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Key Points: 9 

 Alkali basalts are stored both on- and off-axis at depths >15 km in the crust, on-axis 10 

peralkaline rhyolites are stored at between ~4-8 km depth. 11 

 Saturation of mafic magmas in a sulfide and exsolved volatile phase in the Daly Gap 12 

promotes buoyancy and rise of magmas to shallower reservoirs, where protracted 13 

fractional crystallisation and degassing occurs.  14 

 Caldera-forming, explosive eruptions in the MER may give rise to large emissions of 15 

SO2 and halogens, which may have significant environmental impacts. 16 

 A significant pre-eruptive exsolved volatile phase should be considered when 17 

interpreting geophysical monitoring data to avoid producing underestimates of 18 

intruded magma volumes. 19 

 20 

Abstract 21 

Understanding magma storage and differentiation in the East African Rift underpins our 22 

understanding of volcanism in continental rift settings. Here we present the geochemistry of 23 

melt inclusions erupted in Main Ethiopian Rift transitional basalts, trachytes and peralkaline 24 

rhyolites, produced by fractional crystallisation. Basalts stored on- and off-axis are saturated 25 

in an exsolved volatile phase at up to 18 km, in the upper crust. Much of the CO2 outgassed 26 

from the magmas is likely lost through diffuse degassing. Observed CO2 fluxes require the 27 

intrusion of up to 0.14 km
3
 of basalt beneath the rift each year. On-axis peralkaline rhyolites 28 
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are stored shallowly, at ~4-8 km depth. In the Daly Gap, magmas saturate in sulfide and an 29 

exsolved volatile phase, which promotes magma rise to shallower levels in the crust. Here, 30 

magmas undergo further protracted fractional crystallisation and degassing, leading to the 31 

formation of a substantial exsolved volatile phase, which may accumulate in a gas-rich cap. 32 

The exsolved volatile phase is rich in sulfur and halogens: their projected loadings into the 33 

atmosphere during explosive peralkaline eruptions in the MER are predicted to be 34 

substantially higher than their metaluminous counterparts in other settings. The high fraction 35 

of exsolved volatiles in the stored magmas enhances their compressibility and must be 36 

considered when interpreting ground displacements thought to be caused by magma intrusion 37 

at depth, otherwise intruding volumes will be underestimated. Pockets of exsolved volatiles 38 

may be present at the roof zones of magma reservoirs, which may be resolvable using 39 

geophysical techniques.  40 
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1. Introduction 48 

An important goal of many studies of volcano-magmatic systems is to extract a record of pre-49 

eruptive melt chemistry and use it to assess magma differentiation and the conditions of 50 

magma storage and processing in the crust. Whole-rock compositions in many cases do not 51 

represent melt compositions; they encompass not only the carrier liquid, but also the crystals 52 

the magma carries. There is strong evidence that crystals in volcanic rocks are frequently not 53 

in equilibrium with their carrier melts, having been scavenged from different magmas 54 

[Davidson and Tepley, 1997; Tepley et al., 2000], crystalline mushes [Bachmann et al., 2002; 55 

Cooper and Kent, 2014], or even wall-rock [Taylor Jr, 1980]. Isolation of pockets of melt 56 

trapped inside growing crystals after entrapment in relatively incompressible crystal hosts 57 

may allow the preservation of early-stage melts, isolating them from subsequent processing 58 

related to storage, ascent and eruption [Kent, 2008; Lowenstern, 1995]. If used carefully, with 59 
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consideration given to post-entrapment modification [Moore et al., 2015; Steele-Macinnis et 60 

al., 2011], primary melt inclusion trace and volatile element concentrations may be used to 61 

examine differentiation processes, including mixing and degassing, during the evolution of 62 

magmas [Métrich et al., 2001; Sobolev, 1996]. 63 

 64 

Melt inclusion studies of peralkaline volcanic rocks are scarce in the literature [Barclay et al., 65 

1996; Gioncada and Landi, 2010; Lanzo et al., 2013; Macdonald et al., 2012; Neave et al., 66 

2012] and consequently, we have only a very limited picture of differentiation processes, 67 

conditions of pre-eruptive storage and the volatile budget of peralkaline volcanic systems. 68 

