ana-
lyses performed on control-flow graphs (e.g., for live variables, available expressions, reaching
definitions etc.) were unified by the notion of monotone data-flow frameworks [8] (Khedker
et al. [10] give a wider perspective). Such analyses are formalised as scanning program state-
ments forwards or backwards to obtain data-flow equations over some algebraic structure,
which are then solved. Another major class of analyses are effect systems [5, 7, 15, 24],
typically applied in a functional setting (but also notably for Java’s checked exceptions).
Effect systems typically augment type systems with information about possible side-effects,
drawn from a particular algebraic structure. Such approaches evolved into a framework for
general static analysis [16]. Another general class of static analysis is abstract interpretation
given by Galois connections or related structures [3], though this is not our focus here.
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15:2 Data-Flow Analyses as Effects and Graded Monads

Despite claims of effect systems’ generality, it has been unclear whether they have sufficient
expressive power to capture classical data-flow analyses, due in part to the functional-style bias
of effect systems but also due to a lack of clarity about how effect systems interact with control-
flow. Various approaches have developed effect-system-like systems for capturing particular
data-flow analyses, but typically in an ad hoc manner. For example, Nielson, Nielson, and
Hankin [17] presented an effect-system-like annotated type system for reaching definitions
analysis, but the approach was not clearly linked to a general algebraic characterisation
of effects seen elsewhere. Laud et al. [11] introduced several type systems that represent
data-flow analyses, but these are not effect systems and the approach is not unified.

In this work, we study the general relationship of dataflow frameworks to effect systems,
and through this investigate the most appropriate algebraic characterisation of effects to
capture known analyses in a uniform way. While Gifford-Lucassen-style [5] effect annotations
were originally seen as mere subsets of the space of possible effect operations along with a
single composition operator, Amtoft and the Nielsons [1] showed how distinct sequencing
and alternation operators for composing effects gave better expressivity, capturing various
other analyses. Recently, Katsumata [9] and Orchard et al. [20] linked effect systems to the
mathematical notion of graded monads, using graded monads to model languages with effect
systems. The graded monad model characterises the algebraic structure of effect systems
by the structure of its grades which constrain the model of a computation’s side effects.
In this setting, Katsumata offers the most-general framework for effect systems: an effect
algebra is a pre-ordered monoid (D,v,B, 1), where (D,v) is a pre-ordered set and (D,B, 1)
a monoid with B monotonic with respect to v [9]. Binary least upper bounds on D, if they
exist, give a natural (if partial) alternation operator. Gordon [6] by contrast aims, in recent
work, at a more precise axiomatisation using effect quantales which enforce composition and
alternation to be total, if necessary by adding an additional top (or error) element to D, and
adding distributivity requirements. Mycroft et al. [15] also split effect algebras into separate
operators for sequencing and alternation, with a graded monad model.

Two questions arise. Firstly, how related are the theories of data-flow analysis and effect
systems, and their interpretation as graded monads? Secondly, what is the most natural
structure for an effect algebra that covers common analyses?

Contributions and structure. Section 2 begins by summarising various background material
about data-flow analyses and effect systems. We then contribute three main results:
1. We show that monotone data-flow frameworks can be captured via a kind of effect system

on control-flow graphs (CFGs) with effect algebras of transfer functions (Section 3). The
approach ends up resembling Kam and Ullman’s monotone data-flow analysis frameworks.
The novelty is that the approach unifies several classical data-flow analyses.

2. We adapt McCarthy’s transformation [12] to translate the CFG-effect system of Section 3
into a graded monad rendering of effect systems (Section 4). This gives a semantic model
equipped with data-flow analysis information which can be used to reason about analysis
correctness or to capture dataflow as types, which we demonstrate via a Haskell encoding.

3. We discuss how effect quantales are too restrictive to capture non-distributive data-flow
analyses such as constant propagation (Section 5).

There are several interesting lines of further work that follow from the perspective of this
paper. For example, computational complexity of data-flow analysis algorithms is well
understood and results from this field may provide valuable insight in constructing efficient
type-and-effect inference algorithms. We also aim to contribute towards finding a ‘best’
model for effect algebras – one that imposes just enough restrictions that every static analysis
can be modelled, while disallowing models which correspond to no (known) static analysis.
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2 Background

2.1 Analysis structure: partial orders and lattices
Program analysis generally captures program properties as elements of a partially ordered
set (poset). Often this poset forms a complete lattice, but this places strong requirements
on the existence of least upper and greatest lower bounds, which are not always needed or
desired. For example, in type inference we may infer that two expressions e1 and e2 have
respective types Int and Bool, but then say that a conditional selecting between e1 and e2 is
ill-typed. There seems to be a tacit understanding that static type inference is usually partial
while static determination of other properties is total – perhaps because we are happy for a
program to be rejected as ill-typed, but not for a compiler to reject our program just because
a static analysis says it is unfit for a given optimisation. In general this distinction between
partial and total analyses affects “formal presentation” more than “conceptual understanding”
as we can make any partial analysis total by adding a > element to its poset of values.

A poset (D,v) is a set D with a reflexive, antisymmetric and transitive relation v. Given
two posets, (D1,v1) and (D2,v2) then their product D1×D2 has the induced product order:
(x, y) v (x′, y′) whenever x v1 x

′ and y v2 y
′. Similarly, given any set X then X → D

becomes a poset with induced ordering f v g whenever ∀x ∈ X.f(x) v g(x).
A poset (D,v) is a (bounded) join-semilattice if all finite (including empty) subsets

X ⊆ D have a least upper bound with respect to v. It is a (bounded) lattice if such subsets
also have a greatest lower bound. It is a complete lattice if all subsets have least upper
bounds and greatest lower bounds. We write ⊥ for

⊔
{} and > for

⊔
D when these exist.

Much work on program analysis is done on posets of finite height (every totally ordered
subset is finite) so completeness adds no additional requirements.

A join-semilattice is often axiomatised via an operator (D,t) because this gives an
algebraic characterisation; the relation v can be recovered by taking x v y ⇔ x t y = y.

For data-flow analysis of Turing-complete languages we generally need (D,v), or (D,t)
to be bounded or pointed, i.e. to have a least element ⊥ which can represent the data-flow
values resulting from a non-terminating expression, and also serves as the initial value for a
Tarski fixed-point iteration when solving data-flow equations.

2.2 Control-flow graphs
Classical compiler optimisations usually deal with simple imperative programs, represented
as control-flow graphs (CFGs). Here statements S appearing within the flow graph and
possibly containing branches to labels ` are given by:

v ::= X | k (syntactic values)
e ::= v | v1 op v2 (expressions)
S ::= X := e; goto ` | if v ≥ 0 then goto `′ else goto `′′ | halt v (statements)

where k are assumed to be integers, op ranges over arithmetic operators (+, −, × etc.), and
X ranges over Vars, a finite set of integer-valued mutable variables.

A CFG (N,E ⊆ N × N,L : N → S) is a directed graph whose nodes N are labelled
with 3-address arithmetic and control-flow statements. We use n (and ` when thinking of
a node as a label) to range over N . As usual, we write succ(n) and pred(n) for the sets of
E-successors and E-predecessors of n, and require the number of successors of a node to
respect the labelling L. We write (` : S) to indicate that node ` is labelled with a given
statement or, in programming terms, that statement S has label `.

FSCD 2020
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2.3 Classical data-flow analysis
Data-flow analysis refers to static analysis approaches commonly used in optimising compilers.
These analyses infer facts about how data is used in the program, including constant
propagation, live variables and pointer analysis.

Liveness. In a CFG, a variable x is live at node n if there is a (possibly infeasible) path of
edges starting at n along which the value of X is read before being written to. The sets of
variables live on entry and exit of n respectively satisfy the following data-flow equations:

LiveIn(n) = (LiveOut(n) \ LiveKill(n)) ∪ LiveGen(n) LiveOut(n) =
⋃

s∈succ(n)

LiveIn(s)

Sets LiveKill(n) and LiveGen(n) are determined by the statement at node n. For statement
X := e they are LiveKill(n) = {X} and LiveGen(n) = fv(e) (the set of free variables in e).
For halt v and if v ≥ 0 they are LiveKill(n) = ∅ and LiveGen(n) = fv(v).

We consider LiveIn(n) to be the set of live variables just before the statement at node
n, and LiveOut(n) to be the live variables immediately after this statement. The notation
Live(n), gen(n), and kill(n) are used as synonyms for LiveIn(n), LiveGen(n), and LiveKill(n).

