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Abstract

Free shear and wall-bounded buoyancy-driven turbulent flows occur in both natural environ-
ments and industrial situations. In this thesis, to better understand the entrainment process
within these flows, experiments and theory have been used to investigate point and dis-
tributed buoyancy sources and, in particular, the effect of a bounding vertical wall on these
flows.

A free shear flow was first investigated by performing velocity and scalar edge measure-
ments on an axisymmetric plume created by a continuous point source release of buoyancy.
By conditionally sampling the velocity measurements based on the presence of both eddies
and plume fluid, engulfment, whereby large pockets of ambient are engulfed in to the plume,
was shown to be a dominant turbulent entrainment process.

To isolate the effect of a wall on a turbulent buoyancy-driven flow, a line plume distant
from all vertical boundaries and a wall plume, adjacent to a vertical wall were also studied.
Simultaneous velocity and buoyancy field measurements were performed and a reduction in
the net entrainment, and entrainment coefficient, for a wall plume were found. This reduc-
tion was investigated by considering an energy decomposition of the entrainment coefficient
where the relative contributions of turbulent production, buoyancy and viscous terms were
calculated. The reduced entrainment was also investigated by considering the statistics of
the turbulent interface.

Finally, simultaneous velocity and buoyancy field measurements on a vertically dis-
tributed buoyant plume were performed by forcing relatively dense fluid through a very
low porosity plate. A reduced entrainment coefficient, compared to that of a wall plume,
was observed. In order to model the ventilation of a room with a heated or cooled wall the
flow was then enclosed within a mechanically ventilated model room. The evolving and
steady-state ambient stratification was measured using dye-attenuation with an LED-light

bank for varying buoyancy fluxes and ventilation flow rates.
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Chapter 1
Introduction

Turbulent flows driven by continuous buoyancy sources occur in both industrial and geo-
physical environments. This thesis considers four separate turbulent buoyancy-driven flows
that often occur within industrial settings. Firstly, an axisymmetric plume, the result of a
point source of buoyancy, that may occur for example as a result of the heat from a com-
puter in an office. Secondly, a line plume, the result of a horizontal line source of buoyancy,
that may occur within a building as a result of a chilled beam acting to cool down the room.
Thirdly, a wall line plume, where a line plume is placed immediately adjacent to a wall, for
example the region directly above a radiator. Finally, a vertically distributed buoyant plume,
the result of a vertically distributed wall source of buoyancy, for example the downdraught
resulting from a relatively cold, natural convective, flow from a glazed facade within a build-
ing in winter (Heiselberg, 1994).

Central to the modelling of the flows described above are ‘plume models’ that provide
parametrisation of the turbulent mixing that occurs within the flow. The modelling of plumes
dates back to Zeldovich (1937) who used the assumption of self-similarity combined with
a mixing-length model (Prandtl, 1925), where the mixing-length was assumed to be pro-
portional to the plume width, to derive a system of ordinary differential equations that de-
termine the velocity and buoyancy profiles which, however, were not presented. Schmidt
(1941) used a similar mixing-length model and presented numerical solutions of the velocity
and buoyancy profiles. Taylor (1945) provided a simple yet effective alternative parametri-
sation based on macroscopic flow dynamics, where the mean horizontal entrained velocity
is assumed to be directly proportional to a characteristic vertical velocity scale via a constant
entrainment coefficient. Although Taylor (1945) was the first to propose the entrainment as-
sumption the plume model is typically cited as the Morton et al. (1956) plume model. The
value of the entrainment coefficient has been the focus of much work on plumes since the

proposed model of Taylor (1945). Although there is reasonable consensus on the value of



2 Introduction

the entrainment coefficient (van Reeuwijk and Craske, 2015) in an axisymmetric plume, the
dynamical process of turbulent entrainment is not yet fully understood.

Compared to the numerous recent studies on axisymmetric plumes (e.g. Ezzamel et al.
(2015); Van Reeuwijk et al. (2016)) the line plume has received relatively little attention,
which may reflect the difficulty in experimentally achieving a line source of uniform buoy-
ancy flux. There is, however, reasonable agreement on the entrainment value of the line
plume.

The presence of a wall immediately adjacent to the line plume adds complexity to the
simple plume theory of Morton et al. (1956), such as the addition of shear stress at the wall,
and necessarily leads to the question of whether the flow is sufficiently self-similar. Despite
their obvious applications, wall line plumes, referred to hereafter as wall plumes, have re-
ceived very little attention, especially in the previous two decades where advancement in
experimental techniques has led to a flurry of papers in other buoyancy-driven configura-
tions. Of the few studies of wall plumes available (Grella and Faeth, 1975; Lai and Faeth,
1987; Sangras et al., 2000) there is agreement in the observation of significantly reduced
entrainment as a result of the presence of the wall. However, the processes behind the reduc-
tion in entrainment, or indeed the turbulent entrainment process itself, were not investigated
deeply.

Given the additional difficulty of producing a vertically distributed buoyancy source, the
numerous recent studies on this flow (Cooper and Hunt, 2010; Gayen et al., 2016; Kaye
and Cooper, 2018; McConnochie and Kerr, 2015) seems somewhat at odds with the lack
of literature on wall plumes. However, of particular application to this problem, aside from
the industrial application of heated or cooled walls, is the dissolution of vertical ice sheets.
While there is a very large field of natural convective studies to guide this problem (see
Miroshnichenko and Sheremet (2018) for a broad review of the numerical and experimental
natural convective literature), the application of plume theory to the flow is relatively recent
(Cooper and Hunt, 2010; Wells and Worster, 2008) with the motivation of providing simple
yet robust models governing the melting of the ice and ultimately predicting future rises in
sea level (Gayen et al., 2016). Despite the recent interest, however, there is relatively little
consensus on the entrainment coefficient for this type of flow with reported values ranging
across an order of magnitude.

Given that plume theory is able to simply and effectively model buoyancy sources fre-
quently occurring within buildings, the plume theory of Morton et al. (1956) naturally lends
itself well to the modelling of ventilation, and the resulting stratification that develops,
within rooms. While the literature has primarily focussed on localised buoyancy sources by

successfully modelling the developing stratifications resulting from a point source of buoy-



ancy within sealed or ventilated environments (Linden et al., 1990), adapting the theory to
vertically distributed buoyancy sources to effectively model the developing stratification has
proven more challenging (Bonnebaigt et al., 2018; Cooper and Hunt, 2010).

This thesis aims to extend the knowledge of plumes by performing high-resolution ve-
locity and buoyancy measurements on the configurations described above. In doing so, we
aim to aid consensus to the previously reported entrainment coefficients, particularly in the
wall-bounded configurations described above, and provide insights into the dynamical en-
trainment process of both the free and wall-bounded flows, while examining the mechanisms
that inhibit the entrainment of buoyancy-driven turbulent wall-bounded flows. Further, we
provide buoyancy measurements of the sealed and mechanically ventilated vertically dis-
tributed buoyant plume.

Throughout this thesis, the introduction and description of the theory of the flows are
mostly self-contained within the respective chapters so that they may be set in context with
the various configurations studied. However, in chapters 2 and 3 we describe the theory
of entrainment and experimental techniques which are common across all, or most, of the
chapters.

In chapter 4 we present simultaneous two-dimensional velocity and scalar measure-
ments on a central vertical plane in an axisymmetric pure turbulent plume. We use an
edge-detection algorithm to determine the edge of the plume and compare the data obtained
in both a fixed Eulerian frame and a dynamical plume coordinate system defined in terms
of the instantaneous turbulent/non-turbulent interface (TNTI). In chapter 5 we present si-
multaneous two-dimensional measurements of the velocity and buoyancy fields on a central
vertical plane in two-dimensional line plumes: a free plume distant from all vertical bound-
aries and a wall plume, adjacent to a vertical wall. Data are again presented in both an
Eulerian frame of reference and a plume coordinate system that follows the instantaneous
TNTI of the plume. In chapter 6 we present simultaneous velocity and buoyancy field mea-
surements of a vertically distributed buoyancy source. The buoyancy source is created by
forcing salt water through a plate with very low porosity, thus creating a distributed source.
We then consider the confined sealed and confined ventilated flow and measure the resulting
buoyancy stratification within the enclosure using dye attenuation. Finally, we present the
conclusions of the thesis in chapter 7.

The structure of the thesis follows the chronological order of the plume configurations
investigated. The sequence of investigations follows a path of increasing complexity in
the flow configuration which broadly correlates with the currently available literature on
that particular flow. That is, there are more studies on axisymmetric plumes than free line

plumes and, similarly, more studies on free line plumes than wall line plumes. With this
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in mind, the sequence of investigations was chosen deliberately; the results from the study
of the axisymmetric plume are able to inform the free line plume study, which in turn are
able to inform the wall line plume study which ultimately guide the investigation into the
vertically distributed wall plume.

The material in chapter 4 comprises a significant proportion of the following collabora-
tive publication

* Burridge, H., Parker, D., Kruger, E., Partridge, J., & Linden, P. (2017). Conditional
sampling of a high Péclet number turbulent plume and the implications for entrain-
ment. Journal of Fluid Mechanics, 823, 26-56.

Some of the analysis and material in the chapter was performed in collaboration, which we
include to preserve the narrative of the work performed solely by the author and it is made
clear in the chapter 4 sections as to where this is the case.

The material in chapter 5, with the exception of § 5.8, comprises the following publica-
tion

* Parker, D., Burridge, H., Partridge, J., & Linden, P. (2020). A comparison of entrain-
ment in turbulent line plumes adjacent to and distant from a vertical wall. Journal of
Fluid Mechanics, 882, A4.

The material presented in this chapter is the sole work of the author, however, an appendix

related to this chapter was performed in collaboration as specified in the appendix.



Chapter 2

Theory

In this section we describe the theory of turbulent entrainment and introduce the classical
plume entrainment model of Morton et al. (1956).

A continuous release of buoyant fluid into an ambient environment of uniform density
leads to a buoyancy force on the surrounding fluid particles. This buoyancy force leads
to convective motion. By assuming that gravity is aligned with the vertical acting in the
negative direction, a positive buoyancy force results in a positive vertical (upward) motion
of the fluid particles and vice versa. For the purposes of describing the theory we restrict
attention to a positive buoyancy force. The continuous release of buoyancy, therefore, results
in a continuous upward motion of buoyant fluid. Through mixing, and ultimately diffusion,
buoyancy is imparted into the initially quiescent ambient fluid and, as a result, the volume
flux of buoyant fluid increases with vertical distance from the buoyancy source. The term
‘plume’ has come to describe the flows resulting from a localised source of buoyancy, e.g.
a point source or a horizontal line source which is localised within the plane normal to the
line source, characterising the spread of buoyancy with vertical distance from the source.

In particular, we are concerned with the above process within a turbulent regime. This
process may broadly be described as turbulent entrainment. Although turbulent entrainment
is not restricted to the mixing of irrotational and turbulent fluid, or indeed the mixing of
active scalars, in this thesis we define turbulent entrainment as the process by which mo-
mentum, through both pressure gradients and viscous effects at the plume edge, vorticity,
through molecular diffusion (Batchelor, 1954), and the active scalar be it heat or a solute,
through molecular diffusion, are conferred upon initially irrotational ambient fluid. The dif-
fusion of scalars (i.e. heat or a solute) will occur wherever there are scalar gradients such
as the interface between the turbulent plume and irrotational fluid, but also through scalar

gradients within the turbulent plume. Turbulent mixing is the process whereby diffusion
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is increased due to stretching of the scalar interfaces by the turbulent dynamics. Turbulent
entrainment is a process whereby entrainment is enhanced through turbulent mixing.

In describing the theory we consider the case of the flow resulting from a point source
of buoyancy flux, which results in a turbulent axisymmetric plume, however, the physical
processes described are analogous in all the plumes considered in this thesis. We therefore
first describe the coordinate system and introduce the flow quantities for an axisymmetric
plume.

We adopt a cylindrical coordinate system, such that the point source of buoyancy flux
is at the origin, and define the velocity w(r, ¢,z,¢) in the vertical z-direction, the veloc-
ity u(r,¢,z,¢) in the radial r-direction, the plume and initial ambient density p(r, ¢,z,¢)
and p,, respectively, the buoyancy b(r,¢,z,t) = g(pa — p(r,9,2,t))/p, and the vorticity
@(r,¢,z,t). The pressure p(r,@,z,t) is defined relative to the hydrostatic pressure so that
dP(r,¢,z,t)/dz=dp(r,¢,z,t)/dz+ pag, where P(r,¢,z,t) is the total pressure. Since the
flows are statistically steady these quantities may be decomposed into time-averaged and
fluctuating components w(r, ¢,z,t) =w(r,z) +w (r,¢,2,1), u(r,¢,z,t) =u(r,z) +u'(r,9,z,1),
b(r,9,2,1) =b(r,2) +b'(r,0,2,1),p(r,9,2,) =P (r,2) +p'(r,0,2,1) and p(r,9,2,1) = p(r,2) +
p'(r,9,z,t) where the overbar indicates the time-average. Further, we assume that the time-
averaged flow quantities are statistically axisymmetric so that any gradients in the azimuthal
direction vanish. We assume that the initial ambient environment is of uniform density and
quiescent (which also implies the ambient is initially irrotational). We define, respectively,
the time-averaged volume flux 7Q, momentum flux 7wM, integral buoyancy 7B and buoy-

ancy flux F per unit length by

0(z) = 2/000 rw(r,z)dr, (2.1)
M(z) =2 /0 B 1w (r,z)dr, (2.2)
B(z) =2 /O " 1B (r,2)dr, 2.3)

F(z) =2 /O " w(r,2)B(r,2)dr: 2.4)



A characteristic plume width R, vertical velocity scale W and plume buoyancy scale G may
then be defined as

R=-2 25)
W= g, (2.6)
G= g 2.7)

Before describing the mechanisms of turbulent entrainment, it is useful to introduce the
mechanisms of vorticity production. By examining the vorticity equation we may examine
the contributions that result in an increase in the vorticity magnitude. The vorticity equation
for an incompressible fluid is given by

Do 1

— = (@ -V)u+vWo+VPx V| - 2.8

oy = (@ Vv v (), 28
where D% = % +u -V is the material derivative. The following discussion describes a three-

dimensional flow.

The first term on the right hand side (rhs) of (2.8) represents vortex stretching; when
the velocity is aligned with the direction of the vorticity the fluid elements are stretched
along this direction and, due to the conservation of volume flux and angular momentum, the
vorticity magnitude increases. The opposite process may be defined as vortex squeezing,
however, on average vortex stretching occurs more often than vortex squeezing which results
in the energy cascade of three-dimensional turbulent flow from large to small scales of
motion.

The second term on the rhs of (2.8) represents the diffusion of vorticity via viscous
diffusion and is directly analogous to the diffusion of momentum. As in the case of the mo-
mentum equation, it may be shown that vorticity diffusion is important only at sufficiently
small length scales.

The final term on the rhs of (2.8) represents the baroclinic generation of vorticity (which
is not present in flows of uniform density) and is largest where the pressure gradient is nor-
mal to the density gradient. This term, therefore, provides an additional vorticity generating
mechanism as compared to non-buoyant flows.
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Fig. 2.1 (a) Schematic of an instantaneous cross-section of the buoyancy field of a turbulent axisymmetric plume in a vertical plane
aligned with the source. The irrotational non-turbulent ambient region and turbulent region are separated by a turbulent/non-turbulent
interface (TNTI) with thickness orn7; (see (@) inset). Large-scale processes, including large eddies and engulfment, and small-scale
processes, such as nibbling, are represented. (b) Time-average schematic of the cross-section of the buoyancy field showing the
typical Gaussian-like time-averaged vertical velocity w(r,z) (blue) and buoyancy b(r,z) (red) profiles.
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Sufficiently far from the plume source, the flow will consist of a turbulent plume region
and an irrotational ambient region separated by a turbulent/non-turbulent interface (TNTI).
Figure 2.1 (a) shows a schematic of the instantaneous buoyancy field resulting from a point
source of buoyancy in a vertical plane aligned with the source. Figure 2.1 (a) highlights
the instantaneous view of entrainment in a plume: turbulent entrainment is a multi-scale
continuous process in which ambient fluid is drawn in from the far-field and, at the large
scales, fluxes are transported over relatively smooth surfaces at relatively high velocities, for
example via the process of engulfment, and, at the small scales, transport occurs across the
TNTI, with thickness drn7;, at relatively low velocities. As the schematic shows, through
entrainment, the initially irrotational fluid acquires vorticity across the TNTI. The TNTI
consists of two layers: the viscous superlayer, which is adjacent to the ambient fluid, and
the turbulent sublayer, which is adjacent to the turbulent region and the viscous superlayer
(da Silva et al., 2014). An initially irrotational and homogeneous fluid element can only
acquire vorticity through molecular diffusion (Batchelor, 1954), so that a viscous superlayer
imparts vorticity to the ambient fluid while contributing negligible vorticity production. The
turbulent sublayer matches the vorticity magnitude between the turbulent plume region and
the viscous superlayer. A viscous superlayer separating turbulent and non-turbulent regions
was first proposed by Corrsin and Kistler (1955), where it was suggested that ‘its thickness
should be less than a length characterising vorticity fluctuations on the turbulent side of
the boundary’, in other words the Taylor microscale, and might be the same order as the
Kolmogorov length scale. Experimental and numerical observations have confirmed that the
viscous superlayer is of the order of the Taylor microscale in jets, mixing layers and wakes
(Attili and Bisetti, 2012; Bisset et al., 2002; da Silva and Taveira, 2010; Mistry et al., 2016),
whereas in shear-free turbulence the viscous superlayer is of the order of the Kolmogorov
length scale (da Silva and Taveira, 2010; Holzner et al., 2011). A review of the previous
literature on TNTIs is given in § 4.1.

Given the complexity of the entrainment process and the common applications of plume
theory models, which mostly require only knowledge of the average bulk flow quantities,
entrainment is typically parametrised by considering the time-averaged flow. Figure 2.1 (b)
shows a schematic of the time-averaged flow considered in figure 2.1 (a), whereby ambient
fluid is drawn in from the far-field and momentum, buoyancy and vorticity are gradually
imparted to the ambient fluid since the TNTI is no longer defined. Although a well defined
plume boundary, such as the TNTI, is not defined, the characteristic plume width R may
be defined as the plume ‘edge’. The entrainment model of Taylor (1945) assumes that the
velocity of entrained fluid u, at the plume ‘edge’ may be expressed in terms of the charac-

teristic vertical velocity via a constant entrainment coefficient , that must be empirically
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determined, so that u, = —aW. Through both experimental and numerical investigations,
the parametrisation of Morton et al. (1956) has been shown to provide remarkably effective
descriptions of both buoyancy and momentum-driven turbulent flows, including axisym-
metric plumes (Ezzamel et al., 2015; Van Reeuwijk et al., 2016), free line plumes (Paillat
and Kaminski, 2014a; Ramaprian and Chandrasekhara, 1989), jets (Mistry et al., 2016) and
vortex rings (Olsthoorn and Dalziel, 2017).

In order to derive a set of closed plume conservation equations, Morton et al. (1956)
additionally assumed that the density differences between plume and initial density of the
ambient were small and that the first-order mean flow quantities (velocity and buoyancy)
were self-similar. We discuss these in the following derivation of the plume conservation
equations for an axisymmetric turbulent plume.

The incompressible Reynolds-averaged continuity, streamwise momentum and buoy-

ancy equations are given by

19, . Jdw
19 — d — ap
ﬁ;g (rW-l—ru’w’) —I—ﬁa—z (W2+w’2> = _8_[; +g(pa—p) + uV3w, (2.10)
l1d , - — d, - — _
_ = (v 1}/ = (i H\ — 2
e (mb+mb)+aZ (Wb +w'b') = kV°b, (2.11)

where 1 and x are the dynamic viscosity and molecular diffusivity of the fluid, respectively.
Integration of (2.9) gives

1 = O
0= ——(rﬁ)rdr—i—/ oW (2.12)
0 dz
d oo
— (7r)]° 4 — wdr. 2.13
(ur)s +dz/0 rwdr (2.13)

The entrainment assumption of Taylor (1945), by using continuity, may be expressed as
(ur)|,_., = —aWR (van Reeuwijk and Craske, 2015). Using the entrainment assumption
and the definitions given in (2.5), equation (2.13) results in the relation
d
9© _ram'2. (2.14)
dz
By assuming high Reynolds number Re, which characterises the ratio of inertial to viscous

forces, and high Péclet number Pe, which characterises the ratio of convective to diffusive
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heat/molecular transfer, defined as

WR 1%
Re = —, Pe = Re—, (2.15)

1% K
where v = 1/ p is the kinematic viscosity of the fluid, the viscous term & V2 in the momen-
tum equation (2.10) and the molecular diffusion term xV?b in the buoyancy equation (2.11)
may be neglected. Further, as assumed by Morton et al. (1956), only small deviations in the
density field relative to the initial ambient density are assumed (i.e. p — p, < pP,) so that the
Boussinesq approximation may be invoked by using p, as a reference density. Under these

assumptions integration of (2.10) gives
* 1dp

e d r* — iz _
ruw + ru'w’ +—/ Wwr+wrd :/ ———r+brdz. 2.16
( o+ /) 2= |, gL bre (2.16)

By using the boundary conditions w|,__ = W’r:w =0, (2.16) becomes

%:B—Z/O Wwég—i’mz. (2.17)
The contributions from the integral of the velocity fluctuations and pressure term are ne-
glected in the original first-order integral plume model of Morton et al. (1956); this is par-
tially due to fact that the pressure term is extremely difficult to measure experimentally.
Second-order plume integral models typically approximate the pressure by p ~ (ﬁ%—ﬁ) /2,
where v 1s the velocity fluctuation in the azimuthal direction. A recent direct numerical sim-
ulation (DNS) study by Van Reeuwijk et al. (2016) showed the approximation to be valid
to within 20%. However, measuring the three velocity components simultaneously is chal-
lenging; this thesis is restricted to measurements in the w and u direction only. We therefore
restrict attention to the first-order integral model.

A non-dimensional buoyancy flux, 8, may be defined as

FQ

== 2.1
0= (2.18)

which may be used to close equation (2.17) so that we finally have the plume momentum

conservation equation

dM  FQ
—_— = 2.19
dz oM ( )
The third assumption of Morton et al. (1956) was that the mean flow quantities are self-

similar. This is consistent with a constant entrainment coefficient. This assumption allows
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the vertical velocity, horizontal velocity and buoyancy to be expressed as

w(r,z) =W(2)f(r/R), (2.20)
u(r,z) =W(z)g(r/R), (2.21)
b(r,z) = G(z)h(r/R), (2.22)

where f, g and & are non-dimensional similarity profiles. This similarity assumption results
in constant 6 (van Reeuwijk and Craske, 2015).

Using the boundary conditions E’r:m = W} = 0, and ignoring the diffusion term

y=—o00

on the right hand side of (2.11), integration of (2.11) gives

d ~ _ - —
—/ wb+rw'b'dr =0. (2.23)
dz Jo

Assuming similarity of the second-order statistics, in particular that

w'b'(r,z) = W(2)G(2)j(r/R), (2.24)
suggests that
Crw'b'd
w = A = const., (2.25)
Jo rwbdr

so that (2.23) may be expressed as

1+ o, (2.26)
dz

The first-order integral plume conservations equations may therefore be expressed as

o _ 20M'/?, (2.27)
dz

dM  FQ

— == 2.28
& oM (2.28)
dF _ 0, (2.29)

dz
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with solutions given by

69\ 4/3 n—1/311/3.5/3
Q(z):§<ﬁ) a*3e=1BFBA3, (2.30)
9\ 2/3
M(Z) — (1_0 a2/39_2/3F2/3Z4/3, (231)
F(z) = F = const., (2.32)

which results in the following relations for the characteristic plume quantities

6 9 1/3
R(z) =5 (1—()) o3 1 3F13A3, (2.33)
1/3
W(z) = 2 (%) o231 B33, (2.34)
-1/3
G(z) = % (%) o439 3F3,53, (2.35)

The similarity profiles f and g are determined from experimental or numerical measure-
ments and in most cases it is not necessary to define an associated analytical function that
approximately follows the observations. However, in some cases theoretical models, for
example the integral Prandtl number model of Craske et al. (2017), may benefit from ascrib-
ing analytic functions to the plume profiles. These typically take the form of the Gaussian

f(r/R) =exp (— (chLRY) , (2.36)
h(r/R) = exp (- <]%LR>Z> (2.37)

where k,, and the k, are shape profile constants. While these profiles have been shown to

profiles

provide an accurate model of experimental measurements (e.g. Shabbir and George, 1994),
there are some limitations to this assumed model based on experimental observations. Most
notably, a Gaussian profile is non-zero everywhere, whereas experiments are performed in
bounded environments so that both boundary effects and characteristics resulting from the
finite boundary, such as negative velocities in the far-field resulting from conservation of
volume flux, will affect the observed plume profile.
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The derivations of the plume conservations equations for the other configurations con-

sidered in this thesis are contained within the respective chapters.



Chapter 3
Experimental details

The primary focus of this thesis is the experimental investigation of turbulent buoyancy-
driven plumes. In-depth descriptions of the experiments are given in context in their respec-
tive sections. However, all, or a majority, of the experiments share techniques which we

describe here.

3.1 Salt-bath modelling

The motivation for the experiments are primarily concerned with heat-driven industrial or
environmental flows in air. In order to model the full scale flows accurately, dynamic simi-
larity must be achieved. This relies on matching the characteristic parameters of the flow, in

particular the Reynolds number and the Péclet number which may be expressed by

(bH3)1/2 (bH3)l/2
Re=-~——, Pe = —F—— 3.1
1% K

respectively, where H is the characteristic height of the flow, v is the kinematic viscosity of

the fluid and k is the scalar diffusivity. The buoyancy b = gAp/p = gBAT, where AT is the

temperature difference and B is the fluid thermal expansion coefficient. In order to achieve

dynamic similarity in our experiments we use the salt-bath modelling approach of Linden

et al. (1990), whereby sodium chloride solution, and in our case sodium nitrate solution, is
used to achieve relatively dense fluid.

Large density differences may be achieved using salt water as compared to heat in air

while maintaining the Boussinesq approximation, with bx ~ 0.1ms~2 and by; ~ 0.5ms ™2

so that by < by, where the subscripts ‘M, F’ refer to the model and full scales, respectively.

Further, vp ~ 10> m?%s ! and vjy ~ 10 °m?s~! so that vi > vjy and kp ~ 10> m?s~! and
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Ion Diffusivity (107m?s~ 1)
Cl~ 2.032
Na™ 1.334
NOy 1.902

Table 3.1 The diffusivities of the ionic species used in the sodium chloride and sodium
nitrate solutions. The table is replicated from Olsthoorn and Dalziel (2017), however the
data can be found in Rumble (2019).

Ky ~ 1072 m?s~! so that kr > Ky, where Kk is the diffusivity of heat in air and K}, is the
diffusivity of salt in water, and comparing the vertical extent of the experiments considered
in this thesis, Hy; ~ 1 m, to the vertical extent of industrial applications, Hr ~ 10m, gives
Hr > Hyy. Therefore, by suitable choice of the experimental parameters Rer ~ Reys. To
ensure that Per ~ Peys is more challenging while maintaining similarity in Re, however,
Crapper and Linden (1974) suggest that rate of turbulent entrainment is independent of the
Péclet number for Pe > 10* which is applicable in the full scale flow and easily achieved in
the salt-bath model.

The main advantage of salt-bath modelling over full-scale measurements is that, given
the relatively small scale of the experiments, flow-visualisation is straightforward and mea-
surements over a relatively large proportion of the flow may be performed. Salt-bath mod-
elling also has a clear advantage over (water) heat-bath modelling, since the refractive in-
dices of sodium chloride and sodium nitrate can be almost exactly matched at different
densities. This is crucial for high precision velocity measurements using particle image
velocimetry (PIV), described below in § 3.2, and density measurements using planar laser-
induced fluorescence (PLIF), described in § 5.3.1.1. Figure 3.1 shows the densities of the
sodium chloride and sodium nitrate aqueous solutions as a function of the refractive index at
a wavelength of 589nm. The data are taken from Rumble (2019). A least-squares quadratic
curve was fitted to the data in each case which gives the following relation between density

p and refractive index n for sodium chloride aqueous solution
PNaci — Po = 5.13(n—no)? +4.04(n — ny), (3.2)
and sodium nitrate aqueous solution
PNaNO; — Po = 18.41(n—ng)? +5.89(n — ny), (3.3)

where the subscript O is the measured quantity in pure water.
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Fig. 3.1 Refractive indices of sodium chloride (black) and sodium nitrate (blue) aqueous
solutions at a wavelength of 589nm and temperature at 20°C. The data are taken from

Rumble (2019) and a least-squares quadratic curve (solid lines) is shown in each case as
given in (3.2) and (3.3).

The saturation of the sodium chloride and sodium nitrate solutions occur at approxi-

mately pyac; = 1.18 x 103kgm ™3 and PNano; = 1.31 % 10 kgm™3. This results in a range
of possible relative density differences of

0< PNaNO; — PNaCl < 0.085,

PNacCl ©4

such that the two solutions have matching refractive indices. The combination of sodium
chloride and sodium nitrate as working fluids has successfully been used in experimental
studies of turbulent flows by Olsthoorn and Dalziel (2017) and Linden et al. (2018). Ol-
sthoorn and Dalziel (2017) highlight that the diffusion rate of the two salts are not signifi-
cantly different since they have a similar molecular mass and the difference in the ionic dif-
fusivity between chlorine and nitrate is significantly lower than the ionic diffusivity of both
NaCl and NaNO3 (see table 3.1). This suggests that double diffusion will not play a signifi-
cant role in the flows. Further, given the Schmidt number of the flows, Sc = v/k ~ 700, the
transport of scalar by diffusion is expected to be small compared to the turbulent transport
of scalar, based on a Reynolds number of Re ~ 1000 in our experiments, i.e. Pe = ReSc > 1.

This is discussed further in the section outlining the experimental details of the axisymmet-
ric plume experiments in § 4.2.
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3.2 Particle Image Velocimetry

In order to measure the velocity field of the experiments we use particle image velocime-
try (PIV). PIV is a non-intrusive experimental technique for computing the velocity field
aligned with a plane from a recording of the flow. In our case, a fixed vertical plane is il-
luminated using a thin light sheet so that the motion of tracer particles seeded in the fluid
may be recorded. Figure 3.2 shows an example of a cropped region of a typical PIV image
taken from the free line plume experiments described in chapter 5. This results in a se-
quence of images, separated by a small time-step At, of particle images. By measuring the
displacement of the particles between each time-step from the images the velocity may be
determined. The images are split into interrogation windows of size n x n pixels® per vector,
which overlap by 50%, and a single displacement vector, defined at the central point of the
window, is then determined for each window by using pattern matching techniques. This
results in a velocity field resolution of n/2 pixels. A 50% overlap was chosen to improve
the resolution of the velocity measurements. High overlaps will add no new information but
it is common in the literature for overlaps in the range 50 — 75% (Prasad, 2000).

Polyamide particles with a mean diameter in the range 2 — 5 x 10~?>mm and density
1.02 x 103 kg m—3 were added to the ambient, and in some configurations the source fluid,
to act as tracer particles. The images of the particles appear larger than their physical size
due to the scattering of the light by the particles and the optics. All the PIV experiments
studied in this thesis were started with an initially quiescent ambient environment. This
involved mixing the seeding particles within the ambient and allowing the tank to settle for
approximately 30 minutes. It was therefore necessary to approximately match the density
of the ambient fluid and the seeding particles, to both ensure there remains a high seeding
density in the measurement window when the experiment is started and to minimise the
settling velocity of the particles. The settling velocity w; of the particles may be calculated

using Stokes’ law which results in

B gb,,cﬂ

= 3.5
Ws 8 vV I ( )

where d and b, are the diameter and buoyancy of the particle, respectively. We perform the
calculation for the axisymmetric plume experiments in chapter 4 which results in wy =
0.027mms~! compared to typical velocities measured at the plume centreline of w, =
60mms~!, so that w; JWe =5 X 10~*. The other configurations considered in this thesis
result in corresponding values of w;/w. < 1073, We therefore may ignore the motion of the

seeding particles due to their own weight.
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Fig. 3.2 A cropped region with dimension 48 x 48 pixels” of an instantaneous image from
the PIV capture of a free plume experiment in chapter 5 demonstrating the typical seeding
density and the relative (image) particle diameter to pixel size. The figure image shows
five interrogation windows each of dimension 24 x 24 pixels? with an overlap of 50% (12
pixels) where the resulting velocity vectors will be determined for the central point of each
interrogation window. The seeding density is approximately 10 particles per interrogation
window.
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To ensure accurate PIV measurements the seeding density (the number of seeding parti-
cles per interrogation window) must be sufficiently high to provide reliable pattern matching,
however must not be so high as to saturate the image and reduce the quality of the signal as
the scattered light passes from the light sheet to the camera. An average seeding density of
10 particles per interrogation window is standard for most PIV algorithms. The time-step At
between the recorded images is chosen so that the maximum velocities of the particles are
less than Ax/2At, where Ax is the size of the interrogation window. The PIV computations
in this thesis were calculated using DigiFlow (Dalziel Research Partners), details of which
may be found in Dalziel (2017), where in § 4 the 2014a Digiflow PIV algorithm was used
and in § 5 and § 6 the 2017a Digiflow PIV algorithm was used. With the correct seeding den-
sity and time-step the PIV algorithm is able to compute particle displacement to an accuracy
of 0.02 pixel.

3.3 Planar laser-induced fluorescence

In order to measure the density field along a vertical plane, fluorescent tracer is mixed in
to the source plume fluid and a thin light-sheet, illuminated using the laser, excites the flu-
orescent tracer. The light intensity P of the fluoresced dye at a given local illumination
intensity / exhibits a linear relationship with the dye concentration ¢ (Shan et al., 2004),
P o< g(I)c, where g is a function of the local illumination intensity (the form of which need
not be known). By assuming that the system is optically thin, that is to assume that the dye
absorption does not produce significant variations in 1, g(/) remains approximately constant.
Assuming that the density of the source plume fluid is directly proportional to the concentra-
tion, the light intensity of the fluoresced tracer is then directly proportional to the density of
the plume fluid. Further assuming that the intensity response of the camera is known, then
the density of the fluid may be inferred from the camera intensity response. This technique
is popularly known as planar laser-induced fluorescence (PLIF). While this method has suc-
cessfully been used on previous buoyancy-driven configurations (e.g. Linden et al. (2018);
Odier et al. (2014); Olsthoorn and Dalziel (2017) ) there are numerous difficulties associ-
ated with the technique. These mostly arise from the error associated with the variation in
light intensity at a particular point in space due to fluctuations of the laser intensity and the
variable attenuation of the laser light path. The method of PLIF is described in detail, along
with a discussion of the errors associated with the technique, in § 5.3.1.1 since it is helpful
to describe the technique in context with the particular experimental configuration.



Chapter 4
Turbulent axisymmetric plumes

In this chapter we examine a turbulent axisymmetric plume. The plume is created using a
continuous point source release of relatively dense salt water solution and velocity and scalar
field measurements are performed on a vertical two-dimensional plane aligned with the
mean centreline of the plume. Some of the material presented in this chapter was performed

in collaboration and we indicate using footnotes to section titles where this is the case.

4.1 Introduction

Turbulent plumes are of real significance to the environment and the economy. For example,
in 2010 plumes produced by the eruption of the Icelandic volcano Eyjafjallajokull and the
Deepwater Horizon oil leak in the Gulf of Mexico had huge environmental impacts and
very significant economic consequences. The impact of such events and the ultimate fate
of the plume fluid, often containing pollutants or contaminants, is largely determined by
turbulent entrainment by the plume. The focus of this study is to examine the mechanisms
responsible for this turbulent entrainment through an experimental investigation of saline
plumes in a freshwater environment. At the largest scale turbulent entrainment in plumes
may be viewed as the action by which ambient fluid is drawn in towards the central axis
(or plane in the two-dimensional case) of the plume. At the smallest scale it is the process
by which irreversible mixing of ambient and plume fluid occurs as a result of molecular
interactions.

In this chapter, we consider the canonical case of a plume produced by a steady localised
source of buoyancy within a quiescent environment of uniform density. The flow is exam-
ined sufficiently far from the source such that the ratio of inertia and buoyancy within the
plume has obtained an invariant balance in which the flow is described as being a ‘pure-

plume’. By making simultaneous measurements of the flow velocities, using particle image
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velocimetry (PIV), and the scalar edge, using planar light induced fluorescence (PLIF), of
high Péclet number saline plumes we show that vertical velocities at, and outside, the edge
of the plume are significant. The vertical velocities at the plume edge agree with recent
measurements obtained by tracking the evolution of coherent structures at the plume edge
that showed these structures travel at approximately 30% of the centreline velocity (Bur-
ridge et al., 2016). We further identify significant vertical mass transport outside the plume
associated with these vertical velocities.

As we define in chapter 2, turbulent entrainment is the process by which momentum,
through both pressure gradients and viscous effects at the plume edge, vorticity, through
molecular diffusion, and the active scalar through molecular diffusion, are conferred upon
initially irrotational ambient fluid. Here, we focus on the large-scale aspects of entrainment.

Much attention has been devoted to parameterising the process of turbulent entrainment
in plumes, starting from the early closure models (e.g. Morton et al., 1956; Priestley and Ball,
1955) to closures accounting for higher order effects (e.g. Carazzo et al., 2006; Kaminski
et al., 2005). More recent studies have contributed a wealth of experimental and numer-
ical data in order to guide the parameterisation, and indeed choice, of the closure model
and improve the understanding of the entrainment process (e.g. Ezzamel et al., 2015; van
Reeuwijk and Craske, 2015). Other studies, presumably inspired by the work of Corrsin
and Kistler (1955), have sought to untangle the complexities of turbulent flows by consid-
ering the entrainment and mixing across ‘surfaces’ within the flow. The study by Prasad
and Sreenivasan (1989), for example, reasoned that since, at large scales, dramatic differ-
ences are evident between the various canonical turbulent flows in which entrainment is a
crucial process (e.g. jets, boundary layers, mixing layers and wakes) it was reasonable to
seek universality in, and hence generate a fundamental understanding of, the processes at
the small scales. Their elegant theoretical considerations, assuming Reynolds number inde-
pendence, identified relationships for the transport across surfaces within the flow at a wide
range of spatial scales. They identified a degree of universality in the fractal dimension of
the turbulent/non-turbulent interfaces (TNTI) in turbulent boundary layers, jets, wakes and
mixing layers.

Turbulent flow statistics are heavily utilised in the study of turbulent entrainment. While
time-averaged statistics are typically used, some authors have sought to separate the tur-
bulent and non-turbulent flow properties via conditional statistics. Townsend (1948) intro-
duced the use of the intermittency factor, the mean fractional duration of turbulent flow at
any given point, in the context of a turbulent wake resulting from the flow past a heated
cylinder. A radial profile of the intermittency factor may used to determine the variation

in position, relative to its mean, of the TNTI. While the variation in the position of the
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TNTI may easily be calculated from flow visualisation and edge detection techniques widely
available today, such techniques were not so readily available at the time of publication of
Townsend (1948). In addition to the measure of the TNTI variation, Townsend (1949a) and
Townsend (1949b) suggested that the intermittency could be used to recover conditional
time-averages of flow quantities in the turbulent region from the full-time averaged flow
quantities, based on the assumption that certain flow quantities are negligible in the non-
turbulent region. Corrsin and Kistler (1955) outlined further restrictions on obtaining mean
turbulent-region flow quantities in this way. Townsend (1976) outlined how to obtain valid
mean turbulent-region flow quantities irrespective of the restrictions outlined by Corrsin and
Kistler (1955) by utilising ‘gate’ signals in the flow-quantity average. Conditional statistics,
for both turbulent and non-turbulent quantities, have since been widely used for a variety of
applications including the calculation of the conditional Prandtl number in a turbulent wake
(Antonia and Browne, 1987) and the calculation of vertical transport of unmixed ‘engulfed’
fluid within a jet (Bisset et al., 2002; Westerweel et al., 2009).

Some recent studies have decomposed the process of turbulent entrainment by describ-
ing the large-scale incorporation of ambient fluid as ‘engulfment’ and the smaller scale
actions at the interface between turbulent and non-turbulent fluids as ‘nibbling’. It is not
immediately obvious that such a distinction offers real merit but, at the very least, the
widespread use of the terms in recent literature requires that they cannot be ignored. For
example, some studies have suggested that engulfment does not contribute significantly to
the process. In their study of turbulent jets, Westerweel et al. (2009) suggested that “the en-
trainment process is dominated by small-scale eddying at the highly sheared interface ( ‘nib-
bling’), with large-scale engulfment making a small (less than 10%) contribution”. Studies
of high Reynolds number boundary layers (de Silva et al., 2013; Philip et al., 2014) exam-
ining the transport and fractal dimensions of the TNTI within the flow draw quite different
conclusions. For example Philip et al. (2014) state “large-scale transport due to energy-
containing eddies determines the overall rate of entrainment, while viscous effects at the
smallest scale provide the mechanism ultimately responsible for entrainment’.

