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Abstract

We consider the scattering of waves by an infinite three-dimensional cascade of
finite-length flat blades in subsonic flow at zero angle of attack. This geometry
is of specific relevance as it provides a model for the components in turbofan en-
gines. We study the scattering problem analytically, considering both acoustical
and vortical incident fields, spanwise wavenumbers and transverse mean flow.
Most importantly we extend previous work by lifting the restriction that adja-
cent blades overlap, a condition that had thus far been crucial for the analytical
study of this problem. Our method of solution relies on the solution of three
coupled boundary value problems using the Wiener-Hopf technique, correspond-
ing to an uncoupled leading-edge approximation, and a subsequent trailing-edge
and leading-edge correction. We provide exact expressions for observables in the
system, depending only on the solution of a linear matrix equation. Specifically
we find closed-form expressions for the far-field behaviour of the scattered po-
tential upstream and downstream of the cascade, the upstream and downstream
sound power, as well as the total unsteady lift on each blade in the cascade. A
wide range of results are presented, and we see that the non-overlapping cascade
is, as might be expected, typically more transparent to incident disturbances
than the previously studied overlapping case.

Keywords: Acoustic scattering, Wiener-Hopf method, Periodic structures,
Acoustic interactions

1. Introduction

Understanding noise generation and propagation in modern aircraft engines
is of crucial importance to help control noise emissions. In this paper we are
concerned with the scattering of sound and vorticity waves by a cascade of
finite length blades in mean-flow, which provides a model for the rotor and
stator stages in turbofan engines. In modern turbomachinery the noise emission
from the fan is one of the most dominant contributions to the total noise [1], and
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moreover the ‘blockage’ of sound generated elsewhere by the fan is a key element
in any prediction of far-field noise. Consequently insights into the acoustic
processes involved in scattering by a blade row are particularly relevant.

The scattering problem by a cascade of blades has been subject to a large
amount of research over the past decades. The groundwork for the analytical
solution of these types of problems was laid in a sequence of works by Carlson
and Heins [2], Heins and Carlson [3] and Heins [4], who considered an analogous
problem of electromagnetic scattering by a cascade of perfectly conducting semi-
infinite blades extending to x = +∞. One of the earliest works considering a
cascade of finite-length blades was presented by Kaji and Okazaki [5], who
considered a sound wave incident on the cascade and developed a numerical
scheme based on a distribution of doublets to match the pressure jump on
the blades. The problem was further studied by Whitehead [6] who developed
the LINSUB code which provides a numerical scheme to solve for a variety of
incident fields on a cascade located in subsonic mean-flow. This approximate
solution is based on expanding the full pressure field in terms of separable waves
in the Prandtl-Glauert plane and using a collocation type approach to match the
upwash velocity at the blades. A more analytically-based approach was given
by Koch [7], who used a scalar Wiener-Hopf formulation (of similar nature to
[2]) to solve the problem of incident sound waves exactly (up to the truncation
of an infinite system of linear equations) in the case of overlapping blades, thus
allowing the computation of the scattered radiation in this case.

More recent work has focused on extending these results to incorporate more
general geometries and incident fields, as well as to allow for a more efficient,
and hence practically feasible solution. Peake [8] derived an asymptotic kernel
factorisation for the large reduced frequency regime and used a small number of
iterates in a Schwarzschild-type approach to produce an efficient scheme for an
incident vorticity wave, which allows for the computation of the unsteady lift
distribution. This asymptotic kernel factorisation was later extended by Peake
and Kerschen [9] to be uniformly valid even for close to cut-off conditions of the
radiation modes or duct modes. A subsequent work by Peake [10] solves the
complete system exactly using a Wiener-Hopf type approach and presents an
expression for the unsteady lift distribution that is valid for arbitrary reduced
frequency. In both cases the method of solution relies on an assumption of
overlap of adjacent blades in order to arrive at a coupling of the Wiener-Hopf
equations that describe the leading-edge and trailing-edge interaction problems.
Glegg [11] further extended the analysis to blades in a three-dimensional setting,
including the effects of spanwise wave number and cross-flow, and analysed
in detail the unsteady loading and far-field behaviour of the scattered field
for an incident vortical gust. Glegg’s method of solution can be motivated
by a Schwarzschild-type distribution of boundary conditions, and results in a
system of four coupled scalar Wiener-Hopf equations, which takes an essentially
similar form to the one derived by [10]. These can then be solved, and an exact
expression for the solution can be found which relies only on the solution of a
linear matrix equation.

In recent years several studies have succeeded in analysing the effect of re-
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alistic blade geometry, periodicity and mean flow on the cascade scattering
problem. In particular Peake and Kerschen [12, 13] studied the effect of blade
mean loading on the generation of noise in the case of mean flow that is aligned
at a non-zero incidence angle to the cascade blades. The analytical studies of
the cascade also provided a basis for Posson et al. [14], who were able to use
the two-dimensional cascade solution as a source distribution for the scattering
problem on an annular blade-row. Ayton and Peake [15] used the same velocity
potential and streamfunction coordinate system as had been applied in [12, 13]
to analyse realistic airfoil shapes by reduction to flat blades and appropriate
boundary conditions. This coordinate system was successfully used by Baddoo
and Ayton [16] to find an exact solution to the scattering problem by an infinite
cascade of airfoils again based on the solution presented in [11].

However, in all of the aforementioned work, which uses the Wiener-Hopf
technique to find either exact or approximate solutions to the scattering prob-
lem, the restriction to the case of overlapping blades is required. This restriction
was necessary in previous studies because it effectively allows the Wiener-Hopf
analysis to be based on the duct modes, which are the only modes present
in overlapping parts of the geometry. If the blades do not overlap the modal
structure is more complicated and the Wiener-Hopf solution needs to account
for that. The main novelty of this paper is to present the first analytical solu-
tion which does not rely on overlapping blades and is in fact valid for arbitrary
blade spacing. This is achieved by a formulation as a system of coupled scalar
Wiener-Hopf equations, and by judiciously choosing an appropriate additive
Wiener-Hopf splitting (which is described in detail in §4.3), that allows us to
reduce the scattering problem to an infinite system of linear equations. Our ad-
ditive splitting is based on the radiation modes, which leads to a discrete linear
system with decaying coefficients that can be solved by truncation regardless
of the choice of overlap. In contrast, the coefficients of the linear systems in
previous work would increase exponentially when the blades do not overlap, so
do not provide a convergent method in this case. We derive our solution in
a very general three-dimensional setting, allowing for effects of spanwise wave
number and cross-flow, as well as considering both incident vorticity and acous-
tic waves. This solution allows us to derive exact expressions for the far-field
radiation and the unsteady lift on the blades, which, similarly to the previous
work, are in closed form apart from the need to solve the aforementioned linear
system numerically.

We begin this paper by outlining the equations of motion together with
the relevant boundary conditions in §2. This is followed by a formulation of
the scattering problem as a system of coupled Wiener-Hopf equations in §3,
which is then solved using a Cauchy-type additive splitting in §4. The solution
can be reduced to an infinite system of linear equations and this reduction
is described in §5. It is possible to derive expressions for the total unsteady
lift and the far-field sound based on our solution to the scattering problem, and
these expressions are provided in §6. Finally, we provide numerical results using
our solution in §7 which are used to demonstrate the accuracy of our method
based on previous work in the overlapping case and to study the effects of
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cascade geometry and spanwise wavenumber on the scattered field. Our results
are summarised and an outlook of possible future research is provided in the
concluding remarks in §8.

2. The equations of motion and mathematical formulation

Mean flow
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(a) Projection onto the xy-plane.

z

x

y
Mean flow

U W

n = 0

n = 1

n = −1

(b) Full three-dimensional geometry.

Figure 1: The cascade geometry with mean-flow and blade labels.

We consider a cascade of blades of zero thickness and camber, which are
parallel to the xz-plane, of finite length in the x-direction, staggered in the y-
direction and extend to infinity in the spanwise z-direction as shown in figure 1.
We assume the blades lie in non-zero uniform subsonic mean flow u = (U, 0,W ),
with corresponding speed U∞ :=

√
U2 +W 2 and Mach number M := U∞/c0,

with c0 the undisturbed speed of sound. We suppose that the flow is perturbed
by an incoming wave (which could correspond to an acoustic wave or a vortical
gust) that is incident from x = −∞. Then by Goldstein’s splitting theorem
[17, pp. 220-222] the perturbed velocity potential can be decomposed into a
solenoidal part (which is zero for incident acoustic waves, and equal to the
incident field for vorticity waves) and an irrotational part corresponding to
the scattered field (plus the incident field for acoustic waves). The scattered
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component φ̃(x, y, z, t) of this velocity potential satisfies

1

c20

D2φ̃

Dt2
−∇2φ̃ = 0, (1)

where ∇2 is the Laplacian in three dimensions. We non-dimensionalise our
equations by rescaling the physical quantities as follows: We rescale lengths by
l the blade chord, times by l/U∞, density perturbations by the undisturbed fluid
density ρ0, pressure fluctuations by ρ0U

2
∞, and we let Mx := U/c0,Mz := W/c0

be Mach numbers of the x, z-components of the flow. Finally the normalised
blade stagger d, and interblade spacing s are defined as in figure 1a, resulting
in the stagger angle α0 = arctan (s/d). Crucially, we wish to include the case
of non-overlapping blades, so that d may be greater than 1.

We look for wave-like solutions of the form:

φ̃(x, t) = φ(x, y)eiΩt−iK3z,

where Ω = ωl/U∞ is the reduced frequency, andK3 = lk3 is the non-dimensional
spanwise wave number. Then, by Eq. (1), φ must satisfy the dimensionless
equation

β2∂2
xφ+ ∂2

yφ− 2iΩ̃MxM∂xφ+
(

Ω̃2M2 −K2
3

)
φ = 0, (2)

where we denoted the Prandtl-Glauert number by β2 = 1 −M2
x , and we call

Ω̃ = Ω−K3
Mz

M the effective reduced frequency, where we require Ω̃2M2
x ≥ K2

3β
2

for propagating acoustic modes to exist (as will be seen from the dispersion
relation Eq. (5)).