Monotone data-flow analysis frameworks. Liveness, along with several other analyses,
can be seen as examples of Kam and Ullman’s monotone data-flow analysis frameworks [8].
Roughly speaking, a monotone data-flow analysis framework1 instance is specified by a lattice
(DFValues,t) with:

the set DFValues of all possible data-flow values with a least element ⊥;
the direction of the analysis, forwards or backwards (liveness is backwards since LiveOut
is calculated from successors);
Gen and Kill sets for every statement;
the merge operation t (for liveness and reaching definitions this is ∪, whereas for available
expressions and very busy expressions it is ∩).

As with liveness, such instances give a set of equations whose solutions give the data-flow
values at every node in the CFG. An exception is made in the cases of incoming data-flow
values for entry nodes in forwards analysis and outgoing data-flow in exit nodes in backwards
analysis – they do not depend on other data-flow values, they are instead equal to the
boundary information (BI, typically ⊥ or >). When there are multiple solutions, we take the
least one (which exists because of the lattice assumption and the existence of ⊥ in DFValues).
An iterative work-list algorithm is used to compute data-flow values at every node.

Every node in a CFG determines a transfer function (or flow function) from the set of data-
flow values at one end of the node to that at the other end (In to Out for forwards analyses
and Out to In for backwards analyses). Transfer functions propagate data-flow values around
a program. For backwards analyses, the transfer function φ satisfies DFIn(n) = φ(DFOut(n));
for forward analyses DFOut(n) = φ(DFIn(n)) (where DFIn and DFOut map nodes to the
data-flow values at entry and exit, like LiveIn and LiveOut previously).

We can extend the idea of transfer functions for single statements to sequences of
statements (or paths in a CFG). Consider, for example, statements S1 and S2 with associated
transfer functions φ1 and φ2. Then the transfer function for the sequence “S1 then S2” is

1 The original work calculated maximal fixed points by iterating from a > value. We use the dual
formulation (least fixed points and ⊥ value). Our data-flow examples use complete lattices.
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· · · −2 −1 0 1 2 · · ·
⊤

⊥

Figure 1 Lattice of integers Z>
⊥ with > and ⊥ whose product lattice is the lattice of data-flow

values in constant propagation.

X := 1

Y := 2

X := 2

Y := 1

Z :=X + Y

n0

n1

n2

n3

n4

n5

[X 7→⊤, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→2, Z 7→⊤]

[X 7→2, Y 7→⊤, Z 7→⊤]

[X 7→2, Y 7→1, Z 7→⊤]

[X 7→⊤, Y 7→⊤, Z 7→⊤]

[X 7→⊤, Y 7→⊤, Z 7→⊤]

X := 1

Y := 2

X := 2

Y := 1

Z :=X + Y Z :=X + Y

n0

n1

n2

n3

n4

n′
5 n′′

5

[X 7→⊤, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→⊤, Z 7→⊤]

[X 7→1, Y 7→2, Z 7→⊤]

[X 7→2, Y 7→⊤, Z 7→⊤]

[X 7→2, Y 7→1, Z 7→⊤]

[X 7→1, Y 7→2, Z 7→3] [X 7→2, Y 7→1, Z 7→3]

Figure 2 Non-distributivity of constant propagation. Assume data-flow into n0 is such that
multiple values can be associated with each of X,Y, Z and so these are mapped to >. Non-
distributivity manifests at node n5 in the CFG on the left: whichever execution path is taken after
n0, Z has value 3 at n5, but constant-propagation analysis gives Z 7→ >. Splitting the statement
into two and performing constant-propagation analysis on these paths separately (as in the CFG on
the right) gives Z 7→ 3 which is more precise than Z 7→ > in the left CFG, violating distributivity.

φ1 ◦ φ2 for a backwards analysis, whereas for a forwards analysis it is φ2 ◦ φ1 (this reverse
composition is natural for forwards analysis, since φ2 ◦ φ1 first applies φ1 to the input, then
applies φ2 to the result).

Data-flow analyses may also have a notion of distributivity relating to the merging operator.
A forwards or backwards analysis is distributive if it satisfies the following corresponding
property for all nodes n:

DFOut(n) =
⊔

n′∈pred(n)

φn(DFOut(n′)) (forward) DFIn(n) =
⊔

n′∈succ(n)

φn(DFIn(n′)) (backward)

where φn is the transfer function for node n. Live variable analysis is a distributive analysis.

Constant propagation. Some data-flow analyses are not distributive. One such example is
constant propagation: a forwards analysis that associates with each program point a mapping
(ranged over by s here) from variables to data-flow values which are either an integer or one
of two special symbols ⊥ or >. The mapping X 7→ > means that variable X potentially
takes multiple values and so is not (known to be) a constant, whereas Y 7→ ⊥ means that
the value of variable Y has not been explored yet in the analysis (this is needed for loops
where the analysis uses fixed-point iteration). For integer variables, this gives a lattice of
data-flow values of integers, along with ⊥ and >, shown in Figure 1.

This lattice naturally gives rise to a lattice of mappings which is just a product lattice with
the subtlety that if one variable maps to ⊥ then all do (a so-called ⊥-coalesced product), with
the partial order v lifted to the product space, e.g. [X 7→ 1, Y 7→ 5] v [X 7→ 1, Y 7→ >]
but [X 7→ 1, Y 7→ 5] 6v [X 7→ 3, Y 7→ 5]. The formula s1 v s2 can be read as “s1
is more precise than s2”. The result of the analysis should be a least solution of the
data-flow equations. Merging is via least upper bounds (t) taken component-wise, e.g.
[X 7→ 1, Y 7→ 3] t [X 7→ 2, Y 7→ 3] = [X 7→ >, Y 7→ 3].

Figure 2 shows via an example that the analysis is not distributive.

FSCD 2020



15:6 Data-Flow Analyses as Effects and Graded Monads

2.4 Effect systems and effect algebras

Type-and-effect systems extend type systems to analyse impure concepts such as IO, exceptions
and mutable state [5, 7, 24, 15]. Type-and-effect judgements are often written as Γ`e : τ &F

for an expression e of type τ in context Γ with potential effects described by F . (For the
remainder of Section 2 we take e as ranging over general programming-language expressions.)
For example, F might be the set of exceptions the expression e may throw. Type-and-effect
systems also introduce latent effect annotations in functions, for example τ1

F−→ τ2 is the
type of a function which has effect F when applied.

The simplest effect systems use powersets of symbols representing possible impure program
actions, ignoring control-flow and statement order by using ∪ to combine effect information
(e.g., [5, 24]). Consider the effect system that captures the set of exceptions that an expression
may raise. In this case, the inference rule for conditionals is:

(if) Γ ` e1 : Bool & F1 Γ ` e2 : τ & F2 Γ ` e3 : τ & F3

Γ ` if e1 then e2 else e3 : τ & F1 ∪ F2 ∪ F3

However, this only covers ‘may’ analyses, and not ‘must’ analyses, and furthermore it only
allows for commutative effect combination. Amtoft et al. [1] therefore introduced separate
operators for sequencing (B) and combining alternate effects (t) e.g., in if-then-else-style
conditionals. The meaning of B is such that F1 BF2 is the cumulative effect of two sequenced
operations, where the first has the effect F1 and the second F2. This sequential composition
of effects, in a space D, is generally modelled as a monoid (D,B, 1) where B is an associative
operation with identity element 1. The previous inference rule now becomes:

(if) Γ ` e1 : Bool & F1 Γ ` e2 : τ & F2 Γ ` e3 : τ & F3

Γ ` if e1 then e2 else e3 : τ & F1 B (F2 t F3)

The effect system now distinguishes sequencing from branching and allows the former to be
non-commutative. Such effect systems, which take control flow into account, are sometimes
referred to as sequential (or flow-sensitive) effect systems [26].

One algebraic characterisation of these effect-system operators, due to Katsumata [9],
is as a partially-ordered2 monoid (pomonoid), which we write as a quadruple (D,v,B, 1)
where D is both a poset (ordered by v) and a monoid (with v-monotonic operation B).

Gordon argues for a special case of this model3 called effect quantales [6]. An effect
quantale (D,t,B) is a bounded join-semilattice where B distributes over t on both sides:
xB (ytz) = (xBy)t (xBz) and (ytz)Bx = (yBx)t (zBx). Gordon adds the requirement
that (D,t) has a > element (but this holds whenever D is finite-height) and also that > is a
left- and right-zero for B.

Distributivity of B over t implies its monotonicity w.r.t. v, but not vice versa.
Both Katsumata’s pomonoids and Gordon’s effect quantales form bases for sequential

effect systems. Effect quantales are a special case of pomonoids, but have the laudable aim
to be closer to modelling only those effect algebras which are useful in practice. We however
argue that the distributivity requirement of effect quantales is too strong (Section 3.4).

2 Katsumata proposed a pre-ordered monoid, but this becomes a partially ordered monoid after quotienting
by equivalence classes hence our slight re-characterisation here to match the partial-order setting of
data-flow analysis.