The process of turbulent entrainment in a plume must ultimately result in fluid being
irreversibly mixed at scales on which molecular diffusivity dominates (the Batchelor scale).
This irreversible mixing is well known to occur at greatly enhanced rates due to the stretch-
ing of surfaces by the vorticity in turbulent flows (Ottino, 1989). For irreversible mixing
to occur efficiently it is therefore evident that prior to this, at some larger scale, vorticity
must be imparted to the fluid entrained from the ambient environment. This imparting of
vorticity has been shown to occur due to viscous stresses at the interface between turbulent

and non-turbulent flow at a length scale close to the Taylor microscale (Terashima et al.,
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2016), where the Taylor microscale characterises the largest length scale in which viscous
dissipation significantly affects the turbulent dynamics of the flow. It is this process that
has been termed ‘nibbling’ and for the ultimate mixing to be efficient one must expect that
all entrained fluid undergoes this nibbling process prior to being mixed. In this regard the
importance of nibbling within the process of turbulent entrainment must not be overlooked.
The nibbling process has also been shown to be enhanced in buoyancy driven flows; (Krug
et al., 2017) decomposed the entrainment flux local to the TNTI of a temporal plume into
relative contributions and observed a relatively significant contribution from the term repre-
senting baroclinic torque. A similar approach was performed in Krug et al. (2015) for an
inclined gravity current, however a negligible contribution from the baroclinic torque was
observed. These studies suggest that the role of baroclinic torque is important in configu-
rations only where the streamwise direction is approximately aligned with gravity such as
axisymmetric plumes studied in this chapter.

It, therefore, remains to define ‘engulfment’ in a meaningful sense. In the spirit of other
studies, we define engulfment as the transport of ambient fluid to within the envelope of the
turbulent flow at scales larger than the Taylor microscale in order to distinguish these large
scale processes process from nibbling. This envelope is defined by the loci of the outermost
points at which turbulent mixed plume fluid is found at a given instant, with mixed plume
fluid being defined as all fluid of a density altered by the presence of the plume source. One
can then describe the transport of ambient fluid across the envelope of the turbulent flow as
being engulfment if, during this transport, local to the envelope edge there is insignificant
mixing (as distinct from stirring). As such, one must expect engulfment to be driven by
large-scale coherent structures (eddies) near the envelope edge. It is then reasonable to ask
how significant is this process of engulfment within turbulent entrainment? For example,
does engulfment contribute significantly to the stretching of the TNTI (required to enhance
transport by nibbling) and smaller-scale surfaces (required for efficient mixing) within the
flow?

In this chapter we investigate the role of engulfment in turbulent entrainment by plumes.
We argue that without the large-scale action of engulfment one might expect the process of
nibbling to be the rate-limiting process within entrainment. Through simultaneous PIV and
PLIF measurements, Mistry et al. (2016) examine the TNTI in a turbulent jet. They conclude
that the entrainment in jets is a multi-scale continuous process in which, at the large scales,
fluxes are transported over relatively smooth surfaces at relatively high velocities and, at
the small scales, transport occurs across contorted surfaces at relatively low velocities. Our
findings, based on measurements in plumes, provide a view of the entrainment which is
consistent with that reported by Philip et al. (2014) for turbulent boundary layers and Mistry
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et al. (2016) for turbulent jets and, akin to Philip et al. (2014), we suggest that engulfment
is the rate-limiting process for the turbulent entrainment by plumes.

It is our intention to provide new insights into the process of turbulent entrainment and
we analyse our data in a manner different to that which has typically been carried out in
the study of the TNTI in other flows (a detailed review of which is presented by da Silva
et al., 2014). We provide simultaneous PIV and PLIF measurements in turbulent high Pé-
clet number plumes (§ 4.2) and define the edge of the plume by identifying the outermost
edge of the high Schmidt number scalar field. In § 4.3 we provide a robust validation of
our PIV measurements by comparing our measurements to theoretical, experimental and
numerical results presented for plumes in other studies. Our results (§ 4.4) initially examine
the statistics of the plume edge (§ 4.4.1).

In § 4.4.2 we couple our PIV measurements with those for the plume edge, using Heav-
iside step functions to provide insights into the process of entrainment by examining the ve-
locity profiles and the fluxes conditional on being inside or outside the plume and whether
eddies within the plume are present or absent. In § 4.4.2.2 we present results for engulf-
ment as part of the process of entrainment. We then present results for the velocity field
in coordinates which follow the meandering and fluctuations in width of the plume (§ 4.5).
By identifying events according to whether large-scale plume eddies are present or absent
we include conditional averages of these statistics (§ 4.5.0.1), and use our measurements to

provide statistical reconstructions of the velocity field in and around the plume.

4.2 Experimental details'

The experiments were designed to create high Péclet number turbulent plumes that would
enable us to collect data on the instantaneous scalar edges of the plume while simultaneously
measuring the velocity field. The experiments were performed in a glass tank of horizontal
cross-section 1.00m x 0.80m filled with dilute saline solution (of uniform density p,) to
a depth of 0.85m. Relatively dense source fluid was supplied via an apparatus providing
a constant gravitational head, thereby ensuring a steady flow, to a plume nozzle of radius
ro = 2.5mm that was rigidly clamped centrally within the walls of the tank and near the
free surface. The Reynolds numbers at the source across the experiments, given in table 4.1,
are relatively low and would typically describe laminar flow. The plume nozzle (illustrated
in figure 4.1) was specifically designed to promote turbulence at the source based on a
design originally developed by Dr Paul Cooper of the Faculty of Engineering, University of

The experiments were performed in collaboration with Emily Kruger.
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Turbulent axisymmetric plumes

Parameter

At the source

Volume flux

Buoyancy

Source radius

Source Reynolds number
Plume parameter

In the measurement region
Distance from the origin
Volume flux

Plume width

Reynolds number

Péclet number
Kolmogorov length scale
Batchelor length scale
Pixel scale

PIV scale

Definition

Qo [x1070m3s~ 1]
by [ms_z]
ro[x1073 m]

Re = ZQ()/V()V
Lo = 5r3bo/8aQ}

Q[x107m3s71]
R=0Q/M"?[x10%m]
Re =w.R/v
Pe = ReSc[x109]

N =R/Re3*[x10~*m]
Ap=n/Sc'/?[x10~0m]
[x10~*mpixel ']
[><10’3mpixel'l]

Plume 1 Plumes 2 and 3
1.27 1.78
0.734 0.791
2.5 2.5
320 450
2.49 1.37

64 < z/ro < 130
53 < Q< 196
2.25 <R <4.50
2380 < Re < 4490
1.19 < Pe<2.24
1.15< 1 < 1.64
5.13< A5 <7.34
0.95-1.05
1.5-1.7

Table 4.1 Experimental parameters for the three plumes studied at both the source and in the

region of examination.
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Inlet (1 mm)

Outlet (5mm)

Fig. 4.1 Schematic of the plume nozzle used in the experiments (not to scale) showing the
time-averaged streamlines of the flow inside the nozzle chamber. The small inlet causes a
sharp expansion in the chamber creating a recirculation region resulting in turbulence at the
outlet. The nozzle is based on a design originally developed by Paul Cooper (see text) and
the schematic is based on figure 10 in Kaye and Linden (2004).

Wollongong, NSW, Australia. The source volume flux, tQg, was precisely controlled using
a needle valve.

The source fluid was an aqueous saline (NaCl) solution of density pg with reduced grav-
ity (buoyancy) at the source in the range 0.734ms™2 < b = g(po — Pu)/pa < 0.791ms 2,
With this set-up we created plumes with (conserved) buoyancy fluxes mFy in the range
0.93 x10°m*s™3 < 7Ky = nF < 1.42x 10 °m*s™3. Three experimental plumes were
analysed, two of which were of notionally identical source conditions in order to assess
the repeatability of the experiments. The experimental parameters are provided in table 4.1.
Throughout § 4.3 and § 4.4 we present results from all three plumes. No significant bias
could be identified between the datasets of each plume, implying that the experiments were
repeatable and that all three plumes exhibit identical behaviours which we show to be consis-
tent with that expected for self-similar turbulent pure-plumes, see § 4.3. Hence, these three
experiments were sufficient to provide statistically significant data to assess the process of
entrainment in pure plumes.

We collected data within a vertical region sufficiently far from the source so that the
plumes were both fully turbulent and were notionally pure, i.e. the plumes had attained

an invariant balance between inertia and buoyancy. As such we created plumes which, at
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Apparent particle position

Absolute particle position

Fmmmm e mrm e - -

Fig. 4.2 A schematic showing the calculation used to estimate the error 0 in the apparent
particle position compared to the absolute particle position during the experiments as a result
of the varying refractive index of the fluid. The calculation uses Snell’s law based on the
refractive indices of the ambient, n,, and plume fluid, n,, respectively. The y direction is
normal to the measurement plane and the deviation in the plume boundary relative to the
vertical is neglected.

the source, were relatively close to being pure or slightly lazy, as indicated by the source
plume parameter ' = Srgbo / 80¢Q(2) 2 1 (see table 4.1), where o = 0.11 is the entrainment
coefficient, the value of which is determined in § 4.3. The appropriate length scale is the
source scale ro (Hunt and Kaye, 2001) and, to ensure that the flow can be expected to be in a
pure-plume balance, we allowed the flow to develop for at least sixty dominate length scales,
601 ~ 0.15m from the source before the flow entered the region in which we recorded data.

We took care to ensure that within this region reliable PIV measurements were obtained,
for example by ensuring that the level of PIV particle seeding was appropriate and that the
50um diameter particles were approximately neutrally buoyant (by filling the tank with a
dilute saline solution, such that p, = 1.02 x 103kgm™3, so that the Stokes settling velocity

of the particles, wy =2.7 x 10> ms~!

, was small compared with the typical velocities mea-
sured on the plume centreline W, ~ 6 x 10~>ms~!). Moreover, by selecting our measure-
ment region a suitably large distance from the plume source we ensured that, due to the rapid
dilution of the buoyancy scalar that results from the turbulent entrainment by plumes, the
variations in refractive index did not significantly affect our results; within the measurement
window characteristic normalised density differences were in the range 0.065% — 0.148%.
As a qualitative measure that the refractive variations were small we always verified that
the PIV particles were clearly visible in the raw images, which provides a ‘line of sight’

integrated indication that the refractive index variations were not significant.
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More quantitatively, using scalings from plume theory it is possible to calculate esti-
mates of the refractive index variations within the plume within our measurement region,
ie. b, ~ z3/3 and so An ~ 775/ 3 where An is the difference in refractive index between
the plume fluid and the ambient fluid. By assuming the top-hat plume model, where the
density difference is assumed to span the entire plume width (with both the density differ-
ence and width evolving as the plume descends and entrains), the greatest refractive index
variations occur at the top of the measurement region (closest to the source), for which
An ~ 10~*. At this height plume fluid with this refractive index jump spanning the entire
width of the plume (see figure 4.2) implies a maximum error due to refractive index varia-
tions of & ~ 0.1 pixels (or O(107>) m). The refraction introduces an apparent shift to the
particles and therefore an error in the absolute location (of less than a pixel as discussed).
However, providing the mixing, and therefore change in refractive index, is slow compared
to the acquisition of the images the error in the velocity fields themselves will be less severe,
with only an error on absolute position of the velocity vector (Dalziel et al., 2007). This
estimate shows that refractive index variations did not affect our ability to detect the plume
edges (to within an accuracy of one pixel), and only affects the accuracy of our velocity
measurements at the sub-pixel resolution. Hence we do not expect our results to be affected
by the experimental uncertainties arising from differences in refractive index.

For severe refractive index mismatch, the particles will become hard to discern and even
relatively small refractive index mismatch can cause the particles to appear out of focus
which will hinder the pattern matching. Unfortunately, when dealing with stratified flows
and even nominally refractive index matched fluids, residual refractive index mismatch will
remain. The nature of the PIV algorithm can deal with this to an extent through the effective
averaging of the velocity field over a number of particles in an interrogation window.

From our PIV measurements we were able to check that our measurements of the ve-
locity field exhibit the scaling relations expected for self-similar turbulent pure-plumes and
compare well with existing data sets. We provide a full validation of the PIV measurements
in § 4.3.

From our PIV measurements we obtain the time-averaged vertical velocity

1 T
W(x,yzO,z):?/o w(x,y=0,z,7) dt, 4.1

as a function of the horizontal coordinate x, the vertical coordinate z and we assume that
the light sheet is aligned with the plane y = 0. The total recording time is given by 7T'. For
the remainder of this chapter we adopt the cylindrical coordinate notation (r,z), where it
is implied that r = r(x,y = 0). We then define the time-averaged fluxes of volume 7Q,
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momentum M, and a characteristic radial scale R by

0

YOk 4.2)

0= /Oer(r,z) dr, M= /OwrW(r,z)2 dr, and R=
respectively. We note that throughout we reserve the ‘overbar symbol’ to denote a time-
average. The integrals in (4.2) were performed across the whole width of the interrogation
window, measuring approximately 0.18 m. The integrals are affected by both the noise
in the far field ambient and the backward flow resulting from the finite tank. The effect
of the noise on the volume flux integral is assumed to be negligible, assuming zero-mean
noise. The contribution of noise to the momentum flux may be estimated from assuming
an error in the PIV measurements of 0.02 pixels per frame, as discussed in § 3.2, which
corresponds to 0.19mms~!. Using this value in the momentum flux integral gives a value
of 1.9 x 107'9m*s~2. The time-averaged momentum flux across the plume experiments is
in the range 2.0 x 107 %m*s™2 to 6.3 x 10~°m*s~2, suggesting that the contribution from
the ambient noise is negligible.

The backward flow in the tank may be estimated from the volume flux of the plume
and the tank dimensions, resulting in an average velocity of —0.25mms~!. This value is
comparable to the value of the PIV error, so it is not expected to significantly affect the
momentum flux as demonstrated above.

In order to obtain simultaneous measurements of the scalar edge of the plumes we added
a small quantity (approximately 5 x 10~*kgm—>) of sodium fluorescein to the source saline
solution in order to stain the plume fluid. Lighting the central plane within the plume,
we recorded images of both the light emitted by the fluorescein and that reflected by the
PIV particles. Given that the molecular diffusivity of the dye (sodium fluorescein) and the
buoyancy scalar (sodium chloride) are similar and that the flow was high Péclet number (see
table 4.1), we could be certain that by tracking the light emitted by the fluorescein we were
tracking the location of the plume buoyancy scalar.

For logistical reasons we used broad spectrum white light generated by three arc lamps
(rather than a laser) to illuminate a central (vertical) plane within the plume. We positioned
the arc lamps behind vertical slits separated by a width of 2mm (created using thin sheets
of metal) to create a light sheet which was approximately 20mm thick at the centre of the
measuring window, suggesting that that thickness of the light sheet varied by at most 20%
of the centreline thickness. A plumbline was temporarily attached through the nozzle outlet
in order to align the light sheet with the centreline of the plume. As a result of using broad
spectrum light, we were unable to use narrow band light filters in order to distinguish be-
tween the light emitted by the flourescein and that reflected by the PIV particles. To mitigate
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this restriction, care was taken to tune the light levels within the recorded images with the
aim that: (i) ambient fluid was of near zero light intensity, (ii) PIV particles were indicated
by bright, near saturated, light levels, and (iii) mixed plume fluid was of intermediate light
levels (approximately halfway between pure black and pure white). These were achieved
by adjusting both the fluorescein concentration and the camera aperture while keeping the
arc lamp light intensity fixed. Such careful tuning of the light levels took considerable effort
and, due to the rapid dilution of plume fluid resulting from turbulent entrainment of ambient
fluid, reliable results were only obtained over approximately half the vertical height (1,400
pixel rows) within the images.

Moreover, at least in part due to the light reflected by the PIV particles, it was not
possible to measure precisely the scalar concentration from the light intensity levels within
the images captured. Consequently, we do not report results for the full scalar field within
the plumes. However, we were able to reliably detect the scalar edges of the plume from
our measurements of light intensity (see § 4.2.1) thereby enabling us to report new results
on turbulent plumes. Due to the number of arc lamps used we initially found that they
produced a significant level of heat, driving a convective flow at the walls of the tank. In
order to reduce this effect we displaced the metal sheets (that created the slits) slightly from
the walls of the tank in order to provide a small air gap between them. With the metal sheets
displaced the flow at the sides of the tank was no longer observable and so did not affect our
results.

Once the correct lighting had been established so that both the plume edge and PIV parti-
cles were visible, experiments were carried out in darkened surroundings. The experiments
were captured using a Dalsa Falcon 2 4 megapixel 8-bit camera with a 85 mm f1.8 Nikon
lens. The camera was positioned normal to the vertical light sheet to capture a measurement
window that was approximately 0.25m (1007y) high by 0.18m (72 ry) wide. Images were
recorded at 50 frames per second over recording durations of 240s, providing datasets of
12001 individual images per experiment. The equal time spacing between images resulted
in PIV datasets containing 12 000 observations per experiment. For each experiment the
entire PIV dataset was used when calculating full time-averaged statistics and appropriate
subsets used when calculating conditional averages. For example, statistics for eddy present
and eddy absent events (e.g. § 4.5.0.1) were calculated from datasets of approximately 2 000
observations. Spatially the PIV data were obtained from particle pattern correlations in re-
gions measuring 32 x 32 pixels® with a 50% overlap, i.e. one vector in every 16 x 16 pixel?
region.

In addition to the source conditions, table 4.1 provides the Reynolds number, Re = w.R/Vv

(where w, is the time-averaged velocity on the plume centreline and v the kinematic viscos-
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ity), and Péclet number, Pe = ReSc (where Sc = v/x is the Schmidt number, with k the
molecular diffusivity of NaCl in water), of the plumes within the region of examination. Fol-
lowing Papantoniou and List (1989) we calculate the Kolmogorov length scale n = R/ Re3/*
and the Batchelor scale Ag =11/ Scl/ 2 as indicative of the scales at which viscous and dif-
fusive effects are dominant. Table 4.1 shows that the resolution of our measurements of the
scalar edge were well above the Batchelor scale, suggesting that the effects of diffusion at

these scales are negligible.

4.2.1 Detecting the plume edges>

A crucial step in our analysis was to detect the scalar edge of the plume reliably. This was
possible since, as discussed above, the length scale at which molecular diffusion is expected
to dominate, the Batchelor scale, was small (between 5 x 10°°m—7.5x10"° m) compared
to one pixel (10~*m) but remains challenging due the nature of the turbulent billows at the
plume edge. Purely for the purposes of visualisation by eye, we first inverted the recorded
light intensities within the images so that plume fluid appeared dark while the background
appeared light. In order to enable the detection of the plume edges we removed the PIV
particles from the images by subjecting them to a (minimum) nearest-neighbour filter (of
tuned spatial extent).

To gain confidence in the edges detected we employed two independent edge-detection
algorithms. Our standard algorithm first overlaid edges onto the normalised image (these
edges were identified using the Canny algorithm, provided within Matlab (Canny, 1986))
and then identified the two plume edges within each pixel row from the maximum (posi-
tive) and minimum (negative) horizontal light intensity gradient. Our alternate algorithm
identified a threshold light intensity which changed for each pixel row (height) within each
image (time) and defined the plume edges as the first and last location at which the light
intensity fell below the threshold value. This threshold value was defined as the light inten-
sity at which a minimum occurred, between the two peaks (corresponding to the presence
and absence of plume fluid) in the histogram of light intensity within the given pixel row
(similar methods based on the histogram of light intensity have been successfully used to
detect scalar interfaces in other studies e.g. Gampert et al., 2014). Full details of the two
algorithms are provided in Appendix B of Burridge et al. (2016). The edges detected by
the two fundamentally different algorithms typically agreed well with each other. However,
on occasion, differences between the algorithms did arise (see for example figure 4.3 (a)).

Consequently, we calculated all statistics using the edges detected by each algorithm, and in

The edge detection was performed in collaboration with Henry Burridge.
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Fig. 4.3 (a) A typical experimental image of a plume. The small dark ‘spots’ in the image are
the 50 um particles used to obtain PIV measurements. Dense ‘plume fluid’, stained by dye,
is indicated by dark regions. The edges detected by both algorithms are marked by the red
solid lines (7 pixels wide) and blue solid lines (3 pixels wide). Velocity vectors (red arrows)
indicate the local two-dimensional velocity on the vertical central plane of the plume. Notice
that where large-scale eddies are locally present the vertical velocities are small just outside
and inside the plume edge (circled in green). At the locations where eddies are locally absent
the vertical velocities outside the plume are significant (circled in red). (b) An image of the
plume envelope determined from (a). The left edges Er(z,t), right edges Eg(z,) and mid
point between the left and right edges, defined by (Ez(z,t) + Er(z,t)) /2, are highlighted by
the magenta lines. For clarity, the edges shown are from a single edge detection algorithm
corresponding to the blue edges in (a).
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figures 4.10,4.11,4.13,4.14,4.9, 4.16, 4.17 and 4.18 we plot the statistics calculated using
both algorithms. Crucially, as can be seen from the data in these figures, any differences
between the detected edges were minor and did not significantly alter our results.

Figure 4.3 (a) shows a typical image of a plume in which red and blue solid lines mark
the outermost edges (the plume envelope) detected by each algorithm and highlight the
broad agreement between the two independent edge detection algorithms. From the distance
between the edges, at any given height we define the instantaneous plume width based on
the scalar field edge, denoted 2R, (z,), from which we calculate the mean (time-averaged)
plume half-width m based on edges of the scalar field, and we define a coordinate r,
following the plume (see § 4.5. Furthermore, from these measurements we define the (in-
stantaneous) plume envelope as the loci of the outermost points at which (turbulent) mixed
plume fluid is found at a given instant (mixed plume fluid being all fluid of a density altered
by the presence of the plume source). In our experiments on high Péclet number plumes
mixed plume fluid is inferred from the light intensity levels indicative of dye concentration.

Due to the finite thickness of the light sheet the images are effectively averaged (via
some weighted average depending on the light sheet cross-section intensity profile) in the
y-direction over this thickness. Assuming that the light intensity is Gaussian within the
sheet, then the images will be weighted to the centre of the light sheet as we desire. This
could be reduced using a laser as the light source with better control over the focusing of the
light. Unfortunately, such technology was not available at the time of this work. The finite
light sheet thickness also results in an effective averaging of the velocity field. However, the
thickness of the light sheet is approximately equal to the PIV vector spacing which already
provides a limit to the precision obtainable.

In figure 4.3 (a) the two-dimensional velocity vectors obtained from the PIV analysis
are overlaid as red arrows. The heights at which eddies were deemed to be present (see
§ 4.4.2.1) are highlighted by the green bars on the left edges of the images. The vertical
velocities just outside the plume edge in these regions are almost zero. The heights at which
plume eddies were deemed to be absent are highlighted by the red bars on the left edges of
the images and in these regions the vertical velocities outside the plume are significant. We

return to these observations in § 4.5.0.1.

4.3 Validation of the PIV Data

We validate the PIV data by checking for self-similarity in the velocity distributions and
evaluating the entrainment coefficient. Figure 4.4 displays the vertical and radial velocity

distributions for 80 different heights normalised by the theoretical (top-hat) velocity and ra-
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Fig. 4.4 The time-averaged scaled velocities of the three plumes at 80 different heights,
spanning 75 < z/ry < 125, plotted against the scaled radial coordinate: vertical (solid black
lines) and radial (dashed black lines) velocities. The velocities and coordinate are scaled
by the predicted top-hat velocity scale W = (5/6¢t)(90./10)'/3F'/3;=1/3 and top-hat radius
R =60z/5, respectively, with o« = 0.11. The good collapse of the data indicates that the flow
exhibits the behaviour of a turbulent pure-plume and that the value of o and the location of
the virtual origin are correct to suitable accuracy. A best-fit normalised Gaussian distribution
(dotted green line) exhibits a good fit to the vertical velocity data with a root-mean-square
error of 0.0296 which was found using the Matlab ‘fit’ function. A horizontal line marks
w = 2W, the relationship expected between the top-hat velocity and the centreline velocity
assuming a Gaussian distribution. Vertical lines mark the e-folding width R,, which shows
a close agreement to the expected relationship v2R,, = R.
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dial scales, W = (5/6a)(9a/10)'/3F'/3z=1/3 and R = 6az/5, respectively (Morton et al.,
1956), taking o¢ = 0.11. Both the vertical and horizontal velocity profiles are self-similar,
collapsing to a single curve when scaled by the pure-plume velocity scale and radial scale.
The scaled vertical velocity data are well fitted by a Gaussian curve (marked in green) as has
been observed previously (e.g. Shabbir and George, 1994). The accuracy of our measure-
ments and ability of our experiments to generate the appropriate physics is clearly evidenced
by the good agreement of our data to the theoretical relationships expected between top-hat
and Gaussian distributions for the vertical velocity. Specifically, our data show w, ~ 2W,
where m is the time-averaged vertical velocity on the centreline, and v2R,, ~ R, with
R,, the e-folding width defined by the radial position at which w(r,z) = w,(z) /e. Hence, our
PIV measurements of the velocities exhibit behaviours expected on theoretical grounds for
turbulent pure-plumes, which provides assurance that the measurements are accurate and
valid.

Measurements of the horizontal velocities, marked by black dashed curves in figure 4.4,
show radially inward (negative) velocities of increasing magnitude as one travels inwards
towards the plume. The magnitude then begins to decrease, for |r| < R, then becomes pos-
itive (indicating a radially outward flow) before finally approaching zero on the centreline.
This reversal in the radial direction of the flow has been observed in jets and plumes (e.g.
Ying et al., 2004). Reassuringly, just such a profile is expected (Ying et al., 2004) since
the vertical velocities in the flow decrease in the axial direction (most significantly near the
centreline), and continuity thereby requires an outward radial flow local to the centreline
(see, for example, Panchapakesan and Lumley, 1993; Shabbir and George, 1994).

For further validation, we determined the entrainment coefficient o using two different
methodologies. First, & was determined from the solutions to the conservation equations
for a pure-plume (Morton et al., 1956), namely,

dR 6« (0]

=5 with R:W. 4.3)
We note that R can be regarded as the top-hat plume half-width (or radius) since, upon as-
suming a Gaussian distribution for the radial distribution of w (figure 4.4), it follows that
R = v/2R,,, which is precisely the relation between the classical top-hat width of a plume
(e.g. Morton et al., 1956) and the Gaussian plume width (e.g. Ezzamel et al., 2015). Hence,
all values of o reported herein represent values for the top-hat entrainment coefficient. We
plot R/r¢ as a function of z/r¢ in figure 4.5 and a best fit to the data provides a value of
o =0.11+£0.01, where the tolerances indicate the standard deviation within our measure-

ments. This value falls within the range of a = {0.095,0.15}, the median value being
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Fig. 4.5 The variation in the ‘top-hat’ plume radius, R/r (4.3), for the three plumes.

o = 0.12, from the six independent studies for which data are reported within van Reeuwijk
and Craske (2015).

From the gradient dR/dz, identifying the vertical location at which the plume width is
zero provides a means of assessing the virtual origin for the plume. For all data reported
herein the vertical coordinate z is measured from the virtual origin, i.e. the point at which
our measurements (4.3) imply R(z=0) = 0. For our data the virtual origin was located
S5ro—8rp above (behind) the location of the physical source.

As a second method for assessing the entrainment coefficient we consider the findings
of van Reeuwijk and Craske (2015) in which they showed, for a time-averaged self-similar
pure-plume, that o can be expressed in terms of turbulence production, energy flux and
buoyancy effects. This decomposition allows a deeper physical insight of the entrainment
coefficient beyond the original hypothesis provided by Morton et al. (1956) (i.e. that @ =
Ug /W) where Ug and W are characteristic (horizontal) entrainment and (vertical) plume

velocities, respectively. In particular, van Reeuwijk and Craske (2015) show that o can be

written as
o= —%—I— <1 — %)Ri, (4.4)
where 5 - 4 . dw
Y= W/o wrdr, 8 = W/o w’u’Erdr, (4.5)

W = M/Q and 6 is a profile coefficient associated with non-dimensional buoyancy flux
defined from the relation (2.18). For a pure-plume the Richardson number is invariant and
by definition I'=1 so

5
I'=—Ri=1 4.6
sg =L (4.6)
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Fig. 4.6 The values of —8 /2y (grey) and a (black) calculated from our data, plotted against
the vertical distance from the virtual origin z/rg. The mean values for each experiment
taking all data at all heights plotted are shown in the legend. The dashed lines show the
minimum and maximum values of & presented in van Reeuwijk and Craske (2015).

which combined with (4.4) gives

50 3y\ 1
a:—1—6( _§) . 4.7)

Values of 8 /2y calculated from our data are plotted in figure 4.6. From our data we
are unable to provide reliable estimates of the profile coefficient 8. However, van Reeuwijk
and Craske (2015) provide values for 6 (alongside those for 6 and y) from six independent
computations of plumes and we take the mean value they obtained 8 = 0.93 (therein table
3). The estimates of o calculated in this manner from our data are included in figure 4.6.
The mean values from each of our three plumes are shown and these fall within the range
of values presented in van Reeuwijk and Craske (2015). Moreover, the values of the en-
trainment coefficient, calculated in the second manner, are also o¢ = 0.11 £+0.01, identical
to the values obtained from the plume equations. This demonstrates that the two different
methodologies for assessing o are quantitatively equivalent.

4.4 Results in an Eulerian coordinate system and discus-
sion

In order to provide novel insights for the dynamics that arise within turbulent plumes we
combine measurements of the velocity field with data for the edges of the scalar field. We
do so using two distinct methods, the first of which exploits the Heaviside step function

(§ 4.4.2) and the second establishes a coordinate system which follows the meandering
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Fig. 4.7 Histograms of the location of the centre, left and right edge of the plume scalar
field and the magnitude of the width of the plume scalar field. All distances have been
normalised by the time-average of the local half-width of the scalar edges of the plume,
R,. The histograms contain observations from each of the three plumes, from both edge
detection algorithms and at all heights for which reliable data was obtained, in excess of
6x 107 observations of each statistic. The best-fit Gaussian distribution is overlaid on each
histogram.

fluctuating plume (§ 4.5). In order to set these methods in context we first examine results

following directly from our measurements of the scalar edges.

4.4.1 The statistics of the scalar edges’

The radial location of the outermost left and right edges of the plume fluid are plotted in
figure 4.7, in which all distances have been normalised on the time-averaged half-width of
the scalar field edges R,. These outermost left and right edges define the plume envelope,
which is highlighted in figure 4.3. The plume envelope was defined in this way, partly, in
order to provide unique values for the left and right edges. Alternative plume envelope
definitions, and justification for the construction chosen, are discussed further in § 4.4.2.2.
The left and right edges of the plume are well approximated by the normalised Gaussian
distributions E; ~ N (u=—1,062=0.072) and Eg ~ N (u = 1,62 =0.070) for the left and
right edges, respectively, where 1 denotes the mean and o the standard deviation. From

the instantaneous locations of the left and right edges we define the instantaneous centre

3The analysis presented in this section was performed in collaboration with Henry Burridge.



40 Turbulent axisymmetric plumes

of the plume fluid and the width 2R, which approximately follow the normalised Gaussian
distributions C ~ N (0,0.036) and 2R, ~ N (2,0.140), respectively.

The relatively small variation in the central point, C, highlights that the meandering of
the plume centreline is small in comparison to the fluctuations in the plume width; where by
fluctuations we refer to variations about the mean. Moreover, since C = (Er + Eg)/2 and
2R, = Eg — E| it follows from the observed distributions that the covariance, cov(Er, ER),
is not statistically significantly different from zero. Hence, the location of the left and right
edges of the plume are not correlated. Such a finding implies an absence of coherent struc-
tures forming across the full width of the plume, since such structures would simultaneously
affect the locations of the left and right edges and result in their locations being correlated.

Alternative definitions of the plume centreline could be used. For example, Hiibner
(2004) also studied turbulent axisymmetric plumes in a quiescent environment and defined
the instantaneous plume centreline to be the centroid, for a given height, of the plume con-
centration field. This method would be of limited value with our data because the light
intensity of the plumes does not correspond with the plume concentration. Hiibner (2004)
used the plume centreline definition to disentangle two distinct processes that contribute to
the time-averaged growth rate of the plume width: The plume centreline meandering and
the isolated ‘spreading’ of plume relative to that instantaneous centreline. In a quiescent en-
vironment, it was found that the growth rate of the isolated plume spreading constituted 96%
of the overall plume spreading. These results support our findings that the plume centreline

meandering is not significant.

4.4.2 Conditional results in an Eulerian coordinate system

Given that the extent of the meandering is small relative to the width of the plume (figure
4.7) there will be regions near the centreline where, almost always, plume fluid will be
present. Conversely, sufficiently far from the centreline, no plume fluid will ever be present.
The balance of these probabilities alters at intermediate radial locations.

Scase et al. (2007) developed a plume model that utilised this concept, in the time-
averaged sense, where the fluid at a given point is defined as superposition of unmixed
ambient fluid, with volume fraction a, and unmixed sourced fluid, with volume fraction p, so
that a+ p = 1. The model was used to show how realisable velocity and buoyancy profiles
may be reconciled with the top-hat plume model of Morton et al. (1956). In particular,
unlike the model of Morton et al. (1956), the model explicitly describes how ambient fluid
is converted into plume fluid. Despite these differences between the two models they remain
consistent. In this section, we consider an instantaneous view of the separation between the

unmixed ambient fluid and mixed plume fluid.
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Fig. 4.8 A plume image highlighting the regions outside the plume (H,,;) by yellow, inside
the plume (H;,) by the union of green and blue, the engulfed ambient fluid (H,,g) by blue
and the mixed plume fluid (H,,;) by green. (a) demonstrates the radially-defined plume
envelope (magenta lines) used in this thesis and (b) shows an alternative definition using a
vertically-defined plume envelope.
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Fig. 4.9 The probability, at a given radial location, of being within the plume (thin black
lines), finding mixed fluid (thick grey lines) and finding engulfed fluid (thick black lines),
from ensemble averages of the three plumes over all heights for which reliable data was
obtained. Solid lines mark the results from the standard edge detection algorithm and dashed
lines those from the alternate algorithm.
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Fig. 4.10 The radial distributions of vertical (solid lines) and horizontal (dashed lines) ve-
locities, in the scaled Eulerian plume coordinate. The velocities are conditioned on the
presence of plume fluid or ambient fluid, plotted at radial locations where the probability
of observation exceeded 3%. The data show that fluid inside the plume moves vertically
faster (by 0.1 —0.2w,) than ambient fluid at the same vertical location. Ambient fluid is ac-
celerated both horizontally and vertically in the regions r/R, ~ £0.5—-+1.0. The velocity
profile observed when engulfed fluid is present shows that much of the vertical acceleration
occurs as ambient fluid is engulfed, with engulfed fluid travelling at approximately 80% of
the velocity of plume fluid locally.
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Fig. 4.11 The radial distributions of a) vertical (solid lines) and horizontal (dashed lines) ve-
locity fluctuations and b) Reynolds stresses, in the Eulerian plume coordinate. Observations
are conditioned on presence of the plume or the ambient (colour scheme as in figure 4.10).
The data show large Reynolds stresses in ambient fluid when in the regions /R, ~ £0.5-
+0.8.
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At a fixed location in the intermediate regions, where both ambient or plume fluid may
exist it is possible to make conditional observations, based on whether fluid at that location
is instantaneously inside or outside the plume, which are statistically representative of these
two states. As such, we couple our measurements of the velocity field with our data for the
edges of the scalar field via a plume step function which is unity within the plume and zero
outside and is defined by

Hiy(r,z,t) = H[r — EL(z,t)] — H[r — Eg(z,1)] (4.8)

where H is the Heaviside step function, H(x) = 0, for x < 0 and H(x) = 1, for x > 0. We
can then determine the time-averaged vertical velocity, at a given location, conditional on

being inside, w;,, or outside, W, the plume by defining

1 T
Win(12) = — /O Hyw(r,z,1)dr, 4.9)
1243

and

T
W (1 2) = /O (1= Hy)w(r,z,1)dt, (4.10)

out
where Tj,(r,z) and T, (r,z) correspond to the total amount of time fluid at a given location
is inside and outside the plume, respectively. The methodology described here to determine
conditional statistics is outlined in Townsend (1976), where therein statistics are conditioned
on the presence or absence of turbulent fluid. We revisit the latter case in § 4.4.2.2. We note
that the equivalent notation used in Townsend (1976) used to define (4.9) would be w =
w(r,z,t)6(t)/0(t), where 0 is the step function equivalent to (4.8). We define the horizontal

velocities conditional on being inside u;, or outside u,,, the plume in an equivalent manner.

Figure 4.8 (a) highlights the regions inside and outside the plume defined by H;,, and H,,;
for an instantaneous plume.

The probability of being within the plume envelope at a given radial location is de-
fined by P,,(r,z) = (1/T) Jiy Hin(r,2,¢)dr and is shown in figure 4.9 by the thin black curve.
This probability differs from the intermittency factor that is often calculated in turbulent
statistics (Townsend, 1948), which calculates the probability that turbulent fluid, which
would correspond here to plume fluid, is present. The intermittency factor is discussed
further in § 4.4.2.2. P, exhibits a broad single peak indicating that the central regions,
—0.5R, < r < 0.5R,, are almost certain to be within the plume envelope.

Figure 4.10 shows the radial variation of the vertical (solid lines) and horizontal (dashed
lines) velocities. Data obtained from the three different plumes at 18 different heights and

plume edges calculated from both edge-detection algorithms (see § 4.2.1) are plotted in each
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of figures 4.10, 4.11, 4.13, 4.14, 4.9, 4.16, 4.17 and 4.18. Black curves mark the full time-
averaged data (akin to the black curves in figure 4.4), overlaid (in blue) are the velocities
when inside the plume and (in grey) the velocities when outside the plume. Data are plotted
only in regions where the probability of observing a given state exceeds 3% (equivalent to
approximately 400 observations). The probability exceeding 3% that the radial location is
inside the plume occurs for |r| < 1.5R, and the probability exceeding 3% that the radial
location is outside the plume occurs for |r| > 0.5R,. Note that, while we choose to scale
the radial coordinate by the plume half-width defined by the edges of the scalar field R,
notionally identical plots would be produced should the radial coordinate be scaled by the
top-hat half-width, R since our measurements show that R, ~ R.

Figure 4.10 shows that at a given radial location the vertical velocity is significantly
larger inside the plume compared with the velocity outside (an increase of approximately
0.1w.—0.2w.). This indicates that, as expected, fluid is accelerated vertically as it transi-
tions from outside to inside the plume (i.e. transported across the plume envelope). At first
thought this result may seem trivial, however, we return to its full implications in § 4.4.2.2.
Figure 4.10 also indicates that when ambient fluid outside the plume is drawn radially in-
wards towards the plume, but still remains outside the plume in the region |r| < R,, then
this fluid experiences significant accelerations both vertically and radially (with radial ve-
locities reaching |t,,;| =~ 0.15W, being approximately five times larger than the largest hori-
zontal velocities observed in the mean). From observations in this reference frame it is not
clear whether this acceleration is driven by short-range viscous effects at the plume edge
or longer-range pressure gradients, since the distance between the fluid outside the plume
and the plume edge at a given instant is unknown. We will show that this acceleration must
result from long-range pressure gradients in § 4.5.

Figure 4.11 (a) shows the root mean square of the velocity fluctuations, defined, for ex-
ample, by . (r,z) = [(1/T) J§ [W (r,z,1)]?de])"/2, where W/ (r,z,) = w(r,z,¢) —W(r,z). The
full time-average of the vertical velocity fluctuations shows a bi-modal peak, qualitatively
similar to observations in previous studies of jets (e.g. Shabbir and George, 1994) and quan-
titatively similar to previous observations of plumes (Van Reeuwijk et al., 2016). We find
that the vertical velocity fluctuations within fluid inside the plume exhibit an approximately
flat peak for |r| < R,. The vertical velocity fluctuations for fluid outside the plume exhibit
a sharp peak as |r| — 0.5R),, indicating that large velocity fluctuations occur in ambient
fluid when it is found relatively close to the centreline, although the occurrence of such
events is relatively rare. Mean profiles of the Reynolds stress, figure 4.11 (b), show peaks
(of w'w/w? =~ 0.015) at r ~ 0.5R,, which drop off rapidly at larger radial locations, e.g.
w'w' /w2 < 0.001 for |r| > 1.2R,,. These mean Reynolds stress profiles are similar to those
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reported in previous studies of plumes (e.g. Van Reeuwijk et al., 2016). However, for fluid
inside the plume the magnitude of the Reynolds stress remains close to these peak values at
far larger radial locations, e.g. M/Wf ~0.015 at r ~ 1.2R,. Outside the plume, when
ambient fluid is relatively close to the centreline the Reynolds stress exhibits a sharp peak,
reaching M/WE > 0.03 at r ~ 0.5R,,. These peaks in the Reynolds stress suggest that
when ambient fluid is relatively close to the centreline the local turbulence production is at

its largest, presumably as this ambient fluid is about to be entrained into the plume.

Figure 4.10 indicates that the vertical velocities in the ambient fluid can be significant,
for example Wy, ~ 0.4W, for ambient fluid at r =~ 0.5R),, suggesting that the vertical volume
(mass) transport within the ambient fluid outside the plume, might also be significant. We

calculate an estimate of the vertical volume flux inside the plume from

Qinl2) = %/_mr/OTHl—nw(r,z,t) dr dr, 4.11)
and hence obtain an estimate for the transport outside the plume from QTt(z) =Q0(z)— QT(z)
Figure 4.12 shows these values from the three plumes and shows that, as expected for a
self-similar flow, the proportion of the vertical transport outside the plume is constant with
height and constitutes approximately 5% of the total vertical transport (Quu (z)/0(z) =
0.046 4 0.006, where the tolerances indicate the standard deviation within our measure-

ments).