2.1. Boundary conditions

Let us label the blades by 0,±1,±2, . . . , then for incident harmonic waves
(either vortical or acoustical) the (time-dependent) upwash normal to the nth

blade (the y-velocity of the incoming wave on the blades in the upward pointing
direction) is given by

Vg exp (iΩt− iK1x+ inσ) , (3)

where K1 = lk1 is the non-dimensional x-component of the wavevector, and
we assume that the incident wave is periodic in the transverse direction, with
the change in its phase between adjacent blades (the so-called interblade phase
angle) being σ = −dK1 − sK2. In summary, φ must therefore satisfy the
following conditions:

(i) The total normal velocity (i.e. the sum of upwash and normal component
of the scattered potential) must vanish on the rigid stationary blades, i.e.

∂φ

∂y
= −Vgeinσ−iK1x on {0 ≤ x− nd ≤ 1, y = ns} .
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(ii) The unsteady pressure, which is given in dimensionless form by

p = −Dφ̃

Dt
= −

(
iΩ̃

M

Mx
+

∂

∂x

)
φ,

is continuous away from the blades. Note we have rescaled the pressure by
a factor of Mx/M for ease of notation in the later Wiener-Hopf analysis
where this would appear as a constant factor in the multiplicative kernel.

(iii) The scattered field must satisfy a radiation condition, which, with our
introduction of the small fictitious damping Im Ω < 0 is equivalent to
requiring φ to be bounded at infinity.

(iv) The incident field has a periodicity as specified in Eq. (3). We require the
scattered potential to exhibit a similar property, namely for all −∞ < x <
∞, 0 ≤ y ≤ s:

φ(x, y) = e−inσφ(x+ nd, y + ns). (4)

This means in particular that we need only determine the velocity potential
in the first cascade strip {−∞ < x < ∞, 0 ≤ y ≤ s}, and the solution
everywhere else is determined from Eq. (4).

(v) The total velocity normal to the blades ∂φ
∂y must be continuous everywhere

(which follows from the continuity of pressure and the consideration of
infinitely thin blades).

(vi) The scattered field satisfies the Kutta condition at the trailing edge (see for
instance [8, 18]), i.e. [p] is non-singular at the points (x, y) = (1 +nd, ns),
and the usual inverse square-root singularity at the leading edge, i.e. φ
has an inverse square-root singularity at the points (x, y) = (nd, ns).

In the present work we are particularly interested in incident (harmonic) vortical
gusts and acoustic waves, as follows.

Incident harmonic gust

A harmonic vortical disturbance, representing for instance a component of
the wake shed from an upstream blade row, corresponds to an incident velocity
field of the form

uinc = AeiΩt−iK·x,

which must satisfy mass conservation ∇ · uinc = 0, i.e. A · K = 0, and is
convected with the flow, i.e.

D

Dt
uinc = 0.

This results in the dispersion relation

K1 = Ω̃MM−1
x ,

and implies σ = −dΩ̃MM−1
x − sK2.
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Incident acoustic waves

Acoustic waves, representing perhaps noise generated elsewhere in the aero-
engine, have a velocity potential proportional to

eiΩt−iK1x−iK2y−iK3z,

which satisfies the convected wave equation Eq. (1). Thus we find the following
dispersion relation

β2

(
K1 +

Ω̃MxM

β2

)2

+K2
2 +K2

3 =
Ω̃2M2

β2
. (5)

This ellipsoid in wave phase space can be parametrised as follows:

K1 =
Ω̃M cosϕ sin θ

1 +Mx cosϕ sin θ
, (6)

K2 =
Ω̃M sinϕ sin θ

1 +Mx cosϕ sin θ
, (7)

K3 =
Ω̃M cos θ

1 +Mx cosϕ sin θ
. (8)

From this parametrisation we can immediately extract the incident direction of
the wave (in terms of azimuthal angle ϕ and polar angle θ). Moreover, in terms
of ϕ, θ we have

σ =
(− sin θ)Ω̃M

1 +Mx cosϕ sin θ
(d cosϕ+ s sinϕ) .

Although our methodology can easily be extended to the case of incident acous-
tic waves from downstream, we focus in this paper on the case of upstream
incidence, which for us means s(Mx + sin θ cosϕ)− d sin θ sinϕ ≥ 0 and is spec-
ified in more detail in §3.1.

3. Formulation as a Wiener-Hopf problem

The periodicity condition (iv) allows us to restrict ourselves to the first
cascade strip {−∞ < x < ∞, 0 ≤ y ≤ s}. We aim to apply the Fourier
transform directly to the differential equation and boundary conditions in order
to arrive at a Wiener-Hopf formulation – this approach is called Jones’s method
by [19].

Let us define the jump in a quantity across the first cascade strip by [ · ], so
that for instance the jump in unsteady pressure p is given by

[p] (x) = p(x, 0+)− e−iσp(x+ d, s−), (9)
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and use the following convention for the x-wise Fourier transform:

Φ(α, y) :=

∫ ∞
−∞

eiαxφ(x, y)dx.

Fourier transforming Eq. (2) and boundary condition (v) we find

∂2Φ

∂2y
(α, y)− γ2(α)Φ(α, y) = 0 (10)

∂Φ

∂y
(α, 0+)− e−iσ−idα ∂Φ

∂y
(α, s−) = 0, (11)

where γ2(α) = α2β2 + 2αΩ̃MxM −
(

Ω̃2M2 −K2
3

)
and the branch cuts of γ

are chosen such that the function always has positive real part. We also note
that the Fourier transform of the pressure fluctuations is related to the Fourier-
transformed velocity potential by

P (α, y) = −
(
iΩ̃

M

Mx
− iα

)
Φ(α, y)

[P ] (α) = −
(
iΩ̃

M

Mx
− iα

)
[Φ] (α). (12)

We can solve Eq. (10) to yield Φ(α, y) = A(α) exp (γ(α)y) +B(α) exp (−γ(α)y)
and imposing the periodicity Eq. (11) together with Eq. (12) implies after a few
steps of algebra that

[P ] (α) = κ(α)
∂Φ

∂y
(α, 0), (13)

where

κ(α) =
2
(

Ω̃ M
Mx
− α

)
(cos(σ + dα)− cosh(γs))

iγ sinh(γs)

=

(
Ω̃ M
Mx
− α

)
iγ sinh(γs)

(
1− e−iσ−γs−idα

) (
1− e−iσ+γs−idα) eiσ+idα.

We observe that κ(α) is single-valued in the complex plane, since its direct
dependence on γ is even.

3.1. The multiplicative kernel κ

One can easily check (see for instance Peake [8]) that κ is meromorphic, with
simple poles located at α = k±n , n ∈ N where

k±n =


−MxMΩ̃∓

√
M2
xM

2Ω̃2−β2(n2π2s−2+K2
3−M2Ω̃2)

β2 if n ≤ p
−MxMΩ̃±i

√
−M2

xM
2Ω̃2+β2(n2π2s−2+K2

3−M2Ω̃2)

β2 if n > p,
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and p is the largest integer such that M2
xM

2(Re Ω̃)2 − β2(n2π2s−2 + K2
3 −

M2(Re Ω̃)2) ≥ 0. Furthermore κ has simple zeros at the convected wavenumber
α = Ω̃ M

Mx
and at α = σ±m,m ∈ Z, where for −r ≤ m ≤ q:

σ±m =
−(s2MxM Ω̃ + dσ + 2dπm)

s2β2 + d2

∓

√(
s2MxM Ω̃ + dσ + 2dπm

)2

− (s2β2 + d2)
(

(σ + 2πm)2 − s2
(

Ω̃2M2 −K2
3

))
s2β2 + d2

,

and for m > q,m < −r:

σ±m =
−(s2MxM Ω̃ + dσ + 2dπm)

s2β2 + d2

±
i

√
−
(
s2MxM Ω̃ + dσ + 2dπm

)2

+ (s2β2 + d2)
(

(σ + 2πm)2 − s2
(

Ω̃2M2 −K2
3

))
s2β2 + d2

,

with −r, q being the smallest and largest integer respectively such that(
s2MxM(Re Ω̃) + dσ + 2dπm

)2

− (s2β2 + d2)
(

(σ + 2πm)2 − s2
(

(Re Ω̃)2M2 −K2
3

))
≥ 0.

We call k±n the duct modes (which are cut-on if and only if n ≤ p) and σ±m the
radiation modes (which are cut-on if and only if −r ≤ m ≤ q). These are the
acoustic modes that appear in this geometry, and α = Ω̃ M

Mx
is the hydrodynamic

mode supporting the wake downstream of the blades.

Incident acoustic waves

For acoustic waves we can verify using the parametrisation Eq. (6)-(8) that

K1 =

{
σ−0 if s(Mx + sin θ cosϕ)− d sin θ sinϕ ≥ 0

σ+
0 if s(Mx + sin θ cosϕ)− d sin θ sinϕ < 0

i.e. K1 = σ−0 if the incident wave is travelling downstream with respect to
the cascade stagger (i.e. is incident from upstream), and K1 = σ+

0 if the wave
travels upstream (i.e. is incident from downstream). For simplicity we restrict
our analysis to the case of incident waves from upstream (i.e. for acoustic waves
when K1 = σ−0 ), but the scattering problem can be solved in an analogous (re-
flected) way in the case of upstream travelling waves incident from downstream
as well.

3.2. Derivation of Wiener-Hopf equations

A convenient notation is

σ̃−m =


Ω̃ M
Mx

, if m = 0,

σ−m−1, if m ≥ 1

σ−m, if m ≤ −1

and σ̃+
m = σ+

m, for all m ∈ Z,
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which allows us to write the Neumann boundary condition for incident acoustic
and vorticity waves as

∂φ

∂y
= −Vgeinσ−iσ̃

−
η x on {0 ≤ x− nd ≤ 1, y = ns} ,

where our analysis facilitates a solution for any −r ≤ η ≤ q and in particular
for the physically relevant values η = 0, 1, which correspond to incident gusts
and incident (downstream travelling) acoustic waves respectively.