3 Here we consider only sequential composition and alternation; Gordon’s work also considers iteration.



A. Ivašković, A. Mycroft, and D. Orchard 15:7

(if) Φ(`) = 〈〈v〉〉TF B (Φ(`1) t Φ(`2))
Φ ` (` : if v ≥ 0 then goto `1 else goto `2) : Int & Φ(`)

(assign) Φ(`) = 〈〈` : X := e〉〉TF B Φ(`′)
Φ ` (` : X := e; goto `′) : Int & Φ(`) (halt) Φ(`) = 〈〈v〉〉TF

Φ ` (` : halt v) : Int & Φ(`)

Figure 3 Data-flow effect system for the imperative language of CFGs.

3 An effect system for data-flow analysis

As discussed in Section 1, specific data-flow analyses have sometimes been given ad hoc
characterisations as effect-system-like analyses (e.g., Nielson et al.’s annotated type system
for reaching definitions [17]). Here we introduce a more general, unifying approach based on
a type-and-effect system for CFGs in which statements in the language of Section 2.2 are
given effect annotations corresponding to transfer functions. Since assignments and branches
contain goto `, their overall (“run to completion”) effect does not directly correspond to
traditional transfer functions of CFG nodes. Section 3.1 explores the details, introducing an
effect system for liveness. Section 3.2 considers inference. Section 3.3 then generalises the
system to classical dataflow analyses and constant propagation, which is non-distributive.

3.1 Type-and-effect system and inference rules for liveness
Recall the language of CFGs introduced in Section 2.2. We wrote (` : S) to mean node `
is associated with statement S. We introduce judgements capturing the type and effect of
running to completion a CFG program starting at a given statement. The judgement form is
Φ` (` : S) : τ &φ, where τ is a type and φ is an effect annotation given by a transfer function
that is a combination of transfer functions on paths from ` up to a halt. More precisely: for
liveness, applying φ to the live variable set at program exit (the boundary information) gives
the live set at `.

The role of Φ (which is a map from labels to transfer functions) is more subtle. Normally,
type-and-effect systems are given in a syntax-directed manner. But loops in programs behave
like recursive functions, requiring finding a fixed point (with potentially multiple solutions).
Here, we posit a solution Φ giving the data-flow value at each program point, and use
inference rules to assert this is consistent. There may be multiple possible Φ (fixed points).

The type-and-effect system of this form that describes liveness is given in Figure 3.
It uses various functions and symbols. The operators t and B are ∪ and ◦ (function
composition), respectively. The notation 〈〈` : X := e〉〉TF and 〈〈v〉〉TF represents transfer
functions corresponding respectively to assignmentsX :=e at label `, and variable references in
halt v and if v ≥ 0 statements. They are respectively λs. (s \ kill(` : X := e)) ∪ gen(` : X := e)
and λs. s ∪ fv(v). We interpret these rules inductively and we are interested in the least
solution (in terms of Φ in the partial order of functions from labels to transfer functions).

I Theorem 1. Let Φ̂ be the least solution for a CFG that contains an instruction with label
`. Then Φ̂(`)(∅) is equal to the set of live variables at node ` of the CFG.

Proof. This is restating a well-known fact about transfer functions by Sharir and Pnueli [22].
A statement and proof of it can be found in, for example, Theorem 7-3.4 in Muchnick and
Jones [14]. Using their notation, the expression Φ̂(`)(∅) corresponds to z` = χ`(∅) and the
live set at ` is x`, and the theorem states that x` = z`. See Appendix A for details. J

FSCD 2020



15:8 Data-Flow Analyses as Effects and Graded Monads

Effect systems are traditionally applied to functional languages to analyse impure code.
Thus calling our approach here an “effect system” may seem unorthodox. Our justification is
that the inference system in Figure 3 is the pre-image of the translation in Section 4 (based
on the McCarthy transformation) from CFGs into functional code with a type-and-effect
system (via graded monads) mapping transfer functions to type-based effect information.

Our effect system here resembles Nielson et al.’s “annotated type system” [17] capturing
reaching-definitions analysis for a simple imperative while language. The main difference is
that we operate with transfer functions on CFGs (which, to the best of our knowledge, is a
novel approach), unifying several monotone data-flow analyses (shown in Section 3.3).

3.2 Inferring effects
Given a labelled imperative program as in Section 3.1, we want to find the effects associated
with every single label. We present a method to infer the principal solution to this problem.

Statements in a CFG are uniquely labelled. Thus we can see a CFG as a set of tuples
(` : S), where ` is a label and S is a statement. Let φ` be the effect associated with the
label `, so that Φ ` (` : S) : τ & φ` holds. For every statement there is an associated set of
constraints involving its effect. These constraints resemble the rules given in Figure 3. They
are given in the form of inequalities that use a subeffecting relation v, which in the case of
liveness is just ⊆ lifted to the function space. Each statement form below emits the indicated
constraint (these are conventionally expressed using w, the converse of v):

(` : halt v) =⇒ φ` w 〈〈v〉〉TF
(` : if v ≥ 0 then goto `1 else goto `2) =⇒ φ` w 〈〈v〉〉TF B (φ`1 t φ`2)
(` : X := e; goto `′) =⇒ φ` w 〈〈` : X := e〉〉TF B φ`′

We seek the least solution (w.r.t. v) for this set of constraints. Since the domain of the
constraints is the lattice of transfer functions, finding the least solution is done by using
a simple work-list algorithm: Initially all φ` are set to ⊥DFValues→DFValues (the transfer
function that maps any set of data-flow values to ∅). Then the solution is iteratively improved
until we reach a tuple of transfer functions that satisfies all the constraints.

Since every transfer function appears on the left-hand side of exactly one constraint, the
value in the next iteration is updated according to this constraint. For example, if there is
a constraint φ w 〈〈v〉〉TF B (φ1 t φ2), this update step sets the new estimate of φ to exactly
〈〈v〉〉TF B (φ′1 t φ′2), where φ′1 and φ′2 are the current estimates of φ1 and φ2. These steps
are monotonic with respect to v, and thus this iteration converges to the least fixed-point
solution for our finite-height lattices.

3.3 Generalising to other data-flow analyses
Our CFG-based effect system for liveness can be generalised to a single framework capturing
the four classical data-flow analyses (live variables, reaching definitions, very busy expressions,
available expressions). The generalised form is parameterised by the following algebra:

a set of data-flow values DFValues, effects are then transfer functions drawn from
DFValues → DFValues;
a subeffecting relation v on transfer functions;
a sequencing operator B on transfer functions;
a function 〈〈` : X := e〉〉TF mapping labelled assignment statements to transfer functions;
a function 〈〈v〉〉TF mapping a potential variable appearing in halt v or in if v ≥ 0 to a
transfer function representing its being read.
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DFValues v t B kill(` : X := e) gen(` : X := e) vgen(v)
LVA P(Vars) ⊆ ∪ ◦ {X} fv(e) fv(v)
RD P(Vars × Labels) ⊆ ∪ ◦̂ {(X, l) | l ∈ Labels} {(X, `)} ∅
VBE P(Expressions) ⊇ ∩ ◦ {e′ |X ∈ fv(e′)} {e} fv(v)
AVAIL P(Expressions) ⊇ ∩ ◦̂ {e′ |X ∈ fv(e′)} {e} fv(v)
(Recall v ::= X | k therefore fv(v) in the rightmost column is either a singleton or empty set.)

Figure 4 CFG effect-system instantiations for classical data-flow analyses.

Sets of transfer functions equipped with v are lattices, therefore a t operator (join) exists.
For all four classical analysis, 〈〈` : X := e〉〉TF and 〈〈v〉〉TF can be expressed:

〈〈` : X := e〉〉TF = (λd. (d \ kill(` : X := e)) ∪ gen(` : X := e)) : DFValues → DFValues
〈〈v〉〉TF = (λd. d ∪ vgen(v)) : DFValues → DFValues

The space of data-flow values DFValues along with its v, t, gen, kill and vgen operators
are variously parameterised for the four data-flow analyses as shown in Figure 4. The effect
system that then describes all of these is precisely the one given in Figure 3.

In these instantiations, theB operator is particularly interesting. The algebra (DFValues→
DFValues,v,B, id) is a partially ordered monoid, with id as the unit element. We consider
two possibilities for B depending on the direction of the analysis

For backwards analysis, B is function composition ◦;
For forwards analysis, B is reverse function composition ◦̂ – defined as f ◦̂ g def= g ◦ f .