4.4.2.1 The velocity field and fluxes when eddies are present and absent

Having identified that approximately 5% of the vertical volume flux is associated with flow
outside the plume, we investigate the role of the large-scale coherent structures on this trans-
port and, more broadly, their role in the process of turbulent entrainment. To do so, we
examine our measurements of the velocity field conditional on whether one might reason-
ably expect a large-scale coherent structure (eddy) to be locally present or absent at a given
height. We reason that the presence of an eddy results in an increase in the local width of
the flow and a similar reasoning enabled the evolution of these structures to be successfully
tracked in turbulent plumes (Burridge et al., 2016). As such, the presence of an eddy within
the plume is inferred when the local plume width is greater than the mean plume width by
more than one standard deviation, og(z). Conversely, we infer that no eddy is present (eddy
absent) when the local plume width is less than the mean plume width by more than one
standard deviation. Note that the threshold used to define eddy present and absent events (i.e.

+1 x og(z)) is in some sense arbitrary. However, our results are not dramatically affected
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Fig. 4.12 The dimensionless volume fluxes (thick lines) when eddies are present @/ 0
(green) and absent @/ Q (red) relative to the mean. The proportion of the vertical trans-
port occurring outside the plume are also shown for each of the three states, mean Q,y;/Q
(thin black lines), eddy present Q. .)/Qe (thin green lines) and absent Q) /Qn (thin
red lines).

if the threshold is pre-multiplied by a value differing moderately from unity. Moreover, our
choice of a single standard deviation ensured that we were able to average a statistically
significant sample size. With our choice of threshold eddy present and eddy absent events
constituted approximately 30% of all observations (figure 4.7).

We define eddy present, H,(z,t), and eddy absent, H,(z,t), step functions by

) <Rp(z) —0r(2)

< (4.12)
) ZRP(Z) _GR(Z>7

1)< t
1) = Ry(2)+0r(2) 0, Rp(z,1

_J Ofor Ry(z,
° 1 for R, (z,

)<Rp@+or() |y { L Ry(z

respectively. From (4.12) we can estimate the total volume flux Q, in the presence of eddies
by

w T
Q.(z) = Ti/oor/o H,w(r,z,t) dt dr, (4.13)

where T, = T,(z) is the total time of eddy present events defined by

T
T.(z) = /O H, dr, (4.14)

and further determine the fluxes inside and outside the plume in the presence of eddies by

1o T
Oinel2) = — / r /O Hy Hew(r,z,t) dt dr, (4.15)

e
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1 oo T
Qout&(Z) == ?/ r/o HomHeW(}’,Z,l‘) dr dr, (416)
e J—o

The total volume flux O, in the absence of eddies, and further conditioned on being
inside and outside the plume, are similarly defined. We note that definitions (4.12) do not
distinguish between one eddy or two eddies present, where the latter may occur from an eddy
on either side of the plume. This issue may be resolved by defining eddies present or absent
independently for each side as outlined below, however, adds complexity to the conditional
averages as also discussed below. The definition is also limited from the restriction of
planar measurements. It may be that the model (4.12) highlights an eddy absent event
when in fact the plume has meandered outside the plane (thus resulting in a relatively small
plume width in the measured plane) and there are actually no eddies present. The results
of § 4.4.1 do suggest, however, that the centreline plume meandering is insignificant as
compared to the left and right edge fluctuations that ultimately determine whether an eddy
is present or absent in (4.12). Similarly, eddy absent events may be highlighted where an
eddy is significantly affecting the measurement plane but not observed in the plane. These
are limitations that any conditional statistics based on eddies present or absent events from
single plane measurements must face.

Figure 4.12 shows the resulting vertical volume fluxes in the presence and absence of
eddies. The figure shows that the total vertical transport is increased or decreased by ap-

proximately 9% when eddies are present or absent, respectively, with Q.(z)/Q(z) = 1.085 +
0.013 and Qn—(z) /0(z) = 0.908 £0.006. More insightful are the fluxes outside the plume in
the presence and absence of eddies. Figure 4.12 further shows that when eddies are present
almost all of the vertical transport occurs inside the plume, m/@ = —0.001 4+ 0.009.
Conversely, when no eddies are present the vertical transport outside the plume is signif-
icant, Q(yu n)/Qn = 0.13540.010. Such findings clearly illustrate the importance of co-
herent structures for the turbulent entrainment by plumes. At ‘eddy-present’ events there
is virtually no vertical transport outside the plume while between eddies this transport is
significant, so ambient fluid must be accelerated vertically outside the plume between eddy
present events.

We now examine the radial profiles of velocity, in a fixed Eulerian frame, conditional on
the presence and absence of eddies. However, given that the profiles observed in an Eulerian
frame of reference take no account of the spatial extent or location of the radial distribution
at a given instant, interpretation of these data requires care. For example, the profiles in
figure 4.13 show larger vertical velocities when eddies are present but in effect this is merely
an alternate illustration of the associated larger vertical volumes fluxes. The vertical lines

in figure 4.13, however, mark the time-averaged position of the plume edge in each of the
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Fig. 4.13 Radial distributions of vertical (solid lines) and horizontal (dashed lines) velocities,
in the scaled plume coordinate. Vertical lines mark the time-averaged position of the plume
edge in the mean (black), eddy present (green), eddy absent (red) and neither presence nor
absence of eddies (blue). The data show significant vertical velocites outside the plume
when eddies are absent and almost no vertical flow outside the plume when eddies are
present.
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Fig. 4.14 Radial distributions of a) vertical (solid lines) and horizontal (dashed lines) veloc-
ity fluctuations and b) Reynolds stresses, in the scaled plume coordinate. The data show
Reynolds stresses of slightly greater magnitude when coherent structures are absent.
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three states and suggest that the vertical velocities near the plume edge are significantly
different depending on whether an eddy is locally present or not. In order, to provide more
physical insight we re-examine these profiles in § 4.5 within a plume coordinate that follows
the meanders and fluctuations in width of the plume. However, before moving on, we
note that observations in the fixed Eulerian coordinate indicate that changes in the vertical
velocity fluctuations between the three states (figure 4.14 (a)) appear to produce greater
Reynolds stresses (figure 4.14 (b)) in the absence of eddies. If velocity gradients remain
broadly similar between the three states, then these peaks imply that the local turbulence
production is greatest at locations between eddies. This supports our findings regarding
the Reynolds stresses in § 4.4.2 and our suggestion that the local turbulence production
is greatest as ambient fluid is being entrained within the plume. However, these findings
should be compared with observations in the plume coordinate (§ 4.5). We also include the
results of events where eddies are neither present nor absent in figures 4.13 and 4.14. These
data closely follow the results of the mean statistics across all events.

Alternative criteria for defining eddy present and eddy absent events are possible. For
example, by allowing independent eddy present events on either side of the plume so that an
eddy is present on the left side of the plume if Ef(z,¢) — EL(z) < oy and an eddy is absent if
Er(z,t) — Er(z) > op. While our model has three possible events for each height and time,
namely an eddy present, absent or neither, the model described above has eight possible
events, for example an eddy present on the left but neither on the right, adding complexity
to the model.

In addition to eddy present/absent criteria based on the scalar edges of the plume, eddy
identification methods could be implemented. Methods for identifying eddies include using
the vorticity magnitude (Kim, 1987) and identifying regions that form closed streamlines.
The latter technique, proposed by Robinson (1991), has been successfully used by Landel
et al. (2012) to identify eddies in a quasi two-dimensional jet. Due to the three-dimensional
nature of the axisymmetric plume studied here, and in particular given the restriction of

plane velocity measurements, this approach was not explored in this thesis.

4.4.2.2 The distribution, velocity profile and vertical transport of engulfed fluid

We have shown that significant vertical transport (approximately 14%) occurs outside the
plume at locations between the eddies in the plume (i.e. where eddies are absent). In order
to shed-light on the process through which this ambient fluid is entrained and ultimately
mixed within the plume we now consider the fluid inside the plume envelope. In accordance
with (4.8), we define the plume envelope as the flow between the instantaneous outermost

left and right edges of the plume scalar field (§ 4.2.1), as shown by the magenta lines in
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figure 4.8 (a). As has been reported for turbulent jets (Westerweel et al., 2009), we find
that there are pockets of unmixed ambient fluid inside the plume envelope which, under
our definition (§ 4.1), have been engulfed as part of the process of turbulent entrainment.
We define engulfed fluid as any fluid within the plume envelope which exhibits lower light
intensity levels than that of the fluid at the instantaneous edge of the plume. Naturally, the
light intensity level at any instant may be different at the left, ¢ (z,¢), and right, cg(z,?),
hand edges of the plume. To test the sensitivity of our findings to the precise light intensity
threshold, c7(z,1), used to determine engulfed fluid we examined three alternate methods to
determine the threshold namely:

(i) the minimum of the light intensity level at the two edges, cr(z,¢) = min[cy(z,1),cr(z, )],
(ii) the maximum of the light intensity level at the two edges, cr(z,1) = max|c(z,t),cr(z,1)],

(iii) the light intensity level determined by the (radially) closest edge, c7(z,1) = cL(z,1)
for r, < 0 and cr(z,t) = cgr(z,t) for r, > 0.

We report results determined when engulfed fluid is defined by criterion (iii) and we include
tolerances to indicate the maximum variation in our results should we have chosen criteria
(i) or (ii). Moreover, should our experiments have resolved the scalar field to the precision
of the Batchelor length scale then some variation in the detection of engulfed fluid could
be expected since diffusion would act to smear the scalar edges of the plume over a length
scale larger than one pixel. However, we expect that these variations would fall well within
the tolerances indicated for our results.

In order to examine the location and fluxes of engulfed fluid we define an ambient fluid
step function
1 for ¢(r,z,t) <cr(z,1)

4.17)
0 for ¢(r,z,t) > cr(z,1)

Hamb(r7z7t> = {
where ¢(r,z,t) is the local light intensity level. From (4.17) we can determine the pres-
ence of engulfed fluid from Hp, (7,2,1) = Happ(1,2,1) X Hin(r,2,t), and mixed plume fluid,
Hypix(r,2,t) = Hin(r,2,8)[1 — Hypp(r,2,1)]. Figure 4.9 includes the observed probability dis-
tributions of engulfed fluid (thick black curves) and mixed fluid (thick grey curves), e.g.
Ppix(r,z) = (1/T) fOT H,yix(r,2,1) df. We note that the qualitative shape of the data shown in
figure 4.9 is unaffected by the choice of engulfed fluid threshold criterion. The engulfed
fluid exhibits a bi-modal distribution with the probabilities of finding engulfed fluid peaking
at value of almost 20% =+ 2%, located just inside the time-averaged locations of the edges.

We can examine the radial distribution of velocity within engulfed fluid in a manner
similar to that described in § 4.4.2 for fluid inside and outside the plume. We define the
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Fig. 4.15 The proportion of the vertical transport which occurs as engulfed (unmixed)
fluid within the plume envelope for each of the three states: mean Q,,/Q, eddy present
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velocity We,, within engulfed fluid by

1

T
Worg (1,2) = /O Hongw(r,z,1)d1, (4.18)

Teng
where T,g = Tong(r,w) is the total time for which engulfed fluid is observed at a given
location. The radial profiles of We,, are included in figure 4.10 (magenta curves). The
velocity of engulfed fluid is fairly close to (approximately 80% of) the mean velocity within
the plume. This indicates that there is significant vertical acceleration as ambient fluid is
transported across the plume envelope by engulfment. There must also then be a more
moderate vertical acceleration during the mixing process (at smaller scales).

The methodology used to calculate (4.18) is outlined in Townsend (1976). In particular,
Ppix 1s equivalent to the intermittency factor denoted as ¥ in Townsend (1976).

Comparing the magnitude of the vertical fluxes of transport outside the plume with those
of engulfed fluid within the plume provides a measure of the proportion of ambient fluid
that is engulfed into the plume envelope. One might be tempted to try to estimate the flux

of engulfed fluid by evaluating the integral
1= / Peng rw(r,z)dr, (4.19)

since results determined by similar methods have been reported previously, e.g. Westerweel
et al. (2009). However, the observed velocity depends on whether the fluid is inside or
outside the plume (figure 4.10) and whether it is ambient fluid or mixed plume fluid. Hence
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we estimate the flux of engulfed fluid as

Oeng(2) / / Heng(r,2,8) w(r,z,t) dt dr, (4.20)

and we do so both in the presence and absence of eddies by evaluating, for example,

Qenge / / eng VZ l‘) (I’ Z,t) dr dr. 4.21)

The results, figure 4.15, indicate that on average the flux of engulfed fluid is nearly
7% of the total volume flux, Q.. (z)/Q(z) = 0.06540.018. We note that this should not
be compared to values determined by calculations of the form presented by (4.19) since
these, in effect, assume that the vertical velocity is independent of whether fluid at a given
instant was engulfed or mixed plume fluid which we have shown is not the case (figure 4.10).
Indeed, making a similar assumption with our data has a dramatic impact, approximately
doubling the estimate of the engulfed vertical volume flux. Figure 4.15 also shows that
proportion of the volume flux consisting of engulfed fluid is lower when eddies are present
(Qeng.e(z)/Qe(z) = 0.039+£0.015) and increases when eddies are absent (Qeng n(z)/0n(z) =
0.081£0.024). This indicates that the eddies may be mixing much of the engulfed fluid, i.e.

transforming engulfed fluid into mixed plume fluid and not just stirring fluid.

Our estimate of the vertical volume flux of ambient fluid outside the plume envelope
is nearly 5% of the total volume flux. It is assumed that, through nibbling along the plume
envelope or engulfment, the ambient fluid becomes, and remains, ultimately enclosed within
the plume envelope at some height downstream. The fact that the engulfed flux is larger than
the flux outside the plume suggests that the ambient fluid is accelerated vertically during this
engulfment, see also figure 4.10. This illustrates the significant role that engulfment plays
within the process of turbulent entrainment by plumes.

While conditional statistics based on the presence or absence of plume fluid are indepen-
dent of how the plume envelope is defined, the statistics conditioned on engulfed ambient
fluid are not. In this thesis we have used a radially-defined plume envelope, also used by
Westerweel et al. (2009) for an axisymmetric jet, where the plume envelope, for each height
and time, is defined to be the region between the outermost left and right scalar edges (see
figure 4.8 (a)). Engulfed fluid is then defined as any ambient fluid within this plume enve-
lope. Alternative definitions for the plume envelope, and therefore the engulfed fluid, may
be constructed. For example, a vertically-defined plume envelope may be constructed as
in figure 4.8 (b). The two definitions result in an engulfed fluid parcel being either always

bounded by plume fluid along a radial or vertical line. A radial definition ensures that en-
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gulfed parcels (that are still connected to the ambient far field) are defined as a result only of
the plume overturning relative to the streamwise direction, which is better aligned with the
concept of engulfment. In addition, our definition ensures that there is a scalar edge at the
outer most left and right edges of the plume envelope. This is important for the definition of
our plume coordinate system defined in § 4.5.

The engulfed ambient fluid could also have been defined by the completely engulfed
ambient regions. However, this does not resolve the issue of measuring only completely
engulfed fluid because the region may be connected to the ambient far field in an unobserved
plane. The measurements may therefore change as a result of three-dimensional data, but
not in the case of our definition.

The finite thickness of the light sheet presents challenges when attempting to identify
statistics confined to a single plane, in particular identifying engulfed fluid. It is useful to
adopt Cartesian coordinates for the following discussion. The light sheet spans the volume
—yr/2 <y <yr/2, where yr ~2mm is the thickness of the light sheet and we assume that
y = 0 is the central plane of the light sheet. Therefore, a pixel intensity reading P, , is an
integral intensity measurement of the volume V), ,, (ignoring parallax error) x,, <x <xp,
Lo <2< Zpy1» —YT/2 <y <yr/2, where x,, and z,,, define the regions observed by pixel
Py, . There are three scenarios that may occur during an experiment in the region V,,, ,. The
region v,, , may contain only plume fluid, only unmixed engulfed fluid or a combination
of both. The identification criteria (i) - (iii) are likely to obtain robust classifications for
the cases of only plume or only engulfed ambient fluid. However, the identification criteria
will tend to identify regions containing both as plume fluid regions. Indeed, it is possible
that intensity readings of volumes containing both plume and engulfed fluid are larger than
regions containing only plume fluid. It is important that regions containing both plume
and ambient fluid are identified as plume fluid for the following reason. The primary aim
for identifying the engulfed fluid was to determine the vertical transport of engulfed fluid.
Ignoring regions that contain both plume and engulfed fluid provides a lower bound to
this statistic (assuming positive vertical velocities). However, our conclusions rely on the
observation of a relatively large vertical transport of engulfed fluid, so that measuring a
lower bound is sufficient for our arguments (an upper bound achieved from including false
positive engulfed regions would not support our claims). In addition, the probability of the
presence of engulfed unmixed fluid is very small compared to the presence of plume fluid,
suggesting that the false positives of the presence of plume fluid will not significantly affect
the plume present statistics.

One of the central questions that our results have been unable to answer is what is the

length scale over which engulfed fluid is mixed into the plume? Lagrangian statistics could
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have been used to track and measure the decay of engulfed parcels, however, planar mea-
surements impose a severe restriction on this methodology. It should be noted that acquiring
such a length scale, say l.,,,, would provide a key step in quantitatively measuring the contri-
bution of engulfment to entrainment. From /., an ‘engulfment entrainment velocity’ may
be obtained from the transport of engulfed fluid Ve, = Qeng/leng providing a velocity scale

that may be compared to the total entrainment velocity dQ,,;xdz, where

1 e T
Qmix(Z):? / r /0 Hpio(r,2,t) w(r,z,t) dt dr. (4.22)

4.5 Results in a Plume coordinate system*

To provide further insights into the process of entrainment by plumes we examine the flow
in a coordinate system which follows the plume as it meanders and fluctuates in width. At
each time and height, we defined a local coordinate system r,(r,z,t), where

2(r—Eg(z,1)) (r—Er(z,1))

2.1) = 11= 11, 4.23
) = e = Eu(et) Ry (2.1) (+:23)

where, by construction, r, = —1 and r, = 1 at the left and right edges, respectively. Further,
rp = 0 at the mid point between the left and right edges. The velocity data were then time-
averaged to obtain the average vertical velocity in this plume coordinate system, defined
by

1 T
Wy = W) = ?/0 W(rp,z,1) dt, (4.24)

and the equivalently defined horizontal velocity %,. These data are plotted as the black
curves in figure 4.16. The figure shows data from the three different plumes at 18 different
heights and with the plume coordinate system calculated from both edge-detection algo-
rithms (see § 4.2.1), as is also the case in figures 4.16, 4.18 and 4.17. To our knowledge,
this is the first time that velocity data for either jets or plumes have been conditionally av-
eraged in this manner, ¢f. Wang and Law (2002), Westerweel et al. (2009) and Mistry et al.
(2016).

The average data collapse onto a single curve showing that the velocities are self-similar
when viewed in plume coordinates. The average vertical velocities at the plume edge (black
vertical lines at {—1, 1}) are significant, and almost 20% of the velocities on the centreline.
The velocities at the plume edge are significantly higher than the velocities at the edge of
an axisymmetric jet of approximately 5% observed by Westerweel et al. (2009). Similar

“4The analysis presented in this section was performed in collaboration with Henry Burridge.
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Fig. 4.16 Vertical (solid lines) and horizontal (dashed lines) velocities averaged in the plume
coordinate system, r,. The full time-averaged velocities, w,, and u,,, are marked in black;
average velocities when eddies are present, w,, ) and i, ), are marked in green; average ve-
locities when no eddies are present, W(pn) and U(p.n)> are marked in red. The data from three
different plumes at 18 different heights exhibit a broad collapse indicating self-similarity.
The vertical velocities outside the plume are significant near the plume edge and are, indeed,
greater than the horizontal velocities at the same location. The dashed magenta curve is a
Gaussian of variance equal to mean variance of the ensemble data (black curves).

Plume coordinate, r,, Plume coordinate, r),

Fig. 4.17 (a) The root mean square of the fluctuations in vertical (solid lines) and horizontal

(dashed lines) velocities and (b) ul,(z)w,(z) /wp(2)] rp:oz averaged in the plume coordinate
system, rp,. The vertical velocity fluctuations exhibit bi-modal peaks of approximately 25%—
30% of the mean velocities at r, = {—0.5,0.5}. The horizontal velocity fluctuations exhibit
a broad peak around the centreline, the peak values are almost 15% of the mean vertical
velocities. This corresponds to the fluctuations being approximately three times larger than
the maximum time-averaged horizontal velocities within the plume.
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vertical velocities at the plume edge were also observed by the recent study of Burridge
et al. (2016) in which visible coherent structures were tracked using a cross-correlation
technique. These structures at the plume edge (found to be of width ~ 0.4R),) travelled at
approximately 30% of the centreline velocities, similar to the velocities just inside of the
plume edge shown in figure 4.16.

The root mean square of the velocity fluctuations in the plume coordinate are shown in
figure 4.17 (a). When observed in this frame of reference the mean profiles for the vertical
velocity fluctuations exhibit bi-modal peaks of approximately 25%-30% of the mean veloc-
ities, somewhat larger than when observed in a fixed Eulerian coordinate (cf. figure 4.11 (a)
or 4.14 (a). This suggests that the spatial intermittency (the meandering and fluctuations in
width) of the plume must, to some extent, mask the scale of the turbulent velocity fluctua-
tions. The same effects are not evident in the quantities of the form W (cf. figure
4.11 (b) and 4.14 (b). It is not obvious why this should be the case.

The locations of the peaks in the vertical velocity fluctuations, at r, ~ {—0.5,0.5},
roughly correspond to the locations at which the radial velocities in the plume are zero.
The radial velocity fluctuations exhibit a single broad peak about the centreline, with peak
values that are almost 15% of the mean vertical velocities. This value corresponds to the fluc-
tuations in horizontal velocities being approximately 300% of the maximum time-averaged
horizontal velocities within the plume. Thus the mean horizontal velocities established by
the process of entrainment are small compared with the fluctuating horizontal velocities
within the falling, swirling coherent structures which form (with some complex and chaotic
orientation) within the plume.

4.5.0.1 Plume properties when eddies are present and absent

We extend our examination of the velocity fields in the plume coordinate and compare how
they vary from the mean depending on whether one might reasonably expect an eddy to be
locally present or absent at a given height. We recalculate the statistics in § 4.5 conditioned
on the presence or absence of a large-scale eddy in a similar manner to that described for
the fixed Eulerian coordinate in § 4.4.2.1. For example, we calculate the vertical velocity in

the plume coordinate in the presence of an eddy as

_ qyrT
W = W) = 72 /O Ho(rp, 2, )W(rp2,1) dr. (4.25)

The data for the velocities when eddies are present (green curves) and absent (red curves)
are plotted in figure 4.16. As is the case for the ensemble data (black curves), these condi-

tional data collapse for each state, showing that the plume statistics are approximately self-
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similar in all three states when viewed in the plume coordinate r,,. The data in figure 4.16
are normalised by the ensemble mean centreline velocity. It is noteworthy that the mean
velocity in the middle of the plume (i.e. r, = 0) systematically varied by a few percent be-
tween the three states. Larger vertical velocities were observed in the middle of the plumes
when eddies were locally absent; however, in the fixed Eulerian coordinate larger vertical
velocities were observed on the centreline, r = 0, when eddies were present. This difference
highlights the sensitivity of the observations to the choice of reference frame.

The velocity profiles plotted in figure 4.16 show large vertical velocities outside the
plume (up to 40% of the maximum velocities) when eddies are absent. Conversely, when
eddies are present there is almost zero vertical velocity at and beyond the plume edge. Such
findings are in agreement with, and provide an alternative illustration of, our results for
the vertical transport outside the plume presented in § 4.4.2.1. Moreover, the velocity data
differ significantly between the three states. For example, when an eddy is locally present,
the vertical velocities at the plume edge are smaller by about a factor of four compared to
the mean, and by about a factor of ten compared to when an eddy is absent. Horizontal
velocities, on the other hand, are larger by about a factor of four when an eddy is absent
compared to when present, indicating that ambient fluid is drawn towards the plume at
height between eddies.

Figure 4.17 includes the velocity fluctuations and quantities of the form W,
conditioned on the presence and absence of eddies. When viewed in this coordinate the
data from inside the plume are broadly similar for each of the three states, which is in
contrast to the measurements of velocity fluctuations and Reynolds stresses in the Eulerian
coordinate (c¢f. figure 4.14). This may indicate that the velocity field within the plume
scales more appropriately on a radial coordinate based on the local instantaneous width of
the plume (our plume coordinate) than on the local time-averaged width (as is the case for
the Eulerian coordinate), confirming that variations in plume width are correlated with the
internal flow structures. Outside the plume the data for the velocity fluctuations (figure 4.17
(a)) show variations from the mean when eddies are both present or absent. However, the
data for m, figure 4.17 (b), show a significant variation from the mean only when

eddies are abseﬁt. Both in the mean and when eddies are present, W is positive
within the plume and zero outside which implies that the unsteady transport of vertical
momentum is radially outwards. In the case when eddies are absent, W is positive
within the plume and negative outside suggesting that at heights between eddies the unsteady
transport of vertical momentum is radially inwards. Such a finding is supportive of our view
that vertical momentum is imparted on ambient fluid at heights between eddies, before this

ambient fluid is engulfed.
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Fig. 4.18 The angle to the horizontal of the velocity vectors averaged in the plume coordinate
system, rp,. The angles from the full time-averages are marked in black, those averaged only
when eddies are present are marked in green, and those when no eddies are present are
marked in red. Steep radial gradients in the angles are only observed at the plume edge
when eddies are present.

The relative magnitude of the vertical and horizontal velocities in the plume are illus-
trated by calculating the angle formed by the local velocity vectors to the horizontal. The
data shown in figure 4.18 marked by the black curves illustrate the ensemble mean and show
that, at the plume edge, the average vertical velocities are large compared with the horizontal
velocities (the angle being approximately 70°). The mean the vertical and horizontal veloc-
ities are only of equal magnitude (and the angle close to 45°) at distances of approximately
+1.2R, i.e. some distance outside the plume. Differences in the velocity field between
eddy present and absent events are also clearly highlighted in figure 4.18. When an eddy is
present (green curves), the angle increases rapidly from close to horizontal (0°) just outside
the plume edge to being close to vertical (~ 90°) just within the plume edge. When eddies
are absent vertical and horizontal velocities are only of equal magnitude at distances signif-
icantly outside the plume, of approximately &=1.7R,,. These findings support the suggestion
(§ 4.4.2) that prior to being engulfed or entrained, ambient fluid already has a significant
component of vertical velocity and thereby momentum.

The data for the horizontal and vertical velocities in the plume coordinate r), (figure 4.16)
and the time-averaged position of the plume edge R), (figure 4.5) allow us to reconstruct the
velocity field induced by and within a plume, relative to the scalar edge of the plume. These
data are plotted in figure 4.19 (a) and we note that the data from a simple Eulerian view of the
plume would look notionally identical. The figure shows that ambient fluid outside the scalar
edge is drawn towards the plume, by the process of turbulent entrainment, but that as part of
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Fig. 4.19 Time-averaged views of a turbulent plume: (a) all observations, (b) observations
when eddies are present, (¢) when eddies are absent. The black lines mark the time-averaged
position of the edge of the plume scalar field in each of the three states. The (blue) arrows
mark the magnitude and direction of the measured velocity vectors (ensemble averaged over
the 18 heights shown in figure 4.16). The axis are marked in arbitrary units.
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Fig. 4.20 An illustration of an instantaneous plume image (a) aligned with the laser sheet
(represented by the green box) and (b, ¢) two possible horizontal cross sections of the plume
corresponding to (a) at the height marked by the black line. The green line in (b, c¢) high-
lights the laser sheet. (b) and (c) highlight that it is not possible to determine whether a
relatively narrow plume width in a measurement plane corresponds to the plume body me-
andering out of the plane, as in (), or an eddy absent event, as in (c).

this process significant vertical velocity is induced within the ambient fluid before reaching
the edge of the plume. The role that coherent structures play in this process is indicated
by comparing equivalent reconstructions of the velocity field using data from observations
when one can expect large-scale eddies to be present or absent, figures 4.19 (b) and 4.19 (¢),
respectively. When eddies are present, the velocities within the (relatively wide) plume are
almost entirely vertical and the flow outside predominately horizontal. Conversely, when
eddies are absent the velocities within the (relatively thin) plume show a marked component
of horizontal velocity well within the scalar edge and, crucially, ambient fluid far outside the
scalar edges exhibits a significant component of vertical velocity and therefore momentum,
before it is entrained into the plume. Physically, a plume is never in a state of having
either eddies present or absent throughout its height; quite the contrary is typical. At any
instant, a plume exhibits an alternating pattern of eddies being locally present and absent
throughout its height (see, for example, the image in figure 4.3 (a)). Figures 4.19 (b) and
4.19 (c) illustrate that between the eddies, vertical momentum is imparted (presumably by
pressure gradients) to pockets of ambient fluid that are, in a relative sense, quite close to
the plume centreline. The vertical momentum of these pockets of ambient fluid enable
them to be engulfed into the plume more easily, providing a source for the volume flux of

engulfed fluid identified in our measurements (§ 4.4.2.2 and figure 4.15). The larger outward
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spreading of the plume in the eddies present events, combined with the smaller magnitude
horizontal velocities observed at the scalar edge (figure 4.13), and vice versa for the eddies
absent, appears at odds with the theory of Turner (1986). However, care should be taken
with observations based on figures 4.19 (b) and (c) because conservation of volume flux is
not valid and therefore not applicable to, for example, Turner (1986).

These findings suggest that ambient fluid is being accelerated vertically before reaching
the plume edge. This acceleration of ambient fluid cannot be as a result of viscous effects
at the plume edge and must result from relatively long-range pressure gradients, as has
been shown for planar jets (Taveira and da Silva, 2013; Terashima et al., 2016) and (shear-
free) oscillating grids (Holzner et al., 2009). Thus turbulent entrainment must, at the initial
engulfment stage, be driven by these pressure gradients and not by viscous effects at the
plume edge (cf. Westerweel et al., 2009). Such a view of entrainment is entirely consistent
with the view of entrainment expressed by Philip et al. (2014) for turbulent boundary layers
and by Mistry et al. (2016) for turbulent (non-buoyant) jets.

Providing a full three-dimensional picture of the instantaneous plume with planar mea-
surements is challenging if not impossible (discussed further in § 4.7). As well as variations
in height, along any horizontal cross section eddies may be present, absent or neither along
any azimuthal angle in addition to the plume body meandering about the mean centreline.
Observations using only planar measurements necessarily make defining regions of eddy
absent regions challenging. For example figure 4.20 (a) highlights a height (along the black
line) where a relatively narrow plume width is measured, which in our definition would
define a region where an eddy is absent. Figures 4.20 (b) and (c) show that the relatively
narrow width measured on the fixed plane in (@) may be a result of the plume body me-
andering towards the positive y direction, as in (), or a true eddy absent event, as in (c).
However, the results of § 4.4.1 suggests that the meandering of the plume body is relatively
insignificant.

4.6 Comparison with axisymmetric jets

Our methodology closely follows that of Westerweel et al. (2005) and Westerweel et al.
(2009) where axisymmetric turbulent jets were studied. Westerweel et al. (2009) concluded
that the dominant process in turbulent entrainment in axisymmetric jets is nibbling and that
the contribution of engulfment is negligible in an axisymmetric jet. Herein we conclude
that, while nibbling is ultimately responsible for entrainment across the turbulent interface,
the engulfment process provides a significant contribution to the turbulent entrainment pro-

cess. The contrast in conclusions stem from both different observed results, suggesting
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differences between jets and plumes, and different interpretations of the results. It is worth
highlighting these differences. In addition we discuss why plumes entrain more than jets.

Westerweel et al. (2009) observed relatively insignificant vertical velocities outside the
turbulent region of the jet (5% of the centreline velocities) while herein we observed veloc-
ities at 20% of the centreline plume velocities and 35% of the centreline plume velocities
in regions absent of eddies. From these measurements we concluded that significant mo-
mentum is imparted to the ambient fluid outside the plume at heights between large eddies.
A similar conclusion can not be made from the measurements of Westerweel et al. (2005)
suggesting a key difference between jets and plumes.

Westerweel et al. (2005) find the transport of engulfed ambient fluid Q,,,/Q to be be-
tween 7% and 10%, whereas we find a value of 6.5%. Westerweel et al. (2005) and West-
erweel et al. (2009) partly deduce the insignificance of the engulfment process from the
relatively small value of Q.,,/Q. We, however, do not directly relate Q,,, to a qualitative
or quantitative measure of the contribution of engulfment to entrainment because without a
time scale associated with the engulfment, as discussed in § 4.4.2.2, it is difficult to deter-
mine the rate at which the engulfed fluid is nibbled into the plume fluid.

Experimental observations have consistently shown larger entrainment coefficients in
jets as compared to plumes (see van Reeuwijk and Craske (2015) Table 3 and references
therein). In the time-averaged sense, van Reeuwijk and Craske (2015) showed that, by
performing an energy decomposition of the entrainment coefficient resulting in (4.5), the
buoyancy provides an entrainment mechanism that does not directly rely on turbulence. In
addition, it was shown that it is this contribution, as opposed to buoyancy-enhanced turbu-
lence manifesting itself through an increase in the turbulent production (i.e. the first term
on the right hand side of (4.5)) that results in the increase in the entrainment coefficient.
Alternatively, Sreenivas and Prasad (2000) provide an instantaneous physical model that
explains the increase in entrainment in plumes. In particular, the model suggests why en-
gulfment may contribute more significantly to plumes than jets. The unstable stratification
within a plume, as a result of plume density increasing with height, provides a baroclinic
torque that assists the overturning of an eddy. It is this overturning mechanism of the plume
that is associated with engulfment and therefore is expected to be more dominant in the

plume than the jet, where baroclinic torque is absent.



4.7 Limitations of planar measurements in a three-dimensional flow 63

4.7 Limitations of planar measurements in a three-dimensional

flow

A turbulent axisymmetric plume is a highly three-dimensional, albeit statistically axisym-
metric, flow. Therefore, planar measurements restrict observations of the three-dimensional
flow dynamics. Here we discuss the limitations of planar measurements.

The definitions in this chapter, e.g. the plume envelope, have been constructed in a way
that are blind to the out-of-plane flow dynamics. Therefore, using the same definition with
three-dimensional measurements would not lead to different results. In addition, certain
statistics, in particular the time-averaged vertical and horizontal velocities and the turbulent
statistics, are statistically axisymmetric so that three-dimensional measurements do not offer
a real advantage in this regard.

There are cases, however, where our definitions would be more appropriately defined
with three-dimensional measurements. For example, it would be more appropriate to define
the instantaneous plume widths in 3-D along lines intersecting the instantaneous plume
centroid at a given height. This definition, given the probable change in results, would lead
to a reinterpretation of the instantaneous plume width and the associated meandering of
the plume. In particular, it could disentangle the motion of eddies passing through a given
height and the bulk meandering of the body of the plume.

Planar measurements restrict a robust definition (i.e. a definition independent of out-of-
plane flow dynamics) of engulfed ambient fluid to unmixed ambient fluid within a plume
envelope. As discussed in § 4.4.2.2 we believe that our definition of a plume envelope,
and therefore engulfed fluid, is consistent with the process of engulfment. In this respect,
three-dimensional measurements do not offer a real advantage either. However, it is desir-
able to obtain a universally consistent definition of engulfment by defining engulfed fluid as
unmixed ambient fluid that is not connected to the ambient far field via ambient fluid (com-
pletely engulfed fluid). Clearly, identification of completely engulfed fluid is not possible
with planar measurements so that three-dimensional data could help to reinterpret the role
of ‘complete’ engulfment in turbulent entrainment.

Similarly, planar measurements restrict a robust definition of eddy present and eddy
absent events. Through our definition, eddies are defined as present (absent), when the in-
stantaneous plume width is defined as relatively wide (narrow). Therefore, events where
eddies are actually absent or the plume has meandered out of the plane are not distinguish-
able. These could be distinguished using three-dimensional measurements, for example, by
defining the instantaneous plume width relative to the instantaneous plume centroid based

on buoyancy.
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While the planar measurements do not significantly restrict the validity of the condi-
tional bulk flow quantities (that is by assuming statistic axisymmetry) it is not possible to
determine the distance of a point on the measurement plane to the nearest point along the
TNTI, which may be out of the measurement plane. However, the measurements close
to the interface are robust, since the closest point along TNTI is more likely to be in the

measurement plane.

4.8 Conclusions

Simultaneous measurements of the velocity field and the scalar edge of a plume have shown
that significant vertical velocities exist outside the plume. Velocities beyond the plume
edge cannot be induced by viscous effects at the plume edge and must be induced by rela-
tively long-range pressure gradients (consistent with findings for other entraining flows, e.g.
(Holzner et al., 2009; Taveira and da Silva, 2013; Terashima et al., 2016)). The vertical
transport outside the plume (i.e. within ambient fluid) is in the mean approximately 5% of
the total vertical transport, with this rising to almost 14% at heights between eddies. These
(and others of our findings) indicate that significant vertical momentum is imparted to am-
bient fluid, at least, at heights between eddies before this ambient fluid comes into contact
with the edge (turbulent/non-turbulent interface, TNTI) of the plume.

Our measurements show that, in the mean, the flux of engulfed fluid (i.e. unmixed fluid
within the plume envelope) is 6.5% 4-2% of the total vertical transport. We can account for
the suggestion that the flux of engulfed fluid is greater than the transport outside the plume
since we have shown that engulfed fluid at a given radial location travels faster than ambient
at the same location, i.e. fluid must be accelerated vertically as it is engulfed. Even with
this in mind, we are still able to conclude that our findings show that almost all the ambient
fluid moving vertically outside the plume must be engulfed into the plume. It is not trivial
to relate findings regarding the vertical fluxes of ambient or engulfed fluid to statements of
the bulk entrainment rate (dQ/dz), since to do so requires knowledge of the length and time
scales associated with the processes of engulfment and ultimately mixing. However, it is
something that we hope is addressed in the near future.

Examining our measurements when we expect eddies to be locally either present or
absent has highlighted substantial differences in the velocity field in the two cases, and we
conclude that the passage of large-scale eddies at the plume edge drives pockets of ambient
fluid at significant vertical velocities. The vertical momentum induced within these pockets

of ambient fluid enables it to be engulfed within the plume. We conclude that the engulfment
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of ambient fluid by large-scale eddies at the plume edge constitutes a significant part of the
process of turbulent entrainment by plumes.

We have shown that observing significant vertical velocities outside the scalar edge of
the plume should not be taken to imply that the velocity field is wider than the scalar field.
Indeed, we show that different mechanisms drive the mixing, and thereby distributions, of
momentum (velocities) and scalars. Through observations following the meandering and
fluctuations in the plume, we remove the effects of spatial intermittency. By utilising our
plume coordinate, we show that it is only as a result of spatial and temporal intermittency
that a Gaussian distribution is observed for the scalar but that a distribution close to a Gaus-
sian is still observed for the velocity. We conclude that the mixing of momentum (velocity)
across the plume results in a distribution for which the differential entropy is, at least, close
to maximal when the mixing is not bounded by the TNTTI of the plume, indicating that the

mixing of momentum must be controlled by the pressure field.






Chapter 5
Turbulent free line and wall line plumes

In this chapter we examine a turbulent free line plume, the flow resulting a horizontal line
source of buoyancy in an environment absent of any boundaries, and a wall line plume, the
flow resulting from a horizontal line source of buoyancy placed immediately adjacent to a
wall. Simultaneous velocity and buoyancy field measurements on a vertical two-dimensional

plane normal to the line source are performed and the two flow configurations are compared.

5.1 Introduction

Buoyancy-driven wall bounded flows occur in both natural environments and industrial sit-
uations. The presence of a vertical wall in such flows is known to inhibit the process of
turbulent entrainment (Lee and Emmons, 1961) and thereby affect the mixing that arises.
Here we investigate the effects of introducing a vertical wall to the flow generated by a line
source of buoyancy. Applicable flows within effectively unbounded environments include
the descending ‘free’ plume resulting from a chilled ceiling beam in the middle of a room,
wherein the mixing of the plume affects the resulting thermal conditions within the room. In
this chapter we investigate the entrainment mechanisms and determine the extent to which
the mixing of such plumes is altered if a chilled ceiling beam was placed adjacent to a wall,
thereby producing a ‘wall plume’.

A broad finding among the early studies of wall plumes (Ellison and Turner, 1959; Lee
and Emmons, 1961; Turner, 1973) is that the entrainment rates are significantly lower than
those found in free plumes. Although velocity or buoyancy profile measurements were
not presented in these studies, it was suggested that the wall suppresses the formation of
large-scale structures and inhibits mixing, resulting in reduced entrainment into the plume.
Velocity and buoyancy profiles are presented in later studies by Grella and Faeth (1975) and
Lai and Faeth (1987), but in regions relatively close to the source where the flow was not
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self-similar. To our knowledge, the only experimental velocity and buoyancy measurements
of a wall plume in a self-similar region are those of Sangras et al. (1998) and Sangras et al.
(2000), but they did not present simultaneous measurements. Nevertheless, the early find-
ings of a reduced entrainment coefficient were confirmed, and entrainment approximately
half that of a free plume was observed (Sangras et al., 1998). This reduction in entrainment
was largely attributed to the reduced meandering of the large-scale structures and suppres-
sion of cross-stream turbulent fluxes (Ellison and Turner, 1959; Sangras et al., 2000; Turner,
1973).