We follow the standard practise of assuming that Ω̃ has a small negative
imaginary part Im Ω̃ < 0, which will at the end of the analysis be taken to
zero. By construction this introduces a small negative imaginary part for both
types of incident fields, and physically amounts to a small amount of damping
downstream (for both a harmonic gust, and a downstream travelling acoustic
wave) and ensures that certain integral transforms in the later analysis are well-
defined.

We begin by deriving the system of Wiener-Hopf equations which we shall
use to solve the problem. We use an approach similar to [11] (although we
are able to reduce the number of equations from four to three) and split the
boundary value problem into three problems on {−∞ < x < ∞, 0 ≤ y ≤ s},
each of which has to satisfy only a combination of two semi-infinite boundary
conditions – hence making an application of the Wiener-Hopf technique possible.
We define φ1, φ2, φ3, each to satisfy Eq. (2) on the first cascade strip (i.e. on
the space between the first and second blade of the cascade, {−∞ < x <
∞, 0 ≤ y ≤ s}), the radiation condition (iii) and the continuity of the blade-
normal velocity everywhere (v) (which translates to the jump in normal velocity
across the first cascade strip, as defined in Eq. (9), being zero). Finally we
impose the following pairs of semi-infinite boundary conditions (together with an
appropriate distribution of the edge conditions (vi)) on φi and the corresponding
pressures pi, i = 1, 2, 3:

• Leading-edge interaction with incident field:

∂φ1

∂y
(x, 0) = −Vge−iσ̃

−
η x on x > 0,

[p1] (x) = 0 on x < 0,

and φ1 has the conventional inverse square-root singularity at the leading
edge x = 0.

• Trailing-edge correction:

∂φ2

∂y
(x, 0) = 0 on x < 1,

[p1 + p2 + p3] (x) = 0 on x > 1,

and φ2 satisfies the Kutta condition at the trailing edge x = 1.
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• Leading-edge correction:

∂φ3

∂y
(x, 0) = 0 on x > 0,

[p2 + p3] (x) = 0 on x < 0,

and φ3 has at worst an inverse square-root singularity at the leading edge
x = 0.

Thus φ1 corresponds to the scattered potential of a wave incident on a cascade
of semi-infinite blades, while φ2, φ3 act jointly to correct the pressure jumps
downstream of the trailing edge and to ensure that φ = φ1 +φ2 +φ3 is a solution
to the original problem. Since the derivation of Eq. (13) relied only on the time-
reduced convected wave-equation, together with the radiation condition and the
continuity of normal velocity, we find that each of φj , j = 1, 2, 3 satisfies Eq. (13)
as well. If we then transform the additional boundary conditions we arrive at
the following system of scalar Wiener-Hopf equations:[

P+
1

]
(α)

κ(α)
=
∂Φ−1
∂y

(α, 0)− iVg

α− σ̃−η
(14)

∂Φ̃+
2

∂y
(α, 0) =

1

κ(α)

([
P̃−2

]
(α)−

[
P̃+

1

]
(α)−

[
P̃+

3

]
(α)
)

(15)

∂Φ−3
∂y

(α, 0) =
1

κ(α)

([
P+

3

]
(α)−

[
P−2
]

(α)
)
, (16)

where we used the following notation of half-line Fourier transforms for a given
function ψ:

Ψ+(α, y) :=

∫ ∞
0

eiαxψ(x, y)dx, Ψ−(α, y) :=

∫ 0

−∞
eiαxψ(x, y)dx,

Ψ̃+(α, y) := e−iα
∫ ∞

1

eiαxψ(x, y)dx, Ψ̃−(α, y) := e−iα
∫ 1

−∞
eiαxψ(x, y)dx.

4. Solution using the Wiener-Hopf technique

Factorisation of κ

Given Im Ω̃ < 0 there is ε such that ± Im σ̃±m > ε and ± Im k±n > ε. Defining

the overlapping half-planes R± :=
{
α ∈ C

∣∣∣± Imα > −ε
}

we observe that each

of Eq. (14)-(16) is valid in the strip R+ ∩ R− and we note that the half-line
Fourier transforms are analytic in R± according to their superscripts (under
the a-priori assumption that the solutions φ1, φ2, φ3 decay sufficiently fast along
the x-direction).

Using the Weierstrass factorisation theorem (see theorem 5.14 in [20, p. 170]
or the special case given in [19, p. 40]), and applying the procedure for analysing
the asymptotic behaviour of infinite products as outlined by [19], it is possible

11



to construct functions κ+, κ− which are analytic in R+, R− respectively, satisfy
κ = κ+κ−, and have the following algebraic growth behaviour:∣∣κ+(α)

∣∣ ∼ C+|α| 12 as α→∞ in R+ (17)∣∣κ−(α)
∣∣ ∼ C−|α|− 1

2 as α→∞ in R− (18)

for some non-zero constants C±. The details of this splitting are described in
Appendix A.

4.1. The uncoupled leading edge problem

We notice that Eq. (14) is uncoupled from the remaining two Wiener-Hopf
equations. The equation corresponds essentially to the scattering problem on
a cascade of semi-infinite blades, and explicit solutions have been provided by
a number of authors. Amongst the earliest work on this problem is Carlson
and Heins [2], and solutions are also given by Mani and Horvay [21], Glegg
[11], and Peake [8]. Here we briefly summarise the main steps taken by Peake
in the solution of this uncoupled problem (see [8, pp. 267-273]). Using the
aforementioned kernel factorisation we can rewrite Eq. (14) in the form[
P+

1

]
(α)

κ+(α)
+
iVgκ

−(σ̃−η )

α− σ̃−η
= κ−(α)

∂Φ−1
∂y

(α, 0)− κ−(α)
iVg

α− σ̃−η

(
1− κ−(σ̃−η )

κ−(α)

)
= E1(α)

(19)

which is valid in R+ ∩ R−. Thus analytic continuation allows us to define an
entire function E1(α). As mentioned above we assume that the unsteady field φ1

possesses the conventional inverse square-root singularity (condition (vi) from
§2.1) at the leading edge x = 0, which results in the following asymptotic
behaviour [8, p. 269]:

∂Φ−1
∂y

(α, 0) = O
(
α−

1
2

)
as α→∞ in R−,[

P+
1

]
(α) = O

(
α−

1
2

)
as α→∞ in R+.

This inverse square-root singularity is a direct consequence of the flow being
effectively incompressible and therefore satisfying Laplace’s equation nearby
the leading edge. This behaviour, together with Liouville’s theorem, implies
E1(α) ≡ 0 and therefore yields the solution to Eq. (14)

[
P+

1

]
(α) = −iVgκ−(σ̃−η )

κ+(α)

α− σ̃−η
, (20)

∂Φ−1
∂y

(α, 0) =
iVg

α− σ̃−η

(
1− κ−(σ̃−η )

κ−(α)

)
.

12



4.2. Asymptotic behaviour of the kernel factors and their residues

Before we can solve Eq. (15) and Eq. (16) we first need to look more closely
at the asymptotic behaviour of the kernel factors κ± and their residues. We
find that |κ| has two asymptotic regimes - one regime with constant asymptotic
behaviour, and one with exponential growth:

• As α→∞ with ± argα ∈
(

arctan
(
sβ
d

)
, π2

)
∪
(
π
2 , π − arctan

(
sβ
d

))
|κ(α)| ∼ 2ed| Imα|−βs|Reα|

β
.

• And as α → ∞ with argα ∈
(
− arctan

(
sβ
d

)
, arctan

(
sβ
d

))
or argα ∈(

π − arctan
(
sβ
d

)
, π + arctan

(
sβ
d

))
,

|κ(α)| ∼ 2

β
.

Re(α)

Im(α)

13

2

4

Figure 2: The regions of different asymptotic behaviour of |κ| in the complex α-plane.

These regimes are sketched in figure 2: |κ| has exponential growth at infinity

in regions 2 and 4 and is asymptotically constant in regions 1 and 3 .
Now since κ+ can be expressed in R− by κ+ = κ

κ− , this means that κ+ is not
only of algebraic growth in R+ but in fact in the following larger part of the
complex plane

R+ ∪
{
α
∣∣∣ argα ∈

(
− arctan

(
sβ

d

)
, arctan

(
sβ

d

))
∪
(
π − arctan

(
sβ

d

)
, π + arctan

(
sβ

d

))}
,

13



which corresponds to a strip around the real axis together with regions 1 , 2

and 3 . An analogous statement is true for κ−. Furthermore one finds that 1
κ+

is a meromorphic function, with simple poles and growth of orderO
(
α−

1
2

)
away

from its poles (because either it decays algebraically or it decays exponentially).
In order to understand the poles of κ±, 1

κ± it suffices – by way of expressing
the functions as above – to understand the residues of κ, 1

κ . We can quickly
check that for each m ∈ Z, n ∈ N:

Res

(
1

κ
, σ+
m

)
=

iγ(σ+
m)2

(−2)(Ω̃ M
Mx
− σ+

m)
(
idγ(σ+

m) + sσ+
m

) , (21)

Res

(
1

κ
, σ−m

)
=

iγ(σ−m)2

2(Ω̃ M
Mx
− σ−m)

(
idγ(σ−m)− sσ−m

) , (22)

Res
(
κ, k+

n

)
=

2(Ω̃ M
Mx
− k+

n )(cos(σ + dk+
n )− (−1)n)

(−1)nik+
n s

, (23)

Res
(
κ, k−n

)
=

2(Ω̃ M
Mx
− k−n )(cos(σ + dk−n )− (−1)n)

(−1)nik−n s
. (24)

4.3. The trailing edge correction

We can rewrite Eq. (15) as

κ+(α)
∂Φ̃+

2

∂y
(α, 0) =

1

κ−(α)

([
P̃−2

]
(α)−

[
P̃+

1

]
(α)−

[
P̃+

3

]
(α)
)
.

Thus to proceed with the Wiener-Hopf technique we must additively split the
term

g(α) =
1

κ−(α)

([
P̃+

1

]
(α) +

[
P̃+

3

]
(α)
)
.