3.4 Constant propagation as a non-distributive example
Constant propagation from Section 2.3 (not one of the four classical analyses) also fits into
the above framework. We take DFValues to be the lattice of mappings s from variables
to Z>⊥ with the v relation being lifted component-wise. This lattice of transfer functions
becomes a pomonoid by taking B to be reverse composition ◦̂ (since constant propagation is
a forwards analysis). Transfer functions for assignment and variable access are:

〈〈` : X := e〉〉TF = λs. s[X 7→ s(e)] and 〈〈v〉〉TF = λs. s

where we abusively write s(e) to mean the value in Z>⊥ obtained by substituting variables in
e as specified by s and simplifying. Variable access does not update variables so 〈〈v〉〉TF = id.

As an example, sequencing the effects of X := 1 and Y :=X + 2 gives the effect:

(λs. s[X 7→ 1]) ◦̂ (λs. s[Y 7→ s(X) + 2]) = (λs. s[Y 7→ s(X) + 2]) ◦ (λs. s[X 7→ 1])
= λs. s[X 7→ 1, Y 7→ 3]

Thus the inference system of Figure 3 can be used also for constant propagation.
With constant propagation, t and ◦̂ do not satisfy distributivity, as seen previously in

the example of Figure 2. In this algebra, that example illustrates the fact that for:

φ1 = λs. s[X 7→ 1, Y 7→ 2] φ2 = λs. s[X 7→ 2, Y 7→ 1] φ3 = λs. s[Z 7→ s(X) + s(Y )]

distributivity is violated – that is, (φ1 ◦̂ φ3) t (φ2 ◦̂ φ3) 6= (φ1 t φ2) ◦̂ φ3. Thus, the idea of
basing effect-systems on the distributive structure of quantales (as in [6]) would exclude this
common static analysis. We therefore advocate that distributivity is not imposed (Section 5).
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4 Translating to a graded monadic setting

We now formulate a graded monadic model of the effect system given in Section 3, exploring
the use of graded structures to encode liveness analysis in programming and semantic
modelling. We describe translations from our CFGs into a pure functional language (e.g.,
Haskell, Agda, Coq, or a pure subset of ML).

We briefly overview graded monads in Section 4.1. We go on to define a monadic variant of
the McCarthy transformation in Section 4.2; this is generalised to a graded monadic McCarthy
transformation in Section 4.3.1. For the graded monadic case, the data-flow equations get
represented as typing constraints in the target language’s type system. Section 4.3.2 gives
a graded monad which further refines a semantic model of state by liveness information.
Section 4.4 considers a concrete translation into Haskell, details of which are in Appendix B.
Lastly, Section 4.5 explains how to generalise this approach to other data-flow analyses.

4.1 Graded monads
Monads are common in pure functional programming languages (such as Haskell) for embed-
ding and structuring effectful computations [27] and for semantic models of effects [13]. We
recall a programming oriented definition: a monad is a triple (M,�=, return) where M is a
type constructor, �= (bind) is an infix operator, and return is a function, with the types:

return : ∀α. α→Mα (�=) : ∀α∀β. Mα→ (α→Mβ)→Mβ

Following Moggi [13], we use the word computation for values of type Mτ , just like we use
function for values of type σ → τ .

In addition, these operations should satisfy the following axioms:

m�= return = m (right identity)
return x�= f = f x (left identity)

(m�= f)�= g = m�= (λx. f x�= g) (associativity)

Wadler and Thiemann [28] showed that monads and effect systems can be united by trans-
posing effect systems into an equivalent monadic system with effect annotations in types:
for an expression of type τ with effect F , there is an monad M annotated with F (written
MF ) such that there is an equivalent expression of type MF τ . This annotated monad
represents the possible effects of an impure expression e, described by F . Graded monads
essentially systematise and generalise this idea so that a model or embedding of the effectful
computation may depend on the effect information F , which has some algebraic structure
(the effect algebra). In this way, graded monads can capture effect information in types (e.g.,
for fine-grained effect and resource reasoning) or make effect semantics more fine-grained.

Graded monads generalise monads to an indexed family of type constructors whose indices
range over elements of a given algebraic structure [4, 9, 15]. The operations of this structure
then mediate the operations of the graded monad. The structure of grades is usually a
pomonoid (D,v,B, 1), giving a graded monad ({Mr}r∈D, sub,�=, return), where {Mr}r∈D
is a family of type constructors indexed by D-elements and �=, return, and sub have types:

�= : ∀r∀s∀α∀β. Mrα→ (α→Msβ)→MrBsβ
return : ∀α. α→M1α
sub : ∀r∀s∀α. Mrα→Msα if r v s

Here �= and sub are polymorphic in types and grades. We use Greek letters for types and
Roman letters for elements (grades) of the algebra in order to avoid clutter in type signatures.
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A graded monad satisfies axioms analogous to those of a monad, but with the addition of
grades in such a way that the graded monad laws depend on the associativity and identity
properties of the monoid, where for all x : α,m : Mrα, f : α→Msβ and g : β →M tγ:

m�=r,1 return = m : Mrα (right identity)
return x�=1,s f = f x : Msβ (left identity)

(m�=r,s f)�=rBs,t g = m�=r,sBt (λx. f x�=s,t g) : MrBsBtγ (associativity)

We subscript the operations with the instantiation of the grades here for clarity.
The sub satisfies the following ∀r, s, r′, s′,m : Mrα, f : α→Msβ where r v r′ and s v s′:

subr,r′m �=r′,s′ (subs,s′ ◦ f) = subrBs,r′Bs′ (m�=r,s f) : Mr′Bs′
β (monotonicity)

Categorically, graded monads correspond to lax monoidal functors between a pomonoid
(viewed as a category) and a category of endofunctors (essentially type constructors) [9, 20].
This categorical construction embodies the idea that graded monads match the structure
of some analysis domain (a pomonoid on D) to the structure of a semantic domain (type
constructors modelling computations). The resulting operations (�=, return, sub) propagate
the pomonoid structure with them via the grades, describing the structure of a computation.

4.2 Monadic McCarthy transformation
McCarthy’s transformation [12] maps CFG statements to mutually recursive function defini-
tions using an m-tuple of functionally updated variables to represent the state. For example,
the node (`1 : Y :=X + Z; goto `2) in a CFG containing variables X, Y , Z can be translated
into the function f1(x, y, z) = f2(x, x+ z, z) where f2 is the function corresponding to the
CFG node with label `2. We define a variant, using a monad to represent state, and call it
the monadic McCarthy transformation.

The standard state monad [27] models a single mutable memory cell with type constructor
State α parameterised by the type of values that can be stored α, and two operations for
manipulating the state: get : ∀α.State α α and put : ∀α.α → State α Unit. We can thus
represent m integer variables by the monad State(Int, . . . , Int) with access to each variable
provided by get and put and projections. An alternative is to use a monad transformer stack.
For brevity, we instead assume an equivalent monad MultiState which holds the state of m
integer variables and has m operations geti : MultiState Int and puti : Int→ MultiState Unit
one for each CFG variable (X,Y, Z, . . . ∈ Vars). In examples these are written getX, putY
etc. Thus MultiState τ is the type of computations over mutable variables that return type τ .

We use Haskell’s do {. . .} notation as syntactic sugar for monadic computations,4 equival-
ent to Moggi’s monadic metalanguage [13]. For example, do {x←e1; e2} sugars e1�=(λx. e2),
and do {e1; e2} sugars e1�= (λ_. e2). The desugaring is recursively applied.

Our monadic McCarthy transformation produces a set of mutually recursive definitions of
computation values of monadic type (in our case MultiState Int) instead of a set of mutually
recursive functions. Each labelled statement (` : S`) maps to a definition J` : S`KMM as
specified in Figure 5: for assignment X := e, the variables of e are read into temporary (pure)
variables using get, followed by a putX to write to X; variables read within conditionals
and halts are treated similarly. The resultant monadic definitions can be directly read as a
Haskell program (or an ML program after desugaring into recursive function definitions).

4 There is an additional assumption of monad strength which allows monadic computations to close over
variables in scope. Strength holds for all monads in Cartesian-closed categories (and in programming
settings). The notion of strength extends to graded monads [9] and is provided for all our examples.
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` : S J` : SKMM
` : X := Y + Z; goto `′ g` = do { y← getY; z← getZ; putX (y + z); g`′ }

` : X := k; goto `′ g` = do { putX k; g`′ }
` : if X ≥ 0 then goto `′ else goto `′′ g` = do { x← getX; if x ≥ 0 then g`′ else g`′′ }

` : halt X g` = do { x← getX; return x }

Figure 5 The monadic McCarthy transformation J−KMM. For assignment, we only give the cases
X := k and X := Y + Z; other cases, e.g., X := Y + 1, are similar. Conditional and halt forms that
have k (constants) instead of variables X are analogous.