Peralkaline melts have an excess of alkalis with respect to aluminium (molar 69 

(Na2O+K2O)/Al2O3>1) [Shand, 1927]. The high alkali contents of the melts enhance 70 

solubility of volatiles including CO2, H2O, F and Cl [Di Matteo et al., 2004; Scaillet and 71 

Macdonald, 2006; Shishkina et al., 2014; Webster et al., 2015]. Peralkaline eruptions are 72 

predicted to release larger masses of sulfur dioxide gas into the atmosphere than their 73 

metaluminous and peraluminous counterparts owing to the combination of high sulfur 74 

concentrations at sulfide saturation (which minimises sulfide precipitation) and high 75 

fluid/melt partition coefficients (>200) at typical magma reservoir pressures and temperatures 76 

[Scaillet and Macdonald, 2006]. The systematics of halogen behaviour in peralkaline melts is 77 

complex [Webster et al., 2015] and may involve saturation of a low density vapour as well as 78 

a brine phase in the shallower parts of the crustal storage system, whereby the melt Cl content 79 

becomes buffered at a fixed value, which may be used to estimate magma storage depths 80 

[Balcone-Boissard et al., 2016]. 81 

 82 

Understanding the volatile budget of volcanic systems in the Main Ethiopian Rift (MER) is 83 

not only important for understanding the liquid line of descent, the outgassing potential for 84 

eruptions and the behaviour of the exsolved volatile phase in the crust, but also has 85 

implications for the interpretation of geophysical monitoring signals captured there in recent 86 

years and for estimating magma budgets. Interferometric Synthetic Aperture Radar (InSAR) 87 

observations of ground deformation suggest magmatic unrest at a number of MER calderas 88 

[Biggs et al., 2011; Hutchison et al., 2016a; Lloyd et al., 2018], however, the compressibility 89 

of any exsolved volatile phase is an important control on ground displacements and must be 90 

understood to infer magma volumes at depth [Biggs et al., 2014a; McCormick Kilbride et al., 91 



 4 

2016]. Significant diffuse soil CO2 degassing has also been observed along the MER and East 92 

African Rift System (EARS) [Hunt et al., 2017; Hutchison et al., 2015; Lee et al., 2016], 93 

testifying to the presence of unerupted magma bodies at depth. Understanding the primary 94 

melt CO2 contents of the basalts at depth may allow estimates of magma supply rate beneath 95 

the rift to be developed. 96 

 97 

Here, we present major, trace, and volatile element data for melt inclusions from the eruptive 98 

products of five different volcanic sites: Corbetti, Kone, Fentale and Aluto central volcanoes, 99 

and the Butajira volcanic field (BVF) (figure 1). Fractional crystallisation models are 100 

constructed based on trace element mineral-melt partitioning data, using Principal 101 

Component Analysis (PCA) of the liquid line of descent to constrain the crystallising mineral 102 

assemblages. These models are then used, in tandem with volatile saturation models, to track 103 

volatile behavior through the evolution of the MER melts. Depths of magma storage and 104 

magma fluxes are estimated based on the abundance of H2O and CO2 in the melt inclusions 105 

and compared with barometry using clinopyroxene and melt compositions, whilst estimates 106 

of the mass fraction of exsolved volatiles are used to approximate the quantity of sulfur 107 

released during past eruptions. Inferences are made about the impact of an exsolved volatile 108 

phase on magma compressibility and its potential effects on ground displacements monitored 109 

at the surface.  110 

 111 

2 Geological Setting 112 

The MER is the northern-most portion of the EARS. Extending for ~1000 km in a NNE-SSW 113 

direction from the Afar to the Turkana depression, it separates the Nubian and Somalian 114 

plates (figure 1) [Mohr, 1983; Woldegabriel et al., 1990]. The MER is currently undergoing 115 

active east-west extension of ~5 mm yr
-1

 [Saria et al., 2014], with recent geodetic data 116 

showing that 80% of the current strain is accommodated on the Wonji Fault Belt (WFB) 117 

[Bilham et al., 1999]. The WFB is a group of short N-NE trending en echelon faults that lie 118 

within a ~15 km wide axial zone in the MER (figure 1) [Agostini et al., 2011; Keir et al., 119 

2006]. Pleistocene and Holocene volcanism has been focused within tectono-magmatic 120 

segments along the rift that are co-located with the WFB [Abebe et al., 2007; Corti, 2009; 121 