We now recall from Eq. (18) that 1
κ− is of order O

(
α

1
2

)
uniformly in some strip

containing the real axis, i.e. in a set of the form (−∞,∞) × (−ε, ε), such that
(−∞,∞)× [−ε, ε] ⊂ R+ ∩R−. It is also possible to show (as is proved in detail
in Appendix B) that [

P̃+
1

]
(α) = O

(
α−1

)
as α → ∞, α ∈ R+, and hence that [p1] is non-singular at x = 1. Imposing
the unsteady Kutta condition (condition (vi) in §2.1) at the trailing edge to
[p2] and noting that [p3] (x) = − [p1] (x) − [p2] (x), for x > 1, we conclude that
the pressure jump [p3] (x) must be non-singular at x = 1, and it can thus be

shown that
[
P̃+

3

]
(α) = O

(
α−1

)
as α → ∞, α ∈ R+. Hence there is a strip S

containing the real axis and a constant C such that∣∣∣∣ 1

κ−(α)

([
P̃+

1

]
(α) +

[
P̃+

3

]
(α)
)∣∣∣∣ ≤ C (1 + |Reα|)− 1

2 , for all α ∈ S.
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Thus the assumptions of theorem B in [19, p. 13] are satisfied and we can choose
c > 0 and construct two functions such that g = g− + g+, where

g+(α) =
1

2πi

∫ ∞−ic
−∞−ic

g(ζ)

ζ − αdζ and g−(α) =
1

2πi

∫ ∞+ic

−∞+ic

g(ζ)

ζ − αdζ.

Let us shrink R± such that

R− =
{
α ∈ C

∣∣∣ Imα < δ
}

and R+ =
{
α ∈ C

∣∣∣ Imα > −δ
}

for some 0 < δ < c, then the functions g± are analytic in R± respectively. Fur-
thermore they are also bounded in their respective half-plane, as is proved in

Appendix B. We now observe that g(ζ)
ζ−α is meromorphic in an open neighbour-

hood of {ζ
∣∣ Im ζ ≥ −c}, with simple poles at σ+

m,m ∈ Z and, by Eq. (17)-(18),

decay of O
(
α−

3
2

)
. Thus we can use the residue theorem to express g−(α) in

terms of the following infinite series of pole contributions:

g−(α) =
∑
m∈Z

1

α− σ+
m

Res

(
1

κ−
, σ+
m

)([
P̃+

1

]
(σ+
m) +

[
P̃+

3

]
(σ+
m)
)
. (25)

At this point we wish to highlight that the splitting derived in Eq. (25) is new
and different to previous methods. Indeed the corresponding splitting used in
previous studies (for instance Peake [8] and Glegg [11]) relies essentially on the
following observation: If d < 1 then [p1] (x) + [p3] (x), x > 1, can be written as
an (infinite) linear combination of duct modes k−n . This is because in the region
x > 1 the consecutive semi-infinite boundary conditions form a duct geometry
(cf. §3.2). Thus, when d < 1, their half-line Fourier transform is of the form[

P̃+
1

]
(α) +

[
P̃+

3

]
(α) =

∑
n∈N

Ln

α− k−n
(26)

for some complex constants Ln. With this knowledge one can close the contour
of integration of g+(α) in the lower half plane and derive a linear system from
the discrete pole contributions at the duct modes k−n , n ∈ N. However Eq. (26)
is no longer valid when d > 1, because the modal structure of the pressure
[p1] (x)+ [p3] (x) becomes more complicated in the region 1 < x < d, since there
is no overlap of consecutive boundary conditions in this part of the domain. As
such the additive splitting and linear system from previous work are restricted
to the case d < 1. We observe, however, that no such assumption was necessary
to arrive at Eq. (25), indeed collecting the pole contributions at the radiation
modes avoids making a distinction between overlapping and non-overlapping
geometries altogether and forms a valid splitting for any value of d > 0. Now
we note by Eq. (21), and Eq. (A.1)-(A.2), that the series in Eq. (25) converges
locally uniformly in α ∈ R− (since the terms in the series decay like m−3/2).
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This allows us to recast Eq. (15) into

κ+(α)
∂Φ̃+

2

∂y
(α, 0) + g+

1 (α) =
1

κ−(α)

[
P̃−2

]
(α)

−
∑
m∈Z

1

α− σ+
m

Res

(
1

κ−
, σ+
m

)([
P̃+

1

]
(σ+
m) +

[
P̃+

3

]
(σ+
m)
)

= E2(α),

which by analytic extension defines an entire function E2(α). By the unsteady
Kutta condition at the trailing edge, both the normal velocity and the pressure
field are non-singular at x = 1, y = 0. Thus there is a constant C such that∣∣∣∣∣∂Φ̃+

2

∂y
(α, 0)

∣∣∣∣∣ ≤ C

1 + | Imα| if α ∈ R+

∣∣∣[P̃−2 ] (α)
∣∣∣ ≤ C

1 + | Imα| if α ∈ R−,

which implies together with our previous analysis that |E2(α)| ≤ C|α| 12 uni-
formly in C, and thus by the extended Liouville theorem E2(α) must be con-
stant. Moreover, E2(iy)→ 0 as y → −∞ and thus E2 must be identically zero,
which then implies:

1

κ−(α)

[
P̃−2

]
(α) =

∑
m∈Z

1

α− σ+
m

Res

(
1

κ−
, σ+
m

)([
P̃+

1

]
(σ+
m) +

[
P̃+

3

]
(σ+
m)
)
.

(27)

4.4. The leading edge correction

We proceed similarly to the trailing edge correction: Firstly note that Eq. (16)
is equivalent to

κ−(α)
∂Φ−3
∂y

(α, 0) =
1

κ+(α)

([
P+

3

]
(α)−

[
P−2
]

(α)
)
.

Thus we must additively split the term

h(α) =
1

κ+(α)

[
P−2
]

(α).

We now observe that by construction [p2] (x) = − [p3] (x), for x < 0. Addition-
ally we assumed that [p3] (x) exhibits at worst the conventional inverse square-
root singularity at the leading edge (cf. §3.2). Therefore [p2] (x) must also
have at worst an inverse square-root singularity at x = 0 and thus

[
P−2
]

(α) =

O
(
α−1/2

)
as α → ∞, α ∈ R−. This means that there is a strip S around the

real axis and a constant C such that

|h(α)| ≤ C (1 + |Reα|)− 1
2 .
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Thus we may proceed as before to apply theorem B from [19, p. 13] and con-
struct two functions h+, h− which are bounded and analytic in R+, R− respec-
tively, and are given by

h+(α) =
1

2πi

∫ ∞−ic
−∞−ic

h(ζ)

ζ − αdζ and h−(α) =
1

2πi

∫ ∞+ic

−∞+ic

h(ζ)

ζ − αdζ.

Since h(ζ)
ζ−α is a meromorphic function with simple poles in an open neighbour-

hood containing {ζ
∣∣ Im ζ ≤ c}, we can use the residue theorem to collect the

contributions of poles and express h+ as the following convergent series:

h+(α) =
∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m),

which converges locally uniformly due to the decay in the residues. We highlight
again that as in §4.3 this additive Wiener-Hopf splitting relying on radiation
modes is the main difference to previous work by [8, 11], and is valid for all
d > 0, hence overcomes the restriction to overlapping blades. Thus Eq. (16) is
equivalent to

κ−(α)
∂Φ−3
∂y

(α, 0)− h−(α) =
1

κ+(α)

[
P+

3

]
(α)−

∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m)

= E3(α).

As for the previous two Wiener-Hopf equations this defines, by analytic contin-
uation, an entire function E3(α). We further assumed that φ3 has at worst an
inverse square root type singularity at the leading edge, which implies that the

growth of
∂Φ−3
∂y (α, 0),

[
P+

3

]
(α) in R−, R+ is similar to the corresponding growth

of
∂Φ−1
∂y (α, 0),

[
P+

1

]
(α) respectively, which amounts to (cf. §4.1)

∂Φ−3
∂y

(α, 0) = O
(
α−

1
2

)
as α→∞ in R−,[

P+
3

]
(α) = O

(
α−

1
2

)
as α→∞ in R+.

Thus the entire function E3(α) is bounded. Furthermore if we take α → ∞
with argα = π/2, then the RHS of the equation decays to zero, thus Liou-
ville’s theorem combined with this observation implies E3(α) ≡ 0. Therefore in
particular

1

κ+(α)

[
P+

3

]
(α) =

∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m). (28)
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5. Reduction to an infinite algebraic system

In order to reduce Eq. (20), (27) and (28) to a discrete matrix equation we
define the following coefficients (for m ∈ Z)

Am :=
[
P̃+

1

]
(σ̃+
m), Bm :=

[
P−2
]

(σ̃−m), Cm :=
[
P̃+

3

]
(σ̃+
m).