`0 :X := 100; goto `1
`1 : if X ≥ 0 then goto `2 else goto `4
`2 :X :=X − 1; goto `3
`3 : Y := Y + 1; goto `1
`4 :R := Y + Z; goto `5
`5 : halt R

J−KMM−−−−→

g0 = do { putX 100; g1 }
g1 = do { x← getX; if x ≥ 0 then g2 else g4 }
g2 = do { x← getX; putX (x− 1); g3 }
g3 = do { y← getY; putY (y + 1); g1 }
g4 = do { y← getY; z← getZ; putR (y + z); g5 }
g5 = do { r← getR; return r }

Figure 6 Example monadic McCarthy transformation. CFG code (left) is translated into mutually
recursive definitions of computation values (right).

Figure 6 exemplifies the monadic McCarthy transformation converting an imperative
program (left) to a set of mutually recursive computation definitions (right).

The monadic McCarthy transformation produces a program with equivalent behaviour to
the original CFG (by a straightforward refactoring of McCarthy’s transformation into the
state monad). Next, we show that a more refined model can be given by targeting a graded
monad instead of a monad. This allows the target of the translation to capture the same
data-flow information as the CFG effect system’s judgements.

4.3 Graded monadic McCarthy transformation for liveness

The above monadic McCarthy transformation maps CFG terms to state monad computations,
i.e., Jl : SKMM : MultiState Int. Instead, given a graded monad MultiStateφ which provides
state monad-like behaviour (graded by our pomonoid of transfer functions φ), we give a graded
monadic McCarthy transformation J` : SKGM : MultiStateΦ(`) τ whenever Φ` (` : S) : τ &Φ(`).

We describe this graded monadic McCarthy transformation (Section 4.3.1) by first taking
the usual MultiState monad and wrapping into a trivial graded monad: one whose grades
only decorate the types but do not affect the operations and thus have no semantic meaning.
We then replace this graded monad with one whose grades have semantic meaning, refining
the types and operations of the former to give a semantic account of liveness (Section 4.3.2).

4.3.1 Transformation to a trivial graded monad

Given a monad M and a pomonoid (D,v,B, 1) one can construct a trivial graded monad
with type constructors Md

trivτ = Mτ for d ∈ D. In this construction Md
triv simply wraps M

and thus the grades have no bearing on the computation encoded by the monad. The monad
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operations of M provide the graded monad operations of Mtriv via this wrapping, and the
required graded monad laws follow from the laws of the monoid (D,v,B, 1) and monad M .

We use this construction on the MultiState monad to form a graded monad written
MultiStateφtriv graded by the pomonoid of transfer functions (DFValues → DFValues,v,B, id)
from Section 3.1. Thus a value of type MultiStateφtriv τ is a stateful computation that returns
a value of type τ with some transfer-function grade φ associated to it by its operations.

The graded monadic McCarthy transformation J−KGM enriches J−KMM (Fig. 5) in only
two ways: (i) applying sub to both g`′ and g`′′ in the translation of if, and (ii) using the
graded monad operations below in the body of do (and for �= when desugaring it):

getX : MultiStategenX

triv Int
putX : Int→ MultiStatekillX

triv Unit
return : ∀α.α→ MultiStateid

triv α

�= : ∀φ, φ′, α, β. MultiStateφtriv α→ (α→ MultiStateφ
′

triv β)→ MultiStateφBφ
′

triv β

where genX
def= λd. d ∪ {X}

killX
def= λd. d \ {X}

Since the transformation operates on the syntax of CFGs, rather than judgements of the
CFG effect system, the grades on each computation type must be inferred by generating a
set of typing constraints which are then solved (as was done in Section 3.2), by the host
language’s type system (we consider the feasibility of this in Section 4.4).

The syntactic translation results in graded monadic computations whose grades match
exactly the analysis of our CFG effect-system from Section 3:

I Lemma 2 (Soundness of the graded monadic McCarthy transformation). If Φ`(` : S) : τ&Φ(`)
and ∀`′ ∈ dom(Φ).(g`′ : MultiStateΦ(`′)

triv Int) then J` : SKGM : MultiStateΦ(`)
triv τ .

I Example 3. Let g, of type MultiStateφtriv Int, represent a liveness transfer function ‘for the
rest of the program’. Now consider the following expression (effectively prefixing g with the
statement Z :=X + Y and applying the graded McCarthy transformation J−KGM above):

do { x← getX; y← getY; putZ (x+ y); g }

By construction, its type is MultiStateφ
′

triv Int where φ′ = λd. (φ(d) \ {Z}) ∪ {X,Y } represents
the liveness transfer function for Z :=X + Y followed by the ‘rest of the program’ because

φ′ = genX B genY B killZ B φ = λd. (φ(d) \ {Z}) ∪ {X,Y }

As in Section 3.1, φ′(∅) gives us the liveness information the start of the ‘body’ of do {}
because the boundary information is that the set of live variables is empty at program exit.

I Example 4. In Figure 6, we converted an imperative program into mutually recursive
computation values g0, . . . , g5. Let φ0, . . . , φ5 stand for the transfer function grades of the
graded monadic types of g0, . . . , g5, so that gi is of type MultiStateφi

triv Int. Then these transfer
functions must satisfy the following constraints (coming from the type system):

φ0 w killX B φ1 φ1 w genX B φ2 φ1 w genX B φ4
φ2 w genX B killX B φ3 φ3 w genY B killY B φ1
φ4 w genY B genZ B killR B φ5 φ5 w genR B id

The usual fixed-point iteration gives the principal (least) solution:φ0 =λd.(d\{X,R})∪{Y, Z},
φ1 =φ2 =φ3 =φ4 =λd. (d\{R}) ∪ {X,Y, Z} and φ5 =λd. d ∪ {R}. The set of live variables at
the program start (i.e. at g0) is therefore φ0(∅) = {Y,Z}.
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4.3.2 Analysis-directed semantics via grade-based refinement
The previous section constructed the graded monad MultiStateφtriv τ as a simple wrapper over
the usual state monad; grade φ was a transfer function but it had no semantic meaning: the
grades were merely decorations on types and did not affect the operations. We can instead use
grades to refine the types and operations of the usual state monad by the liveness information,
so that graded monad operations actually depend on the grades. In this case, refinement
means restricting stores to subsets of the variables involved in a program. This paves the way
to ensuring that only semantically valid analyses can be encoded as grades. The translation
J` : SKGM remains the same but we instead replace the operations of MultiStateφtriv with the
operations of a new graded monad MultiStateφ (such that Lemma 2 holds for MultiStateφ).

Previously, MultiState and MultiStateφtriv τ represented their stores as m-tuples of Ints
where m = |Vars| (the CFG variables), i.e. MultiState τ = (Int, . . . , Int)→ τ × (Int, . . . , Int).
Now, given any subset V ⊆ Vars, we define the V-refined store Store(V ) to be V → Int,
writing ∅̂ for the only member of Store(∅). Note, Store(Vars) recovers (up to isomorphism)
the previous (Int, . . . , Int).

We now define MultiStateφ whose input and output stores are computed from φ:

MultiStateφτ = Store(reads(φ))→ τ × Store(footprint(φ))

For the input store, reads(φ) = φ(∅) gives us the subset of variables which are live-in
and thus read by a computation of type MultiStateφτ . For the output store, footprint(φ) =
φ(∅) ∪ (Vars\φ(Vars)) gives the footprint (borrowing terminology from separation logic [18])
containing those variables read or written by this computation.5 For example, do {x←
getX; y←getY; putZ (x+ y); } has grade φ = genXBgenY BkillZ = λd. (d \ {Z}) ∪ {X,Y }
(akin to Example 3) and thus reads(φ) = φ(∅) = {X,Y } and footprint(φ) = {X,Y, Z}.

The MultiStateφ type is a graded monad with refined return and state operations:

return : ∀α.α→ MultiStateidα = λx.λs.(x, ∅̂) : ∀α.α→ (Store(∅)→ α× Store(∅))
getX : MultiStategenX Int = λs.(s(X), s) : Store({X})→ Int× Store({X})
putX : Int→MultiStatekillX Unit= λx.λs.((), [X 7→x]) : Int→ (Store(∅)→ Unit× Store({X}))

On the right, we repeat the type of the operations, expanding the definition of MultiStateφ.
The input and output stores of return are both the empty map as reads(id) = footprint(id) = ∅
representing that no variables are read or written by return. Thus, return represents a pure
computation as isomorphic to the identity. The getX and putX operators are similarly refined.