Despite these insights, to our knowledge, a study examining and comparing the large-
scale structures and cross-stream turbulent fluxes of a wall plume to those of a free plume
does not exist. However, much attention has recently been devoted to turbulent entrainment
in other free-shear and wall-bounded flows, providing a framework which may be extended
to wall plumes. Based on the formalism of Priestley and Ball (1955), Paillat and Kaminski
(2014b) suggested an entrainment model for turbulent plane jets, later extended to turbu-
lent plane plumes Paillat and Kaminski (2014a) where relative contributions of turbulent
production, Oduction» and net buoyancy, ®uoyan> to the entrainment coefficient could be
distinguished and quantified. A similar decomposition was performed by van Reeuwijk and
Craske (2015) for a turbulent axisymmetric plume and by Holzner et al. (2016) on turbulent
entrainment in an inclined gravity current, where the contribution from the viscous terms,
Qiscous» Which are non-negligible due to the viscous boundary layer was also calculated but
found to be relatively small compared to the combined contributions of turbulent production
and net buoyancy.

Other studies have sought to understand turbulent flows by examining the small scale
processes ultimately responsible for turbulent entrainment (Philip et al., 2014) by consid-
ering the entrainment across surfaces within the flow and relating this to the bulk entrain-
ment. In doing so, some authors have attempted to disentangle dominant large-scale pro-
cesses, whereby ambient fluid is ‘engulfed’ by the plume, with small scale processes close
to the TNTI termed ‘nibbling’, whereby vorticity is imparted to the ambient fluid via vis-
cous stresses across the TNTI at a length scale close to the Taylor microscale (Terashima
et al., 2016). While Philip et al. (2014) suggest that large-scale eddies determine the overall
rate of entrainment, Westerweel et al. (2009) conclude that the entrainment process is domi-
nated by ‘nibbling’. However, it is agreed that mixing is greatly enhanced due to stretching
of surfaces by vorticity (Ottino, 1989). By experimentally examining a turbulent jet Mistry
et al. (2016) show that turbulent entrainment in jets is a multi-scale process where at large
scales ambient fluid is transported across smooth surfaces, but ultimately transported across

the TNTI, which exhibits fractal qualities, at smaller scales at relatively low velocities. This
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is consistent with Meneveau and Sreenivasan (1990) who suggested that the total flux across
the TNTI should be independent of scale. Burridge et al. (2017) examined an axisymmetric
plume and suggested that engulfment of ambient fluid by the large scale structures is the
rate-limiting process for turbulent entrainment, consistent with Philip et al. (2014).

In this chapter we use an energy decomposition to examine the reduced entrainment in
a wall plume. We follow the free plume entrainment decomposition developed by Paillat
and Kaminski (2014a) and extend the theory to a wall plume, which closely follows the
entrainment decomposition of Holzner et al. (2016) in an inclined turbulent gravity current,
where relative contributions of turbulent production, buoyant and viscous terms may be
calculated directly. In doing so relative contributions to the entrainment coefficient may be
compared between the free and wall plume. We also use methods developed by Mistry et al.
(2016) and Burridge et al. (2017) to examine the statistics of the TNTI by both quantifying
the increased meandering in a free plume and relating this to the increased length of the
TNTTI in the free plume. This is achieved by making simultaneous measurements of velocity
and buoyancy in self-similar line plumes adjacent to and far from a vertical wall.

The chapter is organised as follows. We review plume theory for two-dimensional free
and wall plumes and the results of previous studies and extend the entrainment decompo-
sition of Paillat and Kaminski (2014a) to wall plumes in § 5.2. The experimental methods
and data analysis are presented in § 5.3, and the validation of the data is described in § 5.4.
The experimental results are presented and discussed in an Eulerian coordinate system § 5.5
and in a plume coordinate system in § 5.6. In § 5.7 we discuss the limitations of performing
planar measurements on a three-dimensional flow. In § 5.8 the turbulent Prandtl number of
the free plume is investigated by following a framework developed by Craske et al. (2017)

for a turbulent axisymmetric plume. Finally, the conclusions are presented in § 5.9.

5.2 Theory and previous work on entrainment in free and

wall plumes

A turbulent line plume is the flow driven by an infinitely long horizontal line source of
buoyancy. The wall plume differs from the free plume by the presence of a vertical wall
that is placed immediately adjacent to, and spans the entire length of, the line source. We
consider a uniform ambient fluid and restrict attention to the case where the wall is adiabatic
so that there is no loss nor addition of buoyancy into the plume. Consequently, the buoyancy
flux is constant with height in both the free plume and the wall plume. Here we outline the

theory of entrainment in free and wall plumes in a quiescent environment and adapt the
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entrainment coefficient decomposition of free plumes developed by Paillat and Kaminski
(2014a) to wall plumes.

In both flows we define the velocity w(x,z,¢) in the vertical z-direction, horizontal
velocity u(x,z,t) in the across-plume x-direction, the deviation from hydrostatic pressure
p(x,z,t) and the buoyancy b(x,z,t) = g(pa — p(x,2,t))/pa, Where p and p, are the den-
sity of the plume and ambient, respectively and we assume that p, — p < p,. Since the
flows are statistically steady, these quantities may be decomposed into time-averaged and
fluctuating components w(x,z,t) = w(x,z) + w'(x,z,1), u(x,z,t) = u(x,z) + '(x,z,¢) and
b(x,z,t) = b(x,z) + b'(x,z,1), and we denote the time-averaged maximum vertical veloc-
ity and buoyancy as W,,(z) and b,,(z). We assume all quantities are independent of the
y-direction aligned along the plume source. We define, respectively, the time-averaged vol-
ume flux, momentum flux, energy flux, integral buoyancy and buoyancy flux per unit length
by

0s(2)= | wix.2)dr 0u(2) = [ Wix2)a 5.1)
M) = [ W2 M) = [ W2 52)
E0)= [ #(xadr Eud) = [ % (2 (5.3)

/ b(x, 7)dx / b(x,z)dx (5.4)
Fi@)= | (2B 2)dx, R = [ Weabadn  55)

where the suffices f and w denote the free and wall plumes, respectively. In addition, we
define the source buoyancy flux per unit length as Fy. From these relations we define the

characteristic scales for plume width R and velocity W by

07 0?2
— =/ R, = =¥ 5.6
I oMy YT M, (5.6)

M; M,
W= =L W, = . (5.7)

/ Qf v Qw

Note that in the case of the free plume, R is equivalent to a ‘top-hat” half-width, whereas for
the wall plume, R,, is equivalent to a ‘top-hat’ full-width, which is used since it is analogous
to the half-width of the free plume. Under the Boussinesq approximation, the Reynolds time-
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averaged mass, vertical momentum and buoyancy conservation equations may be written

JdJu ow

S =0, (5.8)
0w _ow  d (—\ , 0w  1dp - 0°W
uawa_ﬁa—z(w )+ T e G res (5.9)
_db _db b owl 9’b
L e e B . (5.10)

where Vv and x are the kinematic viscosity and mass diffusivity of the fluid, respectively. For
the free plume, assuming that the Reynolds number Re = w,,R/v > 1 and the Péclet number
Pe = ReSc > 1, where Sc = v/« is the Schmidt number, the viscous and diffusion terms
in (5.9) and (5.10), respectively, may be ignored. In § 5.3.1 the experimental conditions
Re > 1 and Pe > 1 are justified. The integration of equations (5.8)-(5.10) gives

dor

=1U(—o0,7) —U(o0,7), (5.11)
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My e d /w— 1 dp
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Measurements by Bradbury (1965) and Miller and Comings (1957) in a turbulent free line

jet showed that B
/ W2dx ~ —/ pi‘:l—pdx, (5.14)
. —o0 Pg dz

we will therefore ignore these terms in the integral (5.12). Using the entrainment assump-
tion, that the inflow velocity at any height is proportional to the local vertical plume velocity
i.e. U(—o0,z) = —u(oo,z) = afWy, where o is the ‘top-hat’ entrainment coefficient (Mor-
ton et al., 1956), the equations (5.11)-(5.13), with the boundary conditions w(—oe,z) =
Ww (—e0,z) = b/ (—o0,7) = W(o0,z) = u'w(e0,z) = u'b/(e0,z) = 0, gives the free plume

conservation equations for the time-averaged volume, momentum and buoyancy flux

dQy My

—L = 20—, 5.15
dz fo ( )

dm F

WMy _p, - Ir9r (5.16)
dz Qfo

dFy

—71 —o, (5.17)



72 Turbulent free line and wall line plumes

where 6 encapsulates the relation between the integral buoyancy B and the buoyancy flux
Fy (which may also be interpreted as the non-dimensional buoyancy flux (van Reeuwijk and
Craske, 2015)), which by assuming self-similarity we may take as constant. Further, by

self-similarity we have assumed that
/_:de:ny, (5.18)
for some constant ¥y, so that
/_ZWE+de:Ff+/_Zde:Ff—I—YFf:(l-i—'}/)Ff. (5.19)

Note that in (5.15) the factor of two occurs as ay represents the entrainment into one side

of the plume only. The solutions to the free plume equations (5.15)-(5.17) are

1/3
0r(z) = (207)*"? (?) Z, (5.20)
S
2/3
Mf(Z>:(2af)l/3<Q) Z, (5.21)
¢
Fr(z) = Fy. (5.22)

For the wall plume, the viscous term in (5.9) is assumed to be non-negligible as it charac-
terises the effect of the no-slip boundary condition on the wall. The integration of equations
(5.8)-(5.10) gives

— _5i(eo,2), (5.23)
dz
dM,, . —— e d /°°— 1 dp ow|”
—Bj— — 2 dx = 5.24
5 mrdw]]y =By dz<0w tora®) Vel o 62
d o 8b°°
— Wb+ wbldx | + b’ 5.25
dZ(/O Wb ) -5 (5.25)

Using the same entrainment assumption that (e, z) = — o, W,,, (5.14) and with the bound-

ary conditions w(0,z) =u(0,z) = u'w(0,z) = Wb (0,7) =W(c0,z) = U (o0,7) = /b (0,7) =

dab

0 an ‘ = 0, since the wall is adiabatic, gives the wall plume conservation equations for
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the time-averaged volume, momentum and buoyancy flux

dQW MW

= ay—, 5.26
&z Oy O (5.26)
aM,, ow|  E,0, M, \?
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where 6,, encapsulates the relation between the integral buoyancy B,, and the buoyancy flux
F,, (again, this may be interpreted as the non-dimensional buoyancy flux), and we express
the wall shear stress in terms of the characteristic velocity W, and a skin friction coefficient
C. The assumption of self-similarity in the wall plume is more problematic because of the
existence of a viscous boundary layer in order to satisfy the no-slip condition on the vertical
wall. However, throughout this chapter we assume that the wall plume is self-similar, an
assumption which we show to be valid in § 5.4. Therefore, we take 6,, and C to be constants
and we again assume that the turbulent buoyancy flux may be expressed in terms of the
buoyancy flux (c.f. (5.19)). For a free stream turbulent boundary layer the skin friction
coefficient follows C = 0.0576Re, /5 (Schlichting and Gersten, 2017), where Re, is based
on the boundary layer thickness. While this flow is not directly applicable to the wall plume,
it does suggest that the wall plume skin friction coefficient will decrease with increasing
Reynolds number. However, it also suggests that the skin friction coefficient will not vary
significantly over a height with a small variation in Reynolds number, as in our experiments.

The solutions to the wall plume equations (5.26)-(5.28) are

- 1/3

Qu(z) = (%) 6, 'z, (5.29)
T o
F 2/3

Mi(2) = (1—WC> 6, oz, (5.30)
T o

Fy(z) = Fy. (5.31)

The constants @, and o are the standard top-hat entrainment coefficients. However, it has
been widely observed in previous studies that the vertical velocity and buoyancy profiles
of a free plume are well fitted by a Gaussian curve, (e.g. Paillat and Kaminski (2014a),
Ramaprian and Chandrasekhara (1989)) and the conservation of volume flux in the free and

wall plume may also be expressed in terms of the maximum vertical velocity and a Gaussian
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entrainment coefficient 0/, in the form

d d
99 _ 200,6Wm, —dQW
’ z

; = Oty G- (5.32)
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The top-hat entrainment coefficient in the free plume is related to the Gaussian coefficient by
o = V2 o, and most studies choose to calculate oty . At present there is significant dis-
agreement about the value of the entrainment coefficient, with previously reported Gaussian
entrainment values in the range ¢ty = {0.10,0.16} (table 5.1).

Most studies on wall plumes also focus on the Gaussian entrainment coefficient @, g,
although in some cases, notably Grella and Faeth (1975), the top-hat value o, was also
calculated. Since the velocity profile of the wall plume is not a known analytic function a
theoretical relation between ¢, and o, ¢ cannot been derived, although Grella and Faeth
(1975) find that o,/ o, ¢ ~ 1.4. There is broad agreement with previously measured Gaus-
sian entrainment values of the wall plume (table 5.1). This is somewhat surprising given the
additional difficulties associated with measuring the velocity of the wall-plume, which is
perhaps reflected in the variation in other parameters between these experiments, especially
the maximum mean velocity used in the calculation of @, . Further, Grella and Faeth
(1975) and Lai and Faeth (1987) emphasise that their data were not in a self-similar region
as the flow appeared to be evolving over the whole range of heights where the measure-
ments were taken. For these reasons it appears that, to our knowledge, an experimentally
determined top-hat entrainment value for a wall-plume within a self-similar region does not
exist in the literature. This is problematic given the unknown relationship between o, G
and o, in a self-similar region and that, despite the consistency between the previously de-
termined ¢, G, the closure model of (5.32) relies on an established maximum velocity for
which there is significant disagreement.

Our study is focused on the comparison of the top-hat entrainment values for a free and
a wall plume. Since these two flows have different velocity profiles it is natural to compare
the entrainment rates without any assumption on profile shapes. It is, therefore, unfortunate

that for the wall plume case previous work has paid less attention to the top-hat value.

5.2.1 Energy decomposition of entrainment in turbulent wall plumes

Paillat and Kaminski (2014a) used the formalism of Priestley and Ball (1955) and Kamin-
ski et al. (2005) to develop a theoretical model of entrainment in free turbulent plumes,
which had previously been adapted to free turbulent planar jets by Paillat and Kaminski
(2014b). This involved decomposing the entrainment coefficient into relative contributions
from buoyancy and turbulent production. A similar analysis has also been performed on
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Experiment Plume type « oG Wi/ FOl : % / FOl :
Lee and Emmons (1961) Free - 0.16 - -
Kotsovinos (1975) Free - 0.10 1.66 -
Yuana and Cox (1996) Free - 0.13 2.04 -
Paillat and Kaminski (2014a) Free - 0.12 2.1-22 -
Ramaprian and Chandrasekhara (1989) Free 0.16 0.11 2.13 0.48
Rouse et al. (1952) Free - 0.11 1.91 -
Present study Free 0.14 0.10 2.10 0.40
Grella and Faeth (1975) Wall 0.095 0.067 3.16 0.21
Lai and Faeth (1987) Wall - 0.071 2.14 0.15
Sangras et al. (2000) Wall - 0.068 2.84 0.19
Present study Wall 0.08 0.061 2.89 0.17

Table 5.1 Entrainment values, scaled vertical velocities and scaled rate of change of mean
volume flux of previous work, where Fj is the source buoyancy flux.

turbulent inclined gravity currents by Holzner et al. (2016), where the contributions from
the viscous terms due to the wall were also included and found to be small compared to
the buoyant and turbulent production terms. Here we outline a similar decomposition of the
entrainment coefficient of the wall plume into separate turbulent production, buoyant and
viscous terms.

An expression for the conservation of vertical kinetic energy may be obtained by mul-
tiplying (5.24) by w, ignoring the pressure and vertical velocity fluctuations, and using the
continuity equation to obtain (Priestley and Ball, 1955),

d (1 35\ 0 (1__,\ - _0d — _0°W
a—z(iw)ﬁ(z”)—Wb‘wa(“W“VWW -39

where integrating with the wall plume boundary conditions gives
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The conservation of volume flux may be expressed as (Paillat and Kaminski, 2014a)
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where, assuming self-similarity, the last term is zero. By equating (5.26) and (5.35) the
entrainment coefficient may be expressed as
o, dM, 0y dE,

_pZw v 5.36
TR EM, Az (5.36)

and substituting equation (5.27) and (5.34) into (5.36) gives

oy = abuoyant + (Xproduction + Qiscous (537)
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where Ri is the Richardson number defined by Ri = F,,Q7,/M; and C is the skin friction
coefficient. The first term, ®yoyans» 18 a result of both a positive contribution, resulting from
the effect of buoyancy on the momentum flux, and a negative contribution, resulting from
the effect of buoyancy on the energy flux, to entrainment. However, for Gaussian vertical ve-
locity and buoyancy profiles the net contribution may be shown to be positive. Qpoyans may
be interpreted as the net effect of buoyancy contributing to entrainment which, as noted by
van Reeuwijk and Craske (2015), provides plumes with a mechanism for entrainment not
directly associated with turbulence. The second term, @ pquction, cOTTEsponds to the effi-
ciency of turbulent entrainment driven by the turbulent production (Paillat and Kaminski,
2014a) and is the dominant positive contribution to &. The final term o;sco,s corresponds to
the viscous processes of the flow. The first term on the right hand side of (5.40), which con-
tributes positively to entrainment, is the mean dissipation rate and the second term, which is
the dominant negative contribution to entrainment, represents the inner boundary layer pro-
cesses that require energy but are not directly related to entrainment (Holzner et al., 2016).

A similar decomposition of the free plume entrainment coefficient gives (Paillat and
Kaminski, 2014a)

Of = Qpuoyant + Cproduction (5.41)
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where
Q, Ri ! ]% (5.42)
b =Ri| ———— |, .
uoyan Of Qf Ef
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Oproduction = _Efo . g”lwldxa (5.43)
where Ri is the Richardson number similarly defined by Ri = F’ fQ} / M} and the decomposed
terms may be interpreted as above for the wall plume. Using experimental data we show
the validity of the decomposition of the free plume, also shown by Paillat and Kaminski
(2014a), and we calculate the relative contributions to the entrainment coefficient for the

wall plume.

5.3 Experiments and analysis

5.3.1 Experimental details

The experiments were designed to create turbulent free and wall plumes that would enable
us to make simultaneous measurements of the buoyancy and velocity fields of the flow. The
experiments were performed in a Perspex (acrylic) tank (figure 5.1) of horizontal cross-
section 1.2m x 0.4m filled with dilute saline solution of uniform density p, to a depth of
0.75m. Relatively dense sodium nitrate solution was used as source fluid which enabled
refractive indices of the plume fluid and ambient to be matched as is needed for accurate
measurements of the velocity field as described below. The source fluid, at a reduced gravity
of by, was supplied using a Cole-Parmer Digital Gear Pump System, 0.91 mL/rev, which
was calibrated for each experiment with a separate flow rate. The gear pump provided
uniform volume, Qp, and buoyancy, Fy = Qpbg, fluxes per unit length, via a line source
of dimension L = 0.15m and width d = 1 mm (figure 5.2). The nozzle was constructed in
order to create a uniform spanwise velocity profile at the source by using a modular design.
The nozzle structure consisted of four valves, from which the source fluid is supplied via
the gear pump, which enter a chamber filled with reticulated polyether foam designed to
equalise the incoming flow. The first chamber is connected to a second chamber, via very
small holes that were used to increase the pressure in the first chamber and promote flow
uniformity along the length of the source, which was also packed with reticulated foam.
The line source nozzle exit was connected to the second chamber, which can be see in
figure 5.2. Figure 5.3 (b) shows the line source exit velocity profile along the length of the

source. This was measured by performing PIV along a plane aligned with the line source.
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Fig. 5.1 Diagram of the experimental setup for the free plume showing the (a) water tank, (b)
line source (see figure 5.2), (¢) bounding walls perpendicular to the line source (see text and
figure 5.4), (d) PIV camera, (¢) PLIF camera and (f) Laser. The illuminated plane (green)
created by the laser shows the plane that the measurements were taken, perpendicular to
the line source. The experimental setup for the wall plume experiments differ only by the
presence of a wall immediately adjacent to the line source (figure 5.3).
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Fig. 5.2 The source nozzle was constructed using a modular design (see text). (a) and (b)
show the completed nozzle structure and (c) shows the nozzle structure with the source exit
piece removed. This allowed for the same nozzle structure to be used for both the free and
wall plume by changing only the exit nozzle piece. (d) and (e) illustrate the nozzle design
through a cross section of the nozzle in the plane x = 0 and y = 0, respectively. The grey
blocks inside the structure in (d) and (e) highlight the reticulated foam (not shown in (c)).

(@)

Free plume Wall plume (b)
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< ﬁ
~
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Fig. 5.3 (a) The coordinate system of the free and wall plume and () the exit velocity,
measured at 4mm from the source exit, of the line source along the length of the source
with a flow rate per unit length of Qp = 1.00 x 10~*m?s~!. The structure of the line source
nozzle of the free and wall plume were identical.
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= sl

Fig. 5.4 The free (left) and wall (right) plume structure used to enclose the flow within the
large reservoir tank. The stainless steel rods seen in each picture are used to support the
structure in the reservoir. The complete source nozzle structure is shown in the free plume

structure whereas only the source nozzle exit piece is shown in wall plume structure (see
figure 5.2).



Table 5.2 Experimental parameters and measured length and time scales of the free plume experiments. Definitions are provided in

the text.

Parameter Definition Expl Exp2 Exp3 Exp4 Exp5
Source volume flux Qo[x107*m?s71] 133 133 100 122 1.22
Source buoyancy by [ms~2] 024 024 024 021 0.21
Plume parameter r 0.9 0.9 0.9 0.7 0.8
Reynolds number (z=0.25 m) Re 1960 2020 1640 1730 1900
Turbulent Reynolds number (z=0.25m) Re), 148 135 147 160 158
Kolmogorov length scale (z=0.25m) N[x10~*m] 4.0 3.7 4.2 4.0 4.0
Batchelor length scale (z=0.25m) Ag[x 1075 m| 1.7 1.6 1.8 1.7 1.8
Taylor microscale (z=0.25m) A[x1072m] 0.9 0.9 1.0 1.0 1.0
PIV vector spacing - 28n  3.0n 26n 28n 2.7n
pixel spacing - 0.23n 0.25n 0.22n 0.23n 0.23n
Kolmogorov time scale (z=0.25m) Ty (8] 0.15 0.13 017 0.15 0.15

Parameter Definition Exp6 Exp7 Exp8 Exp9 ExplO
Source volume flux Qo[x10~*m?s~1] 079 079 1.03 1.02 1.02
Source buoyancy by [ms~2] 033 033 033 016 0.16
Plume parameter r 1.3 1.0 1.2 1.3 1.2
Reynolds number (z=0.40m) Re 2820 2530 2980 2420 2870
Turbulent Reynolds number (z=0.40 m) Re), 163 185 186 167 180
Kolmogorov length scale (z=0.40m) N [x10~*m] 3.8 3.9 3.7 4.3 4.5
Batchelor length scale (z=0.40m) Ag[x107> m| 1.7 1.7 1.6 1.9 2.0
Taylor microscale (z=0.40m) A[x1072m)] 1.0 1.0 1.0 1.1 1.2
PIV vector spacing - 29n  29n  30n 2.6n 2.51n
PLIF pixel spacing - 0.24n 0.24n 0.24n 021n 0.21In
Kolmogorov time scale (z=0.40m) Ty [s] 0.14 0.14 013 0.19 0.20

Table 5.3 Experimental parameters and measured length and time scales of the wall plume experiments.
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The non-uniformity of the velocity profile is most prominent close to the walls, however, as
highlighted by Krug et al. (2013) in their experimental investigation of a gravity current, the
region close to the walls at y/L = 0 and y/L = 1 are subjected to boundary effects anyway
so should not be of any additional concern with respect to the two-dimensional nature of
the flow within the central region, 0.15 < y/L < 0.85, where the exit velocity varies by
at most 6% of the mean velocity. The initial density of the ambient and source fluid was
measured using an Anton Paar DMA 5000 density meter to an accuracy of 1 x 1073 kgm ™,
at 20°C. The ambient and source solution were both left overnight to reach a uniform,
and equal, temperature of 20°C and were measured to be within 0.1 °C of this temperature.
This corresponds to a maximum error of 0.15% of the initial density differences used in our
experiments. To promote the two-dimensionality of the flow by eliminating any entrainment
from beyond the length of the source, the flow was enclosed by two 0.6 m x 0.6 m transparent
walls (x-z planes) perpendicular to the line source, separated by the length of the source, see
figure 5.4. To create the wall plume a further vertical wall in the y-z plane was mounted
immediately adjacent to one edge of the line source.

Simultaneous measurements of the velocity and density fields on a x-z plane were taken
using particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF). A
frequency-doubled dual-cavity Litron Nano L100 Nd:YAG pulsed laser with wavelength
532nm was used to create a light sheet with a thickness of 2mm in the measurement section.
The illuminated sheet was then imaged using two AVT Bonito CMC-4000 4 megapixel
CMOS cameras, as shown in figure 5.1. For the PIV measurements, polyamide particles
with a mean diameter 2 x 10~?>mm and density 1.02 x 10°kgm~3 were added to both the
ambient and source fluid. To allow PLIF measurements, which we discuss in detail in
§ 5.3.1.1, a low concentration of the fluorescent dye Rhodamine 6G (2 x 10~*kgm™> for
all the experiments) was added to the source fluid. To separate the two signals, i.e. separate
light scattered from the particles and that fluoresced by the dye, a 3nm wide notch filter
centred at 532nm (i.e. centred at the wavelength of the laser) was placed in front of the
PIV camera and a 570nm low pass (with respect to frequency) filter was placed in front of
the PLIF camera. Images for both PIV and PLIF were simultaneously captured at 100 Hz
before being processed.

To determine the velocity fields, the raw particle images were processed using the 2017a
PIV algorithm of Digiflow (Olsthoorn and Dalziel, 2017). Interrogation windows were cho-
sen to be 24 x 24 pixels” with an overlap of 50%. Given the field of view of the camera,
we were able to obtain one velocity vector per 1.12mm? and 1.09mm? for the free and
wall plume, respectively. For the density field, given the low concentrations of Rhodamine

6G in the measurement section used (~ 1 x 10>kgm™> due to dilution through entrain-
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ment) a linear relationship between the light intensity perceived by the camera and the dye
concentration was used to determine the density field as in Ferrier et al. (1993). For the
experiments described in this chapter, a two-point calibration was performed for each exper-
iment by capturing an image of the background light intensity and an image at a known dye
concentration. Both calibration images were captured with the polyamide particles within
the tank, at the seeding density used for the experiment, to account for differences in the
laser intensity due to the presence of the particles. As the maximum dye concentration in
the measurement section was small, attenuation of the laser beam was neglected in the PLIF
image processing. An analysis of the error in the PLIF measurements as a result of the
attenuation of the laser beam is given in appendix A.

The finite thickness of the laser sheet results in a limit to the resolution of the measure-
ments obtainable from both PIV and LIF. The cross section of the laser sheet light intensity
follows an approximately Gaussian curve profile. This improves the precision of the PIV
because the brightest PIV particles (i.e. the particles within the central region of the laser
sheet) contribute a larger weight to the correlation than dimmer particles outside the central
part of the laser sheet. This suggests that the minimum reliable velocity resolution obtain-
able is within 10mm - 20mm. Similar arguments may be made for the PLIF measurements.
In addition, it is assumed that, as in most PLIF analyses, the flow variables change suffi-
ciently slowly across the laser sheet (Vanderwel and Tavoularis, 2014), i.e. it is assumed

that

la—w <1, (5.44)
w dy

where yr is the thickness of the light sheet and similarly for the vertical velocity u and

yr

buoyancy b. The PLIF images were processed at pixel resolution, 0.093 mm and 0.091 mm
for the free and wall plume, respectively. However, due to the limitation of the resolution
imposed by the thickness of the laser sheet, results are only presented, unless explicitly
stated, at resolutions of the PIV vector spacing or greater, i.e. at a resolution approximately
equal to the thickness of the light sheet.

After the images were processed, the velocity and density fields were mapped to a com-
mon world coordinate system. This was accomplished for both cameras by imaging a cali-
bration target of regular dots aligned with the laser sheet. As an additional calibration step,
a sequence of particle images were captured on both cameras simultaneously. Similar to
stereo PIV calibration, e.g. Willert (1997), these particle images were then cross-correlated
to determine a disparity map and shift the coordinate mappings to compensate for any small
misalignment between the calibration target and the light sheet. Further details of this cali-

bration step is given in Partridge et al. (2019) Appendix B.
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For both PIV and PLIF, it is necessary to eliminate refractive index variations within
the fluid as these produce distortions of the light paths and lead to errors in determining the
positions of the PIV particles and uncertainty in the location of the dye measurements. To
obtain a negatively buoyant plume, we used sodium nitrate solutions as the plume source and
sodium chloride solutions as the ambient fluid to match refractive indices while maintaining
a density difference (Olsthoorn and Dalziel, 2017). The refractive indices of the ambient
and source fluid were matched using (3.2) and (3.3), which is based on measurements at a
wavelength of 589nm from Rumble (2019). The ambient and source fluid were matched
to within 0.15% (based on relative refractive indices n — ng) but, due to entrainment, any
mismatch was further reduced by the point at which the plume was in the measurement
region.

Measurements for the free plume were collected over a measurement window height
of 0.160m starting at a distance 0.165m from the physical source of the free plume and a
window height of 0.157m starting at a distance 0.316m from the physical source of the wall
plume. These regions were sufficiently far from the source so that the plumes can be consid-
ered pure and self-similar (see figure 5.8). In order to minimise backflow effects the plumes
were first run at relatively low flow rate. This ensured the resulting gravity current at the base
of the tank had little effect on the ambient motion at the height of the measurement window.
The flow rate was then gradually increased so that the higher momentum plumes entered a
stratified region at the base of the tank which helped to mitigate the effects of the resulting
gravity current. Each experiment was recorded for 1005, corresponding to 10* simultaneous
velocity/density fields. We verified that the plumes satisfy the pure-plume criterion used by
Paillat and Kaminski (2014a) of an invariant maximum velocity with height. In addition, we
checked that the Richardson number was invariant with height. A total of 10 plumes were
studied, 5 free plumes and 5 wall plumes, and the experimental source parameters are given
in tables 5.2 and 5.3, respectively. Also given are the Reynolds number Re = w,,,R/V at the
minimum and maximum height of the region examined, where R is the plume half-width
(free) and width (wall) defined in (5.6) and the plume parameter I', averaged over the total
height of the region examined, where

3 . .
r_ & _ R r _ Quby Ry (5.45)
! Zoch]% 20’ YoM,

We also calculate the turbulent Reynolds number, Rej, = w/,,,5A /v, the Kolmogorov length
scale, n = (v3 / 8) 1/ 4, the Taylor microscale, A = W s \/m, the Batchelor length scale,
Ap = n/Sc'/? and the Kolmogorov time scale, T, = (v/€)'/? | where € = 15v(dw/dz)?
and Sc is the Schmidt number. The subscript rms denotes the root mean square of the
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data. Tables 5.2 and 5.3 shows that the Batchelor length scale was much smaller than the
resolution of the PLIF images across for all the experiments, suggesting that the effects of
diffusion at these scales may be ignored in our analysis.

5.3.1.1 Planar laser-induced fluorescence

In order to measure the density field we used Planar laser-induced fluorescence introduced
in § 3.3. Fluorescent tracer is mixed into the source plume fluid and a thin light-sheet, illu-
minated using the laser, excites the fluorescent tracer. The light intensity P of the fluoresced
dye at a given local illumination intensity / any point exhibits a linear relationship with the
dye concentration ¢ (Shan et al., 2004), P < g(I)c, where g is a function of the local illumina-
tion intensity (the form of which need not be known). At the dye concentrations used g(I) ~
const., i.e. the system was optically thin. By assuming that the density of the source plume
fluid is directly proportional to the concentration, the light intensity of the fluoresced tracer
is then directly proportional to the density of the plume fluid. The intensity response of the
camera is linear so that the density of the fluid may be inferred from the camera intensity
response.

Typically, however, the local illumination intensity is not known since it varies spatially
and temporally as a function of the power fluctuations of the laser and the absorption of the
laser light that occurs along its path (Crimaldi, 2008) or, as it is typically referred to, attenu-
ation. The Bouguer-Lambert-Beer law may be used to relate the local illumination intensity
of a non-absorbing medium reference case Iy(x, z) to the local illumination intensity (x, z,7)
in an absorbing medium, where the light is assumed to travel parallel to the z direction, as

follows

N
I(x,z,t) = Ip(x,z) exp <—/0 Zsici(x, C,t)dC), (5.46)
i=1

where €; are the extinction coefficients of the absorbing media with concentrations c; such as
the tracer dye or additional salts used to achieve density differences. The attenuation along

the path may be considered negligible if

z N
/O Y gici(x,§,1)dE < 1. (5.47)
i=1

In appendix A we show that the above condition is satisfied so that from hereon in we
assume that the attenuation is negligible.

The fluorescent dye used as a tracer is Rhodamine 6G. Rhodamine 6G exhibits peak
light absorptivity at a wavelength of 525nm and peak light emissivity at a wavelength of
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Fig. 5.5 (a) Calibration image, P(x,z), taken for experiments 1, 2 and 3. (b) Corrected
camera pixel intensity readings at positions A, B and C from (b) against dye concentration.
The lines are linear best-fits to the data.

555nm (Crimaldi, 2008), and has been observed to exhibit a linear relationship between
the dye concentration and fluorescent emission intensity up to concentrations of 100ugl~!
(Borg et al., 2001; Odier et al., 2014). A frequency-doubled dual-cavity Litron Nano L100
Nd:YAG pulsed laser with wavelength 532nm was used to create a light sheet in the ex-
periments, approximately equal to the wavelength of the peak light absorptivity of the dye
used.

The water tank, laser and camera used for all the free and wall plume experiments were
identical. However, the camera and laser position changed between the free and wall plume
experiments. Further, experiments were performed for initial ambients of varying densities
for both the free and wall plume. In order to account for attenuation resulting the sodium
chloride in the ambient solution, calibrations were performed for each set of experiments
with different ambient densities. Further, in order to verify the linear relationship between
the dye concentration and the light intensity, in particular the intensity measured by the
camera, a calibration was performed before each of these experiments. After the calibration
for each set of experiments the camera and laser position and optical settings of the camera
remained unchanged. The calibration was performed by filling the tank with a uniform
solution of ambient fluid that would be used for the experiments, in our case a sodium
chloride solution, and a uniform concentration of Rhodamine 6G. The camera then recorded
200 images of the laser-illuminated test section and the images were time-averaged in order

to find the camera intensity at each pixel P(x,z). We demonstrate the calibration technique
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using the calibration for the free plume experiments 1, 2 and 3 (table 5.2). The calibration
was repeated for concentrations of Rhodamine 6G of ¢ = 0, 3.11, 4.85,6.67,8.32,11.79
and 17.35ugl~!. The measurements for ¢ = Opgl~! give a background reference intensity,
Po(x,z). Figure 5.5 (a) shows an example of the corrected intensity, P(x,z) — Py(x,z), for
the calibration concentration of ¢ = 6.67ugl~!. Figure 5.5 (b) shows the normalised pixel
intensities at three locations shown in (a) as a function of the dye concentration. A line
of best fit is fitted to each set of data which shows the data is well represented by a linear
relationship.

In order to process raw images from an experiment, that is determine the concentration
of the dye c¢(x,z,¢) based on pixel light intensity measurements P(x,z,7) we perform a two
point calibration based on the background reading before each experiment P,(x,z) and a
uniformly mixed image P, (x,z) of a known dye concentration c¢,,(x,z) by the following

calculation
P—P,

= (Pu—Py)

The resulting density field, p(x,z,t), can therefore be calculated for a given initial uniform

c(x,z,t) = (5.48)

ambient density p, and source density and dye concentration of p; and c;, respectively, by
the following calculation

C()C,Z,l) (ps—pa> _ (P_Pb> (ps_pa>
Cg c%i(Pm_Pb)

p(x,z,t) :Pa+ (549)
There are four main sources of error that may result in the final density calculation of
(5.49). These are

(1) The noise associated with the camera.

(i1) The error in measurements of the dye concentration in the source and calibration

solutions and the error in the initial ambient and source density.

(iii)) The change in local illumination intensity due to the attenuation of the laser along its
path.

(iv) The change in local illumination intensity due to the energy variation of the laser.

In order determine the noise of the camera the lens cap was placed over the lens to
eliminate any variation in light. A video was then recorded for 1000 frames. The standard
deviation of the pixel intensities were then measured for every pixel and the mean value
across all the pixels was measured to be 0.0022 (where the maximum pixel intensity is 1).

We therefore assume the error from the camera noise may be neglected. The camera noise
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is affected by the camera gain, however the camera gain remained constant for all the PLIF
experiments performed, so the above analysis is identical for all the experiments. The black
level of the camera was tested suggesting that < 1% of the pixels measured O with the lens
cap on (including some dead pixels) so we are confident the measurements are not clipped.
As already discussed, the initial density differences used in the experiments were accurate
to a maximum error of 0.15%. A batch of Rhodamine solution of 0.02g1~! was made for
each set of experiments, which included an independent calibration. Equation (5.49) shows
that the inferred density only depends on the ratio of the source and calibration solution
cs/cm, therefore the inaccuracy of the concentration of the batch solution does not lead to
error assuming the same batch solution is used for the calibration and experiments. It is
necessary, however, to accurately measure the concentration, relative to the batch solution,
of the calibration and experiment source solutions. Weighing scales were used to measure
a known mass, to an accuracy of 0.1g, of the batch solution to the calibration tank or the
source solution. The smallest concentration used required 50g of the batch solution, corre-
sponding to 0.2% error in the concentration measurements. We provide an analysis of the
errors associated with (iii) and (iv) in appendix A.

5.3.1.2 Detection of the TNTI

The TNTI of the plume and statistics conditional on the presence or absence of plume fluid
were used to characterise the flow. Therefore, it was crucial that we were able to accurately
detect and distinguish between ambient fluid and plume fluid. Given that the Batchelor
length scale of the plumes was small compared to the resolution of the PLIF measurements,
we were able to employ a similar method to that used by Prasad and Sreenivasan (1989) and
Mistry et al. (2016) to find the TNTI in an axisymmetric jet. We identify the TNTI by a non-
dimensional scalar threshold, ¢, = b,(z)/bn(z), which coincides with the inflection point
of the area-averaged conditional mean buoyancy E(¢t) and spanwise vorticity magnitude
@(@)’ where the conditional mean is an area-averaged quantity of regions where the
buoyancy satisfies ¢, < b/b,,. The area-averaged conditional mean of the scaled buoyancy
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Fig. 5.6 Identification of the scalar threshold ¢, = b;/b,, used to identify the TNTI of the
(a) free and (b) wall plume. Plots (c) and (d) show the gradient of the conditionally average
profiles of (a) and (b), respectively. The vertical dashed line shows the position of the
inflection point of the conditionally averaged buoyancy data of free plume, ¢, = 0.35, and
wall plume, ¢, = 0.17.

and spanwise vorticity magnitude are defined as

b(¢) = /// bm ) — 0 (x(’zgdxdzdt7
/ // :(j ‘Pt dXdzdt

PG

/ // ¢t dxdzdt 7

where H is the Heaviside step function. Mistry et al. (2016) also consider the conditional

(5.50)

‘w»‘( ) (z )dxdzdt
|y |(9r) =

(5.51)

mean vertical velocity in their identification of ¢;, however, given the finding that significant
vertical velocities exist outside the scalar edge of an axisymmetric plume (Burridge et al.,
2017), we chose to consider instead only the buoyancy and spanwise vorticity magnitude, as
the flow outside the plume is irrotational. The conditional buoyancy and spanwise vorticity
magnitude, with their gradients, are shown in figures 5.6 (a)-(d). For the wall plume an
inflection point was identified from the conditionally averaged buoyancy and vorticity data
with a value of ¢, =0.15 and ¢, = 0.17, respectively. Although these values do not coincide
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Fig. 5.7 The conditionally averaged profiles of (a), (b) buoyancy, b, and (c), (d) vorticity
magnitude, |y |, shown for the (a), (c) free (see table 5.2) and (b), (d) wall (see table 5.3)
plume experiments, respectively. Note that the buoyancy is presented at the camera pixel
resolution.
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exactly, the inflection point of the conditionally averaged spanwise vorticity magnitude falls
within 0.17 +20%. We show our results are not sensitive to the choice of threshold within
this range. For the free plume an inflection point was identified from the conditionally
averaged buoyancy data with a value of ¢, = 0.35. An inflection point for the conditionally
averaged vorticity data could not be identified, although as we show, this choice of threshold
clearly identifies a region separating a significant jump in spanwise vorticity magnitude. In
addition, in the following sections, we show that the results are insensitive to the choice of
the threshold within a range of ¢, = 0.35 £20%.