Fontijn et al., 2018].  122 

 123 
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Quaternary to recent MER volcanism is typified by peralkaline axis-central caldera systems 124 

that are located at the ends of the volcanic segments (figure 1) [Beutel et al., 2010; Keranen 125 

et al., 2004]. These areas are under reduced extensional stresses and may involve colder crust 126 

[Ebinger et al., 2008]. Such conditions might hinder magma ascent and facilitate longer 127 

residence times and fractionation [Hutchison et al., 2015; Peccerillo et al., 2003]. Pumice 128 

samples were selected from four different caldera systems along the length of the MER: 129 

Corbetti, Aluto, Kone, and Fentale (figure 1). Following large (VEI > 5) caldera-forming 130 

eruptions at ~300 ka [Hutchison et al., 2016a], the different silicic centres have displayed 131 

variable post-caldera eruption styles [Fontijn et al., 2018]. Some volcanoes have erupted 132 

predominately rhyolite lava flows (e.g. Fentale), whilst others have had multiple sub-Plinian 133 

eruptions (e.g. Corbetti and Aluto) [Fontijn et al., 2018]. Both syn- and post-caldera pumice 134 

samples have been investigated. The most recent deposits are the products of basaltic 135 

volcanism, with eruptions continuing at sites such as Kone and Fentale into historic times 136 

(the last eruption of both volcanoes was in 1820) [Harris, 1844]. Basaltic scoria cones and 137 

associated lava flows are arranged linearly along faults and extensional fractures [Hunt et al., 138 

2020; Rooney et al., 2011]; the stress conditions located at the fault tips are thought to 139 

promote magma ascent and cone eruptions.  140 

 141 

Recent mafic volcanism has also occurred near the western escarpment of the rift along the 142 

Silti-Debre Zeit Fault Zone (SDFZ; figure 1) [Chernet and Hart, 1999; Rooney et al., 2005; 143 

Woldegabriel et al., 1990]. Extending from 6.5°N to 9°N [Rooney et al., 2005], the SDFZ is a 144 

2-5 km wide belt dominated by off-axis volcanic fields of basaltic scoria cones and 145 

associated lava flows [Woldegabriel et al., 1990]. The BVF mafic volcanism in the region 146 

has been dated at 0.13 Ma [Woldegabriel et al., 1990] and 0.11 Ma [Chernet et al., 1998], in 147 

line with the Wonji Basalts. 148 

 149 

3 Methods 150 

The Corbetti pumice samples used in this study were collected by Raffaella Fusillo between 151 

2012 and 2014 [Fusillo, 2018]. The Aluto and Kone samples were collected by Karen Fontijn 152 

and Keri McNamara in November 2015, and by William Hutchison [Hutchison, 2015] and 153 

Michael Rampey [Rampey, 2005]. The Aluto samples comprised 1 post-caldera basaltic 154 

scoria sample, 1 syn-caldera trachyandesite enclave, 2 syn-caldera welded ignimbrites, 3 155 
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post-caldera rhyolite lavas (glassy selvages) and 4 post-caldera pumices. Additional Kone 156 

samples and Fentale samples were collected by Fiona Iddon, Jonathan Hunt, and Abate Assen 157 

in October 2017, which comprised 7 post-caldera basaltic scoria samples, 7 syn-caldera 158 

pumice samples, 1 syn-caldera welded ignimbrite and 2 pre-caldera glassy, silicic lava 159 

samples. Tephra samples from 6 scoria cones in the Butajira Volcanic Field (hereafter BVF) 160 

were collected by Iddon and Juliane Hubert during a sampling campaign in 2017. Additional 161 

detail on the samples and their context is given in the Supplementary Material. Olivines 162 

and quartz were hand-picked from crushed material and mounted on glass slides. Crystals 163 

were manually polished to expose melt inclusions, before the crystals were extracted and 164 

mounted into epoxy blocks and polished down to a fine grade using 9 μm, 6 μm, 3 μm, 1 μm 165 

and 0.25 μm grade diamond paste.  166 

 167 

Melt inclusions were screened at two stages during their preparation. During initial polishing 168 

of the individual host minerals the inclusions were examined via reflected light microscopy. 169 