The graded monad �= resembles the usual state monad �= but with three auxiliary
operations (J, /, and ↓ below) to manage the variously refined stores:

�= : ∀φ, φ′, α, β. MultiStateφα→ (α→ MultiStateφ′
β)→ MultiStateφBφ′

β

= λm.λf.λs. let (a, s′) = m(↓φ,φ′ s) in
let (b, s′′) = (f a)(s Jφ,φ′ s′) in (b, s′/φ,φ′s′′)

where ↓φ,φ′ : Store(reads(φB φ′))→ Store(reads(φ)) (restrict)
Jφ,φ′ : Store(reads(φB φ′))× Store(footprint(φ))→ Store(reads(φ′)) (merge1)
/φ,φ′ : Store(footprint(φ))× Store(footprint(φ′))→ Store(footprint(φB φ′)) (merge2)

Here ↓φ,φ′ s restricts the incoming store s : Store(reads(φB φ′)) to Store(reads(φ)), i.e., just
those variables live in computation m : MultiStateφα. The operation s Jφ,φ′ s′ pads the

5 A more refined graded state monad would return an output store containing only those variables that
are written-to (e.g. as in [15]). However, liveness analysis alone does not allow us to compute just the
variables written-to. The footprint is therefore a safe over-approximation of the written-to set.
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domain of store s′ : Store(footprint(φ)) (resulting from m) with the variables in store s, to
produce a store whose domain is just the live variables required for computation (f a). The
s′/φ,φ′s′′ operation similarly pads the domain of store s′′ : Store(footprint(φ′)) (resulting
from (f a)) with the variables in store s′ to give the final updated store its required domain.

The resulting�= operation thus ‘filters’ input stores by what is live, and output stores by
the footprint enabling, e.g., soundness of dead-code removal to be proved (future work). The
usual state monad �= is recovered by redefining ↓φ,φ′ s = s and s Jφ,φ′ s′ = s/φ,φ′s′ = s′.

Appendix C provides more details and the proof that this is indeed a graded monad. For
brevity, we omit the definition of sub.

4.4 Targeting a host language and applications
We have used Haskell-like do-notation as syntactic sugar for the (graded) monad operations in
some functional language. We can take this a step further, concretely targeting GHC/Haskell,
leveraging its combination of a practical functional language with an advanced type system.
Appendix B gives more details, showing how the Section 4.3.1 can be captured in Haskell.

This approach works well for sequential code, but reaches its limits with branching and
recursion as GHC does not have an appropriate notion of subtyping nor can it compute fixed-
points of type equations. A system with subtyping and equirecursive types (e.g., OCaml) may
fare better. An alternate approach is to make the graded monadic McCarthy transformation
not just syntax directed but type-and-effect directed. In this approach, solutions to the
data-flow equations can be computed (e.g, by work-list algorithm) before applying the graded
monadic McCarthy transformation. The resulting (least) transfer functions can then be used
in the translation to specialise the types of the resultant graded monadic program.

Whilst Haskell is shown as a target here, our approach is likely to be more useful in
the setting of a proof assistant when formalising language semantics or a compiler and its
optimisations (e.g., the CakeML verified compiler [25]).

4.5 Generalising to other data-flow analyses
So far we focused on liveness, where assignment statements are decomposed into sequences
of get and put operations. For other data-flow analyses, we cannot perform the same
translation of assignment as it may not be similarly decomposable. For example, for available
expressions we cannot associate kill with put nor gen with get. To capture these other
data-flow analyses, we can parameterise our graded monadic McCarthy transformation by
a specialised interpretation for assignments [` : x := e]GM : M 〈〈`:x:=e〉〉TFUnit, graded by the
assignment transfer function. The translation is then the same as Section 4.3, but with
assignments translated as:

J` : x := e; goto `′KGM = do { [` : x := e]GM; g`′}

We then require that [` : x := e]GM simulates the behaviour of assignment in the non-graded
monadic McCarthy transformation J−KMM on the MultiState monad. Using this generalisation
for different analyses with specialised graded monads akin to Section 4.3.2 is further work.

5 Conclusions and discussion

We demonstrated that a type-and-effect system based on transfer functions can be used to
compute data-flow values at any point in a CFG, and in particular can be used for liveness
analysis. Furthermore we have shown that the McCarthy transformation can be adapted
into a (graded) monadic form which embeds live variable analysis using control-flow graphs
into functional programs, where transfer functions are grades of a graded monad.
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This not only unifies two separately developed fields, but also contributes to the evolving
discussion of “what properties do we expect of the effect algebras used as grades”. In particular,
it shows that the distributivity axiom posited for effect quantales is over-restrictive in that
it does not allow representation of non-distributive data-flow problems such as constant
propagation. Using a pomonoid (or even pre-ordered monoid as originally phrased by
Katsumata) seems to impose minimal requirements on a model and so is most general.
However, it then admits partial orders in which there is no concept of a least (or principal)
solution and which do not seem to model any known static analysis. We suggest an appropriate
model should be a pomonoid (D,v,B) which satisfies the following requirements:

B is monotonic w.r.t. v (following Katsumata and allowing distributivity);
D is bounded complete: whenever set X ⊆ D has some upper bound then it has a least
upper bound.

An advantage of our graded-monadic approach compared to classical data-flow analysis is the
potential for a correct-by-construction property; correctness of an analysis can be established
at the semantic level, either denotationally or by showing a graded-type-preservation property
in a reduction-style operational semantics. Correctness then follows from a number of results:
1. that live-variable analysis is achieved by fixed-point calculation over equations on transfer

functions (Theorem 1);
2. soundness of the McCarthy transformation (established in [12]); soundness of replacing

McCarthy’s explicit state passing with the state monad (well-known); and soundness of
our novel transformation to a graded state monad (Lemma 2);

3. that our graded monad MultiStateφ really is a graded monad (Section 4.3.2 / Appendix C);
4. that reduction in our (graded monad) calculus exhibits progress and preservation.
The last point is the subject of future work, which we wish to explore in the context of
general data-flow analyses and proving the correctness of program transformations.

Related work. Benton et al. [2] use a graded-monad-based effect system to model non-
determinism in an otherwise pure functional language and then use this information in a
logical relation semantics to prove program transformations correct, whereas our focus is on
embedding general data-flow analyses for imperative languages into graded monads.

Dijkstra monads [23] are a generalisation of monads used for verifying program conditions,
where the annotation carries the precondition and postcondition of an expression. While
more general, they achieve their full power in a dependently typed language. By contrast,
we manage to get far in a graded monadic setting without dependent types.

Further work. As discussed in Section 4.5, further work is to study the graded monadic
McCarthy approach in more detail for analyses other than liveness, which was our focus here.

The current work embeds intra-procedural program analyses on control-flow graphs as
grading inference problems in graded-monadic forms of effect systems. Further work might
include showing how notions from inter-procedural analysis, such as context-sensitivity and
the IDE and IFDS frameworks of Reps et al. [21], along with how notions such as bidirectional
analysis fit into the “properties as grades of a graded monad” model.

Section 4.4 discussed how the graded monadic embedding is likely to be most useful in
the setting of verifying optimising compilers (rather than, say, general Haskell programming).
Exploring our approach in this context is future work.
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A Fixed points and transfer functions

Computing transfer functions allows us to compute data-flow values at program points in
imperative programs, as we now show.

Let (N,E,L) be a CFG. We consider backwards analyses (forwards ones are similar). For
all n ∈ N there are two associated data-flow values: DF In(n) and DFOut(n), which we here
abbreviate to dIn

n and dOut
n . Writing φn for the transfer function for node n, then dIn

n satisfies
dIn
n = φn(dOut

n ). We also have an equation on dOut
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then dOut
n = BI, where BI represents the boundary information (∅ both in the cases of liveness

and VBE). If n has a non-empty set of successors, then: dOut
n =

⊔
s∈succ(n) d

In
s

Thus for every node in N we have two data-flow equations, say k in total (where k = 2|N |).
Let ~d be the k-length vector of all data-flow values associated with the nodes, where di is
its ith component. The data-flow equations give rise to a k-length vector ~h of monotonic
functions in DFValuesk → DFValues such that di = hi(~d), for 1 ≤ i ≤ k. The solution of
the data-flow equations is the least vector ~d that satisfies these equations. Starting from a
k-length vector (⊥, . . . ,⊥), we eventually get to the least solution, given by:

~d = fix (λ~d′. (h1(~d′), . . . , hk(~d′)))

where fix(f) is the least fixed point of a function f .
By contrast, our approach in this paper is to find monotonic (transfer) functions Hi :

DFValues → DFValues (i.e., on single data-flow values) per node that satisfy di = Hi(BI).
In this case, we have a function Ĥ = λd. 〈H1(d), . . . ,Hk(d)〉 that maps to a tuple of data-flow
values, given by the least fixed point:

Ĥ = fix(λĤ ′. λd. 〈h1(H ′1(d), . . . ,H ′k(d)), . . . , hk(H ′1(d), . . . ,H ′k(d))〉)

In this paper, the effects correspond to a subset of the Hi functions (either just the incoming
ones or the outgoing ones), which end up being transfer functions of the continuations (or
“from this point on in the CFG”) – we can refer to them as cumulative transfer functions. The
least fixed point Ĥ in this expression satisfies di = Hi(BI) by definition of fixed points. As
di = hi(~d) as well, the two approaches give the same result by least fixed point uniqueness.