Figure 5.7 shows conditionally averaged profiles of buoyancy and spanwise vorticity
magnitude, for both the free and wall plume. The data are ensemble-averaged, represented
by (~), in a coordinate system by a coordinate x, defined relative and normal to the TNTI,
so that positive x,, lies within the turbulent region of the plume (Chauhan et al., 2014; Mistry
et al., 2018, 2016). The TNTIs were identified using the threshold determined above. As
noted by Mistry et al. (2016), there may be multiple TNTI crossings along x,. Only regions
that are identified with plume fluid are included in the ensemble-average of x,, > 0 and vice
versa. Figures 5.7(a) and (b) shows there is a rapid increase in measured buoyancy across the
identified TNTI, x,, = 0, in the free and wall plume, respectively. Analogous observations,
where a passive scalar is measured, are also found in the near and far field of a turbulent jet
(Mistry et al., 2018, 2016; Westerweel et al., 2009). A jump in spanwise vorticity magnitude
can also be observed in the free and wall plume in figures 5.7 (¢) and (d), respectively, which
coincides with the jump in buoyancy at x, = 0. As a result of the lower resolution of the
velocity field data the relative increase in spanwise vorticity magnitude is not as sharp as that
for the buoyancy (note that for measurements based on both the velocity and buoyancy field
the jumps occur over approximately 4 — 5 data points). Furthermore, the spanwise vorticity
magnitude jump occurs across a distance approximately equal to the Taylor microscale. This
is consistent with the results of direct numerical simulations results of a turbulent wake by
Bisset et al. (2002) and the experimental results of a turbulent free line jet by Terashima
et al. (2016) where in both cases the TNTI thickness was found to be almost equal to the
Taylor microscale. It is apparent from figures 5.7(a) and (b) as to why the threshold in the
free plume is approximately double that of the wall plume. As will be discussed in § 5.6, the
free plume is more uniformly mixed within the plume region resulting in larger buoyancy,
relative to the maximum buoyancy, within the plume close to the interface. Given that the
jump in relative buoyancy in the free plume is approximately double that of the wall plume,
a larger threshold may be chosen to identify the region separating the ambient and plume
fluid. From this analysis we are therefore confident that the threshold identified is robust

in identifying the TNTI across all the experiments. We therefore choose ¢; = 0.17 as the
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Fig. 5.8 Time-averaged scaled vertical and horizontal velocity and buoyancy profiles of the
(a)-(c) free and (d)-(f) wall plume. For each experiment, five different heights spanning the
studied region are plotted. The average values across all experiments are shown in each
case by the solid black curve. In addition, a Gaussian least-squares fit was performed on the
average values of the vertical velocity and buoyancy of the free plume and are shown by the
dashed red curves.

threshold of the wall plume and ¢; = 0.35 as the threshold of the free plume throughout the
study. We may now consider regions b/b,, < ¢ to be ambient fluid and regions b/b,, > ¢
to be plume fluid.

5.4 Validation of the PIV and PLIF data

We first validate the plume data by demonstrating the self-similar behaviour of the velocity
and buoyancy profiles. Figure 5.8 shows the vertical and horizontal velocities and buoyancy
profiles for five different heights spanning the whole height of the measurement window for
each experiment, with horizontal distances scaled on the distance from the virtual source,
7 — 20, where z is the virtual origin. The virtual origin was calculated by identifying, by
linear extrapolation, the vertical location at which the time-average plume width is zero.

A good collapse of data on to a single curve is seen in each plot, thereby demonstrating
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Fig. 5.9 (a) Maximum vertical velocities of the free, filled markers, and wall plume, unfilled
markers, scaled using the source buoyancy flux. (b) Time-averaged top-hat buoyancy of the
free and wall plume, scaled using the vertical distance and source buoyancy flux.

self-similarity. The self-similar vertical velocity and buoyancy profiles of the free plume
are fitted well by a Gaussian curve (shown by the dashed red curve) as has been previously
observed (e.g. Ramaprian and Chandrasekhara (1989), Paillat and Kaminski (2014a)) and
the wall plume profiles agree well with those of Sangras et al. (1999) and Sangras et al.
(2000). Further confidence in the self-similarity of the plumes is given by the invariance
with height of the maximum vertical velocity, scaled by the buoyancy flux FO1 / 3, shown
in figure 5.9 (a), and the inverse linear decay ~ 1/z (Fischer et al., 1979) of the top-hat
buoyancy B/R shown in the compensated plot in figure 5.9 (b).

5.5 Results in an Eulerian coordinate system

5.5.1 Turbulent fluxes

Measurements of velocity and buoyancy fluctuations, Reynolds stress and turbulent trans-
port for the free and wall plume experiments are shown in figures 5.10 and 5.11, respec-
tively. Our results for the free plume turbulent transport of buoyancy closely follow those of
Ramaprian and Chandrasekhara (1989), and the turbulent buoyancy fluctuations are consis-
tent with those of Sangras et al. (1998). For both plumes we note that the turbulent buoyancy
fluxes are at most about 5% of the mean vertical buoyancy flux. The turbulent fluctuations
for the wall plume agree well with those of Sangras et al. (1999) and Sangras et al. (2000).
To our knowledge, turbulent transport quantities for a wall plume in a self-similar region

have not been calculated in previous studies, except within a developing region by Lai and
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Fig. 5.10 Time-averaged scaled free plume turbulent fluctuations of (a) vertical velocity, (b)
horizontal velocity and (c) buoyancy and (d) Reynolds stress, (e) vertical and (f) horizontal
turbulent buoyancy flux. The black curves are the averages of the data.
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Fig. 5.11 Time-averaged scaled wall plume turbulent fluctuations of (a) vertical velocity, (b)
horizontal velocity and (c¢) buoyancy and (d) Reynolds stress, (e) vertical and (f) horizontal
turbulent buoyancy flux. The black curves are the averages of the data.
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Fig. 5.12 The variation in the mean free plume half-width, filled markers, and wall plume
width, unfilled markers. Lines of best fit, used to calculate the entrainment values (table 5.4),
are shown by the respective dashed lines.

Plume type aproduction (Xbuoyant (Xproduction + abuoyant o (: dr / dZ)
Free 0.1034+0.010  0.047 +0.004 0.14940.019 0.135+0.010
Wall 0.067£0.010  0.043+£0.008 0.109 £0.006 0.076 £0.006

Table 5.4 Entrainment coefficient for the free and wall plumes, calculated using dR/dz (fig-
ure 5.12) and from the decomposition of entrainment coefficients described in § 5.2.1. The
error margins denote the standard deviation for each quantity across all five experiments.

Faeth (1987). It is clear that their flow is not self-similar where their measurements are
taken, and both the present study and Sangras et al. (2000) find significantly larger velocity
turbulent fluctuations compared to Lai and Faeth (1987) and, therefore, further comparison
between our results is not insightful.

Larger maximum values for the normalised Reynolds stress at 0.30 are found in the free
plume compared with 0.18 in the wall plume. The maximum values for the normalised tur-
bulent horizontal and vertical fluxes are also significantly higher in the free plume being, in
both cases, approximately double those of the wall plume. The kink observed in the vertical
buoyancy flux, figure 5.11 (e), at about x/(z — z9) = 0.08 appears to be real, as opposed to
resulting from scattered data, since it is reflected in the turbulent buoyancy fluctuations, also
observed by Sangras et al. (1999).

5.5.2 Entrainment coefficient

The top-hat entrainment coefficients for the free and wall plume were determined from the
solutions of the conservation equations (5.20)-(5.22) and (5.29)-(5.31), respectively. The
values were obtained from a least squares best-fit to the time-average plume widths R at
each height (figure 5.12). The calculated values are shown in table 5.4 where the toler-

ances indicate the standard deviation in the values measured across the five independent
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experiments examined for each flow. Our value of & is consistent with previously reported
Gaussian entrainment values of oy = {0.10,0.16} which correspond to approximately
oy ~ \/iocﬁG = {0.14,0.22}. Our value of o, is lower than the previously reported value
of o, = 0.095 +0.005 in Grella and Faeth (1975). In particular, our results support previous
studies that find o, is slightly more than half of ay. We note that if we were to consider the
wall plume as ‘half’ the free plume, we would expect the top-hat entrainment values to be
equal to one another since the equation expressing conservation of volume flux in the free
plume (5.15) accounts for the double-sided entrainment with the factor of 2. Consequently,
this difference is a result of the absence or presence of the wall.

We also calculate the entrainment coefficient based on the decomposition outlined in
§ 5.2.1. The relative contributions of @y squction aNd Qpyoyans, and their sum, are shown in
table 5.4 compared to the entrainment coefficient calculated directly from dR/dz.

There is good agreement between the calculated entrainment coefficients of the free
plume between the two methods. Our values of @ oqucrion = 0.103 0.010 and Opypyan: =
0.047 £0.004 are in good agreement with those measured by Paillat and Kaminski (2014a),
where they find that &pqucrion = 0.104, and Ouoyans = 0.04, where the latter has been
inferred from the Richardson number given in Paillat and Kaminski (2014a) of Ri = 0.14.

The terms O oduction a0d Opyoyans for the wall plume may be accurately determined from
our data. However, the component ;50,5 for the wall plume is difficult to measure directly.
Given such good agreement is found in the free plume, it is suggestive that the discrepancy
between oty and the turbulent production and buoyant terms, O ogucrion a0d Opyoyans, MAy
be attributed to the viscous term Q50,5 since the discrepancy lies outside the range of error
values calculated. We therefore estimate that for the wall plume ¢;scous =~ —0.03.

The contribution from the buoyancy, 04,uoyans» s approximately the same in both the free
and wall plume. The reduction in entrainment in the wall plume may then be attributed to
both a significant reduction in turbulent production, @ oqucrion. and viscous dissipation in
the inner layer, iscous. The reduction in Ogucrion between the free and wall plume is
approximately equal to O;scous in the wall plume, which shows that both contribute signifi-
cantly to reducing entrainment.

Based on previous observations of suppression of cross-stream turbulent fluxes in the
wall plume (Ellison and Turner, 1959; Sangras et al., 2000; Turner, 1973), which are also
observed in this study, the reduction in @ squcrion in the wall plume is expected.

5.5.2.1 Direct calculation of o,;sqous

In order to estimate Qjscous We compared the energy decomposition of o to ag = dR/dz.

Here we estimate o;scous directly from velocity measurements. (5.40) may be expressed in
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terms of the wall shear stress by

(5.52)

2 o /=N 2 29—
20V ow dx—ZVQ 8_w
M? Ox

Qyiscous = m 0 g Y%

0
The nearest-to-wall PIV measurements were obtained at a distance x; = 1.3mm. We esti-

mate the velocity gradient at the wall by

ow(x,7)

~ W(X],Z)

~ , (5.53)
ox | X1
and assume that
w(x,z) = xw(xl ) , (5.54)
X1
for the region 0 < x;. Using (5.53) and (5.54) we find that
20%v (= (W)’
— | dx=0.0161£0.0011 )
E.M, Jo <8x> 0.01614+0.0011, (5.55)
and 2 g
ZVQ— e 0.0187+0.0014 (5.56)
M? dx |,

resulting in an estimate of Ojscous = —0.0026 £ 0.0005. The magnitude of this estimate
is significantly lower than 0sc0s = —0.03 obtained in § 5.5.2, however it should be em-
phasised that the validity of the approximation (5.53) is uncertain. (5.56) also provides an
estimate for the skin friction coefficient of C = (0.0093 4+ 0.0007.

5.5.3 Entrainment flux

The entrainment coefficient may be viewed as a measure of the plume entrainment efficiency.
However, to interpret the physical implications we consider how much fluid is entrained into

the free and wall plume per unit height. For a given buoyancy flux F = F,, = Fy, (5.20) and

(5.29) give
1 2/3 1/3
e _ dQy (dQW> _ 523 <ﬂ) <1 4 £) : (5.57)

Uoo dz dz o o,

where we have used that (Of / Gw) 3 1, as verified from our data.
The skin friction coefficient has already been calculated by estimating the wall shear
stress in § 5.5.2.1. The skin friction coefficient may also be calculated by balancing bulk

flow quantities using the momentum equation (5.27), which results in a mean value of C =
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Fig. 5.13 Instantaneous buoyancy field of the (a) free and (b) wall plume. The figures shown
are the processed PLIF images at full resolution. In both cases the outer continuous TNTI
is highlighted by the solid white line and the TNTIs of unconnected regions and completely
engulfed regions (within the plane) of ambient fluid are highlighted by the red lines. The
TNTIs were identified from the threshold b; determined in § 5.3.1.2. In (a) the mean position
of the outer left TNTI, centreline and outer right TNTI are denoted by the dashed magenta
lines from left to right and the distances have been scaled using the free plume half-width
at the mid height of the image, R;. In (b) the position of the mean outer TNTI of the free
plume is denoted by the dashed magenta line and the distances have been scaled using the
wall plume half at the mid height of the image, R;,.

0.0154+0.005. We note the difficulties in experimentally determining this value due to
the omission of the vertical velocity fluctuations and pressure term (the latter of which can
not be measured directly) in the vertical momentum equation, which together have been
shown to account for up to 8% of the mean vertical momentum in an axisymmetric plume
(Van Reeuwijk et al., 2016). Therefore, we do not place emphasis on our result of the
skin friction coefficient, and note that our conclusions are qualitatively the same for any
(reasonable) values of C > 0.

Using the determined entrainment values in the right hand side of (5.57) we find that
2Uoo f/Ueoy = 2.5 £0.4. This agrees with direct measurements of (dQr/dz)/(dQ,,/dz) =
2.440.1. Hence, despite the value of the entrainment coefficient for a free plume being less
than double that of the wall plume, the increase in volume flux with height in a free plume
is significantly greater than double that of a wall plume with equal forcing, i.e. equivalent
buoyancy flux. This implies that each edge of the free plume entrains ambient fluid more
efficiently than the wall plume, per unit height.
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Fig. 5.14 Histograms of (a) the locations (from left to right) of the left-TNTI, the centre, the
right-TNTT and the plume scalar width of the free plume, where distances are normalised by
the plume scalar half-width and (b) the plume scalar width of the wall plume normalised by
the time-average scalar width, R_p The solid curves are Gaussian best fits to the data. The
red and blue dashed curves show the Gaussian best fits to data of the statistics performed
with a threshold of ¢; = 0.17 —20% and ¢, = 0.17 +20%, respectively, for the wall plume
and ¢, = 0.35 —20% and ¢; = 0.35 4 20%, respectively, for the free plume, highlighting the
insensitivity of our results to the choice of threshold.
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Fig. 5.15 The probability, at a given horizontal location, of being within the plume region
bounded by the outer TNTI for the free plume, solid black line, wall plume, dashed black
line, and for comparison an axisymmetric plume, grey line (Burridge et al., 2017).
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5.5.4 The statistics of the TNTI

Figure 5.13 shows instantaneous images of a free and a wall plume. The continuous outer
TNTI has been identified and highlighted in white. Also highlighted, in red, are the TNTIs
of regions of unmixed ambient fluid completely engulfed, within the plane, by plume fluid.
In both flows, there are significant deviations from the positions of the mean outer TNTI,
denoted by the dashed magenta lines. The meandering nature of the free plume is evident
from figure 5.13(a), where in addition to the relatively small coherent structures forming,
i.e. eddies along the outer TNTI, which are also seen in the wall plume, the free plume also
forms coherent structures at the length scale of the full plume width. As a result the instan-
taneous edge of the wall plume is comparatively closer to the mean TNTI (figure 5.13(D))
than for the free plume.

We define the left, Ey(z,t), and right, Eg(z,t), points along the outermost TNTI for a
given height, and time, as the outermost left and right points along that TNTT at that height.
Therefore, the positions are uniquely defined for each height and time. Similarly, we define
the outermost point, at a given height and time, of the wall plume R, (z,¢). Histograms of
Er(z,t) and Eg(z,t) of the free plume and R,(z,¢) of the wall plume are shown in figure 5.14,
normalised by the time-averaged scalar widths of the plumes. We define the instantaneous
plume scalar half-width and centreline as R, = (Eg — E1)/2 and C), = (Eg + EL) /2, respec-
tively, for the free plume and the scalar width as the distance from the wall to the outer
TNTI in the wall plume. We find that the positions of the left and right TNTI of the free
plume are both well represented by Gaussian distributions E; ~ N(u = —1,62 = 0.16),
Er ~ N(u = 1,02 = 0.16), respectively, where i denotes the mean and o the standard
deviation. The sensitivity of the results to the particular choice of threshold were tested,
for by /Em = 0.35 +=20%, also shown in figure 5.14, in each case the standard deviation
varied by at most 5% as compared to the standard deviation of the chosen threshold. The
free plume scalar half-width and centreline are also approximated by Gaussian distributions
2R, ~ N(u =2,0%=0.27) and C,, ~ N(u = 0,62 = 0.093). For the wall plume we find
that R, ~N(u =1, 02 = 0.091), again the sensitivity of the results to the particular choice
of threshold was tested, for b, / by = 0.17+20%, also shown in figure 5.14, in each case the
standard deviation, &, varied by at most 4% as compared to ¢ of the chosen threshold. In
the case of the free plume, since C, = (Eg + E1) /2, it follows that the Pearson’s correlation
coefficient is pg, g, = 0.16. This may be compared to an axisymmetric plume where it was
found that pg, g, = 0 (Burridge et al., 2017). So although the correlation between the two
edges is larger than that for an axisymmetric plume, it is still small.

However, this statistic masks the true meandering nature of the plume as is evident from
figure 5.13 (a). The position of the outer left and right TNTI of the free plume at, say, z/R =
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Fig. 5.16 The mean TNTI length for varying box filter sizes, 0.1 < A/A;, < 1, for the free,
filled, and wall, unfilled, plume. The lengths have been scaled by the projected length of the
interface. The error bars show the statistics performed with a threshold of ¢; = 0.35 +20%
and ¢, = 0.17 £20% for the free and wall plume, respectively.

9.0 line do not demonstrate meandering, even though the body of the plume has clearly
meandered to the left and overturned. For this reason, the meandering nature of the plume
is more robustly demonstrated by considering the probability, at given horizontal location,
of plume fluid being within the connected region that is bounded by the outer plume TNTI,
as shown in figure 5.15. This demonstrates that there is a significant probability ~ 15%
that a connected region of ambient fluid exists at the mean centreline of the plume, as a
result of the plume meandering. For comparison, the equivalent probability function for
an axisymmetric plume, which does not demonstrate a meandering behaviour, is shown
(Burridge et al., 2017) and the probability is much lower ~ 1%. Kotsovinos (1975) and
Westerweel et al. (2005) have performed similar statistics for a free line and axisymmetric
jet, respectively, and also find that there is a finite but very low probability of ambient fluid
existing at the mean centreline. We note that Kotsovinos (1975) also calculated the plume
fluid intermittency for a free line plume, and found it was almost identical to that free jet,

which appears to be inconsistent with his observations of plume meandering.

5.54.1 Plume meandering mechanism

Here we describe the basic mechanism of the wavering of the plume body, which can be

observed in both the axisymmetric plume (figure 4.3) and free line plume (figure 5.13 (a)),
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and suggest why this leads to strong correlated meandering (i.e. a correlated left and right
TNTI wavering) in the free line plume but not the axisymmetric plume.

Due to entrainment, in a coordinate system as used in the experiments with negatively
buoyant plumes, the density of the plume decreases as distance from the source increases.
The plume is therefore, on average, unstably stratified. This leads to overturning of the
plume body as illustrated in figure 5.17. The mechanism described here was used as a
model to explain the wavering observed in free line plumes by Kotsovinos (1975), however
the mechanism is also applicable to axisymmetric plumes as described by Sreenivas and
Prasad (2000). This mechanism does not, alone, however explain the differences observed
between the free line and axisymmetric plume. Figure 5.18 illustrates the meandering mech-
anism of the free line plume. The free line plume tends to overturn about an axis that is
aligned with the y-direction, which explains the relatively large correlation coefficient be-
tween the outermost left and right TNTI measured in a plane normal to the y-direction. The
axes of these overturning structures (blue dashed lines), which occur in different x-z planes
along the y-direction, tend to correlate and reinforce the overturning structure resulting in
strong correlated meandering. The axisymmetric plume, however, is equally likely to over-
turn along any azimuthal direction, leading to a small correlation coefficient between the
outermost left and right TNTI from measurements in a fixed plane. In addition, for a given
time the plume will tend to overturn along different axes at different heights, preventing

correlated meandering.

5.5.4.2 TNTI length

The effect of the meandering can be quantified by considering the length of the TNTI of the
free and wall plume. We use a methodology similar to that of Mistry et al. (2018), where box
filtering, of size A, is applied to each instantaneous image and the TNTI is identified from the
scalar threshold b;. Figure 5.13 shows an instantaneous buoyancy image at full resolution
of the free and wall plume highlighting the identified TNTI. Completely engulfed, within
the plane, and unconnected regions are included in the calculation which are non-negligible
in the flows we are considering.

The results for varying box sizes 0.1 < A/A; < 1 are shown in figure 5.16, where A, is
the Taylor microscale measured at the mid height of the studied regions of the respective
data and 0.1A,, approximately corresponds to the thickness of the light sheet used in the
experiments. The mean interface length L, is normalised by the projected interface length
L., which is defined by the vertical distance of the region considered in the wall-plume and
twice the vertical distance in the free plume. We find that the mean length of the TNTI
of the free plume is larger than that of the wall plume at all filter sizes measured by a
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Fig. 5.17 The mechanism of the overturning of the plume body observed in both free plume
and axisymmetric plume experiments which is based on the description by Kotsovinos
(1975) figures A.6 and A.7. By considering a control volume V. in an idealised instanta-
neous plume, with coordinate system as shown, the centre of mass is lower than the centre
of the pressure forces due to the increasing density of the plume fluid with increasing z. The
gravitational force (blue arrow) and Archemidian force (red arrow) results in an unstable
plume body and overturning.
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Free line plume Axisymmetric plume

Fig. 5.18 The mechanism leading to meandering in the free line plume. The free line plume
tends to overturn along an axis in the y-direction (blue dashed lines) so that the overturning
in different planes is correlated. The axisymmetric plume is equally likely to overturn in
any azimuthal direction preventing correlated meandering.

factor, on average, of at least 2.2. The sensitivity of the results to the particular choice of
thresholds were tested for b; /by, = 0.35+£20% and b; /b,, = 0.17 +20% for the free and
wall plume, respectively. These data are shown by the error bars in figure 5.16. Although
there is some sensitivity to the results the conclusion that Ls/L; is larger in the free plume
remains unchanged. The data does not exhibit any dependence on the turbulent Reynolds
number which may be because of the limited range of turbulent Reynolds numbers across
the experiments, further, the free and wall plume turbulent Reynolds are similar, in particular
experiments 4 and 5 of the free plume and experiments 6 and 7 of the wall plume where the
turbulent Reynolds number at the mid height of the plumes differ by at most 5%. Mistry et al.
(2016) found a similar value for the length of the TNTT of an axisymmetric jet, measured at
A/Aj, = 1, to our measurements of the free plume of Ly/L, ~ 2.

The measurements of the mean TNTI length Ly in a single plane are an attempt to esti-
mate the mean three-dimensional turbulent/non-turbulent surface area per unit length A/ L,
(where Ly is a projected length in the spanwise direction), the latter of which is not attainable
from planar measurements. While it is unclear if L, provides a reliable estimate of A; / Ly, it
is hoped that the ratio of L in the free plume to Ly in the wall plume is representative of the

ratio of Ay in the free plume to A in the wall plume.
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Fig. 5.19 (a) Time-averaged conditional volume flux of the ambient fluid outside the plume
envelope (yellow) and of engulfed but unmixed ambient fluid (blue) for both the free and
wall plume. The error bars indicate the mean values across the experiments of the analysis
performed with a threshold of ¢, = 0.35 +20% and ¢, = 0.17 +=20% for the free and wall
plume, respectively. (b) Instantaneous image of a free-plume, shown in figure 5.13 (a), high-
lighting the different regions of ambient and engulfed fluid where the colours correspond to
the bar plots in (a).

5.5.5 Conditional vertical transport

In order to quantify the effect of the meandering of the free plume on the large scale en-
gulfment we calculate the conditional vertical transport of ambient fluid, for both the free
and wall plumes, by considering, separately, ambient fluid outside the TNTI envelope and
engulfed but unmixed fluid. In order to calculate the fluxes of the ambient fluid we follow
a method equivalent to that of Burridge et al. (2017) by first defining an instantaneous step
function for the outer ambient fluid

0 for E 1) <x<E t
Hyy = O FOr ELlo0) <x < Er(z.0). (5.58)
1 otherwise,
and a step function for all unmixed fluid
0 for b(x,z,t) > bi(z),
=1 | o bn2,1) > bi(2) (5.59)
1 for b(x,z,t) < by(z).

A step function identifying the locations of engulfed but unmixed fluid H,,, is then given
by Heng = Hump[1 — Hour|. Figure 5.19 (b) shows an example of these regions for an instan-
taneous free plume image, where H,,, and H,,, are highlighted in yellow and blue, respec-

tively. The time-averaged volume flux of ambient fluid outside the plume TNTI envelope is
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then given by

T
Oou(2) = 7 /O [ Hoa (5,251 w2, ), (5.60)

where the integral domains over the x-coordinate are given by the respective domains of
the free plume (—eo,00) and wall plume (0, o). Similarly, the time-averaged volume flux of
engulfed but unmixed fluid is given by

T
Ourg() = [ [ Honglox.2. w2, 1) (5.61)

Time-averaged results for both the free and wall plume are shown in figure 5.19 (a). We
find that for the free plume Qe /Q = 0.078 £0.011 and Q,y /O = 0.063 +0.011 and for
the wall plume Qene/Q = 0.067 £0.007 and Qpyr/Q = 0.113£0.011. Again we see that
more ambient fluid is engulfed by the meandering of the free plume compared with the wall
plume.

Given the restriction of planar velocity and buoyancy measurements it is not possible to
determine whether ambient fluid is completely engulfed or connected to the far field ambient
outside the measurement plane. Therefore, any reasonable definition must include ambient
fluid connected to the far field or consider the uncertainty of plane-engulfed fluid actually
being completely engulfed. In this sense, although our definition of engulfed fluid includes
regions that may or may not be completely engulfed, it is not clear that a definition that
is based only on plane-engulfed fluid would offer any advantage. In particular, the results
of the latter definition may change with full three-dimensional measurements, however, the

results of our definition would not.

5.5.6 Discussion

Our results may be set in context with the original observation of Ellison and Turner (1959)
that the reduced entrainment in the wall plume is due to the suppression of the meandering of
the plume. We find that the meandering of the free plume creates coherent structures at the
size of the total plume width that frequently overturn and engulf ambient fluid. This in turn
stretches the interface leading to an increase in the total length of the TNTI and increased
rates of entrainment (Ottino, 1989). This suggests that the entrainment process may be
viewed as a multi-scale continuous process, where ultimately, at the smallest scales, fluid is
nibbled across the TNTI and then irreversibly mixed, consistent with the view of turbulent
entrainment in axisymmetric jets (Mistry et al., 2016), turbulent boundary layers (de Silva
et al., 2013; Philip et al., 2014) and axisymmetric plumes (Burridge et al., 2017). The
observation that the total TNTI length of the free plume is 2.4 times that of the wall plume
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is then reflected well in the observation that the free plume entrains at a rate of approximately
2.4 times that of the wall plume. We find that the relative vertical transport of the engulfed
fluid, QTng/Q of the free plume is approximately 18% greater than the wall plume (see
figure 5.19). However, the relative vertical transport of ambient fluid outside the TNTI
envelope of the wall plume, O, /Q, is approximately double that of the free plume. Further,
Qou and Qg are similar in the free plume whereas O,y is almost double Oy, in the wall
plume, in addition to being much larger than both fluxes of the free plume. This suggests
that the wall plume is relatively inefficient at engulfing the outer ambient fluid, although it
transports relatively more unmixed fluid, that is Q,,, and QT,,g combined, whereas the free
plume is able to maintain a balance between the vertical transport of ambient and engulfed
fluid.

5.6 Results in a plume coordinate system

5.6.1 Plume coordinate system definition

Following the analysis of Burridge et al. (2017) of an axisymmetric plume, we examine the
two flows in a coordinate system which follows the plumes as they fluctuate in width. For

the free plume the coordinate system, x,(x,z,t), is defined by

Z(X—ER(Z,Z‘)) (X—ER(Z,I))
Xp(x,z,t) = +1=—"+1, 5.62
) B B T T Ryl 62
where by construction x, = —1 and x,, = 1 at the outermost left and outermost right points

on the TNTI at a given height, respectively and x, = 0 is at the mid point between these two
points. The coordinate system for the wall plume is similarly defined by

(x —Rp(z,1))

Ry (x,1) +1, (5.63)

Xp (xv 2,1 ) -
so that x, = 1 is at the outermost TNTI position for a given height and x, = 0 remains fixed
at the wall. Evidently from figure 5.20 multiple points along a TNTI can exist for a given
height, so the outermost points along the TNTI are taken. Further, prior to the coordinate
transformation, the data are conditioned on whether plume fluid is present within the outer
plume envelope using the step function H,,,, therefore ensuring that all statistics within the

region |x,| < 1 are those within plume fluid. The time-averaged vertical velocity data in
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Fig. 5.20 Instantaneous buoyancy field overlayed with velocity field, red arrows, from a (a)
free and (b) wall plume experiment. The outer TNTTI is highlighted in white.

plume coordinates is then defined by

1 T
@:m%@zféym%mm—m@%@mm, (5.64)
C

for the total recording time 7', where T (x,,z) is the total amount of time at a given plume
coordinate location when engulfed fluid is not present, defined by

T
m@@:A1—mM@%mm (5.65)

This is necessary in order to omit engulfed regions within the plume from the conditional
mean. The horizontal velocity u#,, and buoyancy E are equivalently defined. The turbulent
fluctuations and fluxes of the quantities in the plume coordinates are defined with respect
to the time-averaged quantities in plume coordinates, e.g. for the turbulent vertical velocity

fluctuations,
/ 1 T ) ]/2
Wp,rms = (F/O (W(xp,2,1) [1 = Heng(xp,2,1)] —Wp) dt) ) (5.66)
C

!
p,rms

/

and buoyancy fluctuations b, ,,,;.

and equivalently for the horizontal velocity u

5.6.2 Velocity and buoyancy in plume coordinates

The conditionally averaged velocity and buoyancy data in plume coordinates across all ex-
periments are shown in figure 5.21. Data are taken from five heights spanning the examined

region for each experiment.
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(a) 1

Fig. 5.21 Time-averaged scaled vertical and horizontal velocity and buoyancy profiles of
the (a), (b), (c) free and (d), (e), (f) wall plume in plume coordinates. For each experiment,
five different heights spanning the studied region are plotted. The black dashed lines at
x, = {—1, 1} highlight the position of the outer TNTI. The black curves are the averages of

the data.
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Fig. 5.22 Average profiles of the time-averaged free (solid) and wall plume (dashed) vertical
velocities (blue, left) and buoyancy (red, right) in (@) plume coordinates and (b) Eulerian
coordinates. Only half the region of the free plume is shown in both cases to aid comparison
with the wall plume. The vertical velocities have been scaled using the buoyancy flux and
the buoyancy has been scaled using the buoyancy flux and distance from the virtual origin.
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The average data for both set of experiments collapse onto a single curve showing that
the velocities and buoyancy are self-similar when viewed in plume coordinates. The vertical
velocities and buoyancy have been scaled by the maximum, time-averaged, vertical velocity
and buoyancy measured in Eulerian coordinates, respectively. The maximum time-averaged
buoyancy in the plume coordinate system is greater than that in the Eulerian coordinate
system for both the free and wall plume. This is to be expected, since the contribution of the
ambient fluid in the calculation of the mean buoyancy is omitted in the plume coordinate
system. However, it is surprising to note that the maximum vertical velocity of the free
plume in the plume coordinate system is lower than that in the Eulerian coordinate system.
This may be due to the meandering of the plume and is not observed in the wall plume where,
as one would expect from considering the additional buoyancy, the maximum velocity is
greater in the plume coordinate system.

The average vertical velocities at the plume edge (dashed vertical lines at {—1,1}) for
the free plume are significant, on average 23% of the centreline velocities. This is almost
identical to the behaviour of an axisymmetric plume observed by Burridge et al. (2017)
where the vertical velocities at the outer TNTI of the plume were also found to be about
20% of the centreline velocities. This behaviour is similarly observed in the wall plume
where the vertical velocities at the outer TNTI are on average 25% of the maximum vertical
velocity.

The buoyancy profile in plume coordinates of the free plume in figure 5.21 (c) shows
that the buoyancy just inside the interface is about 75% of the centreline buoyancy within
the plume. This relative buoyancy is surprisingly large and significantly greater than the
relative passive scalar of 30% observed just inside the interface in an axisymmetric jet by
Westerweel et al. (2009). The relative buoyancy just inside the interface for the wall plume
(figure 5.21 (f)) is significantly lower than the free plume at about 40% of the maximum
buoyancy. These values of relative buoyancy are almost identical to the values observed
from the conditional statistics in a coordinate system normal to the TNTI, shown in fig-
ure 5.7. This suggests that the statistics close to the interface are not significantly affected
by defining only the outermost point along the TNTT at a given height as the plume edge,
as we have done. The free plume buoyancy profile broadly exhibits a constant gradient, of
opposite sign, either side of the centreline. This is in contrast to the wall plume, where the
gradient is rapidly increasing in magnitude from the interface towards the wall.

To highlight differences between the two flows, figure 5.22 (a) shows the average of
all the data of the time-averaged vertical velocities and buoyancy in plume coordinates,
and for comparison in Eulerian coordinates in figure 5.22 (b), of the free and wall plume,

where the vertical velocities have been scaled using the buoyancy flux and the buoyancy has
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been scaled using the buoyancy flux and virtual distance from the source. Only the region
xp 2> 0 is shown for the free plume. Figure 5.22 (a) shows that, for a given buoyancy flux,
the vertical velocity profiles of the wall plume and free plume outside the plume are almost
indistinguishable, in particular the vertical velocities at the outer TNTIL, x,, = 1, are identical.
Moving towards the wall, the vertical velocity of the wall plume increases away from the
TNTI more rapidly than the free plume. This is expected given that the buoyancy in the
wall plume is at least 1.6 times greater than the free plume, within the region x, < 0.95.
In the adjustment region 0.95 < x,, < 1 the buoyancy rapidly increases for both the free
and wall plume. However, away from this adjustment region within the plume, x, < 0.95,
the buoyancy of the free plume changes at most by 9% of the mean buoyancy within that
region, whereas the wall plume changes by 52% of the mean buoyancy within that region.
This shows that in the free plume, plume fluid is more uniformly mixed than the wall plume.
This implies that there is a more equal distribution of buoyancy force across the plume,
which results in a more top-hat vertical velocity in plume coordinates, which can be seen in
figure 5.22.

5.6.3 Turbulent fluctuations and fluxes in plume coordinates

The vertical velocity fluctuations in the plume coordinate are shown in figures 5.23 (a) and
5.24 (a) for the free and wall plume, respectively. The profile of the free plume broadly mir-
rors that observed in Eulerian space, with bi-modal peaks at 30% of the maximum Eulerian
vertical velocity. This is larger than the bi-modal peaks observed in Eulerian space, a result
similarly observed in axisymmetric plumes (Burridge et al., 2017), where it was suggested
that the meandering of the plume masks the scale of the turbulent velocity fluctuations. The
profile of the vertical velocity fluctuations in the wall plume is quite different from Eulerian
space. Three distinct peaks are observed: one very close to the wall, a second peak within
the middle of the plume region and a third peak almost exactly at the outer TNTI of the
plume. The maximum peak is on average 25% of the maximum Eulerian vertical velocity.
This peak value is almost identical to that observed in Eulerian space. The reduced mean-
dering of the wall plume may explain the reduced effect of the increase in magnitude of
turbulent velocity fluctuations seen in the free and axisymmetric plume.

The buoyancy fluctuations of the free and the wall plume in figures 5.23 (¢) and 5.24 (¢),
respectively, are very different to the Eulerian statistics. This is expected, since there must be
ambient fluid where b = 0 (except for any additional noise associated with the experiment)
beyond the outer TNTI and therefore a jump is observed at x, = %1 in both flows. The
maximum buoyancy fluctuations in both the free and wall plume are less than those in the

Eulerian statistics. This results from the condition that the ambient fluid is omitted in the



112 Turbulent free line and wall line plumes

Fig. 5.23 Time-averaged scaled free plume turbulent fluctuations in plume coordinates of
(a) vertical velocity, (b) horizontal velocity and (c) buoyancy and (d) Reynolds stress, (e)
vertical and (f) horizontal turbulent buoyancy flux. The black curves are the averages of the
data. A zero line is shown by the horizontal dashed line.

Fig. 5.24 Time-averaged scaled wall plume turbulent fluctuations in plume coordinates of
(a) vertical velocity, (b) horizontal velocity and (c¢) buoyancy and (d) Reynolds stress, (e)
vertical and (f) horizontal turbulent buoyancy flux. The black curves are the averages of the
data.
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calculation of the statistic. A larger discrepancy between the plume and Eulerian coordinate
system is observed in the free plume, owing to the increased meandering and engulfment of
the free plume.

The Reynolds stress profiles of the free and the wall plume in plume coordinates are
shown in figures 5.23 (d) and 5.24 (d), respectively. An interesting feature, which is also
observed in axisymmetric plumes (Burridge et al., 2017), is the change of sign across the
region of the plume edge. For comparison consider only the region x, > 0 of the free plume,
but note that results are equivalent although of opposite sign for x, < 0. In this case, as with
the wall plume in the region away from the wall, m is positive within the plume, however
it rapidly becomes negative within the ambient fluid. This is contrast to the Eulerian statis-
tic, where u/w’ is positive and gradually tends to zero in the positive x direction, because
the Reynolds stress is larger in magnitude within the plume region and, as with the velocity
fluctuations, the meandering of the plume masks the ambient flow statistics. The negative
Reynolds stress outside the plume may be explained from considering the entrainment pro-
cess. The negative correlation m < 0 suggests either transport of streamwise momentum
inwards or transport of negative streamwise momentum outwards. The former is consistent
with the observation that an,rms > 0 (figures 5.23 (a) and 5.24 (a)) and is associated with
entrainment since it is necessary for transport of fluid from the non-turbulent ambient into
the turbulent plume region, and is described by Odier et al. (2012) for a gravity current. The
latter would imply detrainment of slower moving plume fluid which is not observed. The
peak Reynolds stresses in plume coordinates, in both cases, are lower in magnitude than the
Eulerian Reynolds stresses. This is also observed in axisymmetric plumes and it is not clear
why this should occur.

The turbulent vertical buoyancy flux in plume coordinates of the free plume (figure 5.23
(e)) shows a bi-modal peak with maximum values on average of 30% larger than those
observed in Eulerian coordinates. The omission of ambient data has a similar effect on
reducing @. The turbulent buoyancy flux in plume coordinates of the wall plume, fig-
ure 5.24 (e), looks quite different from the Eulerian statistic. The profile is more similar to
a top-hat profile, and the kink seen in Eulerian coordinates is not observed. This, therefore,
suggests the kink is a consequence of the combined ambient and plume statistics in the Eule-
rian coordinate system, especially since it is located close to the mean position of the plume

edge.

5.6.4 Summary of results in the plume coordinate

As shown in figure 5.22 the vertical velocity and buoyancy profiles in the ambient fluid

immediately outside the plume are the same for both the free and the wall plume. This
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similarity is not apparent from the Eulerian data and neither are the large gradients in vertical
velocity and buoyancy at the plume edge. The plume-coordinate data also show that the
fluctuations in vertical velocity at the plume edge are larger than those revealed by the
Eulerian data. The fluctuations in buoyancy are also significantly different when observed
in plume coordinates, since the Eulerian statistics smear the data between the plume and the
ambient fluid.

The plume-coordinate data also reveal aspects concerning the entrainment process that
are not evident from the Eulerian data. For example, in plume coordinates the Reynolds
stress changes sign outside the plume (a change not apparent in Eulerian coordinates), which
as described above is a result of ambient fluid being drawn towards the plume. Further
comparison of figures 5.23 (d) and 5.24 (d) show that the reduced entrainment in the wall
plume compared to the free plume is consistent with the smaller magnitude of the Reynolds

stress outside the plume in the latter case.

5.7 Limitations of planar measurements in a three-dimensional

flow

As highlighted for a turbulent axisymmetric plume in § 4.7, planar measurements of tur-
bulent line and wall plumes restrict observations of the three-dimensional flow dynamics.
Here we discuss the limitations of planar measurements.

As for the axisymmetric plume, where possible, the definitions in this chapter have
been constructed in a way that are blind to the out-of-plane flow dynamics, so are robust
to possible future three-dimensional flow field measurements. In addition, the vertical and
horizontal velocities and the turbulent statistics, are statistically spanwise independent so
that three-dimensional measurements do not offer a real advantage in this regard.

Further, unlike for the axisymmetric case, our definition of the instantaneous plume
width would remain the most appropriate choice even with three-dimensional data, since
the measurement plane is aligned normal to the line source, so that the plume width analysis
would remain identical in 3-D. However, the meandering analysis in § 5.5.4 (figure 5.15)
relies on identifying regions that are bounded by the outer TNTI. While it is possible to
identify such regions within the measurement plane, it is not possible to determine whether
regions of completely bounded fluid (within the measurement plane) are connected to the
ambient far field in an unobserved plane. Therefore, the results are likely to change as a
result of three-dimensional data. In particular, the measurements presented in figure 5.15

provide a lower bound for the true measurement of the probability, at a given horizontal lo-
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cation, of being within the plume region bounded by the outer TNTI. With this in mind, our
results are still robust in that our conclusions are based on the significant magnitude of the
probability (of being within the plume region bounded by the outer TNTI) on the free plume
centreline. A discussion about the relative merits and limitations of the restriction of planar
measurements in analysing engulfed fluid would closely follow that of the axisymmetric
plume in § 4.7 so is not discussed here.

The limitations with regard to measurements of the turbulent/non-turbulent surface area

per unit length have been discussed in § 5.5.4.2.