Then using Eq. (27) we find by Fourier inversion and several changes of order
of summation and integration, which are rigorously justified in Appendix C:

Bj =
[
P−2
]

(σ̃−m) =
∑
m∈Z

Gjm (Am + Cm) ,

where

Gjm =
−1

2πi

∫ ∞+iε

−∞+iε

1

α− σ̃−j
eiακ−(α)

1

α− σ̃+
m
dαRes

(
1

κ−
, σ̃+
m

)
. (29)

and the contour of integration Γ− behaves like argα ∼ −ε̃ sign(Reα), 0 < ε̃� 1,
at its tails. A sketch of Γ− is shown in figure B.8. We can also use Fourier
inversion on Eq. (28) (which is given in full detail in Appendix C) to arrive at
a second collection of linear equations. This allows us to reduce the scattering
problem to the following linear system:

Bj =
∑
m∈Z

Gjm (Am + Cm) , (30)

Cj =
∑
m∈Z

FjmBm, (31)

where Gjm are as in Eq. (32) and

Fjm =
1

2πi

∫
Γ−

1

α− σ̃+
j

e−iακ+(α)
1

α− σ̃−m
dαRes

(
1

κ+
, σ̃−m

)
, (32)

In this system Bj , Cj are unknown coefficients which determine the solution to
the scattering problem, while Aj are known and using the results from §4.1 we
can express these as

Aj =
−Vg
2π

∫
Γ−

1

α− σ̃+
j

1

α− σ̃−η
e−iακ+(α)κ−(σ̃−η )dα,

where, as we outlined in §3.2, the incidence parameter η, takes values −r ≤
η ≤ q, with η = 0 corresponding to the case of an incident gust, and η = 1
corresponding to the case of an incident sound wave.
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5.1. Stable formulation under Im Ω̃→ 0−

We now wish to reduce the fictitious damping Im Ω̃ to zero. Note in the
above analysis we chose the contours of integration in the system Eq. (30)-(31),
i.e. the oriented curves Γ− and Imα = ε, such that all poles and zeros in R+ are
above the curves and all poles and zeros in R− are below the curves. Therefore
if we were to fix our current contours of integration and then considered the
limit Im Ω̃ → 0−, then the poles of the cut-on modes would have to cross the
contours of integration in order to move onto the real-axis. In addition, if we
allowed the contours of integration to change according to the above restrictions
when Im Ω̃ → 0−, then the contours would coalesce on the real axis (at least
in a neighbourhood of the origin) and the poles corresponding to cut-on modes
would end up on the contours. This means that our current contours (although
appropriate for the analytical treatment) are not suitable for numerical evalu-
ation in the physical case of zero damping (i.e. when Im Ω̃ = 0). In order to
overcome this problem we change contours of integration to a set of contours
that allows us to evaluate the linear system numerically even when all the cut-
on modes are located on the real-axis. Thus we consider the following change
of contours: Choose | Im Ω̃| = δ sufficiently small such that there is a constant
ε1 > 0 such that for all 0 ≤ Im Ω̃ ≤ δ, we have Im Ω̃ M

Mx
> −ε1,

| Imσ±m| < ε1, if − r ≤ m ≤ q + 1, and | Imσ±m| > ε1, if m > q + 1,m < −r,

i.e. such that all cut-on modes are inside a strip of width 2ε1 around the real
axis, and all cut-off modes are outside. Then we can change the contours as
follows, in each case picking up a pole contribution if the corresponding mode
is cut-on:

Fjm =
1

2πi

∫ ∞+iε1

−∞+iε1

1

α− σ̃+
j

e−iακ+(α)
1

α− σ̃−m
dαRes

(
1

κ+
, σ̃−m

)

+ Res

(
1

κ+
, σ̃−m

){
e−iσ̃

+
j κ+(σ̃+

j ) 1
σ̃+
j −σ̃

−
m
, if σ̃+

j is cut-on

0, otherwise,

Gjm =
−1

2πi

∫ ∞−iε1
−∞−iε1

1

α− σ̃−j
eiακ−(α)

1

α− σ̃+
m
dαRes

(
1

κ−
, σ̃+
m

)

+ Res

(
1

κ−
, σ̃+
m

){
eiσ̃
−
j κ−(σ̃−j ) 1

σ̃−j −σ̃
+
m
, if σ̃−j is cut-on

0, otherwise,

Aj = −Vg
2π

∫ ∞+iε1

−∞+iε1

1

α− σ̃+
j

1

α− σ̃−η
e−iακ+(α)κ−(σ̃−η )dα

− iVg
{
e−iσ̃

+
j κ+(σ̃+

j )κ−(σ̃−η ) 1
σ̃+
j −σ̃

−
η
, if σ̃+

j is cut-on

0, otherwise.
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In these new expressions we are able to take the limit Im Ω̃→ 0− while keeping
the contour of integration fixed, thus allowing us to solve the resulting system
without the fictitious damping (by setting Im Ω̃ = 0).

5.2. Approximate solution of the linear system

The system Eq. (30)-(31) is equivalent to:

(I −GF)B = GA, (33)

C = FB, (34)

where I is the identity operator. For our numerical results in §7 we solve Eq. (33)
approximately using the finite section method (truncation), together with a
numerical approximation to the integral coefficients F,G. The precise version
of the finite section method employed in our numerical examples as well as a
convergence analysis is described in Appendix D.

6. Total unsteady lift and far-field behaviour

We can now use our solution to find expressions for the total unsteady lift
and the form of the velocity potential in the far-field given an incident gust,
η = 0, and an incident sound wave, η = 1.

6.1. Total unsteady lift

The total unsteady lift on a single blade is (recalling the boundary condition
(ii))

L =

∫ 1

0

[p] (x)dx =

∫ ∞
−∞

[p] (x)dx = [P ] (0).

Given our solution we can evaluate this as follows: Again by the boundary
condition (ii)

[P ] (α) =
[
P+

1

]
(α) +

[
P+

2

]
(α) +

[
P+

3

]
(α), (35)

and we showed earlier that[
P+

1

]
(α) = −iVgκ−(σ̃−η )

κ+(α)

α− σ̃−η
(36)

[
P+

3

]
(α) = κ+(α)

∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)
Bm. (37)

Furthermore [
P+

2

]
(α) = eiα

[
P̃+

2

]
(α) + eiα

[
P̃−2

]
(α)−

[
P−2
]

(α), (38)
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and we can express these in terms of our known quantities Am, Bm, Cm as follows
(for Eq. (39), (42) & (43) we used Fourier inversion and then the appropriate
forward half-transform):[
P−2
]

(α) =
∑
m∈Z

(Am + Cm) Res

(
1

κ−
, σ̃+
m

)(−1

2πi

)∫ ∞+iε

−∞+iε

κ−(α′)
α′ − α

eiα
′

α′ − σ̃+
m
dα′

(39)[
P̃−2

]
(α) = κ−(α)

∑
m∈Z

(Am + Cm)
1

α− σ̃+
m

Res

(
1

κ−
, σ̃+
m

)
(40)[

P̃+
2

]
(α) = −

[
P̃+

1

]
(α)−

[
P̃+

3

]
(α) (41)[

P̃+
1

]
(α) =

−iVg
2iπ

∫ ∞−iε
−∞−iε

e−iα
′

α′ − α
κ+(α′)

α′ − σ̃−η
κ−(σ̃−η )dα′ (42)

[
P̃+

3

]
(α) =

1

2iπ

∑
m∈Z

Res

(
1

κ+
, σ̃−m

)
Bm

∫
Γ−

e−iα
′

α′ − α
κ+(α′)

α′ − σ̃−m
dα′. (43)

Similarly to §5.1 we can express the contour integrals in a form that is stable
under Im Ω̃→ 0− and in summary the total unsteady lift has the following form
which can be evaluated numerically:

L = iVgκ
−(σ̃−η )

1

2πi

∫ ∞+iε1

−∞+iε1

1

α

1

α− σ̃−η
e−iακ+(α)dα

−
∑
m∈Z

Res

(
1

κ+
, σ̃−m

)
Bm

1

2iπ

∫ ∞+iε1

−∞+iε1

e−iα

α

κ+(α)

α− σ̃−m
dα

+
∑
m∈Z

(Am + Cm) Res

(
1

κ−
, σ̃+
m

)
1

2πi

∫ ∞−iε1
−∞−iε1

eiα

α

κ−(α)

α− σ̃+
m
dα.

Here ε1 > 0 is such that when Im Ω̃ = 0 all cut-off modes lie outside the strip
| Imα| ≤ ε1.

6.2. Far-field behaviour

We aim to understand the behaviour of the scattered potential φ far down-
stream (x > 0, |x| � 1) and far upstream (x < 0, |x| � 1) of the blades. To do
so we observe the following identity, which follows after a few steps of algebra
from Eq. (10) together with the periodicity Eq. (11) and the expression for the
pressure Eq. (12):

Φ(α, y) = [P ] (α)
cosh(γy)eiσ+idα − cosh(γ(y − s))

κ(α) sinh(γs)γ
.

Thus we can find the velocity potential φ by computing the inverse Fourier
transform

φ(x, y) =
1

2π

∫ ∞
−∞

e−iαx [P ] (α)
cosh(γy)eiσ+idα − cosh(γ(y − s))

κ(α) sinh(γs)γ
dα.
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We can then express [P ] using Eq. (35)-(43). The resulting integrand when
multiplied by e−iαx decays exponentially in the upper half complex plane if
x < 0, and decays exponentially in the lower half complex plane if x > 1 + d.
In both cases we can then close the contour of integration, and collect the
appropriate pole contributions which yield after a few steps of algebra and care
when exchanging order of summation and integration:

Far field downstream

For x > 1 + d and 0 ≤ y ≤ s:

φ(x, y) =
∑
m∈Z

e−ixσ̃
−
mfm(y) Res

(
1

κ
, σ̃−m

)
1

γ(σ̃−m)[
iBm − i

∑
l∈Z

(Al + Cl)e
iσ̃−m Res

(
1

κ−
, σ̃+
l

)
κ−(σ̃−m)

1

σ̃−m − σ̃+
l

−iVgκ−(σ̃−η )
1

2π

∫ ∞+iε1

−∞+iε1

e−iα

α− σ̃−η
κ+(α)

α− σ̃−m
dαeiσ̃

−
m

+
∑
l∈Z

Res

(
1

κ+
, σ̃−l

)
Ble

iσ̃−m
1

2π

∫ ∞+iε1

−∞+iε1

e−iα

α− σ̃−l
κ+(α)

α− σ̃−m
dα

]
,

(44)

where fm(y) =
cosh(γ(σ̃−m)y)eiσ+idσ̃

−
m−cosh(γ(σ̃−m)(y−s))

sinh(γ(σ̃−m)s)
which can be further sim-

plified for the acoustic modes (i.e. when m 6= 0):

fm(y) =

{
eγ(σ−m−1)y, if m ≥ 1

eγ(σ−m)y, if m < 0.

We observe that the far field downstream of the blades consists only of radiating
modes that travel downstream, and a hydrodynamic mode Ω̃ M

Mx
which supports

the wake.