Those selected for final mounting (those showing no evidence of cracking or daughter 170 

crystals) were examined using the Quanta-650F Scanning Electron Microscope (SEM) at the 171 

University of Cambridge. BSE images and maps of the blocks were taken under low vacuum 172 

(to avoid having to carbon coat them and risk contamination prior to SIMS analysis of CO2). 173 

Melt inclusions that showed visible evidence of cracks, shrinkage bubbles, or post-174 

entrapment crystallisation were avoided.  175 

 176 

Melt inclusions and adherent matrix glasses were analysed by Secondary Ion Mass 177 

Spectrometry (SIMS) using the Cameca ims-4f ion probe at NERC microanalytical facility at 178 

the University of Edinburgh for trace and volatile elements. Major elements, Cl and F were 179 

analysed by Electron Probe Micro Analysis (EPMA) using the a Cameca SX-100 Electron 180 

Probe Micro-Analyser at the University of Cambridge. Detailed descriptions of these 181 

methods, standards used [Shishkina et al., 2010], and the associated errors are given in the 182 

Supplementary Materials. 183 

 184 

Corrections for post-entrapment crystallization (PEC) were made for the olivine-hosted melt 185 

inclusions. Host olivine compositions were measured using EPMA on spots within 40 μm of 186 

the inclusion edge. A combined correction was applied for Fe-loss and PEC [Danyushevsky 187 
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and Plechov, 2011]. The iterative correction scheme requires knowledge of melt inclusion 188 

geochemistry, including H2O content, host olivine Fo content, oxidation state of the melt, and 189 

the initial melt inclusion FeO content at the time of entrapment, taken as average matrix glass 190 

FeO [Putirka, 2005], resulting in corrections of <5%; for full details see Supplementary 191 

Material. When the major element composition of the quartz-hosted inclusions were 192 

recalculated on an anhydrous basis, most do not show any depletion of silica or relative 193 

enrichment of other major elements (see Supplementary Material) that would reflect post-194 

entrapment crystallisation of quartz.   195 

 196 

4 Results 197 

4.1 Melt inclusion and matrix glass major element compositions  198 

Olivine compositions range from 58 to 77 mol% forsterite (see Supplementary Data). The 199 

majority of host olivine cores (compositions provided in Supplementary Material) are in 200 

equilibrium with their host melts (matrix glasses) [Roeder and Emslie, 1970], but there is 201 

some variability in olivine forsterite contents for a given melt Mg# (see Supplementary 202 

Material figure S4). Melt inclusion and matrix glass compositions are provided in 203 

Supplementary Material and figure 2. The melt inclusion compositions are basaltic, trachy-204 

basaltic, trachytic and rhyolitic and display a distinct Daly Gap at between ~52 and 64 wt.% 205 

SiO2 (figure 2a). All of the evolved samples are peralkaline, with most classified as 206 

pantellerites based on their high FeO concentrations (figure 2b) [Macdonald, 1974]. The 207 

Corbetti inclusions sit on the border with comendite owing to their lower FeO and high Al2O3 208 

contents. The olivine-hosted melt inclusions are basalts and trachybasalts that have a 209 

transitional composition (figure 2a).  210 

 211 

With increasing SiO2 content of the glasses there is a corresponding increase in alkalis and a 212 

decrease in ferromagnesian, Ti, Ca, and P oxides (figure 2). K2O increases smoothly and 213 

largely linearly with SiO2 content, whilst Al2O3 contents rise to ~20 wt.% before falling to 214 

<10 wt.% in the pantellerite samples (figure 2d, j). Na2O displays considerable variation 215 

(2.0–7.0 wt.%) across the basaltic to pantellerite glasses (figure 2i). BVF matrix glasses and 216 

inclusions contain up to ~15 wt.% FeO, in contrast to Kone olivine-hosted melt inclusions, 217 

which contain between ~5 and 10 wt.% FeO contents (figure 2e). There appears to be little 218 

variation in FeO content between the olivine-hosted and quartz-hosted melt inclusions. BVF 219 
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glasses have particularly low MgO contents at <4.5 wt.%; additionally, they have low Al2O3 220 

contents, at <15 wt.%, and elevated TiO2 and P2O5 contents, ranging to >4 wt.% and >1.5 221 

wt.%, respectively (figure 2). The quartz-hosted melt inclusions show considerable 222 

compositional spread; however, the Corbetti samples are noteworthy for their low FeO and 223 