5.8 Integral turbulent Prandtl number for the free line plume

The entrainment hypothesis of Morton et al. (1956) provides a turbulence closure model
for the free plume bulk flow conservation equations (5.15) - (5.17). However, an analytical
turbulence closure model, i.e. closure of the high Reynolds number, Boussinesq, simplified

Reynolds averaged Navier Stokes equations (5.8) - (5.10) which we repeat here

u oJow

E 5= 0, (5.67)
ow  _dw — Jduw

A 7 T
0t  0b _ _owb (5.69)

requires a parametrisation of the turbulent shear stress in (5.68) and horizontal turbulent
heat flux in (5.69). A large category of turbulence closure models make use of a ‘turbulent
viscosity’ vr and a ‘turbulent diffusivity’ k7, defined by

—~ —1 — 1
vT:W@_”:) , KT:W(%) (5.70)

where the turbulent viscosity is modelled using the vertical and horizontal velocities, i.e.
vr = vr(u,w) (e.g. the Eddy viscosity model, Prandtl’s mixing-length model or Smagorin-
sky model (Pope, 2000; Tennekes et al., 1972); see Yih (1991) for the application to a free
line plume). The turbulent diffusivity may then be related to the turbulent viscosity via a
turbulent Prandtl number y

T

Prr = — 71
= (5.71)
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which for simple shear flows is of order unity (Pope, 2000). The equations (5.67) - (5.69)
may then be expressed in closed form as

du Jw

=0 (5.72)
_ow _dw - 0 oW
b _db _d ;. db
Ma +W8—Z = —a <PI” VT$> y (574)

The turbulent Prandtl number quantifies the turbulent transport of momentum relative to the
turbulent transport of heat and therefore plays an important role in turbulence modelling.
Experiments and direct numerical simulations indicate that the turbulent Prandtl numbers
in axisymmetric plumes are less than one and in the range Pry = [0.57, 1] (see Craske et al.
(2017) table 1 and references therein). By comparison, there has been relatively little in-
vestigation into the turbulent Prandtl number of a free (line) plume. Measurements from
Ramaprian and Chandrasekhara (1989) suggest that Prr = 0.5, estimated from the best-fit
profiles of the vertical velocity and buoyancy and the peak turbulent transport of momentum
and heat diffusivity. The aim of this section is to investigate the turbulent Prandtl number of
the free plume following the theoretical framework of Craske et al. (2017) who found that
the integral turbulent Prandtl number in an axisymmetric pure plume is 3/5.

In § 5.8.1 we derive an alternative entrainment relation to that of the energy decompo-
sition considered in § 5.2.1 by considering the squared mean buoyancy. By combining this
with the energy decomposition relation we show that an integral turbulent Prandtl number
may be defined in terms of the ratio of the width of buoyancy profile to the width of the
velocity profile, ®. In § 5.8.2 we compare this theory with direct measurements of the tur-
bulent and integral turbulent prandtl number in the free plume. To draw an analogy to the
work of Craske et al. (2017) we follow their convention of distinguishing the passive and
active scalars by associating buoyancy with temperature differences in the flow, i.e. we use

Prr in the context of our experiments.

5.8.1 Integral Prandtl number model for the free line plume

Following the energy decomposition of the entrainment coefficient given by Paillat and
Kaminski (2014a), we derive an expression for the entrainment coefficient in terms of the
squared mean buoyancy flux. An expression for the conservation of the squared mean buoy-

ancy flux may be obtaine multiplyin . b and using the continuity equation to
y fl y be obtained by multiplying (5.69) by 2b and g th y eq
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d PrT PrTm
Free line
Ramaprian and Chandrasekhara (1989) 1.21+0.17 0.46-0.70 -
Present study 1.174 0.04 0.56“ 0.58
Axisymmetric
Wang and Law (2002) 1.04 0.62 0.62
Shabbir and George (1994) 0.92 0.70-1.00 -
Papanicolaou and List (1988) 1.06 0.57-0.71 -
Van Reeuwijk et al. (2016) 0.99 - 0.66

Table 5.5 The ratio of the buoyancy to velocity widths, ®, and the turbulent Prandtl number,
Prr, and integral turbulent Prandtl number, Prr,,, of previous studies on axisymmetric and
free line plumes. ¢ The value given here is the characteristic turbulent Prandtl number
defined in §5.8.2. The values from the previous studies on axisymmetric plumes are taken
from table 1 in Craske et al. (2017).

obtain, B
d [_— d /_—2 ——db
a(ub >+a—z(wb>—2uba. (5.75)
Integration of (5.75) over x gives
d (M?B? M3B?
Il e = 7
dz( 207 yS) 207 % (5.76)
where
1 © 1 (= —db
_ M 5 :—/ 720 4 5.77
5= Weer /_mw ’ ST wer )1 Rt .77)

and G = BM/Q? is the characteristic buoyancy and W and R are the characteristic vertical
velocity and plume width defined as in (5.6) and (5.7), respectively. We drop the f subscript
with the implication that we are only considering the free plume in this section. Applying
the product rule to the left hand side of (5.76) gives

—M?B% d 1d/M*B? 2M3B?
0 ( ) =& (5.78)

200 Ma w200 ") T T

The free plume solutions (5.20) - (5.22) may be used to show that the second term on the
left hand side of (5.78) is zero. By equating (5.15) and (5.78) the following expression for
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the entrainment coefficient may obtained

—20g
o= . 5.79
" (5.79)

We have already seen in § 5.2.1 that the entrainment coefficient may be expressed in terms
of the mean energy flux. By adopting the notation of Craske et al. (2017) the relation (5.41)

may be written in terms of the following identities

1 e 1 [~——oJw
Ve = g / wodx, Sk = W3 / ww'——dx, (5.80)

as

a:Ri<l—£) 2% (5.81)

The free plume solutions (5.20) - (5.22) may be used to show that «® = Ri/2 which may be

used in (5.81) to eliminate Ri to give

a:2@ < 149> . (5.82)
AN
Equating (5.79) and (5.82) gives
Os ¥s ( 1 )
= = . (5.83)
40

As highlighted in Craske et al. (2017), although an integral representation of the turbulent
Prandtl number is useful, the integral of Pry is not defined because both «/5’ and %—f ap-
proach zero as x tends to infinity. To overcome this, Craske et al. (2017) defined an integral
turbulent viscosity and an integral turbulent diffusivity analogous (i.e. in their case for an

axisymmetric plume) to the following

- 2
Vi = i vT(S%)B dx, (5.84)
Jo(9Y) dx
- 2
Krm = f; KT(S;;Z iy (5.85)
Sl 9y ) dx
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Fig. 5.25 Integral Prandtl number for the free line plume given by (5.94) (black curve) and
the axisymmetric plume given by Craske et al. (2017) equation (B-4) (red curve), for a
given ratio of buoyancy and vertical velocity profile widths, ®. The data from table 5.5 are
also shown with the turbulent Prandtl and integral turbulent Prandtl numbers shown by the
unfilled and filled markers, respectively.

An integral turbulent Prandtl number may then be defined as

1%
Prog = —". (5.86)
Krm
By introducing the similarity variable x* = x/R and assuming vertical velocity and buoyancy
profiles of the same shape but relative widths @ the vertical velocity and buoyancy may be

written in terms of the similarity function f(x*) where

w . b 1 _ (x
W f(x), G- af (5) (5.87)
Substitution of (5.87) into (5.86) gives
)\’
1 x 1
Prem O _ 1 % (5.88)

T2 I (%ydﬁ & @35

where ® is the ratio of the width of buoyancy profile to the width of the velocity profile. If
the similarity function is assumed to follow a Gaussian profile, f(x*) = exp (—Zx*?), then
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the vertical velocity and buoyancy may be expressed as

NG x*
w=V2W f(x* b=—Gf| = ]. 5.89
VW F(x), 5 O/ (q)) (5.89)
The term Of /s may then be evaluated from (5.83) where the dimensionless energy flux is
given by
4
_2\f/ e E A = L 5.90
Ve 7 (5.90)
the dimensionless squared mean buoyancy flux is given by
2V2 T4 2w 4
= dx* = 591
=37 oV (5.91)
and . .
oo —% ]+@ x* dx* oo ,Ex* dx* 2
g —1-=¢ Jowe __ V2 - (5.92)
ffwe—%x*zdx* fj° ——(%) doc* v1i4+®
Substitution of (5.90) - (5.92) into (5.83) gives
% _ VEMEL (5.93)
% oVe+2(Vo-Vi+e?)
Finally, we have that
NG <\f6— V1 +c1>2)
Pryg, = (5.94)

V3D2/1 + P2

Figure 5.25 plots the integral turbulent Prandtl number for the free plume as a function
of ® compared to the integral turbulent Prandtl number for an axisymmetric plume. The
figure shows that the turbulent Prandtl number decreases for increasing ®, also found for
the integral turbulent Prandtl number an axisymmetric plume by Craske et al. (2017). The
models predict a larger integral Prandtl number, for a given ®, in the free plume compared
to the axisymmetric plume. Equivalently, the models predict a larger ® in the free plume

for a given integral Prandtl number.

5.8.2 Experimental measurements of the turbulent Prandtl number
for the free line plume

Experimental observations of the turbulent Prandtl number rely on both second order quanti-
ties and the gradients of first order quantities. In particular, in the core of the plume, as well
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as at infinity, both the turbulent transport quantities and the gradients of the vertical velocity
and buoyancy approach zero. Large errors in the calculation of the turbulent Prandtl number
from experimental data may therefore by expected away from the regions with large shear.
In an attempt to overcome this we first calculate the height-averaged self-similar profiles of

the data. We then perform a linear least squares fit to the data with analytic functions of the

(1))
% - ( kﬂ,, )2> (5.96)
(o () ) o
(o () ) e (1)) e

for constants k,,, kp, ai, by, k1, az, by and kp and n = x/(z — z9). Figure 5.26 shows the

form

data (solid) compared to the respective least-squares fit functions (dashed) for experiment
1 using the determined values given in table 5.6, showing excellent agreement for all of
the quantities. Similarly good agreement was found in all the experiments. From these

quantities the turbulent Prandtl number may then be evaluated as

W (b (ow\ !

Figure 5.27 shows the result of (5.99) for each experiment with the average across all the

experiments shown by the dashed curve. Although the data shows there is a relatively large
variability in the turbulent Prandtl number across the plume it should be noted that in the re-
gion |n| > 0.25, the turbulent quantities are less than 1% of their peak values. This suggests
that the turbulent Prandtl number in this region is not characteristic of the turbulent quanti-
ties, further this region is likely to correspond to large errors. To characterise the turbulent
Prandtl number in the turbulent region we define a characteristic Prandtl number Prr. based

on the average of Pry within the central region of the plume as

Ne
Prrdn, (5.100)

Prre(ne) = 210 )y
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kw kb aj b] k1 a bg kz
0.103 0.115 0.0270 0.0736 0.0676 0.0402 0.0716 0.0788

Table 5.6 Least-squares best-fit parameters of the data to the functions (5.95) - (5.98) for
experiment 1.

where 1 is defined such that

A p— Y (5.101)

Wi In.

This definition results in an average value of 1. = 0.258. We find that Pry, = 0.56 £0.04,
where the error is the standard deviation of Prr. across the experiments. Although the
threshold in (5.101) is arbitrary, Prr. is insensitive to the choice of the threshold. In partic-
ular, Prr. varies by at most 15% within each experiment for 0 < 7. < 0.30. Note that any
choice of 1. would result in non-turbulent ambient fluid contributing to the calculation of
Prr., since the pdf for the free plume in figure 5.15 is everywhere less than one. This sug-
gests it may be useful to consider Eulerian conditional statistics to determine a conditional
Prandtl number based on the presence of turbulent plume fluid. This is not explored in this
thesis.

A direct calculation of the integral Prandtl number (5.86) may also be calculated us-
ing (5.84) and (5.85) and the curves of best fit described above. The data for each experi-
ment, which give an average value of Prr,, = 0.58 £0.03, are shown in figure 5.25 showing
reasonable agreement to the theoretical integral Prandtl number (5.94) evaluated from the
experimentally determined value of ® = 0.47 +0.05. The integral Prandtl number shows
excellent agreement with the characteristic Prandtl number suggesting that the integral tur-
bulent Prandtl number provides an effective characterisation of the turbulent Prandtl number
of the plume within the plume core.

The two flows are both buoyancy-driven free-shear turbulent plumes. Therefore, a rea-
sonable assumption may be made that the turbulent Prandtl number in the two flows are
approximately equal. The theory then predicts a larger ® in the free plume compared to the
axisymmetric plume; it is clear from figure 5.25 that there is consensus from the previous

and present studies that this is the case.

5.9 Conclusions

Simultaneous velocity and buoyancy field measurements of a free and wall plume provided
direct measurements of the top-hat entrainment coefficients. We found that the entrainment
coefficient of the free plume oy = 0.14 is slightly less than double that of the wall plume
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Fig. 5.26 Plume quantities for experiment 1 (solid) and their least-squares fit profiles (5.95)
- (5.98) (dashed) using the values from table 5.6.
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Fig. 5.27 The turbulent Prandtl number for each experiment based on (5.99) with the moving
average of the data (dashed curve).
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a,, = 0.08. However, it was shown that, for a given buoyancy flux, this corresponds to
the free plume physically entraining more than double per unit height than the wall plume,
as expressed in terms of the rate of increase in plume volume flux with height dQy/dz =
2.4dQ,,/dz.

To examine this difference the entrainment coefficient of the wall plume was decom-
posed and the relative contributions from turbulence production, buoyant and viscous terms
were compared to the free plume decomposition first performed by Paillat and Kaminski
(2014a). A significant reduction in Ooqucrions approximately equal to the negative contri-
bution from the viscous terms Q.iscous, 1S found in the wall plume. This suggests both the
reduction in turbulent production and viscous dissipation due to the wall boundary layer,
which indirectly affects entrainment by providing an energy sink (Holzner et al., 2016), are
significant in the reduction of entrainment.

The statistics of the TNTI were calculated. We provided evidence of the free plume
meandering and, in particular, we showed that there is a significant probability, about 15%,
of ambient fluid outside the plume TNTI existing at the centreline, suggesting coherent
lateral/sideways meandering of the plume centreline. This is in contrast to an axisymmetric
plume where no coherence between the left and right TNTI of the plume were observed
(Burridge et al., 2017). Through this meandering it was shown that the TNTI is stretched
and on average the total length of TNTI of the free plume is longer than the wall plume by
a factor of at least 2.2, measured at intermediate length scales 0.1 < A/A < 1.

The turbulent velocity and buoyancy fluctuations were measured and the resulting turbu-
lent fluxes and Reynolds stresses were calculated. Larger peak values were observed across
all the fluctuations and turbulent fluxes in the free plume, resulting from larger turbulence
production in the free plume. When the data are analysed in plume coordinates we find
that the mean vertical velocity and buoyancy profiles in the ambient fluid are essentially the
same, but the magnitude of the Reynolds stress is smaller in the wall plume consistent with
the reduced entrainment rate compared with the free plume.

While the presence of the wall is the only fundamental difference between the free and
wall plume, the effect of the wall could be viewed as two separate processes, namely the
no-slip condition and the impermeability condition. We show that the wall shear stress is
non-negligible and this results in a reduction of momentum of the wall plume, which could
otherwise be used in the turbulent production contributing to entrainment. Alternatively,
the impermeability condition prevents the wall plume meandering which both the reduces
the large scale engulfment process and the stretching of the TNTI leading to a shorter total
TNTI. As mentioned above this also manifests itself in smaller Reynolds stresses in the wall

plume at the edge of the plume. It is difficult to separate these two processes and provide
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an answer to which is the dominant effect in the reduction of entrainment in the wall plume,
however the entrainment coefficient decomposition suggests that they are approximately
equal in importance. It would be interesting to resolve this issue numerically by comparing a
simulation of a wall plume with a no-slip and a free-slip condition, as performed for a gravity
current in Holzner et al. (2016). In the case of a free-slip boundary condition 0iscous >
0, however, since there is no viscous boundary layer it is expected that 0scous << O, put
another way the contribution would be comparable to the viscous effects in the free plume
entrainment coefficient. This increase in 0450045, however, may be offset by a reduction in
either Wpyoyant OF Xproduction- It 1s not clear how the free-slip condition would affect Qpyoyant
however, Holzner et al. (2016) find a reduction in o,,guction, for a free-slip as compared to
a no-slip condition, for a turbulent gravity current inclined at 10°.

It would also be interesting to investigate the effect of Reynolds number on the energy de-
composition of the wall plume entrainment coefficient, in particular a much larger Reynolds
number. Assuming approximate self-similarity is maintained, it is expected that the primary
effect would be a reduction in the skin-friction coefficient which would in turn increase the
entrainment coefficient.

Finally, an integral turbulent Prandtl number for the free plume was defined based on
the definition introduced by Craske et al. (2017) for an axisymmetric plume. An expression
for the integral turbulent Prandtl number was derived in terms of the ratio of the width of the
buoyancy profile to the velocity profile ®. This was compared to the result of Craske et al.
(2017) where it was found that, for a given integral turbulent Prandtl number, ® is greater in
the free plume than the axisymmetric plume, which agreed with experimental observations
of the free plume compared to previous studies on axisymmetric plumes. A characteris-
tic Prandtl number Prr. was defined by the space-average of the turbulent Prandtl number
within the turbulent region and an average value of Prr. = 0.56 +-0.04 was determined. This
value showed good agreement with the integral Prandtl number Prr,, = 0.47 £0.05, based
on the experimentally determined values of ®, suggesting that the integral Prandtl num-
ber provides a robust characterisation of the turbulent Prandtl number within the turbulent
region of the free plume.






Chapter 6

Turbulent vertically distributed buoyant
plumes

In this chapter we examine a turbulent vertically distributed plume: the flow resulting from
a vertically distributed source of buoyancy. The vertically distributed buoyancy source is
created by forcing relatively dense salt water solution through a porous wall. Simultaneous
velocity and buoyancy field measurements on a vertical two-dimensional plane normal to
the wall are performed. The flow resulting from a confined environment is then studied,
both the sealed (filling-box) and ventilated case (emptying filling-box), where buoyancy

measurements of the ambient environment are performed using dye attenuation.

6.1 Introduction

Flows resulting from vertically distributed buoyancy sources occur in both geophysical
environments, for example the dissolution of a wall of ice dissolving into seawater (Mc-
Connochie and Kerr, 2015), and built environments, for example the downdraught resulting
from a relatively cold, natural convective, flow from a glazed facade within a building in
winter (Heiselberg, 1994) or, similarly, any heated vertical surface within a building, be it
from a radiator or from incident solar radiation.

A natural convective flow, with increasing vertical distance, will become unstable and
transition to turbulence. The turbulent boundary layer comprises of three distinct layers:
a viscous sub layer, a viscous-turbulent overlap layer and an outer inertial turbulent layer
(Holling and Herwig, 2005). In the above examples, in most cases, the flows will become
fully turbulent due to the vertical extent and sufficiently large buoyancy flux of the source.

The transition to turbulence for an isothermal wall may be characterised by the Grashof
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number, Gr, defined by

ATZ
Gr= gﬁvz < 6.1)

where f3 is the thermal expansion coefficient, AT is the temperature difference between the

wall and the ambient and z is the vertical distance of the wall. The transition to turbulence
occurs at approximately Gr = 10° (Bejan and Lage, 1990). This suggests, for example, that
the transition to turbulence of an isothermal heated wall with AT = 10K would occur at
approximately z ~ 0.5m. Considering the typical vertical extent of internal spaces within
buildings, H ~ 10m, it is reasonable to assume that the majority of the height of the wall is
turbulent.

The primary aim of the early studies on natural convection were to determine the velocity
and temperature profiles and calculate the rate of turbulent heat transfer in both the laminar
and turbulent regimes. The evolution of the heat flux ¢”” with height z is typically represented
in terms of the Nusselt number,

q//Z

=_1° 2
Nu Puc,KAT’ ©.2)

where c), is the specific heat capacity, k is the thermal diffusivity and p, is the density of the
fluid. Experimental investigations of an isothermal wall in air (e.g. Cheesewright (1968);
Pirovano et al. (1970); Tsuji and Nagano (1988)) have shown that in the turbulent region of
the flow

Nu ~ Rad", (6.3)

where Ra = GrPr is the Rayleigh number, Pr is the Prandtl number and r =~ 1/3. Given that
the Prandtl number is invariant with height, substituting (6.1) and (6.2) into (6.3) suggests
that the heat flux is invariant with height within the turbulent regime of an isothermally
heated or cooled wall (Wells and Worster, 2008) and following Batchelor (1954) the heat
flux per unit area may be characterised by the buoyancy flux per unit area

_ 8Bd"
pcp

f (6.4)
An equivalence may therefore be sought between the turbulent region of an isothermal wall
and a vertically distributed buoyancy source which is invariant with height.

Following the framework of Morton et al. (1956), Wells and Worster (2008) and Cooper
and Hunt (2010) modelled the flow resulting from a vertically distributed buoyancy source.
A uniform buoyancy flux was assumed and, similar to the wall (line) plume studied in § 5.2,
an entrainment coefficient was used to parametrise the mixing of the turbulent boundary

layer. This results in a strong analogy to the wall plume. Cooper and Hunt (2010) tested
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the model experimentally by forcing relatively dense salt solution through a porous wall
into fresh water, thus creating a distributed buoyancy source. There have since been nu-
merous investigations of vertically distributed buoyancy sources applying the plume theory
developed by Cooper and Hunt (2010). McConnochie and Kerr (2015) used an ice block
adjacent to fresh water to create a vertically distributed source. An analogous DNS study
was subsequently performed by Gayen et al. (2016) which showed good agreement between
the predicted scalings of the bulk flow fluxes by Cooper and Hunt (2010). Caudwell et al.
(2016) performed velocity and temperature measurements on a heated wall placed in water
and Bonnebaigt et al. (2018) approximated a distributed buoyancy source by using discrete
point sources of salt water across a vertical wall. As we discuss in detail in this chapter,
the studies mentioned above have found significantly different entrainment values. Kaye
and Cooper (2018) have partially explained the discrepancies between these studies by ac-
counting for the wall shear stress not considered in Cooper and Hunt (2010) and Bonnebaigt
et al. (2018). Nevertheless, given the difficulty in both creating a truly uniform distributed
buoyancy source and performing accurate velocity measurements of the boundary layer it is
understandable as to why there is not more agreement between the studies, especially since
the studies used different methods to create and measure the distributed buoyancy source.

The original motivation of Cooper and Hunt (2010) of applying a simplified plume the-
ory to a heated wall was to develop a numerical model for evolution of the developing
stratification within a sealed or ventilated environment (i.e. the classical filling and empty-
ing filling-box problem) based on the filling-box model of Baines and Turner (1969). Both
Caudwell et al. (2016) and Bonnebaigt et al. (2018) also considered the filling-box problem
and adapted the numerical method suggested by Cooper and Hunt (2010).

The aim of this chapter is to study a vertically distributed buoyancy source based on the
porous wall method of Cooper and Hunt (2010). We improve on the experiments described
by Cooper and Hunt (2010) and perform high resolution velocity and buoyancy measure-
ments. The unstratified case is first considered where, in particular, we determine a value
of the entrainment coefficient. We then consider both a sealed and ventilated filling-box
using the method of dye attenuation to determine the evolving and steady state ambient

stratification.

6.2 Theory

A vertically distributed turbulent plume is the flow driven by a vertically distributed source
of buoyancy. Here we outline the theory of entrainment in vertically distributed turbulent

plumes in an unstratified quiescent environment. We consider the case of both an ideal
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buoyancy source, where buoyancy diffuses from the boundary with no source volume flux,
and a non-ideal buoyancy source with a finite source volume flux.

We define the vertical velocity w(x,z,7) in the vertical z-direction, horizontal velocity
u(x,z,t) in the across-plume x-direction, the deviation from hydrostatic pressure p(x,z,t)
and the buoyancy b(x,z,t) = g(ps — p(x,2,t))/pa, Where p and p, are the density of the
plume and ambient, respectively and we assume that p, — p < p,. Since the flow is sta-
tistically steady, these quantities may be decomposed into time-averaged and fluctuating
components w(x,z,t) = w(x,z) + w'(x,z,1), u(x,z,t) = u(x,z) + v'(x,z,¢) and b(x,z,t) =
b(x,z) +b'(x,z,t), and we denote the time-averaged maximum vertical velocity and buoy-
ancy as Wy, (z) and b,,(z). We assume all quantities are independent of the horizontal y
direction. We define the time-averaged volume flux, momentum flux, integral buoyancy and
buoyancy flux per unit length by

0p(2) = [ “wlx.2)ax, 6.5)
M(z) = /O TW(x, 2)dx, (6.6)
B(z) = /O ) b(x,z)dx, (6.7)
F() = [ 252) + W) H (e 2)dr, (6.8)

From these relations we define the characteristic scales for plume width R, velocity W and
buoyancy br by

Y
R_ﬁ’ (6.9)

M
W=—, 6.10
0, (6.10)

F
br = —. 6.11
T 0, (6.11)
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Under the Boussinesq approximation, the Reynolds time-averaged mass, vertical momen-

tum and buoyancy conservation equations may be written

u oJw
$+8—Z:0, (6.12)
oW _ow  ow? uw 1dp - 0*w
Mg-FWa—Z-i——aZ +—ax ——Ed—z-i-b-i-\/ﬁ; (6.13)
A A I N 27,
ﬁ%+w% au'bl  ow'b B 0°b 6.14)
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where v and k are the kinematic viscosity and mass diffusivity of the fluid, respectively.
Integration of (6.12) - (6.14) gives

do oo
d—zf’:—u|0, (6.15)
dm e d (> 1dp ow|”
— + [+ uW| =B— — 24+ — Ddx — 6.16
& +[uw—|—uw”0 & </0 w +padz )+v8x N (6.16)
w  db|”
— 'l = k= 17
e’ o Kol (6.17)

Under the entrainment assumption, the inflow velocity at any height is proportional to the
local vertical plume velocity (i.e. —u(eo,z) = W) where ¢ is the integral entrainment coef-
ficient which is equal to the ‘top-hat’ entrainment constant (Morton et al., 1956), and using
the boundary conditions w(0,z) = %(0,z) = W'w'(0,z) = u'b'(0,z) = W(e0,z) = t/w (o0,7) =
w'b'(s0,z) =0 and % }0 = f/x, the Boussinesq time-averaged volume, momentum and buoy-

ancy flux conservation equations may be written as (Kaye and Cooper, 2018)

g, M

N 6.18
& an +4q, (6.18)
M ow|  FQ, M\?

s (6.20)
dz

where ¢ is the additional wall source volume flux per unit area, 6 encapsulates the relation
between the integral buoyancy B and the buoyancy flux ' and may be interpreted as the non-
dimensional buoyancy flux, which by assuming self-similarity we may take as constant, and
the wall shear stress is expressed in terms of the characteristic velocity W and a constant

skin friction coefficient C (Gayen et al., 2016), and, as for the free and wall line plume
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considered in § 5.2, we assume that

d »— 1dp dMm

— w2 ——dx ) < —. 6.21

dz (/o Pa dz ) dz ( )
We distinguish between the total plume volume flux, Q,, and the cumulative entrained vol-
ume flux defined by

Qe(z) = /OZ —1i(o0,7)d7 = Q) — qz. (6.22)

The solutions to the plume equations (6.18) - (6.20) for a finite volume flux through the
wall and no shear stress (i.e. ¢ > 0 and C = 0) were solved numerically by (Kaye and
Cooper, 2018) and compared to the idealised case of zero volume flux through the wall,
g = 0. The ratio of the solutions for the two cases were calculated as a function of the non-
dimensional height { = zf/¢>, which in all cases monotonically tend to 1 as z — oo. This
means that for a given wall source buoyancy flux per unit area f with associated volume
flux per unit area g there is a height at which the two solutions are arbitrarily close and the
effect of the added volume flux may be neglected. With this in mind, it is possible to justify
neglecting the added volume flux term in (6.18) and use the pure plume solutions to model
the experimental data. In their analysis the shear stress was considered negligible, i.e. C =0.
We extend the analysis of Kaye and Cooper (2018) by numerically solving (6.18) - (6.20)
for the case ¢ > 0 and C > 0.

We first give the solutions of (6.18) - (6.20), for g = 0, in dimensional form (Kaye and
Cooper, 2018)

3 /50\ /3 YN A a 4/3
Op(z) =3 (7) a (1 +;‘—§> 3, (6.23)
350\ % F o\
_ (7Y /3 5/3
M(z)—4(4) (07 (1—1—% 7, (6.24)
F(z) = fz. (6.25)

From herein we assume that 8 ~ 1 which is justified in § 6.4.2. As an aside, using the
solutions above a relationship between the characteristic plume width and the entrainment
coefficient, dR/dz = 30 /4, may be obtained. For g > 0 the vertical distance and volume,
momentum and buoyancy flux may be non-dimensionalised following Kaye and Cooper
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(2018) by

M F
Cz%c, 72%, uzq—sf, o= (6.26)

<

The plume equations (6.18) - (6.20) may then be expressed in non-dimensional form by

dy_ M

i—ay—i—l, (6.27)
du 79 (u)2

CH_Y_o(H) 6.28
¢ u Y (0:28)
dp

E_l. (6.29)

The non-dimensional equations (6.27) - (6.29) were solved numerically over the range
10~* < ¢ < 107 which was equivalent to the range of the experiments performed, discussed
further in § 6.3.1. An entrainment value of @ = 0.068 and a shear stress coefficient of
C = 0.15 were used, which were determined experimentally (§ 6.4). The equations were
solved using the MATLAB odel5s solver for ordinary differential equations. The initial
conditions were imposed following the method used by Kaye and Cooper (2018) by con-
sidering the flow near the base of the plume where the source volume flux dominates. This
suggests, from (6.27), that ¥ ~ { for small {. Given also that ¢ = {, the equation for the

non-dimensional momentum flux may be considered for small {,

By assuming C = 0 for small { the non-dimensional plume momentum flux may be calcu-

o= \@53/2. (6.31)

Solution (6.31), as well as Yy = { and ¢ = {, are used as the initial conditions in the nu-

lated to give

merical integration for small {. Figures 6.1 (a) and (b) show the results of the numerical
integrations for the volume and momentum flux of finite source volume flux and shear stress
equations, respectively, compared to the ideal plume volume and momentum flux solutions.
The gradients of the logarithm, with respect to the logarithm of the vertical distance, of the
solutions are shown in figures 6.1 (¢) and (d) and figures 6.1 (e) and (f) show the ratio of
the ideal plume and finite source flux solutions. Similar to the findings of Kaye and Cooper

(2018), who considered the case for C = 0, the solutions of the finite flux plume equations
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Fig. 6.1 Non-dimensional ideal (black solid) and finite flux (dashed) plume solutions of
the (a) volume and () momentum flux. (¢, d) Gradient of the logarithm of the solutions
with respect to the logarithm of the vertical distance. Ratio of the solutions to the ideal
plume solutions for the (¢) volume and (f) momentum flux. The blue line in (a) shows the
cumulative source flux in non-dimensional form and the dotted lines in (a), (b) and (¢) show
the respective properties of the cumulative source volume flux, Q.(z) = Q,(z) — gz, in non-
dimensional form which may be expressed as ¥y — {. An entrainment value of & = 0.068
and a shear stress coefficient of C = 0.15 were used and the initial conditions are described

in the text.
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(d)

Fig. 6.2 Experimental set-up used to create and measure a vertically distributed buoyancy
source. The coordinate system is shown on the left and on the right (a) the large reservoir,
(b) the source chamber and porous wall structure, (c) the two cameras (d) and the laser.
The camera set-up shown was used to perform PIV over the whole height of the wall. How-
ever, for the simultaneous PLIF and PIV measurements the two camera measuring-windows
coincided.

approach the ideal plume solutions for increasing vertical distance. It can also be seen in
figures 6.1 (¢) and (d) that the gradients, with respect to vertical distance, of the finite flux
plume solutions are everywhere smaller than those of the pure plume solutions. The ideal
plume solution of the volume flux may be inferred more accurately from the finite flux so-
lution, however, by considering the cumulative entrained volume flux, Q,, which was not
considered by Kaye and Cooper (2018). In non-dimensional form this may be expressed
as ¥y — {. This compensated volume flux is shown by the dotted curve in figures 6.1 (a),
(b) and (c), where figure 6.1 (c) shows a faster convergence rate to the ideal plume solution
as compared to ¥y. Given that the source volume flux does not directly contribute to the
vertical momentum an equivalent correction can not be made for the momentum flux. How
these results relate to our experiments is discussed in § 6.4.

6.3 Experiments and analysis

6.3.1 Experimental details

The experiments were designed to create vertically distributed buoyant plumes with a uni-
form buoyancy flux which could be examined by performing simultaneous measurements
of the buoyancy and velocity field. The experiments were performed in a Perspex acrylic
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Parameter Definition Expl Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 ExpS8
Wall-source volume flux g[x10~*ms~!1] 133 133 18 1.8 133 133 1.8 1.8
Variation in wall volume flux (q(H)—q(0))/g 0.029 0.029 0.020 0.020 0.029 0.029 0.020 0.020
Wall-source buoyancy flux flx107m?s3] 37 37 50 50 37 37 50 50
Reynolds number Re - - - - 659 630 668 788
Turbulent Reynolds number (z=0.37m) Re; - - - - 62 56 47 50
Kolmogorov length scale N[x10~*m] - - - - 3.5 3.3 2.2 2.6
Batchelor length scale Ap[x 107> m] - - - - 1.6 1.5 1.0 1.2
Taylor microscale A[x1073 m] - - - - 5.4 4.8 3.0 3.6
PIV vector spacing Ax[x 1073 m] 129 129 129 129 088 088 0.88 0.88
PLIF pixel spacing Ax[x10™*m] 1.08 1.08 1.08 108 074 074 074 0.74
Time separation At [x10725] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Kolmogorov time scale Ty [x 107 2] - - - - 123 107 5.0 6.9

Table 6.1 Experimental parameters and measured-length and time scales of the experiments. Since the measurements are performed
over the whole height in experiments 1 - 4 the characteristic scales are not included. For experiments 5 - 8 the characteristic scales
are measured at z=0.37 m, which is approximately the mid-height of the measurement window. Definitions are provided in the text.
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Fig. 6.3 Simplified diagram (not to scale) of the structure used to force relatively dense
source fluid with a density of p, through two porous plates of thickness d at a bulk flow rate
per unit width of Q.

tank of horizontal cross-section 1.2m x 0.4m filled with dilute saline solution of uniform
density p, to a depth of 0.75m. The buoyant wall source was created by forcing rela-
tively dense sodium nitrate solution through two porous stainless steel plates, with a very
low permeability of Py = 2.20 x 1013 m=2, of dimensions 0.48m x 0.23m and thickness
d = 5.0mm, connected in series via two source chambers. The stainless steel porous plates
were manufactured by SINTERTECH® and had a stainless steel alloy grade of SS 316 L.
The maximum thickness of the porous plates available was d = 5.0mm, so two plates were
used in series to create an effective thickness of d = 10.0mm, as justified below, in order
to increase the uniformity of the flow. A diagram of the experimental set-up is shown in
figure 6.2. In order to have a uniformly vertically distributed buoyancy source we require
that the flow rate across the whole height of the porous plate is uniform. Here we consider
the uniformity of the flow rate through the porous plate.

The flow through the porous plates can be characterised by Darcy’s law that states that in
a laminar flow, the pressure drop between the porous media is linearly proportionally to the
flow rate through the porous media. The Reynolds number for the flow through the porous
plates may be estimated by Re = gd,,/v, where d,, is the average pore-hole size of the plate
and ¢ is the volume flux per unit area through the plate. The pore size of the porous plate

is ~ 1.0um and the range of ¢ used in the experiments are given in table 6.1. These values
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suggest Re ~ 1074, so that Darcy’s law is valid for this flow. Darcy’s law may be expressed

as
_ PAp

q - )
dng
where Ap is the pressure difference either side of the porous plate and 7, is the dynamic

(6.32)

viscosity of the source solution. A diagram of the following model is shown in figure 6.3.
The gear pump supplies fluid of density p; and dynamic viscosity 1, to the first chamber

which results in pressure p;(z), where

p1(z) = p1(0) + psgz, (6.33)

and p;(0) is the pressure at the top of the chamber which is imposed via a gear pump.

Similarly, the pressure in the second chamber is given by

p2(2) = p2(0) + psgz, (6.34)

and the pressure in the ambient is given by

pa(z) = pa(0) + /0 “pel2)dz, 6.35)

where we assume the ambient density p,(z) is height dependent for the general case of say
a stratified experiment. Applying Darcy’s law (6.32) to the first porous plate gives

Po(p1—p2)

: 6.36
an; (6.36)

q1(z) =
where g (z) is the volume flux per unit area through the first porous plate. Similarly, for the

second porous plate
Po(p2—Pa)
dng

where ¢>(z) is the volume flux per unit area through the second porous plate. Assuming that

q2(2) = , (6.37)

q(z) = q1(z) = ¢2(z) and substituting in equations (6.33) and (6.34) results in

Fo

CI(Z) = Tnd

(Po +gPsZ—g/O'Pe(z)dz), (6.38)
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where po = p1(0) — p,(0). The difference in the volume flux per unit area between the top

and bottom of the porous plate, relative to the mean flow rate, is given by

q(H)—q(0) _ Pyg ( A )
TGS /O pe(2)dz ) . (639)

where § = Q;/H. The maximum difference in flow rate may be evaluated by considering
the case p.(z) = pq, i.e. where the ambient is unstratified. In practice a chosen volume flux
Qs, as opposed to a chosen pressure, is imposed through the porous plate. The maximum
difference in flow rate can therefore be written in terms of the initial density difference and

the mean flow rate
g(H) —4(0) _ PogH (ps — pa)

q 2gdny
These values are shown in table 6.1, which show that there is at most a 1.5% variation in the

(6.40)

source volume flux per unit area, relative to the mean source volume flux per unit area. We
therefore make the approximation that the volume flux per unit area is uniform and equal
to the mean volume flux per unit area which we refer to from herein by g. Note that (6.40)
shows that two porous plates, of equal thickness d, in series is equivalent to one plate with
thickness 2d.

The source fluid, at a relative buoyancy of by, was supplied by a gear pump which re-
sulted in a mean buoyancy flux per unit area f = gbs. Cooper and Hunt (2010) used a similar
experimental set-up to study vertically distributed buoyant plumes. However, as highlighted
in their study, the relatively high porosity of the wall led to a non-uniform buoyancy flux.
This problem is significantly reduced in the set-up used here.

Results given in § 6.2 may be used to determine how the added mass from the wall
source modify the theoretical flow from the ideal solutions of zero mass flux. From table 6.1
the non-dimensional maximum vertical distance of the experiment may be calculated to give
¢ = 8.4 x 10° for experiments 1, 2, 5 and 6 and { = 3.1 x 10° for experiments 3, 4, 7 and
8. The results from figure 6.1 suggest that volume and momentum flux of the finite flux
plume are within 10% of the ideal plume solutions for the upper half of the vertical extent
of the experiment. This theory assumes that the buoyancy flux is uniform across the full
height of the wall. This is true in the current experiment to within 1.5%, i.e. the variation
in the buoyancy flux is equal to the variation in volume flux given that the source buoyancy
was constant. However, the theory also assumes that the plume is turbulent over the whole
height, which is effectively modelled by a constant entrainment coefficient. This assumption
is clearly not valid in the laminar region of the plume which accounts for approximately 15%
of the total height, consistent with the observation of Cooper and Hunt (2010). Further, as
noted by Kaye and Cooper (2018), it is not possible to define a virtual origin elsewhere
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to the physical origin. In order to identify the laminar region, determine the effect of the
laminar region on the flow and in particular identify the region which follows the scalings
predicted by Cooper and Hunt (2010) we first performed velocity measurements over the
whole height of the porous wall. Two cameras were recorded simultaneously, one for the
region z = 0m to z = 0.24m and another for the region z = 0.24m to z = 0.48m.

Given the results of the velocity measurements over the total height, a further set of
simultaneous velocity and buoyancy field measurements were performed within the region
z=0.30m to z = 0.42m which was sufficiently far from the source so that the plumes
can be considered turbulent and self-similar. Further, the flow is shown to be consistent
with both the ideal plume solutions (6.18) - (6.20) and previous experimental and numerical
investigations of turbulent vertically distributed buoyancy sources, including those with zero
added source mass flux.

The experimental technique and set-up used to measure and process the velocity (using
PIV) and buoyancy field (using PLIF) is identical to that described in § 5.3.1, so is not re-
peated here. The restriction of planar measurements does not present a significant limit to
our analysis in this chapter, because the focus is on the time-averaged velocity and buoyancy
measurements, that are statistically independent of the span wise direction, and not instan-
taneous statistics based on, for example, the plume TNTI as for chapters 4 and 5. Videos
were recorded and processed at a frame rate of 100Hz. A total of eight plumes were studied,
the velocity field of four plumes over the whole height of the wall and four simultaneous
measurements in the self-similar region. The experimental source parameters are given in
table 6.1.

6.4 Results

6.4.1 Velocity measurements over the full height

Figure 6.4 shows an instantaneous buoyancy field taken from one of the experiments. The
image shows the typical width of the turbulent plume in the experiments of approximately
20mm. In order to increase the precision of the velocity measurements it was necessary
to focus on a smaller region. In order to identify the optimal region to focus on, where
the plume has fully developed and may be considered pure, we first present results of the
experiments examining the whole height of the vertically distributed plume.

The height at which the flow transitions to turbulence may be determined by examining
the Reynolds stress. Figures 6.5 (a) - (d) show the Reynolds stress for the four experiments

and figure 6.5 (e) shows the maximum Reynolds stress as a function of height for the region
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Fig. 6.4 An instantaneous buoyancy field of the turbulent plume resulting from the vertically
distributed buoyancy source. The figure is rotated for clarity.