Far field upstream

For x < 0 and 0 ≤ y ≤ s:

φ(x, y) =
∑
m∈Z

e−iσ̃
+
mx Res

(
1

κ
, σ̃+
m

) −e−γ(σ̃+
m)y

γ(σ̃+
m)

[
Vgκ

−(σ̃−η )
κ+(σ̃+

m)

σ̃+
m − σ̃−η

+κ+(σ̃+
m)
∑
l∈Z

1

σ̃+
m − σ̃−l

Bl Res

(
1

κ+
, σ̃−l

)

+
∑
l∈Z

(Al + Cl)
1

2π
Res

(
1

κ−
, σ̃+
l

)∫ ∞−iε1
−∞−iε1

eiα

α− σ̃+
l

κ−(α)

α− σ̃+
m
dα

−ieiσ̃+
m(Am + Cm)

]
.

(45)
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Similarly to the far field downstream, the scattered potential upstream consist
only of radiating modes which travel upstream. Moreover there is no contri-
bution from the hydrodynamic mode, since there is no wake upstream of the
blades.

7. Numerical examples and results

The expressions for total unsteady lift and far-field amplitudes which we
derived in §6 allow us to provide numerical results on the effects of cascade
geometry and incident-wave properties on the scattered potential. The effects
of incidence angle, spanwise wave numbers and mean flow are studied in detail
in [5, 7, 11] and we therefore do not aim to provide a comprehensive parametric
study of these effects, but rather we show typical results that can be achieved
using our method, with particular focus on the effect of blade spacing and
of non-overlapping cascade geometries. Furthermore, we note that the effect
of cross-flow W was absorbed in our definition of Ω̃, so that a larger cross-
flow simply results in a smaller value of the effective reduced frequency, and
therefore we need not study the effect of cross-flow separately. We also provide
examples that allow comparison to previous results in order to validate the
accuracy of our method. Finally, we note that m, the number of equations
retained when solving Eq. (33) using the finite section method (see §5.2), was
chosen to ensure convergence in our numerical examples. The typical number
chosen was m ≈ 70, but for large mean flow significantly fewer equations were
required whilst for small mean flow a larger number was retained (m ≈ 250
when M =

√
M2
x +M2

z ≈ 0.2).

7.1. Total unsteady lift

For the total unsteady lift we begin by comparing our solution to results
provided by Peake [10] for overlapping blades in a two-dimensional setting. For
this we consider the same parameter settings as in [10, p. 269]: Mz = 0,K3 =
0, η = 0 (i.e. an incident gust of reduced frequency Ω), Ω̃ = Ω = 1.0, σ =
2π/3, s = d = 1/

√
2,M = Mx ∈ [0.2, 0.9]. The results can be seen in figures

3a and 3c and our solution appears to be in very good agreement with the
reference result. The rapid variation observed in figure 3c corresponds to the
first downstream radiating mode σ−0 becoming cut-on. In figures 3b and 3d we
plot the total unsteady lift in a case of non-overlapping blades (inaccessible to
[10] and other previous work), with s = d =

√
2, and the remaining parameters

as before. We observe overall a similar shape of the total lift. The increased
blade spacing however has the effect of the radiating modes cutting on at lower
Mach numbers which results in a rapid variation at M ≈ 0.55 (corresponding to
σ−0 cutting on) and at M ≈ 0.85 (corresponding to σ−1 cutting on). Moreover,
comparing figure 3c and figure 3d we can see that the amplitude of the unsteady
lift is (almost always) reduced in the non-overlapping case, as would be expected
for a more widely spaced cascade.

23



2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0

Re(L)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Im
(L

)

M= 0. 2

M= 0. 7

M= 0. 72

M= 0. 9

Present paper
Peake 93

(a) s = d = 1√
2

.

5 4 3 2 1 0 1 2

Re(L)

3

2

1

0

1

2

3

Im
(L

)

M= 0. 2

M= 0. 553612
M= 0. 553610

M= 0. 9

Present paper

(b) s = d =
√

2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mx

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|L
|

Present paper
Peake 93

(c) s = d = 1√
2

.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

|L
|

Present paper

(d) s = d =
√

2.

Figure 3: Total lift L for M ∈ [0.2, 0.9].
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Figure 4: Total lift |L| as a function of K3.
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Next we study the effect of spanwise wavenumber on the total lift. We
consider M = Mx = 0.3, Ω̃ = Ω = 10.0, η = 0 (i.e. an incident gust), σ =
3π/4, s ∈ {0.6, 1.8, 3.6} , α = 5π/18 and vary K3 ∈ [0, 4.5]. The total unsteady
lift is shown in figure 4 where in the black curve we can see the result for a case
of overlapping blades and the remaining ones correspond to non-overlapping
blades. In the case d = 0.5 the effect of K3 is most apparent: From the formulae
in §3.1 increasing K3 sufficiently far has the effect of cutting off the acoustic
modes. Indeed we observe a rapid variation in the lift around K3 ≈ 2.4 which
is just after the radiating mode σ−0 has cut off. For increased blade spacing
we observe the interplay of this cut-off effect with increasing K3 to the effect
of more modes becoming cut-on as spacing increases. For d = 3.0,K3 = 0 all
of σ±m,−2 ≤ m ≤ 2, and k±n ,−3 ≤ n ≤ 3, are cut-on, however as we increase
K3 they all cut off successively resulting in the rapid variations observed in the
corresponding green curve. As we reach K3 = ΩMx

β ≈ 3.14 all of the acoustic

modes have to become cut-off since by the dispersion relation Eq. (5) there are
no propagating acoustic modes for K3 >

ΩMx

β . This is indeed observed in figure
4.
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Figure 5: Total lift |L| as a function of α0.

Finally, we consider the effect of the cascade stagger angle α0 on the total
lift. In figure 5 we see the dependence of the total unsteady lift on α0, with√
s2 + d2 = 1.5 fixed. The remaining parameters were chosen as M = Mx =

0.3,Mz = 0, η = 0, σ = 3π/4, Ω̃ = Ω = 1.0,K3 ∈ {0, 1.0, 2.0, 3.0}. We note
that here we have d > 1 for α0 < 48.18◦. Most importantly we observe the
smooth transition of L from the non-overlapping to the overlapping regime
as α0 increases from 0. We also observe an apparently singular behaviour as
α0 → 0, which corresponds to the limit of no vertical separation between the
blades where our model is clearly invalid.
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7.2. Far field behaviour

We now consider the far field sound for an incident acoustic wave as derived
in §6.2. We begin by reproducing results given by Koch [7, p. 125], who consid-
ered the transmission and reflection amplitudes relative to the incident ampli-
tude as a function of angle of incidence. In order to match Koch’s settings we
restrict ourselves to the case Mz = 0, θ = π/2, which means we consider an inci-

dent acoustic wave (η = 1) with K1 = Ω̃M cosϕ
1+Mx cosϕ ,K2 = Ω̃M sinϕ

1+Mx cosϕ ,K3 = 0. We

further choose (s, d) ∈ {(sinα0, cosα0), (2 sinα0, 2 cosα0), (3 sinα0, 3 cosα0)} ,
M = Mx ∈ {0.3, 0.5, 0.7} , k0 = 0.25π, α0 = π/6 and Ω̃ = Ω = k0/M . In figure
6 we show the transmission and reflection amplitudes relative to the incident
amplitude V0. These amplitudes Tm, Rm,m ∈ Z, are such that

φ(x, y) =

{
TΩ̃ M

Mx

e−ixΩ̃ M
Mx f0(y) +

∑
m∈Z Tme

−ixσ−m+γ(σ−m)y x > d+ 1∑
m∈ZRme

−iσ+
mx−γ(σ+

m)y x < 0,

and they are explicitly given in Eq. (44) and (45). In order to match Koch’s
setting we plot the modal pressure corresponding to the first transmitted and
reflected acoustic mode of the total field φ + φinc. In our case these are given
by P t0 = i(σ−0 − Ω̃M/Mx)(T0 + Vg), P

i
0 = i(σ−0 − Ω̃M/Mx)Vg, P

r
0 = i(σ+

0 −
Ω̃M/Mx)R0.

The results are shown in comparison to a number of point values taken from
[7] in figures 6a and 6b. Our solution is found to be in good agreement with
the cited results, with the largest discrepancy between the present paper’s and
Koch’s results occurring in the reflection amplitude at incident angles around
ϕ − α0 ≈ 300◦. We are also able to show the corresponding results when the
blade spacing is increased. The overall trend to be observed is an increase in
|P t0/P i0| and a decrease in |P r0 |/|P i0| as the blade spacing increases. The increased
blade spacing also allows for more interesting effects to occur: We observe rapid
variations in figures 6e and 6f when M = 0.7 around ϕ−α0 ≈ 190◦, 247◦ which
correspond to radiating and duct modes becoming cut-on. We also observe
rapid variations in figures 6d and 6f in ϕ − α0 < 180◦ and ϕ − α0 > 360◦

which correspond to the first radiating modes σ+
0 , σ

−
0 coalescing, which only

takes place for sufficiently large blade spacing.
The effect of increased transmission and reduced reflection is further ob-

served in our final result, which shows the relative transmission and reflection
amplitudes for the modes σ−0 , σ

−
1 , σ

+
0 as a function of blade spacing. This result

is shown in figure 7, where we consider a similar setting as in figure 6 with
M = Mx = 0.7, ϕ = 7π/6, α0 = π/6 and vary d ∈ [0.5, 6] with s/d fixed.
The figure demonstrates two central effects of the increasing blade spacing on
the far field: Firstly, the increase in spacing results in an increasing trend of
|T0 +Vg|/|Vg| to 1 and a decreasing trend of all other amplitudes to 0. Secondly,
as d increases, the radiating modes and duct modes become cut-on successively,
resulting in the rapid variations observed in the graph. Both effects can be
interpreted to mean that, as an acoustic obstacle, the cascade becomes more
permeable as the spacing increases.
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(c) d = 2 cosα0 ≈ 1.73
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(e) d = 3 cosα0 ≈ 2.60
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Figure 6: Relative transmission and reflection amplitudes of the incident wave. The points in
figures 6a and 6b represent reference values taken from Koch [7].
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8. Concluding remarks

In this paper we have developed the first analytical solution to the scattering
problem of a cascade of finite-length non-overlapping blades. The solution was
achieved using the Wiener-Hopf method on a system of coupled scalar equa-
tions. This allowed us to express the scattered field only relying on the solution
of an infinite algebraic system with decaying coefficients, which can be provably
truncated to achieve convergent numerical approximations. In contrast, all pre-
vious work resulted in systems that are well-behaved when d ≤ 1, but whose
coefficients are exponentially increasing when d > 1, thus cannot yield a valid
approximation in that case. Our solution applies in a general regime including
effects of spanwise wavenumber and cross-flow, as well as incident acoustic and
vortical waves, and we provided explicit expressions for the total unsteady lift
on each blade as well as the far-field sound upstream and downstream of the
cascade. We found that our solution applies to both the overlapping, d < 1, and
the non-overlapping regime, d ≥ 1, which showed that a number of features such
as the form of the far-field is shared between the regimes, and that quantities
such as the total lift transition smoothly as d increases across d = 1. We have
also provided extensive numerical results demonstrating both the accuracy of
our solution in comparison to previous work, and the type of predictions that
we are able to achieve for the first time in the non-overlapping regime. This
includes the study of transmission amplitudes as the gap spacing increases as
well as the effect of the stagger angle α on the lift for large solidity.