MnO contents, <5 and 0.2 wt.% respectively (figure 2f). 224 

 225 

4.2 Melt inclusion and matrix glass trace element compositions 226 

Melt inclusion and matrix glass compositions are provided in Supplementary Material. The 227 

co-variation of selected trace elements with Zr, which is highly incompatible in peralkaline 228 

melts, is shown in figure 3. The Kone and BVF mafic melt inclusion Zr contents overlap, 229 

whilst the matrix glasses show a slightly higher Zr content consistent with a greater degree of 230 

evolution. The Daly Gap is evident in the trace element compositions: melt inclusions with Zr 231 

contents between ~230 and ~600 ppm are sparse (figure 3). Compatible elements show a 232 

negative correlation with Zr: e.g. Sr increases up to ~750 ppm before an inflection point at a 233 

Zr content of ~200 ppm, when feldspar begins to crystallise (figure 3f). Incompatible 234 

elements (Rb and the REE) show approximately linear positive trends (figure 3a, c-e, g, h, j-235 

q). Olivine-hosted melt inclusions from BVF and quartz-hosted melt inclusions from Fentale 236 

show a slight enrichment in Y (figure 3m) and the HREE (figure 3n, o, and q) over olivine-237 

hosted melt inclusions from Kone and quartz-hosted melt inclusions from the other silicic 238 

centres. Aluto and Fentale melt inclusions show a slight enrichment in the MREE (figure 3j-239 

l) relative to the quartz-hosted melt inclusions from the other silicic centres. Quartz-hosted 240 

melt inclusions and matrix glasses from Kone show a large spread in Rb contents (figure 3a). 241 

The Rb enrichment observed in the Kone samples, as compared to the other silicic centres, is 242 

unlikely to be related to crustal contamination as Rb/Nb ratios are generally lower than that 243 

of the Precambrian crustal rocks [Peccerillo et al., 1998] (figure 3r). Ba (figure 3b) and Eu 244 

(figure 3i) contents show scatter when plotted against Zr, particularly for the quartz-hosted 245 

melt inclusions: melt inclusions contain 12–1200 ppm for Ba, 1.5-15 ppm for Eu. The Fentale 246 

samples that show high Ba and Eu concentrations do not show any notable enrichment or 247 

depletion in Rb concentrations relative to quartz-hosted melt inclusions from the other silicic 248 

centres (figure 3a).  249 

 250 

4.3 Melt inclusion and matrix glass volatile concentrations 251 
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Melt inclusion and matrix glass volatile compositions are provided in Supplementary 252 

Material. Melt inclusion H2O contents range from ~2 wt.% to <0.5 wt.% in the BVF and the 253 

Kone olivine-hosted melt inclusions (figure 4a). There is a large spread in the H2O contents 254 

of the quartz-hosted melt inclusions, from <2 to 8 wt.% H2O (figure 4a). Fentale and 255 

Corbetti melt inclusions contain H2O contents up to 4 wt.%. Matrix glasses typically contain 256 

<0.05 wt% H2O. 257 

 258 

Olivine-hosted melt inclusion CO2 contents range from <500 ppm to >3000 ppm over a Zr 259 

range of 55 ppm to 220 ppm in the mafic samples (figure 4c). BVF melt inclusions show 260 

slightly higher CO2 contents of up to 5000 ppm (figure 4c). The quartz-hosted melt 261 

inclusions contain between ~100 and ~300 ppm CO2 (figure 4c). Matrix glasses have very 262 

low CO2 contents, below detection limits (figure 4c). Melt halogen contents increase with Zr 263 

concentration: Cl and F increase from 130 to ~1000 ppm and <900 to ~1500 ppm 264 

respectively as Zr increases from 55 to 220 ppm (figure 4e and f). There is a decrease in the 265 

gradient on the halogen vs Zr plots in the quartz-hosted melt inclusions relative to the olivine-266 

hosted melt inclusions. Melt Cl contents reach up to 4000 ppm in the most evolved samples, 267 

whilst F contents reach up to 7000 ppm, though the dataset shows some spread (figure 4e 268 

and f). Corbetti samples show particularly low halogen contents, with Cl <1900 ppm and F 269 

<2700 ppm; Fentale samples show low F contents (<3750 ppm) (figure 4e and f).  270 