7z <0.16m. The data suggest that the transition to turbulence occurs at approximately 0.08 m.
Figure 6.6 (a) shows the Richardson number, defined by Ri = sz?, /M3, as a function of
the distance from the base of the source z = Om for the four experiments performed. The
Richardson number decreases from a relatively large value and tends to a constant value
of Ri = 0.29. A high Richardson number is expected in the laminar region given that the
buoyancy flux is being forced through the plate at very low momentum, i.e. there will be
an excess buoyancy force relative to the momentum. As the flow transitions to turbulence
the Richardson number decreases. The figure suggests that the Richardson number reaches
a statistically steady value at z ~ 0.25m suggesting that the plume is fully developed for
z > 0.25m. Figure 6.6 (b) shows the volume flux of the four experiments. As discussed in
§ 6.2, the cumulative entrained flux, that is Q, = Q — gz, provides are more robust analogy of
the ideal plume volume flux. For this reason, we present and compare Q, to the theoretically
derived results of an ideal source. Unless otherwise stated, we refer to the volume flux as
this cumulative entrained flux, however, to avoid confusion we maintain the notation Q,.
The compensated plot of the volume flux, where the volume flux is scaled on the predicted

scaling of z4/3

, is shown in figure 6.6 (c¢). Figure 6.6 (d) shows the gradient of the logarithm
of the volume flux. The average value, for a given height, across all of the experiments
is shown by the black curve. The standard deviation o(z) across all four experiments was
calculated and the height-averaged value is defined by 6. The horizontal dashed and dot-
dashed lines show the predicted scaling value of 4/3 and 4/3 + G, respectively. Higher
resolution simultaneous buoyancy and velocity measurements were performed within the

region for which the mean value of the data lies within the range 4/3 +G. This region
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Fig. 6.5 (a) - (d) Time-averaged Reynolds stress for experiments 1 - 4, respectively and (e)
the maximum time-averaged Reynolds stress, for a given height, highlighting the transition
to turbulence in the flow. Note that in figures (a) - (d) the horizontal coordinate is scaled,
relative to the vertical coordinate, in order to aid clarity.
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Fig. 6.6 (a) Richardson number, (b) volume flux, (¢) compensated plot of the volume flux
and (d) the gradient of the logarithm of the volume flux of the vertically distributed buoyant
plume for experiments 1 - 4. The scaling Q ~ 3, predicted by Cooper and Hunt (2010),
is shown in (c). The grey highlighted region in all four plots indicate the region where
the Richardson number has reached a statistically steady state and where the volume flux
follows the predicted scaling, determined from the region where the mean gradient of the
logarithm of the volume flux (black curve) is within one space-averaged standard deviation,
o, of d <10g Q./fY 3) /dz = 4/3, where o(z) is the standard deviation of all four exper-
iments measured at a given distance. This region was identified in order to examine the
plume at higher resolution with simultaneous velocity and buoyancy measurements. The
average volume flux across the experiments is shown by the black curve in (). The mean

value of the Richardson number within this region of Ri = 0.29 is shown by the horizontal
dashed line in (a).
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Fig. 6.7 Time-averaged scaled (a) vertical and (b) horizontal velocity and (c¢) buoyancy
profiles of the vertically distributed turbulent plume for heights z = 0.302, 0.331, 0.360,
0.389 and 0.418m from each of the four simultaneous experiments. The average values
(black curve) of all of the data are shown in each case. The profile of best fit from the velocity
data of Vliet and Liu (1969), which agrees well with the data of Cheesewright (1968), is
shown by the dashed red curve. Vliet and Liu (1969) scaled the horizontal distance by the
displacement thickness defined by &, = [, W/W,dx. A least-squares linear fit between the
displacement thickness and the vertical distance was found in (d) to rescale the data of Vliet
and Liu (1969) by the vertical distance.

is highlighted in grey in all four plots. The porous wall was suspended above the base of
the ambient tank. The effect of this on the flow can be see in the region z > 0.44m in
figure 6.6 (c), where the scaling deviates from the predicted value. We therefore choose to
perform further higher resolution simultaneous velocity and buoyancy measurements within

the region 0.30m < z < 0.42m. The next section presents the results within this region.

6.4.2 Velocity and buoyancy measurements

In this section we present the high-resolution simultaneous velocity and buoyancy mea-
surements of the vertically distributed source within the developed region of 0.30m < z <
0.42m.
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Figure 6.7 shows the scaled vertical and horizontal velocities and buoyancy profiles for
heights z = 0.302,0.331,0.360,0.389 and 0.418m from each of the four simultaneous ex-
periments. A good collapse of the data on to a single curve is seen in each plot. The
average values of the vertical velocity and buoyancy of all the experiments are shown by
the black curves and the vertical velocity data are compared to the profile of best fit to the
previous data of Vliet and Liu (1969), shown by the dashed red curve. Note that Vliet and
Liu (1969) non-dimensionalise the cross stream distance by the displacement thickness de-
fined by &, = [, w/Wndx. We have rescaled the data by identifying a linear relationship
between the displacement thickness and vertical distance shown in figure 6.7 (d). Our ver-
tical velocity data show good agreement with that of Vliet and Liu (1969). Note that only
the function of the average temperature data is presented in Vliet and Liu (1969), therefore
the corresponding buoyancy profile will vary according to the experimental parameters, so
it is not compared to our buoyancy data. The time-averaged volume and momentum fluxes
for each experiment are shown in figure 6.8 where the fluxes are compensated by their pre-
dicted scalings. The averages of the data across the experiments are shown by the dashed
line in each case. Good agreement between the data and the predicted scalings of (6.23) -
(6.25) are observed in both cases. Also shown in figure 6.8 (c) are the compensated buoy-
ancy integral data. Equation (6.19) suggests that B = cpz?/? for some constant prefactor cp.
Gayen et al. (2016) also observe the scalings found above for the volume and momentum
fluxes, however, they identify modified scaling prefactors to those predicted by (Cooper
and Hunt, 2010). Instead, they observed that Q = co f 1343 and M = M f2/ 3.5/ 3 where
co =0.076 and cy; = 0.13. Our results in figure 6.8 show reasonable agreement with Gayen
et al. (2016), with c¢p = 0.069 £ 0.006 and ¢y = 0.105£0.020. In addition we find that
cg =0.53£0.07.

In the region being examined, the entrainment flux dQ, /dz is much larger than the source
volume flux ¢. In particular, ¢/(dQ./dz) < 0.07 for z > 0.30m for all the experiments.
Further, ¢/(dQ,/dz) varies by at most 10% in a given experiment, so it is not expected that
the change in this ratio significantly affects the plume dynamics over the range of heights
we are considering.

The mean wall drag coefficient, based on the top-hat vertical velocity, may be esti-
mated using (6.19) and the above results to find that C ~ 0.15. This value is lower than
the value C ~ 0.18 obtained by Gayen et al. (2016). However, as they note, the values are
likely to differ in experiments where there is a wall source mass flux, such as Cooper and
Hunt (2010) and the present experimental set-up, as compared to only buoyancy diffusing
from the boundary, such as that of McConnochie and Kerr (2015) and Gayen et al. (2016).

The drag coefficient is an order of magnitude greater than the wall plume drag coefficient,



—~

146

Turbulent vertically distributed buoyant plumes

(a) 0.1
- ==0.069
- AAAAALY
e - A - a A ANAAAANANAAANNAGAGANANAGANAAPAGANAA P AL A AA DA A i - G -
A 00000000000GE0OTOETOTESTTOTHE
m‘\l 0600000006660 00 T oo oo pooooooo
= 0.05 |- osssmsacee g
~
3
&
0 \ \ \ \ \
0.3 0.32 0.34 0.36 0.38 0.4 0.42
( ) 0.15 == ==0.105 |
- ST AT A AN A A
= L4
3
N ()1 = e e e e o s e e = o o o SO 0B05e e BT TOTOTDTOT o0 =_1
™ TV 00000 £00000000000000P000660000006000 0
& 0006000000, <><><><><><><><>000000000000000000000000 400000000009 uuuuuuuuuuDDDDDDDDUDuuuuuuuuuuuuuﬂuuuuuuuDDDDDDDDDDDDDDDDDDDDDU
— 3
~ ooo a?
oo Oopgo
= 0.05-° ° 4
0 | | | | |
0.3 0.32 0.34 0.36 0.38 0.4 0.42
c)
0s[{--053) :
o) 000pfoo0o0ppopoof®0ooto
3 06 ooooonon |
mt\z b 6000020000202000%00000000000Q002000Q0IIIIRL000Q 20999202000 QR0UAOAL AR MO MO IR 020 DAL 0L -
RGO I OSSN CAAA SN NN AN AN AT s vaca sty NPTITTT AT AT AT e N I
N v
3. 0.4 B
Y
0.2 il
0 | | | | |
0.3 0.32 0.34 0.36 0.38 0.4 0.42

z (m)

Fig. 6.8 Compensated plots of time-averaged (a) volume flux, (») momentum flux and (c)
buoyancy integral as functions of height. The height averaged data, and averaged across the
experiments, are shown in each case by the dashed line, with the value shown in the legend.
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C ~ 0.015, measured in § 5.5.3. An explanation for the significant difference in the drag
coefficient is discussed in § 6.4.4.

The entrainment coefficient may be estimated by using the relation 3a/4 = dR/dz,
which may be derived from the solutions (6.23) - (6.24). Using the values determined above
gives )
4d (0]
o= 3% (ﬁ) =0.061=£0.009. (6.41)

The entrainment coefficient should, however, be thought of as the ratio of the entrainment
flux to the mean velocity. In which case, the corrected volume flux (i.e. Q,) should not be
used in the calculation of the mean velocity. The entrainment coefficient may be calculated

more robustly by considering

0,40, _ 0y,

« = 0.068 +0.006. 42
M i 0.068 £ 0.006 (6.42)

The data .. as a function of height for each experiment are plotted in figure 6.9. As expected,
the value of o calculated from (6.42) is larger than that of (6.41), however, the two values
agree reasonably well. Our calculated entrainment value falls within the range of previously
reported entrainment values, which are calculated using velocity measurements, of o =
0.056 by Gayen et al. (2016), o = 0.048 +0.006 by McConnochie and Kerr (2015) and
a = 0.08 by Caudwell et al. (2016).

The ideal plume solutions (6.23) - (6.25) implicitly assume that 6 ~ 1, where we recall
that O is the, assumed, constant

FQ,

== 4
6 B (6.43)

that encapsulates the relation between the integral buoyancy B and the buoyancy flux F.
Figure 6.10 shows the value of 6 for the full height of the measurement window for all four
experiments. An average value, across all the experiments, of 6 = 1.19 was found. We may
therefore assume that any analysis involving the volume flux solution is not significantly
affected by ignoring the 0 term in (6.23), since the solution is modified by a factor of only
0'/3 = 1.06.

6.4.3 Turbulent fluctuations

Figure 6.11 presents the normalised root mean square (rms), denoted by rms, velocity
and buoyancy profiles, Reynolds stress and the horizontal and vertical buoyancy fluxes for
heights z = 0.302, 0.331, 0.360, 0.389 and 0.418 m from each of the four simultaneous ex-
periments. The black curves show the average across all experiments. The only available
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Fig. 6.9 Entrainment coefficient measured directly from the far field horizontal velocities,
U, and the mean top-hat velocity, W. The mean far field horizontal velocity, for a given
height, was calculated by averaging, in the horizontal direction, the horizontal velocities

between x; = 36mm and x; = 48 mm, so that i.(z) = [, %(x,z)dx.
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Fig. 6.10 Measurements of 6 = FQ,/BM from the four experiments. The average value
across all heights and experiments is 0 = 1.19 shown by the dashed line.
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Fig. 6.11 Time-averaged scaled turbulent fluctuations of (a) vertical velocity, (b) horizontal
velocity and (c) buoyancy, (d) Reynolds stress and (e) vertical and (f) horizontal turbulent
buoyancy flux for heights z = 0.302, 0.331, 0.360, 0.389 and 0.418 m from each of the four
simultaneous experiments. The black curves are the averages of the data.

data to compare to previous studies are the rms of the vertical velocities of Vliet and Liu
(1969). Although their data is relatively scattered, a peak value of approximately 0.25 is ob-

served, in good agreement with a peak value of about 0.27 observed in our measurements.

6.4.4 Comparison with wall line plume

Here we compare the vertically distributed buoyant plume to its equivalent-geometry con-
served buoyancy flux counterparts, that is the free and wall (line) plume studied in § 5. As
highlighted by Kaye and Cooper (2018), ‘plumes generated by vertically distributed sources
of buoyancy have been observed to have substantially lower entrainment coefficients than
their equivalent-geometry constant buoyancy flux plumes’. Kaye and Cooper (2018), how-
ever, primarily refer to the free plume as the equivalent-geometry plume to the vertically
distributed plume and discuss reasons for the reduced entrainment between these two flows,
including the shear stress and the suppression of eddy meandering. Our findings support
their observation that the vertically distributed plume has a significantly lower entrainment
coefficient, o = 0.068 £ 0.006, than the free plume, oy = 0.135£0.010, however, we find
only a small reduction compared to the wall plume, &, = 0.076 £0.006. The relative differ-
ence between these values is noticeably smaller than previous findings, a = {0.014,0.08}
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(Bonnebaigt et al., 2018; Caudwell et al., 2016; Cooper and Hunt, 2010; Gayen et al., 2016;
McConnochie and Kerr, 2015) and o, = 0.1 (Bonnebaigt et al., 2018), which merited such
an in depth discussion by Kaye and Cooper (2018). Comparing these values suggests that
the reduction in the entrainment value in the vertically distributed plume is primarily a result
of the presence of the wall rather than a consequence of the vertically distributed buoyancy
source. However, the slightly lower value, compared to the wall line plume, suggests that
the nature of the vertically distributed buoyancy also contributes to reducing the value. A
discussion about the reduction in entrainment due to the presence of the wall would for the
most part follow the discussion in § 5.5, we therefore choose to only compare the vertically
distributed plume and the wall line plume.

Figure 6.12 compares the velocity, buoyancy and the Reynolds stress of two flows. The
wall plume data have been scaled using the source buoyancy flux, that is F = F;. Further,
the vertical distance includes a virtual origin correction. Figure 6.12 (a) shows larger peak
velocities in the wall plume, for a given buoyancy flux. However, figure 6.12 (b) shows
significantly larger peak buoyancy in the vertically distributed plume. This is opposite to
the observation of larger peak velocities and buoyancy in the wall plume, relative to the
free plume (figure 5.22), which suggested the larger velocities were a result of additional
buoyancy forcing. This implies, therefore, that the buoyancy is less able to be effectively
mixed in the vertically distributed plume, as the lower peak Reynolds stress values in fig-
ure (c) suggest, so that the constrained buoyancy leads to a peak velocity very close to the
wall, as can be seen figure 6.12 (a), which leads to a large shear stress. A peak velocity
very close to the wall has also been observed in Gayen et al. (2016) which they argue leads
to large momentum drag. This is reflected in the value of the shear stress coefficient found
of C = 0.15, equivalent to 65% of the buoyancy force which was also observed in Gayen
et al. (2016), compared to C = 0.015 in the wall plume, which is equivalent to 15% of the

buoyancy force.

6.5 Application to a confined space

6.5.1 Sealed confined space

When a vertically distributed buoyancy source is placed within a confined environment the
(negatively) buoyant plume reaches the (bottom) top surface and spreads across it creating a
layer of buoyant fluid and a density interface between the buoyant and ambient fluid (Baines
and Turner, 1969) (see diagram in figure 6.13). This is the ‘filling-box’ which establishes

a stable stratification in the space. As time evolves, buoyant fluid continues to accumulate
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Fig. 6.12 Comparison of the average profiles of the time-averaged scaled (a) vertical veloc-
ity, (b) buoyancy and (c) Reynolds stress from the vertically distributed plume (black) and
the wall line plume (blue) using data from § 5. In the case of the wall line plume, the vertical
distance has been corrected using a virtual origin and the source buoyancy flux is used, i.e.
F = Fy from § 5.

Descending first front, gt—h H

£ -

Fig. 6.13 Schematic of the sealed vertically distributed buoyant plume with a finite source
volume flux, where the box is connected to the exterior environment by an open vent at the
bottom of the box. The rate of descent of the first front must balance the plume volume
flux entering the stratified region and the additional source volume flux within the stratified
region (i.e. dh/dt = —(Q, +q(H —h))L™") where we assume that the plume width is much
smaller than L.
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and the position of the density interface moves vertically downwards (upwards) at a rate
determined by the volume flux of the plume at the height of the interface. We will refer to
this falling interface as the first front. The position of the first front with time of a filling-box
was first determined by Baines and Turner (1969) for the case of a turbulent axisymmetric
plume filling a sealed box. This theory was later adapted to a vertically distributed turbulent
plume filling a box by Cooper and Hunt (2010). This analysis was extended to account for
the additional source volume flux, such as the current experimental method, in Kaye and
Cooper (2018), where they determined the height 4(z) of the first front from

(@t alH ) =~ (Qc +aH), (6.44)
where H is the total height of the wall and L is the y-horizontal length of the box. By
assuming that the volume flux follows the solution (6.23) and ignoring the source volume
flux (i.e. setting g = 0) (6.44) may be solved to give

-3

h(t) LB\

et P A O —2/37—1441/3

1+4<5) vl R I (6.45)
So

and the entrainment coefficient may be determined by experimentally tracking the first front
h(t). This method was used by Cooper and Hunt (2010) and Bonnebaigt et al. (2018) to
find entrainment values of @ = 0.02 and o = 0.018, respectively, where the shear stress was
ignored, i.e. C = 0. Kaye and Cooper (2018) give a detailed review of these experiments
and suggest reasons why this method may give significantly reduced entrainment values,
including the neglect of the shear stress in the model. A further possible explanation for
the lower entrainment values is that the volume flux of the plume, effectively being inferred
from the rate of change of the first front, is turbulent but not fully developed at the heights
being measured since, as we have seen, it takes a relatively long distance before the plume
fully develops. McConnochie and Kerr (2015) also use the volume flux determined from the
filling-box method, accounting for wall shear stress, in order to determine an entrainment
value of o = 0.048. This value is closer to our observed value.

Due to the accumulation of buoyant fluid within the ambient, the equations for the un-
stratified case, (6.18) - (6.20), are modified to include a stratified ambient environment
where the buoyancy of the ambient is defined by b, = g(ps — pe)/Pa> Where p, = pe(z,t) is
the density of the ambient and p, = p.(z,0) is the initial ambient density which is unstrati-
fied. The buoyancy of the plume fluid is now defined relative to the varying ambient density,
b = g(p. — p)/pa, with the initial ambient density p, as a reference density.
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The plume conservation equations are modified as

— =q— 4
& och+q, (6.46)
M _FQ, (M)

dz  OM (Qp) ’ (€47
dr ob, B )

&= Qg =N S, (6.48)

where N? = db, /dz is the buoyancy frequency of the ambient.

Further adapting the work of Baines and Turner (1969), Cooper and Hunt (2010) de-
veloped a numerical filling-box model of the evolving stratification of the ambient. The
ambient stratification was assumed to develop such that the vertically distributed plume con-
tinually lays down a thin layer of fluid, of buoyancy fH/Q,(H), at the top z = H of the
confined box. Diffusion was ignored and it was assumed that the time scale of the plume to

fill the box was much greater than the time scale of the plume to rise through the box, i.e.

HL W(H) 4L
Q,(H) H  3aH

> 1. (6.49)

Consequently, the ambient buoyancy evolves according to the advection equation

db.  Q,db,
ot L dz’
Although Cooper and Hunt (2010) observed qualitative agreement between experiments

(6.50)

and the numerical predictions outlined above they did not find quantitative agreement. In
particular, the step-change in buoyancy predicted at the first front in the numerical model
was not observed in experiments. Stratification profiles of the filling-box problem have also
been measured in McConnochie and Kerr (2015), Caudwell et al. (2016) and Bonnebaigt
et al. (2018). Caudwell et al. (2016) also found the numerical model of Cooper and Hunt
(2010) was largely unsuccessful in predicting the quantitative profiles, even if an adaptive
entrainment coefficient is used in the model. Bonnebaigt et al. (2018), however, was able
to effectively model the stratification by assuming a peeling model, originally developed
by Hogg et al. (2017) for a filling-basin model of an inclined gravity current, where the
plume velocity and buoyancy profiles are assumed to have linear, as opposed to top-hat,
profiles and the plume fluid at the outer edge of the plume peels and moves to its neutral
buoyancy height, without further mixing, once the first front is reached. Bonnebaigt et al.
(2018) assumed an ideal source with no shear stress in their model. In what follows we

describe the general peeling method used by Bonnebaigt et al. (2018), without restricting
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attention to the ideal case, so that the results of a non-ideal source above may be applied.
Before we describe the peeling method used by Bonnebaigt et al. (2018) it is convenient to
introduce dimensionless variables where we use the non-dimensionalisation of Cooper and
Hunt (2010), which were also used by Bonnebaigt et al. (2018), as

é - ZH_]’ T= a2/3Hl/3L_]fl/3t7 6@ — a2/3H1/3f_2/3be7
Q= o 3H B 1830 M= \PEHSBF2BM, F=H'f'F. (6.51)

where Q may be Q, or Q,. We denote the non-dimensional height of the first front as &y, so
that the volume flux and mean buoyancy of the plume at the height of first front may then by
given as a function of time by Q(&y(7)) and & (&o(7)) = F(&o(7))/Q(E0(7)), respectively.
According to the model of Hogg et al. (2017) and Bonnebaigt et al. (2018) the plume fluid
entering the stratified region at the first front height then peels to its neutral buoyancy height
without any further mixing. Therefore, a cumulative buoyancy distribution of volume flux
at the first front must be incorporated into the model. The cumulative buoyancy distribution
of volume flux Qg(8*, &) is defined, for a given height, as the volume flux of the plume with
plume fluid greater than a given buoyancy 6*. For example, Bonnebaigt et al. (2018) found
that for linear plume velocity and buoyancy profiles, i.e.

1—x, x<1, 1—x, x<1,
ﬂ: X X and E: X X (6.52)
Wa 0, x> 1, om |0, x> 1,

where W is the non-dimensional plume velocity and y = x/R is the non-dimensional cross-

first front is given by

A

Q5(5*7§0)

stream distance, the cumulative buoyancy distribution of volume flux at the position of the

BEI
3%/ "~ &
o
b

(6.53)

V
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&) 0

\

where we have used the result that 5,,(§y) = 38y/2 since it is useful to express Qg in terms
of the top-hat buoyancy. The height &* at which the fluid of buoyancy 6* is located is then
calculated by finding the cumulative volume flux of fluid of buoyancy greater than *. This

may be expressed by

£4(5%,7) = 1 —/0195 (8%, &(7))d. (6.54)
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Fig. 6.14 Schematic of the mechanically vertically distributed buoyant plume with a finite
source volume flux, where the box is connected to the exterior environment by an open vent
at the bottom of the box and a gear pump is forcing ventilation through openings at the top.

Bonnebaigt et al. (2018) accounted for the additional source buoyancy in the stratified region
by adding the source buoyancy to the buoyancy profile calculated above at each height. This
additional buoyancy, Ad(&, 7), at each height and time may be expressed by

T

AS(E,7) = / dr, (6.55)
(&)

where Ty(&) is the time at which the first front reaches &. The final buoyancy profile is thus

given by 6*(£*,7) + AS(E*, 7). We compare this model with experiments in § 6.5.5.1 and

suggest some adaptations to the ideal plume model considered by Bonnebaigt et al. (2018).

6.5.2 Ventilated confined flow

In this section we consider the ventilation of a system where openings are placed at the top
and bottom of the box (see diagram in figure 6.14). This type of ventilation is commonly
called displacement ventilation (Linden et al., 1990), whereby buoyant fluid is extracted
from the top opening and fresh ambient (i.e. relatively dense) fluid is introduced from
the exterior environment through the bottom opening. A stable stratification is therefore
produced within the ambient. The buoyant fluid from the top opening may be extracted
naturally, where the ventilation is driven only by the hydrostatic pressure difference between

the box and the external environment, or by forced ventilation, commonly called mechanical
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ventilation. The mechanical ventilation is forced at a flow rate of Q, 4+ gH through the top
opening which results in a ventilation flow rate of Q, through the bottom opening. Assuming
that the ventilation flow rate is smaller than the flow rate of the plume at the top of the box,
the first front reaches a steady state at the height at which the ventilation flux matches the
cumulative volume flux, i.e. the height 4 such that Q.(h) = Q,. The mechanical ventilation
of a vertically distributed buoyancy plume has been examined by Cooper and Hunt (2010).
Cooper and Hunt (2010) adapted the numerical scheme for the sealed box to include the
ventilation flow rate of ambient fluid so that the advection equation could be written, in

dimensional form, as
abe _ (Qe - Qv) abe
ot L dz

As for the filling-box, Cooper and Hunt (2010) found that the numerical scheme was not

(6.56)

able to predict the quantitative transient or steady state ambient buoyancy profile.
Gladstone and Woods (2014) studied the mechanical ventilation of a vertically dis-
tributed line source. They showed that within the stratified environment in the steady state
there was no net plume entrainment, due to a balance of entrainment of ambient fluid and
detrainment in to the ambient. Consequently, the time-averaged volume flux of the plume
was invariant with height. Gladstone and Woods (2014) suggested that in such a system the
local entrainment and detrainment is controlled by the local difference in the mean plume
and ambient buoyancy and, further, this local difference allows the plume to descend within
the stratified environment. Given that the system is in steady state, it was suggested that
this local difference of buoyancy should be independent of height. Since the buoyancy flux
increases linearly with height and the volume flux remains constant within the stratified
environment, the mean plume buoyancy, and therefore the ambient buoyancy, should also
increase linearly with height. In particular, the gradient of the ambient buoyancy should

follow the relation

dbe |
Jdz 0

since the volume flux entering the stratified region in steady state will match the ventilation

(6.57)

flux.

In the remaining part of this chapter we present the experiments performed in order to
study the filling and mechanically ventilated box of a vertically distributed buoyancy source
and apply the theory of Gladstone and Woods (2014) to our results. We first describe the

experimental set-up used to perform the experiments.
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Fig. 6.15 (a) The experimental apparatus used to study a filling-box and a mechanically
ventilated box and a diagram of the above apparatus for the (b) filling-box and (c) the me-
chanically ventilated box. The openings at the bottom of the tank may be open or closed
using a series of valves.
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6.5.3 Experimental details

In order to create a filling-box and a mechanically ventilated box of a vertically distributed
buoyancy source, we enclosed the porous plate described in § 6.3.1 in a perspex box with
height H and length L, 0.48 m x 0.50m, and spanwise length 0.23 m (see figure 6.15). This
was placed inside a Perspex acrylic tank of horizontal cross-section 1.20m x 0.40m filled
with dilute saline solution of uniform density p,. The end wall had rectangular openings at
the top of the wall which allowed an exchange flow to the exterior ambient. Seven valves
were connected at the bottom of the end wall which could be closed for a filling-box experi-
ment or connected to a pump for the mechanically ventilated experiments. In order to force a
ventilation flow for the mechanically ventilated experiments a gear pump (ISMATEC BVP-
Z, 1.17 mL/rev ), which offered a large maximum flow rate, was used. The source flow was
also pumped using a gear pump (Cole-Parmer Digital Gear Pump System, 0.91 mL/rev).
Dye attenuation was used in order to measure the ambient buoyancy stratification. This
method is described in detail in § 6.5.4.

The experimental parameters of the filling-box and mechanically ventilated experiments
are shown in table 6.2. The ventilation flux Q, in table 6.2 is defined as the difference in the
physical flux pumped out at the base of the tank and the total source volume flux gH. The
ratio of the ventilation flux to the to the maximum theoretical volume flux of the plume (i.e.
at z = H in an unstratified environment) is defined by y = Q,/Q.(H), where Q.(H) was
calculated using the ideal pure plume solution of the volume flux (6.23) with the entrainment

value and shear stress coefficient determined in § 6.4.2.

6.5.4 Dye attenuation

While planar laser-induced fluorescence (PLIF) can produce high quality density measure-
ments on a plane, the technique is limited to examining relatively short experiments, or to be
more precise, experiments where a given fluid parcel with fluorescence dye tracer remains
in the laser sheet for a relatively short time. This is because photobleaching of the dye is
likely to occur which has a significant effect on the light emissivity of the dye (Crimaldi,
1997). Given the time scale of a typical filling-box or mechanically ventilated experiment
(~ 10 — 60 mins), PLIF was not a suitable technique to use in order to measure the density
field. Instead we used dye attenuation.

Dye attenuation was performed by illuminating the tank from behind using a white-LED
light-bank, as shown in figure 6.16, and measuring the attenuation of light, due to added
tracer dye in the source solution, as it passes through a fluid. The Bouguer-Lambert-Beer

law may then be used to deduce the integrated concentration of dye along the light path
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0.126
0.178
0.188
0.222
0.262
0.315
0.382
0.439
0.522
0.643
0.224

Table 6.2 Experimental parameters of the filling-box (experiment 1) and the mechanically
ventilated experiments (experiment 2 - 12). The last column, v = Q,/Q.(H), shows the
ratio of the ventilation flow rate compared to the theoretical maximum volume flux of the
plume in an unstratified environment, calculated from pure plume solutions. In experiment
12, blue dye was added to the source solution once the ambient had reached steady state in
order to assess the motion of the stratified ambient.

Fig. 6.16 Diagram of the experimental set-up used to perform dye attenuation of the filling-
box and mechanically ventilated experiments showing the (@) LED light-bank, (b) light
diffuser, (c) large reservoir tank and (d) apparatus shown in figure 6.15. The dashed lines
indicate the measuring-window of the camera which is placed 10m from the edge of the

large reservoir to minimise the parallax error.
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(Cenedese and Dalziel, 1998). The LED light-bank is composed of uniformly spaced LEDs
with a light diffuser placed between the tank and the array of LEDs. This creates a uniform
background distribution of light for the experiments. Further, the light-bank is driven by a
DC power supply which eliminates the ‘beating’ effect observed with fluorescent lighting
where the light intensity of the light-bank fluctuates, due to the power supply, at a different
frequency to the camera capture frame rate. The experiments were captured using an AVT
Bonito CMC-4000 4 megapixel CMOS camera with a 80 —200mm 2.8 Nikon lens at a
frame rate of 1Hz which allowed 200 minutes of recording time. The camera intensity
response is linear with a black offset of b = 0.0029. The resolution of the images was
0.37mm pixel ~!.

The dye used was red food colouring “Fiesta Red” (Allura Red AC, E129). The molec-
ular diffusivities of the dye and salt are both a few orders of magnitude lower than the
kinematic viscosity of the salt solution (v ~ 10~®m?s~1) so that the dye acts as an effective
tracer for the salt concentration (Dalziel et al., 2008). This dye has shown to be effective in
previous dye attenuation investigations (e.g. Cenedese and Dalziel (1998); Coomaraswamy
and Caulfield (2011)). Coomaraswamy and Caulfield (2011) observed a dark red precipitate
when the dye was added to concentrated sodium chloride solution, instead sodium carbonate
solution was used to achieve a density difference. No such precipitation was observed in our
experiments which may be as a result of the significantly lower concentrations of sodium
chloride used in our source solutions, 3.5% Mass, as compared to Coomaraswamy and
Caulfield (2011), 22% Mass (estimated using the density of the sodium carbonate source so-
lution used). The experiments were assumed to be independent of width (i.e. the y-direction)
so in order to determine the height dependent profile the light rays should follow horizontal
paths. In order to minimise the parallax error, within the constraints of the equipment and
the laboratory, the camera was placed 10m from the experiment. Since the dye acts as a
tracer for the sodium chloride solution, the attenuation due to the sodium chloride must also
be considered. By assuming the dye concentration is approximately constant along the light
path (i.e. the y direction) the dye concentration may be inferred for all points along the light
path. This results in an equivalent measurement to a plane concentration field measurement.
The Bouguer-Lambert-Beer law may be used to relate a reference intensity, with no dye or
sodium chloride added to the relative medium, of the integrated path along y recorded by the
camera, Iy(x,z), to the intensity of the integrated path along y with known concentrations of
dye and sodium chloride, I(x,z,7), as

1(x,2,t) = Ip(x,2) exp (— (€4¢4 + EscCse) Ly), (6.58)
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Fig. 6.17 Dye attenuation calibration curve for the food colouring dye. The space-averaged
normalised pixel intensity reading against the normalised dye concentration on a (a) linear-
linear axis and a (b) log-linear axis. A linear relationship may be approximately observed
in (b), however, a best-fit quadratic curve was used to provide a more accurate relation-
ship. The solid curves correspond to a least squares quadratic fit for ¢;/c4 o in log P, where

ca/cap=0.487 (loglﬁ)2 —0.2561og P. The red dashed curves correspond to a least squares
linear fit for the data points within the region 0 < ¢;/cg0 < 0.5 for ¢z /cq in log P, where
ca/cap = —0.239 logP. All concentration measurements in the experiments were within
this range.

where €, & and ¢4, ¢ are the extinction coefficients and concentrations of the dye and
sodium chloride, respectively, and L, is the total distance traversed by the ray of light in the
relative medium. In practice, a batch solution of sodium chloride and dye is made so that
the relative concentrations of sodium chloride and dye remains constant, i.e. cs/c; = .

Equation 6.58 may therefore by rewritten in terms of 8 and the dye concentration,
I(x,z,t) = Ip(x,z) exp (— (&4 + &cB) caly), (6.59)

where the constant €; + &8 may be determined empirically by a calibration.

The calibration was performed by filling the tank with a uniform concentration of the
batch solution and recording 200 images of the field of view. The images were then time-
averaged to give an intensity reading, for each camera pixel, for a given dye concentration
which is used as a proxy for both the dye and sodium chloride concentration. A space-
averaged normalised pixel intensity reading P was calculated for each concentration by the

following
- 1 [ Px,y)—D
P=— | ————dxd 6.60
A/APO(xy)—b “ (6.60)

where Py(x,y) was the intensity reading with a zero dye and sodium chloride concentration,

A is the area of the space-averaged region and b is the camera black offset. In performing
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the calibration, it is convenient to normalise the dye concentration by the source dye con-
centration used in the experiments, ¢4 0. The data are plotted in figure 6.17. Figure 6.17
shows an approximately linear relationship between log P and c;/c4 . The relationship is,
however, more accurately fitted by a quadratic curve. The following relationship was found

to provide a least squares quadratic fit

% =0.487 (logP)2 —0.2561ogP. (6.61)
It should be noted, however, that the maximum concentration measurements in the region of
interest of the experiments (i.e. ignoring regions containing a thin layer of very dense fluid
which could not be effectively pumped out by the ventilation) corresponded to a concentra-
tion of ¢y < 0.5¢40. There is a good linear relationship between logP and c;/ cq 0 for this
range with a linear best-fit of
Y _ 5 3910gP. (6.62)
€d,0
It is not clear as to why a linear relationship is not observed for the whole range of concen-
trations, however, a non-linear relationship was also observed for larger concentrations in

Coomaraswamy (2011) and may be a result of refractive index variations.

6.5.5 Results

For convenience, the experiments were performed using a relatively dense source solution so
that the convention is vertically opposite relative to theory presented in § 6.5.1 and § 6.5.2,
i.e. in the experiments the plume descends and the first front rises whereas in the theory
described the plume rises and the first front descends (figures 6.15 (b) and (c)). We therefore
vertically invert the presented experimental images in order to maintain an analogy between
our experiments and a heated room (figures 6.13 and 6.14). Since the experiments and the
full scale flows are Boussinesq the inverted problems are equivalent. Therefore, we have
that z = 0m and & = 0 are at the top of the experimental tank but the bottom of the filling-
box and that z = H and & = 1 are at the bottom of the experimental tank but at the top of the
filling-box.

6.5.5.1 Filling-box experiment

We first consider the evolution of the first front of the filling-box which has been used to
determine the entrainment coefficient in previous studies. Kaye and Cooper (2018) showed
that by ignoring the shear stress and source volume flux when applying the first front theory

of Baines and Turner (1969), artificially low entrainment values may be calculated. We
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Fig. 6.18 (a) Ambient buoyancy profile of the filling-box experiment. () Ambient buoyancy
profile of the filling-box experiment as in (a) with logarithmic buoyancy scale. The vertical
dashed line shows the threshold b = b, = 100 used to identify the first front interface, where
o is the standard deviation of the ambient buoyancy from a background image with no dye
in. The other two lines show show b = 0.5b; and b = 1.5b;.
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Fig. 6.19 (a) Comparison of the predictions of the position of the first front with experiment
1 (solid) for FFM (i) (dot-dashed) FFM (ii) (dotted) and FFM (iii) (dashed) discussed in the
text. An entrainment coefficient of @ = 0.068, based on (6.42), has been used for all the
plots. (b) Ratio of source volume flux contribution to plume volume flux contribution to
the first front movement of the first front. The volume flux, Q(z), used in (b) is from the
velocity measurement over the total height of the wall from § 6.4.1.
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show that it is also important to only consider the evolution of the first front in the region
where the plume is fully developed.

The height of the first front for each image was calculated by first space-averaging the
processed experimental images of the buoyancy field in the ambient fluid over the range
0.20m < x < 0.45m so that the plume structure was not included in the space-average. The
standard deviation o across this region was calculated for a background buoyancy field
image with no dye added and a threshold of b, = 1006 was used for identifying the inter-
face. A typical ambient buoyancy profile taken from the filling-box experiment is shown
in figure 6.18 (a) and the same profile with a logarithmic scale also showing the buoyancy
threshold in (b). The identified position of the interface was insensitive to the choice of
threshold, in particular using a threshold of b; = 56 and b; = 150, also shown in figure 6.18
(b), resulted in a mean difference in the identified interface height of 1.2 and 1.3 pixels,
respectively.

Figure 6.19 (a) shows the experimentally measured first front against non-dimensional
time. Also plotted are three different first front models (FFM) used to predict the position
of the first front. These were predicted by assuming:

(1) an ideal plume (with zero source flux) where the volume flux is given by (6.23) and
the first front descends according to (6.45),

(i1) a finite flux plume where the numerical solution of the volume flux of (6.18) - (6.20)
was used in the unstratified region and the first front descends according to (6.44) with

the source flux included,

(iii) the volume flux determined in § 6.4.1 from the velocity measurements over the whole
height of the wall and the first front descends according to (6.44) with the source flux
included.

In FFM (ii) and (iii), equation (6.44) was integrated numerically to obtain the first front
position. Kaye and Cooper (2018) also considered the evolution of the first front where the
finite source volume flux is included in the conservation plume equations (6.18) - (6.20), and
numerically integrated the equations to determine the plume volume flux in the unstratified
region.

Both the plume volume flux entering the stratified region and the additional source vol-
ume flux within the stratified region contribute to the rate of descent of the first front. Fig-
ure 6.19 (a) shows that all three of the models are successful in predicting the first front
position for the region & > 0.6. In particular, without accounting for the source volume flux

in the stratified region, the pure plume model shows good agreement within this region. This
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suggests that the contribution of the source volume flux within the stratified region is rela-
tively small compared to the plume volume flux entering the stratified region at the height
of the first front. Figure 6.19 (b) shows the relative contributions of the source volume flux
to the plume volume flux in the rate of descent of the first front movement for a given height.
The plume volume flux used in this calculation was taken from the velocity measurements
over the whole height of the wall discussed in § 6.4.1. This shows that the contribution of
the source volume flux to the first front movement is less than 5% that of the plume entering
the stratified region for the region & > 0.6.

The inclusion of the source volume flux in the stratified region of the pure plume model
(FFM (i), marked by the dotted curve) increases the rate of descent of the first front. The
experimentally measured first front, however, descends at a slower rate than the pure plume
model with zero source flux (FFM (ii), marked by the dashed-dotted). This can be explained
using the velocity measurements over the whole height of the wall, where a laminar region
was observed for £ < 0.15. Beyond this, the plume was not fully developed within the region
& < 0.6 so the ideal plume model did not provide an accurate prediction of the volume flux
within this region.

Figure 6.19 (a) shows that the first front position may be successfully predicted for the
entire descent by including the volume flux measurements in the first front equation and
including the contribution of source volume flux in the model (FFM (iii), marked by the
dashed line).

The evolution of the ambient buoyancy of experiment 1 is shown in figure 6.20. These
buoyancy profiles were calculated by space-averaging the processed experimental images
of the buoyancy field in the ambient fluid over the range 0.20m < x < 0.45m so that the
plume structure was not included in the space-average. Figure 6.20 (a) shows the evolution
of the ambient buoyancy with time where the position of the first front has been overlayed.
Figure 6.20 (b) shows the buoyancy profiles for given times. The profiles are qualitatively
similar to those of Caudwell et al. (2016) and Bonnebaigt et al. (2018), with a sharp tail
of rapidly decreasing buoyancy from the top of the box to an approximately linear region.
Cooper and Hunt (2010) did not present results of the filling-box ambient buoyancy profiles.
We now consider the filling-box peeling model based on the work of Bonnebaigt et al. (2018)
discussed in § 6.5.1 and compare the model to the experimental results. We consider three
filling-box peeling models (FBPM). In the first model, FBPM (i), we use the ideal plume
solutions (6.23) - (6.25), using the experimentally determined entrainment and shear stress
coefficient. The position of the first front is then determined analytically by (6.45). In
this model, as in Bonnebaigt et al. (2018), linear plume velocity and buoyancy profiles are

assumed as defined in (6.52), which give a cumulative buoyancy distribution of volume flux
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Fig. 6.20 (a) The evolution with time of the space-averaged ambient density field for the
filling-box experiment 1 (see table 6.2) and (b) the space-averaged ambient density profiles

for non-dimensional time T =n € {1,...,10} . The dashed curve in (a) shows the position
of the first front.

as defined in (6.53). This model only differs to that of Bonnebaigt et al. (2018) with the
inclusion of a shear stress coefficient.