A significant advantage of this exact solution is that its analytical nature
will allow for the inclusion of additional features such as blade camber and
thickness and for extensions to annular (periodic) geometries. These effects were
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previously included based on exact solutions for the overlapping blade case, for
instance by Posson et al. [14] and by Baddoo and Ayton [16], and we expect
that this can be achieved also for the non-overlapping case in future research.
A further assumption that could potentially be weakened is the zero angle of
attack of the incident mean flow. Indeed Myers and Kerschen [22] provide
an asymptotic analysis (for high frequencies and small incidence angles) which
allows the study of such effects for single blades. Since the leading order term of
their asymptotic expansion is simply the case of uniform mean-flow, we expect
that it is possible to study these perturbations in a similar way for a cascade of
blades.
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Appendix A. The kernel κ and its factorisation

For completeness we provide a brief overview of the Wiener-Hopf factori-
sation of κ(α). This and very similar kernels have already been factorised by
Koch [7], Peake [8] and Glegg [11], and the reader is referred to these papers for
a detailed treatment. The kernel κ is meromorphic with simple poles at k±n and
zeros at Ω̃ M

Mx
, σ±m which cluster linearly along the following rays as |m|, n→∞:

σ±m ∼ 2π
−d± isβ
s2β2 + d2

m+
∓isdMMxΩ̃/β ± isβσ −MMxΩ̃s2 − dσ

s2β2 + d2
as m→ +∞

(A.1)

σ±−m ∼ 2π
d± isβ
s2β2 + d2

m+
±isdMMxΩ̃/β ∓ isσβ −MMxΩ̃s2 − dσ

s2β2 + d2
as m→ +∞

(A.2)

k±n ∼
±iπ
sβ

n− MMxΩ̃

β2
as n→∞.

Thus by the Weierstrass factorisation theorem (see theorem 5.14 in [20, p. 170]
or the special case given in [19, p. 40]) we can express κ in the form

κ(α) = eg(α)(1− αMx/(Ω̃M))

∏
m∈Z (1− α/σ−m) eα/σ

−
m
∏
m∈Z (1− α/σ+

m) eα/σ
+
m∏∞

n=0

(
1− α/k−n

)
eα/k

−
n
∏∞
n=0

(
1− α/k+

n

)
eα/k

+
n

where g(α) is some entire function. This suggests a construction of κ+ as follows

κ+(α) = eχ1(α)(1− αMx/(Ω̃M))

(
1− α/σ−0

)(
1− α/k−0

) ∞∏
n=1

(1− α/σ−n )
(
1− α/σ−−n

)(
1− α/k−n

) .
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Let us denote a1 = 2π −d−isβs2β2+d2 , a2 = 2π d−isβ
s2β2+d2 , a3 = − iπ

sβ , then the infinite

products in above expression are well-defined because, for any fixed α ∈ R+, as
n→∞ the factors have the asymptotic behaviour

(1− α/σ−n )
(
1− α/σ−−n

)(
1− α/k−n

) ∼

(
1− α

a1n
+O(n−2)

)(
1− α

a2n
+O(n−2)

)
(

1− α
a3n

+O(n−2)
)

∼ 1− α

n

(
1

a1
+

1

a2
− 1

a3

)
︸ ︷︷ ︸

=0

+O(n−2) ∼ 1 +O(n−2).

To analyse the behaviour of κ+ and find a suitable choice of χ1, we can use the
following result from Noble [19, p. 128]:

Lemma 1 (Consequence of Stirling’s formula). Let

F (α) =

∞∏
n=1

(1 + α/αn)e−α/βn

and suppose that αn = an+ b+O(n−1) and βn = an+ c+O(n−1) as n→∞.
Then we have for any ε > 0: As α → ∞ in Imα > − Im(α1) + ε, where α1 is
the root of F (α) with smallest imaginary part, that

F (α) ∼ C1 exp

(
α

a
(1− γ)−

(
α

a
+
b

a
+

1

2

)
ln

(
α

a
+
b

a
+ 1

)
+ α

∞∑
n=1

(
1

an
− 1

βn

))
,

where γ is the Euler-Mascheroni constant.

Applying this lemma to our expression for κ+ shows, after a few steps of
algebra, that:

κ+(α) ∼ α 1
2 exp

[
χ1(α) + α

(
1

a1
ln

(
a3

a1

)
+

1

a2
ln

(
a3

a2

))]
as α→∞ in R+.

Thus by choosing

χ1(α) = −α
(

1

a1
ln

(
a3

a1

)
+

1

a2
ln

(
a3

a2

))
,

we can ensure that κ+(α) ∼ α 1
2 as α→∞ in R−. Using lemma 1 one finds g(α)

to be a constant and so the equivalent expression for κ− can easily be found
from κ/κ−, which behaves as κ−(α) ∼ α− 1

2 as α→∞ in R−.
Finally, we note that in this construction κ± are only defined up to a multi-

plicative constant, and thus in our numerical implementation we fix the factors
by requiring that κ+(0) = κ(0).
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Appendix B. Wiener-Hopf splitting for the trailing edge correction

We have outlined in §4.3 how to additively split the term

g(α) =
1

κ−(α)

([
P̃+

1

]
(α) +

[
P̃+

3

]
(α)
)
,

and in this appendix we provide the detailed derivation of this splitting. Firstly
we recall from §4.1 that

[
P+

1

]
(α) ∝ κ+(α)

α− σ̃−η
, η = 0, 1.

Thus taking inverse and half-line transform we find:[
P̃+

1

]
(α) ∝ e−iα

∫ ∞
1

∫ ∞
−∞

e−ix(α′−α) 1

α′ − α′
κ+(α′)

α− σ̃−η
dα′dx

∝ e−iα
∫ ∞

1

∫
Γ−

e−ix(α′−α) 1

α′ − α
κ+(α′)

α′ − σ̃−η
dα′dx

∝
∫

Γ−

e−iα
′ 1

α′ − α
κ+(α′)

α′ − σ̃−η
dα′, (B.1)

where in the second line we use the properties of κ+ established in §4.2 to
change the contour of integration to Γ− which at its tails behaves like argα ∼
−ε̃ sign(Reα), 0 < ε̃ � 1. It is possible to change to this contour since we
observed in §4.2 that κ+ is analytic and of algebraic behaviour in the domain

D = R+ ∪
{
α
∣∣∣ argα ∈

(
− arctan

(
sβ

d

)
, arctan

(
sβ

d

))
∪
(
π − arctan

(
sβ

d

)
, π + arctan

(
sβ

d

))}
,

which in particular contains Γ− (see figure B.8). Along this contour the inte-
grand is integrable in the product space and so Fubini’s theorem applies, and
we can exchange order of integration as we did in the third line.

We note now that the final integral in Eq. (B.1) has integrand with expo-
nential decay along Γ− and thus there is a constant C such that for all α ∈ R+:∣∣∣[P̃+

1

]
(α)
∣∣∣ ≤ C|α|−1

∫
Γ−

∣∣∣∣e−iα′ κ+(α′)
α′ − Ω

∣∣∣∣ dα′, i.e.
[
P̃+

1

]
(α) = O

(
α−1

)
.

As mentioned in §4.3, imposing the unsteady Kutta condition at the trailing edge
implies that the pressure field must be non-singular at x = 1 (see for instance [8],

p. 274), which means that the above behaviour of
[
P̃+

1

]
(α) is indeed expected.

Imposing the unsteady Kutta condition (condition (vi) in §2.1) at the trailing
edge to [p2] and noting that [p3] (x) = − [p1] (x)−[p2] (x), for x > 1, we conclude
that the pressure jump [p3] (x) must be non-singular at x = 1, and it can thus
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Figure B.8: The domain D of algebraic behaviour of |κ+| in the complex α-plane.

be shown by integration-by-parts that
[
P̃+

3

]
(α) = O

(
α−1

)
as α→∞, α ∈ R+.

As noted in §4.3 this implies that there is a strip S containing the real axis and
a constant C such that

|g(α)| ≤ C (1 + |Reα|)− 1
2 , for all α ∈ S,

which allows us to apply theorem B from [19, p. 13]. This yields the additive
splitting g = g− + g+ where:

g+(α) =
1

2πi

∫ ∞−ic
−∞−ic

g(ζ)

ζ − αdζ and g−(α) =
1

2πi

∫ ∞+ic

−∞+ic

g(ζ)

ζ − αdζ.