The main application of these facts is in the proof of Theorem 1. By the conventional
definition of live variables, the data-flow equations for the CFG language in this paper are:

Live(` : halt v) = fv(v)
Live(` : if v ≥ 0 then goto `1 else goto `2) = fv(v) ∪ Live(`1 : L(`1)) ∪ Live(`2 : L(`2))
Live(` : X := e; goto `′) = 〈〈` : X := e〉〉TF(Live(`′ : L(`′)))

where Live(` : S) is the set of live variables at label ` corresponding to statement S and fv(v)
is the set of free variables in v. This definition is recursive; the set L̂ive corresponds to its
least solution in the partial order of sets (that is, subsets of the set of all variables in a CFG).

Proof of Theorem 1. Let there be n instructions labelled `1, . . . , `n in the CFG. We want
to show that Φ̂(`)(∅) = L̂ive(` : L(`)) hold for all `. For any label `, the exact link between
Φ̂(`) and all the other Φ̂(`′) depends on what exactly the instruction at ` is.

For L(`) = halt v, we have Φ̂(`) = 〈〈v〉〉TF = λd. d ∪ fv(v).
For L(`) = if v ≥ 0 then goto `′ else goto `′′, we have Φ̂(`) = 〈〈v〉〉TF B (Φ̂(`′) t Φ̂(`′′)),
that is, Φ̂(`) = λd. fv(d) ∪ Φ̂(`′)(d) ∪ Φ̂(`′′)(d).
For L(`) = X := e; goto `′, we get Φ̂(`) = 〈〈` : X := e〉〉TF B Φ̂(`′), that is, we have
Φ̂(`) = λd. 〈〈` : X := e〉〉TF(Φ̂(`′)(d)).

Looking at the previous discussion, L(`) corresponds exactly to Ĥ as it is also a least
solution. Similarly, the expressions for L̂ive are analogous to ~d when looking at the vector
given by L̂ive(`1 : L(`1)), . . ., L̂ive(`n : L(`n)). The empty set is the bottom element of the
data-flow lattice for liveness, so BI = ∅. Thus L̂ive(`i : L(`i))(∅) = Φ̂(`i) for all 1 ≤ i ≤ n. J
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B Haskell embedding

Modern Haskell as provided by the Glasgow Haskell Compiler (GHC) (from at least version
8.2 onwards) can embed our graded monads with transfer-function effect algebras in its types,
leveraging our graded monadic McCarthy transformation. Graded monads can be captured
via the following type class which uses type families to provide the grading pomonoid (based
on the effect-monad package6 by Orchard et al. [19]):

import Prelude hiding (Monad(..)) -- hide regular monads and then...
import qualified Prelude as M -- ...import as qualified to wrap monads later

class GradedMonad (m :: d → * → *) where -- Pomonoid graded monads
type Unit m :: d -- {Type-level monoid providing the
type Seq m (r :: d) (s :: d) :: d -- effect algebra over domain ‘d‘}
type Sub m (r :: d) (s :: d) :: Constraint -- Type-level partial order
-- Graded monad operations
return :: a → m (Unit m) a
(>>=) :: m r a → (a → m s b) → m (Seq m r s) b
sub :: Sub m r s ⇒ m r a → m s a

We show the encoding of the compositional live-variable analysis, which is graded by the effect
algebra of transfer functions. It is a commonly held belief that type-level functions in Haskell
cannot be partially applied, mainly because a type-family based encoding is considered. We
show an alternate approach that is much more flexible and suits out purposes well.

To capture transfer functions at the type level, we use a class-based encoding with d =
[Symbol] → [Symbol] → Constraint meaning that transfer functions are functional relations
between two type-level lists of symbols (which are used to represent sets of variables). These
type-level lists later get normalised to form sets by removing duplicates and giving an
arbitrary consistent ordering, leveraging the type-level-sets package.7

The genv and killv functions for variable v are defined at the type-level as:

class Gen (v :: Symbol) (dIn :: [Symbol]) (dOut :: [Symbol]) | v dIn → dOut
instance Gen v dIn (v ’: dIn) -- add ‘v‘ to the incoming set ‘dIn‘
class Kill (v :: Symbol) (dIn :: [Symbol]) (dOut :: [Symbol]) | v dIn → dOut
instance Remove dIn v dOut ⇒ Kill v dIn dOut -- rem ‘v‘ from ‘dIn‘ to get ‘dOut‘

Classes are types of kind Constraint so Gen v :: [Symbol] → [Symbol] → Constraint. The
syntax v dIn → dOut is a functional dependency telling the type checker that v and dIn
uniquely determine dOut, i.e., these class-based relations are really functions. The single
instances of each class are then equivalent to the usual λ-based definitions of genv and killv.

The definition of Kill uses a recursive type-level function for removing an element from a
list, again encoded as a functional relation (for brevity, we skip its recursive definition):

class Remove (xs :: [Symbol]) (x :: Symbol) (ys :: [Symbol]) | xs x → ys

We can capture type-level identity and function composition (which we write as :|> due to
its later use for the effect algebra) as:

class Id dIn dOut | dIn → dOut -- Identity function
instance Id d d

6 https://hackage.haskell.org/package/effect-monad
7 https://hackage.haskell.org/package/type-level-sets

https://hackage.haskell.org/package/effect-monad
https://hackage.haskell.org/package/type-level-sets
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class (:|>) f g dIn dOut -- Function composition
instance (f dIn dMid, g dMid dOut) ⇒ (:|>) g f dIn dOut

We then define a data type for a Haskell implementation of the graded monad MultiStatetriv
by wrapping a monad transformer stack of state monad transformers capturing enough
variables for our program. Here we capture a maximum of four mutable variables as:

data MultiState (r :: [Symbol] → [Symbol] → Constraint) (a :: Type) =
MultiState {unMS :: StateT Int (StateT Int (StateT Int (StateT Int Identity))) x}

We give MultiState a graded monad instance which uses the above type-level identity and
function composition:

instance GradedMonad MultiState where
type Unit MultiState = Id
type Seq MultiState r s = r :|> s
type Sub MultiState r s = PointwiseSub r s

return x = MultiState $ M.return x
(MultiState x) >>= k = MultiState ((M.>>=) x (unMS ◦ k))
sub (MultiState x) = MultiState x

The operations wrap the underlying monad, packing and unpacking the wrapper data type
via its constructor and deconstructor. We then define get and put operations for each of the
variables we need, e.g. for X we have "x" as its type-level symbol representation:
getX :: MultiState (Gen "x") Int
getX = MultiState get

putX :: Int → MultiState (Kill "x") ()
putX x = MultiState (put x)

Example 3 showed the translation of z := x+ y as a prefix for a program labelled g. In our
Haskell implementation, we can write exactly the same code:

exm3 g = do { x ← getX; y ← getY; putZ (x + y); g }

This leverages GHC’s RebindableSyntax extension which allows do {} to be desugared into
graded monad operations instead of monad operations. We can then query GHC’s type
inference which yields the type:

exm3 :: MultiState s b → MultiState (Gen "x" :|> (Gen "y" :|> (Kill "z" :|> s))) b

To get the data-flow at the current program point, we apply the transfer function grade to
the empty set (Section 4.3.1) via the following function:

atProgramPoint :: r ’[] dOut ⇒ MultiState r x → Set (AsSet dOut)
atProgramPoint (MultiState _) = Set

where AsSet normalises the type-level list into a set representation and Set is a data type
with a phantom type parameter (not used in any data constructor).

Thus atProgramPoint captures the resulting data-flow value dOut as a type-level set by
forcing the data-flow value input to unify with the boundary value (empty set ’[]). Applied
to exm3, GHC calculates the following type representing the set {x, y} as expected:

atProgramPoint (exm3 (return ())) :: Set ’["x", "y"]
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C Details and proofs for the graded monad of liveness

The state-management operations used in the graded monad definition of Section 4.3.2 (which
were omitted for brevity) are defined in turn as follows:

↓φ,φ′ : Store(reads(φB φ′))→ Store(reads(φ)) = λs.s|φ(∅)

i.e., we restrict the domain of the incoming store s to the set reads(φ) (hence the name of
restriction for this operator). This relies on the property that x ∈ φ(∅) =⇒ x ∈ (φB φ′)(∅)
which is proved by induction on the generating set of transfer functions (see supplement).