In the second model, FBPM (ii), the ideal plume solutions are again used to calculate
the volume flux entering the stratified region. The difference is, however, the cumulative
buoyancy distribution of volume flux imposed at the first front was experimentally deter-
mined by conditionally averaging the simultaneous velocity and buoyancy data presented in
§ 6.4.2. The cumulative buoyancy distribution of volume flux was calculated from the data
by the following calculation

Op(b*,2) = %/OT/O w(x,z,8)H(b(x,z,t) — b*)dxdt, (6.63)
where H is the Heaviside step function. The mean cumulative buoyancy distribution of
volume flux is shown in figure 6.21 (black) scaled by the total volume flux and the buoy-
ancy scaled by the top-hat buoyancy. The curve shows the average, across all heights mea-
sured, of the scaled data. Also shown in figure 6.21 are the cumulative distribution function
assumed by Bonnebaigt et al. (2018) (blue) and the result of assuming a top-hat profile
(dashed). The experimental data shows there is a large transport of buoyant fluid, approxi-

mately 25%, which is greater than the maximum buoyancy predicted by the model of Bon-
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Fig. 6.21 The cumulative buoyancy distribution of volume flux of the vertically distributed
plume in an unstratified environment (black) calculated using the simultaneous velocity and
buoyancy data from § 6.4.2. The cumulative buoyancy distribution of volume flux used
by Bonnebaigt et al. (2018) (blue) and the resulting distribution from assuming a top-hat
velocity and buoyancy profile (dashed). Also shown is the cumulative buoyancy distribution
of volume flux of a wall plume resulting from a horizontal line source of buoyancy adjacent
to a wall (red), calculated from the data presented in § 5.5. The buoyancy has been scaled
by the top-hat buoyancy, br.

nebaigt et al. (2018). Figure 6.21 shows that, for the experimental data, Q;(0,2) < Q,(z).
This is due to the transport of ambient fluid by the vertically distributed plume, which is
equal to Q,(z) — Q5(0,z). The good agreement between the measurements of the first front
descent of the experiments and FFM (iii) based on the velocity measurements over the full
height of the wall suggests that the ambient fluid that is transported into the stratification is
then mixed, as opposed to detraining back in to the unstratified ambient. In order to use the
experimental cumulative distribution function data in the peeling model we therefore rescale
the experimental data Qj(b*,z) by the volume flux of plume fluid Q;(0, z). The buoyancy is
then rescaled in order to conserve buoyancy flux, i.e. the following relation

1 - * *
m/o 0, (b*,2)db* =1, (6.64)

must hold.

The third model, FBPM (iii), uses the same method as FFM (iii) discussed above in
order to predict the position of the first front. The peeling procedure discussed for FBPM
(ii) is then used to determine the ambient density profile.
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Fig. 6.22 Comparison of the filling-box peeling models (dashed curves) compared with
experiment (solid curves) 1 for non-dimensional times 7 = {1,3,5,7,9} for (a) FBPM (i)
(b) FBPM (ii) and (c¢) FBPM (iii) discussed in the text.

Figure 6.22 shows the results of the three peeling models described compared against
the experimental data. The first front position with time is identical in FBPM (i) and FBPM
(i1). FBPM (ii), however, is able to predict the buoyancy gradient of the approximately lin-
ear region observed in experiments. FBPM (i) underestimates the buoyancy observed in the
experiments within the region £ > 0.75 and vice-versa, whereas FBPM (ii) overestimates
the buoyancy observed in the region & > 0.75. This observation in FBPM (i) is most likely
a consequence of the approximation of the velocity and buoyancy profiles, which may over-
estimate the mixing that occurs within the plume and any additional mixing as the plume
enters the stratified region. The opposite problem occurs in FBPM (ii) where the cumula-
tive buoyancy distribution of volume flux has been imposed from direct measurements and
no further mixing is assumed as the plume enters the stratified region. FBPM (iii), which
follows the first front position more accurately by using the method described in FFM (iii),
does not show improvement over FBPM (ii).

The results above suggest that it is possible to modify the experimentally determined
cumulative distribution function, which could be thought of as a mixing parameterisation of
the plume entering the stratified region, so that the peeling model more accurately describes
the buoyancy profiles. It is expected, however, that the cumulative buoyancy distribution is

not self-similar in the developing, and especially, the laminar region of our experiment.
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Figure 6.21 also shows the cumulative buoyancy distribution of volume flux of the wall
plume calculated from the same data presented in § 5.5. It is clear that, relative to the top-
hat buoyancy, the vertically distributed plume exhibits a greater range of buoyancy scales
than the wall plume. This is due to the continued supply of buoyant fluid at the wall as well
as the ongoing mixing of ambient fluid. Bonnebaigt et al. (2018) also examined the filling-
box of a wall plume, where the top-hat model of Baines and Turner (1969) was shown to
accurately predict the developing buoyancy stratification. It was emphasised that it is not
yet clear when it is better to approximate the density distribution across the plume using
a one-dimensional top-hat profile, or when it is necessary to assume a two-dimensional
density and velocity profile. We see in figure 6.21 that the wall plume distribution better
approximates an idealised top-hat buoyancy profile, therefore this provides some insight in
to the suitability of modelling the plume profiles according to this top-hat profile.

6.5.5.2 Mechanically ventilated experiments

We first examine the steady state interface height of the mechanically ventilated experiments.
Following Baines (1983) and Gladstone and Woods (2014) the height of the steady state
interface, h; or &; in non-dimensional form, is measured from experiments and the interface
height is predicted by assuming the ventilation flow rate matches the volume flux of the
plume at the height of the interface (Baines, 1983). We, therefore, have that

Oy = Op(hi) — ghi = Qc(hi). (6.65)

By assuming the pure plume solution for the cumulative entrained volume flux (6.23), equa-

tion (6.65) may be used to express the interface height in terms of the ventilation flow rate

hi (@)“ (M)‘”“ (1) AN 666
500 ’ '

as

H 3 5

where we recall that y = Q,,/Q.(H). We also predict the interface by assuming the volume
flux determined from the velocity measurements over the full height of the wall. The inter-
face height is then given by h; = z(Q, ), where z(Q,) is the inverse relationship of the best fit
curve of the experimental data shown in figure 6.6 (b). Figure 6.23 (a) shows a typical evo-
lution of the ambient stratification in a mechanically ventilated experiment, as it ultimately
reaches steady state. Figure 6.23 (b) shows the predicted interface heights for both models
discussed above compared with the measured interface height from the experiments.

Figure 6.23 (b) shows that, while the ideal plume model (filled diamonds) is able to
predict the interface height for the region & > 0.55. This is consistent with the observation
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Fig. 6.23 (a) An example of the evolution of the ambient buoyancy profile, taken from
experiment 5 (table 6.2), as it tends to a steady state. (b) Comparison of the predicted steady
state interface heights for the two models described in the text with the measured interface
height from the experiments.

that the ideal plume model FFM (i) is also able to accurately predict the first front height
of the filling-box model, discussed in § 6.5.5.1, since the plume is fully developed within
this region and follows the pure plume theory. The ideal plume model predictions, however,
become increasingly poor as the interface height decreases, i.e. as the ventilation flow ratio
v decreases. For this lower region the reason for the inaccuracy is the same as for the
inaccuracy of the first front position for a filling-box as in § 6.5.1, so is not repeated here.
The model is improved by incorporating volume flux measurements over the whole height
of the wall (unfilled diamonds), in particular this model is able to the predict the interface
heights of the low ventilation flow rate ratios.

Figure 6.24 shows the steady state buoyancy profiles across all the mechanically ven-
tilated experiments. The buoyancy profiles are qualitatively similar to those observed by
Cooper and Hunt (2010) and Gladstone and Woods (2014) by following an S-shaped curve,
where the buoyancy rapidly increases from the interface height towards an approximately
linear region. Beyond this exists a relatively well-mixed region before rapidly increasing
buoyancy. The well-mixed region is a result of the gravity current formed at the base of the
tank, and the rapidly increasing buoyancy may be a result of the position of the ventilation
openings at the far wall, as opposed to Cooper and Hunt (2010) where the ventilation open-
ings were along the base of the box. An interface, separating the gravity current at the base
of the tank and the approximately linear ambient buoyancy, at approximately & = 0.85 can

be observed in each of the experiments in figure 6.24. In order to identify the dynamics of
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Fig. 6.24 Steady state ambient buoyancy profiles of the mechanically ventilated experiments.
The data points shown are sub-sampled to aid clarity to the figure.

the ambient within the stratified region, relatively concentrated blue dye was added to the
source solution in experiment 12 after steady state had been achieved. In order to perform
the analysis on the data, it was convenient to study the raw experimental images. A time-
average of the experiment during steady state, before any blue dye had been added, was
used as a background image in order to aid clarity to the motion of the dye (figure 6.25 (a)).
Figure 6.25 (b) shows an instantaneous image of the experiment 40 min after the blue dye
had been added to the source. This image is corrected by element-by-element subtracting
the background image in 6.25 (a). Since the technique was used for dye visualisation only,
and not quantitative measurements, element-by-element subtraction was sufficient to high-
light dyed fluid relative to the background image. The corrected image is shown in 6.25
(c).

For each experimental frame, after the blue dye had been added to the source, a horizon-
tal and vertical space-average was performed in the region shown by vertical and horizontal
grey bars, respectively, in figure 6.25 (¢). The mean vertical and horizontal motion of the
dye within the stratified region could then be assessed over time. Figure 6.25 (¢) shows that
there is a region within the stratified zone, approximately x < 0.20m, where the dyed source
fluid has entered the ambient region. This structure developed shortly after the dye had been
added, however, it remained bounded within this region and did not spread further into the

ambient fluid. The region used to identify the mean vertical motion was therefore placed
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outside of the structure identified from the dye. Similarly, the region used to identify the
horizontal motion was placed outside the gravity current, which can be seen at the top of the
figure in 6.25 (c). The evolution of the dye within the regions highlighted in grey in 6.25
(c) are shown in figure 6.26. The flushing time of the source chamber is approximately 10
min for the source flow rate used. Therefore, the source solution gradually becomes more
concentrated until reaching a uniform dye concentration. The effect of this can be observed
in figures 6.26 (a) and (b), where the dye concentration gradually increases. Figure 6.26 (a)
shows the vertical motion of the dye. The dye clearly shows the vertical extent of the gravity
current at the base of the tank. The maximum height of the dye remains approximately con-
stant from 20 min, and the deviation in the maximum height is estimated to be 5mm for the
remainder of the experiment. Any vertical intrusion of the dye into the ambient is therefore
estimated to occur at a speed of less than 2.5 x 10~%ms~! which corresponds to 0.02Q, /L.

Figure 6.26 (a) shows the horizontal motion of the dye. The figure suggests that there
is a mixing zone in the region x < 0.20m, which can also be seen in figure 6.25, since the
dyed source fluid rapidly replaces any un-dyed source fluid within this zone. The (hori-
zontal) width of this mixing zone was not uniform across the spanwise y direction. This
is highlighted in the figure by the labels where separate intrusions at different y locations
occurred. As the depth of intrusion A decreases, the depth of intrusion B increases, which
suggests that the entrainment and detrainment balance. Similar results were observed Glad-
stone and Woods (2014). There is, however, a continued supply of source fluid within this
region, so we hypothesize that within this region the time-average plume volume flux is
given by Q(z) = O, + gz. Based on this assumption we may adapt the theory developed by
Gladstone and Woods (2014) for a vertically distributed buoyant line plume to a vertically
distributed buoyant wall.

As discussed in 6.5.2, Gladstone and Woods (2014) suggested that the absence of any
vertical transport within the ambient implies there is a buoyancy difference Ab between the
mean plume and ambient density within the stratified region which serves to maintain the
vertical motion of the plume. Since the system is in steady state this buoyancy difference
should remain independent of depth. The mean plume buoyancy, in dimensional form, in

the unstratified region is given by

_fr 4\ s ac\'"?
bT_Qp_3(4) a Pl (1) (6.67)

In the stratified region, assuming the volume flux is given by Q,(z) = Q, + gz, the mean

plume buoyancy is given by
__Jz
Ov+qz

br (6.68)



6.5 Application to a confined space 173

0 01 02 03 o0
 (m)

 (m)

Fig. 6.25 (a) Time-average of the raw experimental images recorded during the steady state
before the blue dye had been added to the source solution in experiment 12. (b) Raw ex-
perimental image of the experiment 40 min after the blue dye had been added to the source
solution in experiment 12. (c¢) Corrected image where the image from (a) is subtracted
element-by-element from (b). The area in between the horizontal and vertical grey lines
show the regions used to vertically and horizontally average the image, for each frame, in
order to identify the mean horizontal and vertical motion of the dye in to the ambient, re-
spectively (figure 6.26). The dashed line shows the height of the steady state interface.
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Fig. 6.26 (a) Horizontally and (b) vertically space-averaged evolution of the blue dye added
to the source solution in experiment 12. The regions used to space-average are shown by the
grey lines in figure 6.25 (¢). The figures suggest that there is no net vertical motion within
the stratified ambient region 0.20m < x < 0.50m, h; < z < 0.46m.
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Fig. 6.27 (a) The steady state mechanical ventilation model (6.67) and (6.68) (blue), which
has been adapted from the model of Gladstone and Woods (2014), compared to experiment
3 (black). The dashed line shows the height of the interface. The height-invariant buoyancy

difference between the plume and ambient fluid, predicted by Gladstone and Woods (2014),

is shown in the figure. (b) Normalised buoyancy difference, A = Ale/ 4 f3/4  as a function

of height within the stratified core (for example the grey region in (b) for experiment 3).

If the source volume flux is ignored, the linear growth rate of plume buoyancy is recovered
as derived by Gladstone and Woods (2014). Figure 6.27 (a) shows the model prediction
for experiment 3 compared against the experimental steady state buoyancy profile. Note
the nonlinear profile of the model mean plume buoyancy, which qualitatively follows the
ambient buoyancy. In order to test whether the plume and ambient buoyancy difference
is independent of depth in the core of the stratified region the buoyancy difference was
calculated as a function of height for each experiment. We define the core of the stratified
region as the heights between the gravity current and half way between the gravity current
and the interface, as highlighted in grey for experiment 3 in figure 6.27 (a). In order to
identify this stratified core the heights of the inflection points of the steady state profiles were
calculated, i.e. the heights &y such that §,(&y) = 0. The gravity current was then defined as
the region & > &, where & is the second inflection point moving from & = 1 in the negative
& direction. Figure 6.27 (b) shows the results, where the buoyancy difference has been
normalised using A = Ale/ ! f34, Figure 6.27 (b) shows that the buoyancy difference
remains approximately constant for experiments with y < 0.4. For experiments with y >
0.4 there is a noticeable reduction in the buoyancy difference with increasing height. The
stratified region within these experiments is relatively small, especially considering only
the stratified core. It may be, therefore, that these experiments are unable to develop a

balanced entrainment/detrainment region. Gladstone and Woods (2014) suggested that A,
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or the equivalent non-dimensional constant for a vertically distributed buoyant line plume,
should be a constant of order unity because the flow is turbulent so the buoyancy difference
should depend only the ventilation flow rate and buoyancy flux per unit area. There is no
distinguishable trend of the mean value of A for each experiment as a function of y, indeed
the maximum variation between experiments occurs between experiments with y = 0.126
and y = 0.178. Based on the experiments we give a value of A = 5.3 £0.8, which is the

mean and standard deviation of the mean value from each experiment.

6.6 Conclusions

The flow resulting from a vertically distributed source of buoyancy was studied by forcing
dense source solution through a porous wall. By extending the numerical model of Kaye and
Cooper (2018), the plume equations were solved to account for both a finite source volume
flux and shear stress coefficient. The plume equations, however, do not account for the lam-
inar region and a virtual origin correction is not possible so in order to identify the laminar
region, determine the effect of the laminar region on the flow and in particular identify the
region which follows the scalings predicted by Cooper and Hunt (2010), two-dimensional
plane velocity measurements normal to the wall were first performed over the whole height
of the porous wall. The transition to turbulence was observed to occur at a height of approx-
imately 0.08m, although a pure plume state was not reached until approximately 0.25m,
where the pure plume criterion was based on a constant Richardson number.

High-resolution simultaneous two-dimensional plane velocity and buoyancy measure-
ments normal to the wall were performed in a region found to the exhibit the scaling laws
predicted by Cooper and Hunt (2010), 0.30m < z < 0.42m. An entrainment coefficient of
o = 0.068 = 0.006 was found and a shear stress coefficient of C = 0.15. The entrainment
coefficient is not significantly smaller than the entrainment coefficient found for the wall
plume in § 5.5.2 of a,, = 0.076 £0.006, suggesting that the reduction in entrainment com-
pared to free plume, &y = 0.135£0.010, is primarily due to the presence of the wall rather
than the effect of the vertically distributed buoyancy.

By enclosing the vertically distributed buoyancy source the classical filling-box prob-
lem was investigated by using dye attenuation to measure the ambient buoyancy field. By
adapting the peeling model of Bonnebaigt et al. (2018) to include direct measurements of
the cumulative buoyancy distribution of volume flux, the developing buoyancy stratification
was successfully predicted. The mechanically ventilated box problem was also studied. For
a fixed buoyancy flux per unit area the developing buoyancy stratification, and in particular

the steady state profile, was measured for varying ventilation flow rates. The theory devel-
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oped by Gladstone and Woods (2014), whereby a height-invariant buoyancy difference Ab
between the mean plume density and the ambient in the stratified region was suggested for
a vertical line source of buoyancy, was adapted to the present configuration suggesting that

the steady state ambient buoyancy is given by

fz
= — Ab, 6.69
= Ovtaz (6.69)
within the stratified region, and the buoyancy difference can be expressed as A = AbQi/ 4 f —3/4

for some non-dimensional constant A of order unity. Although the theory correctly pre-
dicted an invariant buoyancy difference for the lower ventilation experiments within the
core of the stratified region, for the higher ventilation flow rates there was an obvious trend
that dAb/dz < 0. The calculated non-dimensional constant A was relatively scattered, even
across those that followed the theory well, with a value of A = 5.3 with a standard deviation

across the ten experiments of 0.8.



Chapter 7

Conclusions

7.1 Review of findings

7.1.1 Axisymmetric plume

In chapter 4 we investigated the turbulent entrainment process in an axisymmetric pure
plume. By performing conditional statistics, based on the presence or absence of plume
fluid, on the velocity field, it was found that relatively large velocities, ~ 30% of the maxi-
mum vertical velocities, exist within the ambient. Further, the vertical transport of ambient
fluid is approximately 5% of the total, whereas the vertical transport of engulfed fluid is
approximately 7% of the total. These results indicate that significant vertical momentum is
imparted to the ambient fluid before reaching the TNTI and the ambient fluid is accelerating
during the engulfment process. Further conditioning of the data by the presence or absence
of large coherent structures (eddies) revealed that almost all the vertical transport of ambient
fluid occurs at regions with eddies absent, i.e. at heights between eddies. This suggests that
the passage of the large eddies drives the pockets of ambient fluid at heights between the
eddies providing the vertical momentum necessary to be engulfed by the plume. We con-
clude that the engulfment of ambient fluid by large scale structures provides a significant

contribution to the turbulent entrainment process in pure plumes.

7.1.2 Free and wall line plume

In chapter 5 we investigated the turbulent flow resulting from a horizontal line source of
buoyancy in a free environment absent of any boundaries and a line source placed adjacent
to a vertical wall. The two configurations were compared and a reduced entrainment coef-

ficient of ¢, = 0.076 £0.006 in the wall plume was found compared to the free plume of
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oy = 0.135+0.010 consistent with previous studies (e.g. Grella and Faeth (1975); Paillat
and Kaminski (2014a); Ramaprian and Chandrasekhara (1989); Sangras et al. (2000)). This
corresponds to the free plume entraining 2.5 times more ambient fluid per unit height for
a given buoyancy flux, suggesting that each edge of the free plume entrains ambient fluid
more efficiently than the wall plume. The reduction in entrainment in the wall plume was in-
vestigated by performing an energy decomposition of the wall plume entrainment coefficient
based on the decomposition performed by Paillat and Kaminski (2014a) for the free plume
entrainment coefficient. The relative contributions from buoyancy, turbulent production and
viscous terms to the wall plume entrainment coefficient could be isolated in this way and it
was found that the reduction in the turbulent production term, ~ 30% compared to the free
plume, was approximately equal in magnitude to the viscous terms. This suggests that both
the momentum drag and the suppression of turbulence production, via suppression of large
coherent structures and meandering, by the wall contribute to the reduced entrainment.

The meandering of the free plume was quantified where it was shown that there is a
significant probability, ~ 15%, of ambient fluid existing at the mean centreline of the plume
that is connected to the ambient far field. This was compared to an axisymmetric plume,
using the data from chapter 4, where the equivalent probability is small, ~ 1%. It was
hypothesized that increased meandering leads to stretching of the TNTI which was tested
by first box-filtering the images with filter size A and measuring the time-averaged lengths
of the TNTIs for both the free and wall plume. It was shown that the total length of the
TNTI of the free plume is, on average, greater than that of the wall plume by a factor of
atleast 2.2.

The data were presented in a plume coordinate system defined relative to the instanta-
neous TNTIs. It was observed that for the region xp/X < 0.95 (i.e. within the plume but
outside the adjustment region close to the TNTI) the buoyancy of the free plume varied by
at most 9% of the mean buoyancy within that region, whereas the corresponding variation
in the wall plume was 52%. This shows that the buoyancy within the free plume is more uni-
formly mixed than the wall plume, which results in a more top-hat vertical velocity profile in
the free plume. The Reynolds stress and horizontal turbulent buoyancy flux were observed
to change sign crossing the TNTI for both the free and wall plume. Although not observed
in Eulerian coordinates, due to the Reynolds stress in the plume masking the ambient statis-
tics, this is consistent with the entrainment process described by Odier et al. (2012) whereby
streamwise momentum and buoyancy are transported towards the plume centreline.

Based on the definition of Craske et al. (2017) of the integral turbulent Prandtl number
for an axisymmetric plume, the equivalent integral turbulent Prandtl number was defined

for the free plume where an expression was derived in terms of the ratio of the width of the
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buoyancy profile to the velocity profile ®, assuming the profiles have the same shape. The
expression of the integral turbulent Prandtl number was compared to the result of Craske
et al. (2017) where it was found that, for a given integral turbulent Prandtl number, & is
greater in the free plume than the axisymmetric plume, which agreed with experimental
observations of the free plume compared to previous studies on axisymmetric plumes. The
turbulent Prandtl number, as a function of horizontal distance, was calculated for each ex-
periment by height-averaging the scaled data. A characteristic turbulent Prandtl number
Prr. was defined by the space average of the turbulent Prandtl number within the region
where w > 0.01w,,. An average value of Pry. = 0.56 +0.04 was determined which showed
good agreement with the integral turbulent Prandtl number Prz,, = 0.47 £ 0.05 based on
the experimentally determined values of ®. The results suggest that the integral turbulent
Prandtl number provides a robust characterisation of the turbulent Prandtl number within

the turbulent region of the free plume.

7.1.3 Vertically distributed plume

In chapter 6 we investigated the turbulent flow resulting from a vertically distributed buoy-
ancy source by forcing relatively dense source solution through a porous wall. Simultaneous
velocity and buoyancy field measurements were performed on a vertical plane normal to the
wall. An entrainment coefficient of @ = 0.068 +-0.006 was determined which is within the
range of previously reported values of oo = [0.014,0.08] (Bonnebaigt et al., 2018; Caudwell
et al., 2016; Cooper and Hunt, 2010; Gayen et al., 2016; McConnochie and Kerr, 2015).
The entrainment coefficient is similar to that of the wall plume, ¢, = 0.076 &=0.006, which
in turn are both significantly lower than the entrainment coefficient of the free line plume,
o = 0.135+0.010, suggesting that the reduced entrainment in the vertically distributed
plume is a result of the processes as described in chapter 5. The shear stress coefficient
of C = 0.15 was calculated, slightly lower than the value of C = 0.18 reported by Gayen
et al. (2016). However, as noted by McConnochie and Kerr (2015), a reduced shear stress
may be expected in experiments with a convective wall source, such as the present con-
figuration, as compared to experiments with a mostly diffusive wall source, such as that
of Gayen et al. (2016). The filling-box and emptying filling-problem was investigated by
performing ambient density measurements using dye attenuation. The developing ambient
buoyancy stratification of the filling-box was predicted by extending the peeling model of
Bonnebaigt et al. (2018) to account for the empirically determined cumulative buoyancy
distribution of volume flux. The updated model provided a more accurate prediction of the
experimentally measured stratification profiles than the original model of Bonnebaigt et al.

(2018). The developing ambient buoyancy, and steady state, profiles were measured for the
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emptying filling-box problem for a fixed buoyancy flux per unit area and varying ventila-
tion flow rates. By adding concentrated dye to an experiment after steady state had been
established, vertical motion within the ambient fluid was observed to be negligible. The
theory of Gladstone and Woods (2014), originally developed for a vertically distributed line
source of buoyancy where negligible vertical motion within the steady state ambient was
also observed, was adapted to the present configuration and tested against measurements.
The theory correctly predicted an invariant buoyancy difference between the mean plume
buoyancy and the ambient buoyancy, within the core of the stratified region, for relatively
low ventilation flow rates. As the ventilation flow rate increased, however, there was a clear
trend that dAb/dz < 0. Further, a collapse of the scaled buoyancy difference predicted by
theory of Gladstone and Woods (2014), A = AQi/ 4 f =3/ 4 was not observed, even consider-
ing only the low ventilation flow rates, with values ranging between A = 0.4 and A =0.7.

7.2 Further work and applications

Here we discuss possibilities for future study of the material presented in this thesis.
In deriving the free line plume conservation equation for momentum (5.16), the follow-

ing assumption was made

/wﬁ+id—pdx<</m W2dx, 7.1
—oo Pa dz —oo
which was justified from experimental measurements of a free jet (Bradbury, 1965; Miller
and Comings, 1957). A useful addition to the current study would be a DNS of a free plume,
similar in scope to that of Van Reeuwijk et al. (2016) for an axisymmetric plume, which
would allow direct calculation of the individual terms in (7.1) to determine the validity of the
approximation. The analogous approximation was also made in the wall plume, therefore a
DNS study would also provide a valuable addition to the current study. For the wall plume
the DNS study could also help to isolate the contribution to the reduction in entrainment
from the no-slip, as opposed to the impermeability, condition of the wall by comparing a
no-slip and free-slip boundary condition at the wall, as has been performed for an inclined
gravity current by Holzner et al. (2016). Given the large shear stress coefficient found in the
vertically distributed plume, a similar comparison between a no-slip and free slip DNS with
this configuration would be particularly interesting.

The study of the vertically distributed plume concerned the flow resulting from a verti-
cally distributed buoyant wall. As discussed in 6.1, this has application to a downdraught,

a natural convective flow resulting from a relatively cold vertical surface within a build-
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ing. Downdraughts, and in particular the gravity current that results from the downdraught
spreading along the floor, may be undesirable in cases where the floor is occupied and ve-
locity and relative temperatures exceed comfortable limits. In domestic buildings it is com-
mon to place a central heating radiator underneath a window to ameliorate the draught and
produce a more pleasant internal environment (CIBSE, 2016). Increasingly, nondomestic
buildings have tall glass facades, often located in an atrium, that produce strong undesirable
downdraughts in cold weather (Heiselberg, 1994), and various measures are put in place to
reduce their effect (Joe et al., 2017; Schellen et al., 2012). These include building balconies
and/or providing localised heating to parts of the facade. However, it is acknowledged in
the industry that these measures are largely ad hoc and that their effectiveness is unknown.
In practice there is a lack of assessment methods to quantify the downdraught risk and its
effect on occupant thermal comfort. Often expensive computational fluid dynamics studies
are required to inform design and identify whether cold drafts compromise performance.
Highly glazed spaces, e.g. glazed atria, entrances and courtyards, are often questioned with
regard to whether they fulfil their purpose year round and provide an adequately inviting en-
vironment. A method with which practitioners can identify and estimate the draft risk would
be of great value. An extension to the vertically distributed plume study performed in this
thesis could therefore be made by considering passive downdraught mitigation measures
adjacent to the wall. The investigation could study the effectiveness and optimisation of a
varying number of barriers of varying size and location. In addition, the resulting ambient
stratification could measured for the above cases.

In practice, the stratifications that develop within internal spaces are a result of numerous
and varied heat sources, e.g a heated wall, multiple occupants and their computers. The
next step towards having a complete model of stratification in rooms would be to combine
the theories we now have for point sources, distributed horizontal sources and vertically

distributed sources into one model.

7.3 Conclusions on turbulent entrainment

The objective of this thesis was to provide novel insights into the large scales processes of
turbulent entrainment in buoyancy-driven flows and the mechanisms that result in a reduc-
tion of turbulent entrainment in buoyancy-driven wall-bounded flows.

The investigations of the free shear flows (i.e the axisymmetric and free line plumes)
have led to novel insights on the role of large coherent structures in the turbulent entrainment
process and led to reinterpretation of some previous work on turbulent entrainment. Some of

the novel results concerned the effect of the turbulent plume region on the non-turbulent am-
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bient region, in particular that significant velocities exist at, and continue to exist relatively
far from, the plume edge in vertical regions between two large eddies. So it was reasoned
that large eddies provide a mechanism to impart momentum over long ranges through pres-
sure gradients. In addition, the use of conditional statistics based on the presence of ambient
fluid showed that significant Reynolds stress magnitudes exist in the ambient when the ambi-
ent is close to the centreline of the axisymmetric plume, further demonstrating the effect of
the turbulent fluid on the ambient before the fluid is entrained. Previous studies have focused
on the effect of the large scale processes only through the mechanism of engulfment (Bisset
et al., 2002; Westerweel et al., 2009). While we conclude that engulfment contributes sig-
nificantly to turbulent entrainment, we also conclude that the effect of the large scale eddies,
through the mechanism descried above, plays a dominant role in the engulfment mechanism
that has previously been overlooked in the turbulent entrainment process.

A significant part of this thesis was concerned with identifying the differences in turbu-
lent entrainment between the free and wall plume that result in a lower observed entrainment
coefficient in the wall plume. The meandering of the free plume has previously been linked
to an increase in turbulent production (Sangras et al., 1999, 1998; Turner, 1973). While our
conclusions also support this observation we also show that the increased meandering leads
to an increased surface area of the TNTI in the free plume, thus more surface for nibbling
and enhanced entrainment across the TNTI. Previous studies have attributed the reduction
in entrainment almost entirely due to the impermeability condition of the wall (Grella and
Faeth, 1975), which results in a reduction in lateral spreading. However, we have identified,
through an entrainment decomposition, that the momentum drag of the wall (i.e. the effects
of the no-slip condition) plays an equally important role.

Our results for the vertically distributed wall plume show that, in contrast to previous in-
vestigations of Bonnebaigt et al. (2018) and Cooper and Hunt (2010) and conclusions from
Kaye and Cooper (2018) the entrainment coefficient in the vertically distributed plume to be
almost identical to the wall plume. We reasoned that similar mechanisms to the wall plume
resulted in reduced entrainment, as compared to the free plume. Much previous work on
vertically distributed plumes has been focused on identifying reasons for the significantly re-
duced entrainment, where observations showed lower values as compared to the wall plume.
This study sheds a different light on the two flows suggesting that the entrainment mecha-

nisms are essentially the same which result in very similar entrainment values.
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Appendix A

Here we assess the error associated with the PLIF density measurements in the free and
wall plume in § 5 and the vertically distributed plume in § 6 due to the laser intensity
fluctuations and the attenuation due to the dye and added salts and justify performing a

two-point calibration.

A.1 Free and wall plume experiments

A two-point calibration relies on the assumption that the local illumination intensity between
the calibration image of mixed dye I, (x,z) and the background I,(x,z) are approximately
equal. Further, that the local illumination intensity between the calibration images and the
experiment /(x, z,¢) are also approximately equal. Typically, however, the local illumination
intensity in an experiment is not known since it varies spatially and temporally as a function
of the absorption of the laser light that occurs along its path (e.g. Chandrasekhar (1957),
page 190) or, as it is typically referred to, attenuation. The Bouguer-Lambert-Beer law may
be used to relate the local illumination intensity of a reference medium /j(x,z) to the local
illumination intensity /(x,z,7) in an absorbing medium, where the light is assumed to travel

parallel to the z direction, as

N
I(x,z,t) = Ip(x,z) exp (—/0 Z gci(x,7 1) dz') , (A.1)
i=1

where g; are the extinction coefficients of the absorbing media with concentrations c;.

First we consider the free plume experiments. In order to describe the analysis we con-
sider experiment 1, however, we give the analogous final results at the end of this section
for all the experiments. The measurement window is 0.16m in height and the bottom of
the measurement window z;, with z = Om at the top of the measurement window (see fig-
ure A.1), is at a distance 0.325m from the base of the tank. The path of the light rays along
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Fig. A.1 Schematic of the free plume experiment highlighting the features used in the laser
beam attenuation analysis.

the mean centreline of the plume were approximately parallel to the z direction. Given that
the maximum dye attenuation due to the plume is likely to occur along the mean centreline
of the plume we consider the local illumination intensity at the maximum height from the
base of the tank, which is at z;, = 0.485m, within the measurement window at the centreline
x. of the plume, and we make the assumption that the path of the laser travels along the path
X = Xc.

We define the local illumination intensity at the position (x.,0) (the position of the cross
in figure A.1) in the tank containing fresh water by /y. We define the local illumination
intensity in the tank containing a sodium chloride (NaCl) solution concentration c; at the
same point by I,. These may be related to each other using (A.1) by

I, = Inexp (—&¢s2p), (A.2)

where & is the extinction coefficient for NaCl.

The background calibration image used in the two-point calibration contained NaCl
solution at the concentration used in the ambient fluid of the experiments. The intensity
I;, may therefore be considered as the background calibration image. The intensity of the
mixed calibration image I, of a known concentration ¢; of Rhodamine 6G with the same
NaCl solution as I, may be related to the background image by

Ly = Iyexp(—€4cqzp), (A.3)

where &, is the extinction coefficient for Rhodamine 6G.
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For an experiment with initial ambient NaCl concentration ¢, o and source sodium nitrate
(NaNO3) and Rhodamine 6G concentration ¢, o and ¢y o, respectively, the local illumination

intensity during the experiment is given by

b
I(t) = Ipexp (— /0 YE4Ca,0 + YenCn0 + (1 — ¥)&scys 0 d2), (A4)

where €, is the extinction coefficient for NaNO3 and y = ¥(z,t) is the plume fluid concen-
tration relative to the source solution, so that 7 = 0 in the unmixed ambient fluid and y =1

in the unmixed source solution. The relation (A.4) can be written in terms of [, as

Zh
I1(t) = Ipexp(— /0 YE4Ca,0 + VEnCn,0 — VEsCs,0 dz) (A.5)
b
= Ipexp (—(€4¢q,0+ €nCn0 — EsCs0) /0 ydz) (A.6)
|
=1, exp (_Zb(gdcd,o + &xCno — SSCS7()) 5 /0 '}/dz). (A7)

The value % o' v dZ’ for each image may be estimated directly from the LIF measurements.

The measurements from experiment 1 give a time-averaged value of

11 /T ra
——/ / Y dzdt = 0.0396, (A.8)
TziJo Jo
with a standard deviation of o = 0.0050 and a maximum value of 0.0550. In order to provide
a reasonable estimate for the worst-case attenuation for the region below the measurement
window, considering the additional dilution that will result, we assume that y(z) = y(z1) =
0.0232 for z > z;, where 7 is the time-average of 7.
By assuming the worst-case value for the measurement window, y(z) = 0.0565, we find

that

1 [

— Y dz = 0.0373. (A.9)

25 Jo
Extinction coefficient values used in this analysis are based on a calibration performed in
collaboration with Jamie Partridge (see A.3 for full details) giving values of £; = 1.64 x
102m~(ugN)~!, &, =42x10m !(g/1) "' and &, = 8.8 x 10~* m~!(g/)~!. The con-
centrations used in the free plume experiment 1 were ¢4 o = 200 ugl=!, cs0 =78 gl~! and
cno =120 g1~!. Using the extinction coefficient for the Rhodamine 6G and concentration

used in the mixed calibration image, c; = 6.7ugl ™!, gives

1,, = 0.9491,. (A.10)
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Experiment 1 2 3 4 5 6 7 8 9 10

Ln/Ip 0.949 0.947 0.947 0.952 0.952 0.957 0.957 0.957 0.954 0.954

min(//l,) 0948 0.945 0.955 0.948 0.945 0.947 0.944 0.946 0.947 0.952
Table A.1 Relative attenuation of the mixed calibration image to the background image,

I /I, and the maximum attenuation of the experimental images relative to the background
image, min(//I), of the experiments.

This implies the local illumination intensity is at most 5.1% smaller in the mixed calibration
than the background calibration. For the experimental images, from the relation (A.7), we
find that

[ =0.9481,. (A.11)

which shows that the local illumination intensity is at most 5.2% less in any experiment
than the background calibration. Importantly, this suggests that the maximum difference
between the intensity of any two of the three images is less than 5.2%. Table A.1 shows
the analogous results results for all the free plume experiments showing that across all the
experiments the error due to the attenuation was at most 5.5%.

Attenuation of the fluoresced dye also occurs, in particular along the path between the
camera and the measurement plane. The attenuation of the fluoresced signal is known to be
weaker than the incident laser light due to the change in wavelength (Lemoine et al., 1996).
The maximum integrated fraction of dye concentration between the measurement plane and
the camera may be estimated by

Yij2
/ Y(x = x¢,y,z=0)dy = 0.0045m, (A.12)
0

where y; , = 0.075m is the midway from the bounding wall to the measurement plane. This
is significantly less than the estimate of the vertically integrated path within the measure-
ment region obtained from (A.9) of 0.018 m. This suggests that the effect of the attenuation
due to the fluoresced dye along the path between the camera and the measurement plane is
negligible as compared to the attenuation of the laser light within the measurement plane.
The maximum relative attenuation of the mixed calibration and experimental images
may also be calculated for the wall plume where z; = 0.157m and z;, = 0.352m. These
values are given in table A.1 which shows that across all the wall plume experiments the
error due to the attenuation was at most 5.6%. In addition, the effect of the attenuation of

the fluoresced dye is also estimated to be negligible.
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Experiment 1 2 3 4

Ln/1Ip 0.983 0.983 0.979 0.979

min(//l,) 0985 0.982 0.980 0.979
Table A.2 Relative attenuation of the mixed calibration image to the background image,
I /I, and the maximum attenuation of the experimental images relative to the background
image, min(I/I), of the vertically distributed wall plume experiments.

A.2 Vertically distributed plume

The maximum relative attenuation of the mixed calibration and experimental images may
also be calculated for the vertically distributed wall plume experiments from chapter 6 with
Zm = 0.27m and z; = 0.15m. These values are given in table A.2 which shows that the max-
imum difference between the intensity of any two of the three images used in the calibration
is less than 3.1%.

A.3 Calibration of extinction coefficients !

A series of calibration experiments were performed to determine the extinction coefficients
€4, €, and &;. For the Rhodamine 6G coefficient, €;, the laser system was positioned so that
the beam passed through a 1 m long tank before reaching a Gentec-eo energy meter (model
QE25LP-H-MB). To perform the calibration, first a background state Ey was recorded with
the tank filled with fresh water and then the average energy of 1000 pulses was logged on
the energy meter. Subsequent recordings were made after incrementally adding Rhodamine
6G dye to the calibration tank. The decay of the energy E, due to attenuation, can be seen in
figure A.2. From these data, we find that &, = 1.64 x 1072 m~!(ug/1)~!, as shown by the
dashed line in figure A.2.

The same calibration procedure was attempted for the salts, however, due to refractive
index changes, the energy meter did not appear to be a robust method of capturing the
attenuation. Therefore, a different calibration procedure was utilised for the salts. The
same 1 m long tank was used but, instead of the laser, a DC powered LED light bank
provided illumination. The light from the LED bank travelled through the length of the tank
(1 m) before being recorded by a Dalsa Falcon2 4 MP CMOS camera fitted with a bandpass
filter centred at the wavelength of the laser (532 nm), to ensure we are only measuring

the extinction coefficient at the appropriate wavelength. Just as a dye attenuation system

IThis section comprises analysis that was performed by Jamie Partridge contributing to the collaborative
publication Parker et al. (2020).
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Fig. A.2 Extinction coefficient calibration experiments for (a¢) Rhodamine 6G and the
(b) salts. The best fit lines (dashed) yield & = 1.64 x 1072 m~(ug/N)~!, g, =
1.406 m~'(Ap,) " and & = 6.094 m™~ ' (Ap,) !, where Ap,, = py, — po and py is the den-
sity of fresh water.

would be calibrated, a background image was captured with fresh water Iy and subsequent
images I were captured for various salt concentrations. Figure A.2 shows the calibration
results using this methodology for the salts where we find &, = 1.41 m~'(Ap,)~! and & =
6.09 m~!(Ap,)~! as the extinction coefficients for NaNO3 and NaCl, respectively. Here,
Apy/, signifies the change in density due to the corresponding salt, subscript s for NaCl and
n for NaNOs, where

Aps = 0.000685c¢;, (A.13)
Ap, = 0.000628¢y, (A.14)

which results in the extinction coefficients & = 4.2 x 107> m~!(g/1)~! and ¢, = 8.8 x
1074 m~1(gn)~".
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