 271 

Olivine-hosted melt inclusions show a positive correlation between melt sulfur contents and 272 

Zr, increasing from ~2000 to ~3000 ppm S with increasing Zr (figure 4d). The quartz-hosted 273 

melt inclusions contain up to ~600 ppm S and S does not correlate with Zr (figure 4d). In 274 

contrast to the halogens and sulfur, Li and B increase linearly with melt Zr contents, reaching 275 

up to ~100 ppm and ~20 ppm respectively (figure 4g and h). There is some spread in the Li 276 

dataset, with the most evolved samples showing values of >50 ppm and up to 200 ppm 277 

(figure 4h). The Corbetti melt inclusions have the lowest Li and B concentrations (figure 4g 278 

and h).  279 

 280 

5 Discussion    281 

5.1 Characterisation of the liquid line of descent for peralkaline magmas of the MER 282 
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Melt inclusion major and trace element data (figures 2, 3) are consistent with pantelleritic 283 

magmas being derived via protracted fractional crystallisation of a basaltic parental melt, as 284 

has been proposed in previous studies [Hutchison et al., 2018; Iddon et al., 2019; Peccerillo 285 

et al., 2003]. However, there is some variance in the trace element systematics e.g. changes in 286 

slope with increasing Zr, or variability at fixed Zr outside the analytical error (figure 3).  287 

 288 

Fractional crystallisation models were constructed to characterise the liquid line of descent to 289 

confirm the relationship between the basaltic and pantelleritic samples (figure 3). The 290 

proportion of crystallising phases required to describe the liquid line of descent observed in 291 

the major element data was determined using Principal Component Analysis (PCA) 292 

[Maclennan et al., 2001; Neave et al., 2012] (Supplementary Material). The Kone sample 293 

set was used for PCA analysis as it is most complete. Results for the other sample sets are 294 

provided in the Supplementary Material. The results of the analysis suggest that the mafic 295 

data array can be explained by the progressive removal of up to 59% clinopyroxene 296 

(En32Wo53Fs15), 40% plagioclase feldspar (An85Ab15Or0.4), 0.8% olivine (Fo75), 0.4% 297 

magnetite and accessory apatite. The change in melt composition over the Daly Gap may be 298 

explained by the removal of 54% plagioclase (An85Ab15Or0.4), 32% clinopyroxene 299 

(En32Wo53Fs15), 8% olivine (Fo80), 5% magnetite, and 1% apatite. The trachytic array may be 300 

explained by the removal of 85% alkali feldspar (An2Ab74Or24), 11% fayalite (Fo1.3), 0.3% 301 

pyroxene (En5Wo43Fs52), 2% ilmenite, and 1% apatite. The rhyolitic array may be explained 302 

by the removal of 78% alkali feldspar (An2Ab74Or24), 3% pyroxene (En2Wo41Fs57), and 19% 303 

aenigmatite. PCA root mean square fits are 1.4x10
-8

, 1.1x10
-10

, 1.8x10
-9

, and 0.002 304 

respectively. Lower numbers indicate better fits, values <0.01 are deemed reasonable.  305 

 306 

These results are consistent with fractional crystallisation models produced for pantellerite 307 

magmas in other studies. For example, Peccerillo et al. [2003] modelled a fractionation 308 

assemblage made up of 85-90% alkali feldspar, 10% clinopyroxene, 2% fayalite, and 2% Fe-309 

Ti oxides, in the later stages of melt evolution at Gedemsa (figure 1). Meanwhile the 310 

dominance of plagioclase over the Daly Gap, and the change from fayalite to aenigmatite 311 

crystallisation in the rhyolitic array is similar to model results from Pantelleria [Neave et al., 312 

2012; White et al., 2009]. The results for the basaltic array are less consistent with published 313 

examples, with models for Gedemsa and southern and northern portions of the WFB calling 314 
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for a greater degree of olivine and plagioclase fractionation [Peccerillo et al., 2003; Rooney 315 

et al., 2007; Trua et al., 1999]. Peccerillo et al. [2003] suggests that greater plagioclase and 316 

olivine fractionation reflects shallower storage conditions.  317 

 318 

5.2 Modelling Trace Element Behaviour   319 

To model trace element behaviour during fractional crystallisation of MER magmas, the 320 