Jφ,φ′ : Store(reads(φB φ′))× Store(footprint(φ))→ Store(reads(φ′))

= λ(s, s′).{
{
x 7→ s′(x) x ∈ footprint(φ)
x 7→ s(x) x ∈ reads(φB φ′) ∧ x 6∈ footprint(φ)

}

where x ∈ reads(φ′) i.e., choose from the right state s′ if x is in its domain, otherwise chose
from s if x is in its domain but not in the domain of s′. We have that x 6∈ footprint(φ)∧ x 6∈
reads(φB φ′) =⇒ x 6∈ reads(φ′) (by induction on generating set of transfer functions) which
implies that the resulting map is well-defined (a total function).

/φ,φ′ : Store(footprint(φ))× Store(footprint(φ′))→ Store(footprint(φB φ′))

= λ(s, s′).{
{
x 7→ s′(x) x ∈ footprint(φ′)
x 7→ s(x) x ∈ footprint(φ) ∧ x 6∈ footprint(φ′)

}

where x ∈ footprint(φB φ′). This merging operator resembles J, where an additional lemma
x 6∈ footprint(φ) ∧ x 6∈ footprint(φ′) =⇒ x 6∈ footprint(φB φ′) (by induction on generating
set of transfer functions) implies that the resulting map is well-defined (a total function).

I Proposition 5 (Restriction right unit). ∀φ and s ∈ Store(reads(φ)) then ↓φ,id s ≡ s

I Proposition 6 (Merge / right unit). ∀φ and s ∈ Store(footprint(φ)) then s/φ,id ∅̂ ≡ s

I Proposition 7 (Merge J right unit). ∀φ′ and s ∈ Store(reads(φ′)) then s Jid,φ′ ∅̂ ≡ s

I Proposition 8 (Merge / left unit). ∀φ′ and s ∈ Store(footprint(φ′)) then ∅̂/id,φ′s≡s

I Proposition 9 (Restriction closure). ∀φ, φ′, φ′′ and s ∈ Store(reads((φB φ′) B φ′′)) then:
↓φ,φ′ (↓φBφ′,φ′′ s) ≡ ↓φ,φ′Bφ′′ s

I Proposition 10 (Merge / associativity). ∀φ, φ′, φ′′ and s ∈ Store(footprint(φ)),
s′ ∈ Store(footprint(φ′)), and s′′ ∈ Store(footprint(φ′′)) then:

(s/φ,φ′s′)/(φBφ′),φ′′s′′ ≡ s/φ,φ′Bφ′′(s′/φ′,φ′′s′′).

I Proposition 11 (Merge //J associativity). ∀φ, φ′, φ′′ and s ∈ Store(reads((φB φ′) B φ′′))
and s′ ∈ Store(footprint(φ)) and s′′ ∈ Store(footprint(φ′)) then:

s J(φBφ′),φ′′ (s′/φ,φ′s′′) ≡ (s Jφ,φ′Bφ′′ s′) Jφ′,φ′′ s′′

I Proposition 12 (Merge J/restriction commutativity). ∀φ, φ′, φ′′ and s ∈ Store(reads((φB
φ′) B φ′′)) and s′ ∈ Store(footprint(φ)) then: (↓φBφ′,φ′′ s) Jφ,φ′ s′ ≡ ↓φ′,φ′′ (s Jφ,φ′Bφ′′ s′)

The supplementary material (https://doi.org/10.5281/zenodo.3784967) provides
the proofs. We now prove the identity and associativity axioms for the graded monad.
We refer to the monoid axioms as idL (id B φ = φ) and idR (φ B id = φ) and assoc
((φB φ′) B φ′′ = φB (φ′ B φ′′)).

https://doi.org/10.5281/zenodo.3784967


A. Ivašković, A. Mycroft, and D. Orchard 15:23

(right identity). ∀m : Mφα then: m�=φ,id return ≡ m : Mφα which follows by:
m�=φ,id return

{defs.+β} ≡ λs.let(y, s′) = m(↓φ,id s) in let(z, s′′) = ((λx.λs.(x, ∅̂)) y)(s Jφ,id s′) in (z, s′/φ,ids′′)
{β} ≡ λs.let(y, s′) = m(↓φ,id s) in let(z, s′′) = ((λs.(y, ∅̂))(s Jφ,id s′) in (z, s′/φ,ids′′)
{β} ≡ λs.let(y, s′) = m(↓φ,id s) in let(z, s′′) = (y, ∅̂) in (z, s′/φ,ids′′)
{β} ≡ λs.let(y, s′) = m(↓φ,id s) in (y, s′/φ,id ∅̂)

{idR+P.5}≡ λs.let(y, s′) = m s in (y, s′/φ,id ∅̂)
{idR+P.6}≡ λs.let(y, s′) = m s in (y, s′))
{β + η} ≡m

(left identity). ∀x : α, f : α→Mφ′
β then return x�=id,φ′ f = f x : Mφ′

β follows by:
return x�=id,φ′ f

{defs.+β} ≡ λs.let(y, s′) = ((λx.λs.(x, ∅̂))x)(↓id,φ′ s) in let(z, s′′) = (f y)(s Jid,φ′ s′) in (z, s′/id,φ′s′′)
{β} ≡ λs.let(y, s′) = (x, ∅̂) in let(z, s′′) = (f y)(s Jid,φ′ s′) in (z, s′/id,φ′s′′)
{β} ≡ λs.let(z, s′′) = (f x)(s Jid,φ′ ∅̂) in (z, ∅̂/id,φ′s′′)

{idL+P.7} ≡ λs.let(z, s′′) = (f x)s in (z, ∅̂/id,φ′s′′)
{idL+P.8} ≡ λs.let(z, s′′) = (f x)s in (z, s′′)
{β+η} ≡ f x

(associativity). ∀m : Mφα, f : α→Mφ′
β, g : β →Mφ′′

γ then
(m�=φ,φ′ f)�=φBφ′,φ′′ g = m�=φ,φ′Bφ′′ (λx. f x�=φ′,φ′′ g)
follows by:

(m�=φ,φ′ f)�=φBφ′,φ′′ g

{defs+β} ≡ λs.let(y, s′) =
((λs.let(y, s′) = m(↓φ,φ′ s) in

let(z, s′′) = (f y)(s Jφ,φ′ s′) in (z, s′/φ,φ′s′′))

)
(↓φBφ′,φ′′ s)

in let(z, s′′) = (g y)(s JφBφ′,φ′′ s′) in (z, s′/φBφ′,φ′′s′′)

{β} ≡ λs.let(y, s′) =
( let(y, s′) = m(↓φ,φ′ (↓φBφ′,φ′′ s)) in

let(z, s′′) = (f y)((↓φBφ′,φ′′ s) Jφ,φ′ s′) in (z, s′/φ,φ′s′′)

)
in let(z, s′′) = (g y)(s JφBφ′,φ′′ s′) in (z, s′/φBφ′,φ′′s′′)

{let-assoc} ≡ λs.let(y, s′) = m(↓φ,φ′ (↓φBφ′,φ′′ s)) in
let(z, s′′) = (f y)((↓φBφ′,φ′′ s) Jφ,φ′ s′)
let(z′, s′′′) = (g z)(s J(φBφ′),φ′′ (s′/φ,φ′s′′)) in (z′, (s′/φ,φ′s′′)/(φBφ′),φ′′s′′′)

{assoc+P.9-12} ≡ λs.let(y, s′) = m(↓φ,φ′Bφ′′ s) in
let(z, s′′) = (f y)(↓φ′,φ′′ (s Jφ,φ′Bφ′′ s′)) in
let(z′, s′′′) = (g z)((s Jφ,φ′Bφ′′ s′) Jφ′,φ′′ s′′) in(z′, s′/φ,φ′Bφ′′ (s′′/φ′,φ′′s′′′))

{let-assoc} ≡ λs.let(y, s′) = m(↓φ,φ′Bφ′′ s) in
let(z, s′′) =

( let(y, s′′) = (f y)(↓φ′,φ′′ (s Jφ,φ′Bφ′′ s′)) in
let(z, s′′′) = (g y)((s Jφ,φ′Bφ′′ s′) Jφ′,φ′′ s′′) in (z, s′′/φ′,φ′′s′′′)

)
in (z, s′/φ,φ′Bφ′′s′′)

{β} ≡ λs.let(y, s′) = m(↓φ,φ′Bφ′′ s) in
let(z, s′′) = (

(
λx.λs.let(y, s′) = (f x)(↓φ′,φ′′ s) in
let(z, s′′) = (g y)(s Jφ′,φ′′ s′) in (z, s′/φ′,φ′′s′′)

)
y)(s Jφ,φ′Bφ′′ s′)

in (z, s′/φ,φ′Bφ′′s′′)
{defs+β} ≡m�=φ,φ′Bφ′′ (λx. f x�=φ′,φ′′ g)
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