These functions are analytic in R+ and R− respectively (after shrinking the
domains R± if necessary), and they are bounded in their respective half-planes,
since: For all α, with Imα > −δ,∣∣∣∣∫ ∞−ic
−∞−ic

g(ζ)

ζ − αdζ
∣∣∣∣ ≤ C ∫ ∞

−∞

(1 + |t|)− 1
2

|t− ic− α|dt ≤
√

2C

∫ ∞
−∞

(1 + |t|)− 1
2

|t− Reα|+ |c− δ|dt,

and so the boundedness of g+ in R+ is a consequence of the following lemma:

Lemma 2. Let ε > 0, then the function I : R→ R, defined by

I(y) :=

∫ ∞
−∞

(1 + |t|)− 1
2

|t− y|+ ε
dt,

is bounded.
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Proof. For y 6= 0:

I ′(y) =

∫ ∞
−∞

− sign(t− y)(1 + |t|)− 1
2

(|t− y|+ ε)2
dt

=

∫ y

−∞

(1 + |t|)− 1
2

(|t− y|+ ε)2
dt−

∫ ∞
y

(1 + |t|)− 1
2

(|t− y|+ ε)2
dt

=

∫ 0

−∞

(1 + |t− y|)− 1
2

(|t|+ ε)2
dt−

∫ ∞
0

(1 + |t− y|)− 1
2

(|t|+ ε)2
dt

{
≤ 0, if y > 0

≥ 0, if y < 0.

The boundedness of g− in R− follows analogously. This allows us to solve
the trailing-edge correction problem as shown in Eq. (27).

Appendix C. Reduction to an infinite algebraic system

In §5 we outlined how the scattering problem can be reduced to the solution
of an infinite algebraic system, by repeated application of Fourier inversion and
change of order of integration. Here we justify these steps rigorously: To derive
Eq. (30) note that

[
P−2
]

(α′) =
1

2π

∫ 0

−∞

∫ ∞
−∞

eix(α′−α)eiα
[
P̃−2

]
(α)dαdx

=
1

2π

∫ 0

−∞

∫ ∞+iε

−∞+iε

eix(α′−α)eiα
[
P̃−2

]
(α)dαdx

=
−1

2πi

∫ ∞+iε

−∞+iε

1

α− α′ e
iακ−(α)

∑
m∈Z

1

α− σ̃+
m

Res

(
1

κ−
, σ̃+
m

)([
P̃+

1

]
(σ̃+
m) +

[
P̃+

3

]
(σ̃+
m)
)
dα,

where in the second line we changed the contour for some small ε > 0 (small
enough to remain within R+ ∩R−) using Cauchy’s theorem and the analyticity
of the integrand, and in the third line we used absolute integrability in the
product space (along the given contours) to exchange the order of integration

by Fubini’s theorem, and we substituted
[
P̃−2

]
(α) using Eq. (27). Using the

linear asymptotic growth of σ̃+
m (cf. Eq. (A.1),(A.2)), and the form of residues

from Eq. (21), we observe that∑
m∈Z

∣∣∣∣ 1

α− σ̃+
m

Res

(
1

κ−
, σ̃+
m

)([
P̃+

1

]
(σ̃+
m) +

[
P̃+

3

]
(σ̃+
m)
)∣∣∣∣
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is uniformly bounded for Im(α) = ε. Thus we have sufficient decay, of order

O
(
α−

3
2

)
, for∣∣∣∣ 1

α− β e
iακ−(α)

∣∣∣∣ ∑
m∈Z

∣∣∣∣ 1

α− σ̃+
m

Res

(
1

κ−
, σ̃+
m

)([
P̃+

1

]
(σ̃+
m) +

[
P̃+

3

]
(σ̃+
m)
)∣∣∣∣

to be integrable along the given contour. Therefore the dominated convergence
theorem applies and we can exchange order of summation and integration to
find[
P−2
]

(α′) =
∑
m∈Z

[([
P̃+

1

]
(σ̃+
m) +

[
P̃+

3

]
(σ̃+
m)
)

(−1)

2πi

∫ ∞+iε

−∞+iε

1

α− α′ e
iακ−(α)

1

α− σ̃+
m

Res

(
1

κ−
, σ̃+
m

)
dα

]
.

Thus noting that Bj =
[
P−2
]

(σ̃−m) this yields precisely Eq. (30). Similarly by
considering Eq. (28) we find[

P̃+
3

]
(α′) =

1

2π
e−iα

′
∫ ∞

1

∫ ∞
−∞

eix(α′−α)
[
P+

3

]
(α)dαdx

=
1

2π
e−iα

′
∫ ∞

1

∫ ∞−iε
−∞−iε

eix(α′−α)
[
P+

3

]
(α)dαdx

= − 1

2iπ

∫ ∞−iε
−∞−iε

1

α′ − αe
−iα [P+

3

]
(α)dα

= − 1

2iπ

∫ ∞−iε
−∞−iε

1

α′ − αe
−iακ+(α)

∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m)dα.

Here we cannot interchange the integration and summation straight away since
|κ+| grows like |α| 12 along this contour. We note, however, that the sum is again
uniformly bounded along the given contour and remains so if we change to a
contour Γ−, which at its tails behaves like argα ∼ −ε̃ sign(Reα), 0 < ε̃ � 1.
This change of contour is analogous to the one applied in Appendix B. Along
Γ− we observe exponential decay of the integrand, so absolute convergence on
the product space for sum and integrand, so we can exchange the order of
summation and integration to find Eq. (31).

Appendix D. The finite section method and convergence

Here we provide a more detailed description of the finite section method
which we apply to approximately solve Eq. (33). We also include a brief proof
of convergence for this method when it is applied to our linear system.
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Working on l2(Z) we shall denote by Pm ∈ B(l2(Z)) the projection onto the
coordinates −m,−m + 1, . . . ,m − 1,m and we implicitly identify Pm(l2(Z)) ∼=
C2m+1. We employ the following version of the finite section method which is
described and analysed by [23]: Our approximation of the solution to the system
Lx = b is Γm(L, b) defined by

Γm(L, b) =

{
(0)j∈Z, if min {singular values of PmL

∗Pm+1LPm} ≤ 1
m

(PmL
∗Pm+1LPm)−1PmL

∗Pm+1b, otherwise,

(D.1)

which essentially corresponds to truncating the normal equations L∗Lx = L∗b
to 2m+ 1 entries and solving the resulting system on C2m+1.

Below we will show that, provided (I −GF) is invertible, Γm (I −GF, A)
converges to the true solution B as m → ∞. Given the decay in the entries of
F as shown in Eq. (D.2) we also have PmFPmB → C as m → ∞. Thus all of
these facts combined mean that the finite section method can be applied to our
algebraic system Eq. (33)-(34) and provides a valid way to approximately solve
the scattering problem.

In order to prove that Γm (I −GF, A) converges to the true solution B
as m → ∞ we introduce the following notation: We write A(x) . B(x), for
functions A(x), B(x), when there exists a constant K > 0 independent of x such
that A(x) ≤ KB(x). To begin with let us look more closely at the coefficients in
the linear system: Considering Eq. (32) we firstly note that the e−iα term in the
integrand decays exponentially along the given contour, thus we can estimate:

|Fjm| .
∫

Γ−

∣∣e−iακ+(α)
∣∣ ∣∣∣∣∣ 1

α− σ̃+
j

1

α− σ̃−m

∣∣∣∣∣ dα
∣∣∣∣Res

(
1

κ+
, σ̃−m

)∣∣∣∣
.
∫

Γ−

∣∣e−iακ+(α)
∣∣ dαj−1m−

3
2 . j−1m−

3
2 , (D.2)

for some constant that does not depend on j,m. In the above derivation we also
used the growth of the residues of 1

κ+ as we established in §4.2. We can change
the contour of integration for Gjm to one that is of V shape with tails of the
form argα ∼ ε̃ sign(Reα), 0 < ε̃� 1. This way we ensure the same exponential
decay of the integrand and we can similarly deduce

|Gjm| . j−1m−
1
2 . (D.3)

Eq. (D.2)-(D.3) allow us to show that GF is a well-defined bounded linear
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operator on l2(Z), since it is clearly linear, and for x ∈ l2(Z):

‖GFx‖22 =
∑
l∈Z

∣∣∣∣∣∣
∑
m∈Z

Glm

∑
j∈Z

Fmjxj

∣∣∣∣∣∣
2

.
∑
l∈Z

∑
m∈Z

(1 + |l|)−1(1 + |m|)− 1
2

∑
j∈Z

(1 + |m|)−1(1 + |j|)− 3
2 |xj |

2

.
∑
l∈Z

(1 + |l|)−2

∑
m∈Z

(1 + |m|)− 3
2

∑
j∈Z

(1 + |j|)−3

 1
2

‖x‖2


2

. ‖x‖22,

where the constants in the above estimates are independent of x. Assuming
that L = I −GF is in fact invertible the following condition (proved in [23], p.
60) is sufficient to ensure Γm(L, b) as defined in Eq. (D.1) converges to L−1b in
l2(Z):

max {‖(I − Pm+1)LPm‖, ‖PmL(I − Pm+1)‖} → 0 as m→∞. (D.4)

Claim 1. The condition Eq. (D.4) is satisfied for L = I −GF.

Proof. Write H = GF. We aim to show that

max {‖(I − Pm+1)(I −H)Pm‖, ‖Pm(I −H)(I − Pm+1)‖} → 0 as m→∞.

Note that

(I − Pm+1)IPm = 0,

thus it is sufficient to prove the above estimate for H directly. Now we have for
an arbitrary x ∈ l2(Z):

‖(I − Pm+1)HPmx‖22 ≤
∑

|i|>m+1

 ∑
|j|<m

|Hkjxj |

2

≤
∑

|k|>m+1

∑
|j|<m

|Hkj |2‖x‖2

. ‖x‖2
∑

|k|>m+1

∑
|j|<m

(1 + |k|)−2(1 + |j|)−3

. ‖x‖2
∑

|k|>m+1

(1 + |k|)−2
∑
j∈Z

(1 + |j|)−3

. ‖x‖2
∑

|k|>m+1

(1 + |k|)−2 → 0 as m→∞.
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Similarly

‖PmH(I − Pm+1)x‖22 . ‖x‖2
∑
|k|<m

∑
|j|>m+1

(1 + |k|)−2(1 + |j|)−3

. ‖x‖2
∑

|j|>m+1

(1 + |j|)−3 → 0 as m→∞.

Therefore, provided I −GF is invertible, we have indeed

Γm (I −GF, A)
l2−→ (I −GF)

−1
A as m→∞.
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