Rayleigh fractional crystallisation equation was used: 321 

C
i

l

C
i

0
= F D-1

 322 

, where i is the element of interest; C
i

0  is the original concentration of element i in the 323 

parental liquid; C
i

l  is the concentration in the liquid; D is the solid-melt partition coefficient; 324 

and F is the fraction of liquid remaining. Bulk partition coefficients were calculated based on 325 

the phase assemblages predicted down the liquid line of descent and observed mineral-melt 326 

partitioning data collated from [Bacon and Druitt, 1988; Bindeman and Davis, 2000; Blundy 327 

and Wood, 1991; Bougault and Hekinian, 1974; Dawson and Hinton, 2003; Ewart and 328 

Griffin, 1994; Fujimaki, 1986; Gaetani and Grove, 1995; Green et al., 1993; Henderson and 329 

Pierozynski, 2012; Hill et al., 2000; Klemme and Dalpé, 2003; Larsen, 1979; Lemarchand et 330 

al., 1987; Luhr et al., 1984; Mahood and Stimac, 1990; Mathez and Webster, 2005; 331 

McCubbin et al., 2015; Nagasawa, 1970; Nagasawa and Schnetzler, 1971; Neave et al., 332 

2012; Nikogosian and Sobolev, 1997; Parat and Holtz, 2004; Paster et al., 1974; Peccerillo 333 

et al., 2003; Stix and Gorton, 1990; Villemant, 1988; Villemant et al., 1981; Webster et al., 334 

2009; Webster et al., 2017; White et al., 2009; Wood and Trigila, 2001]. See Supplementary 335 

Material for the full list of partition coefficients used. Feldspar-melt partition coefficients for 336 

Sr, Ba, and Rb were additionally calculated using empirically determined equations for 337 

plagioclase from [Blundy and Wood, 1991] and [Henderson and Pierozynski, 2012]. As Zr is 338 

highly incompatible in peralkaline rocks, it was used as a fractionation index. The trachytic 339 

samples can be generated by ~85% fractional crystallisation of the mafic parental melts. The 340 

pantelleritic rhyolites require a further 40% crystallisation. The total amount of fractional 341 

crystallisation required is therefore ~91%. Peccerillo et al. [2003] and [Gleeson et al., 2017] 342 

estimated that pantellerites from Gedemsa and Aluto could be generated from a basaltic 343 
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parent after ~90% fractionation. The pantellerites continue to fractionate, with a total 344 

fractionation of 93-94% predicted for some samples (figure 4). 345 

 346 

Incompatible trace element variations are well explained by protracted fractional 347 

crystallisation of a basaltic parent (figure 3). The slight deviation from linear patterns can be 348 

explained by the crystallisation of apatite, which has high partition coefficients for REE of 349 

~7-40 [Mahood and Stimac, 1990]. Variations in apatite crystallisation cannot account for the 350 

enrichment in just the medium and heavy REEs seen in the Aluto, BVF, and Fentale samples 351 

(figure 3). Reduced clinopyroxene fractionation may also occur during this interval. 352 

Clinopyroxene-melt partition coefficients for the medium and heavy REEs become larger as 353 

the pyroxene Na content increases. The pyroxenes evolve eventually to aegirine augites in 354 

peralkaline systems [Fedele et al., 2009; Marks et al., 2004]. This is due to an increased 355 

preference for these elements in the mineral structure [Marks et al., 2004]. 356 

 357 

The compatible trace elements are consistent with fractional crystallisation. Plagioclase-melt 358 

partition coefficients for the LILEs are controlled by feldspar An content and temperature 359 

[Blundy and Wood, 1991]. Alkali feldspar-melt partition coefficients for Ba and Sr are 360 

controlled by melt peralkalinity and temperature; for Rb they are controlled by mineral Or 361 

content [Henderson and Pierozynski, 2012]. The spread in Rb, Ba (figure 3) and Eu 362 

(Supplementary Material) may be explained by variable amounts of feldspar crystallisation, 363 

as well as changing partitioning behaviour during the evolution between basaltic and 364 

trachytic melts. The greater spread in Ba in the most evolved samples is consistent with 365 

variability in the partition coefficients in line with observed variations in melt peralkalinity 366 

(figure 3b) [Henderson and Pierozynski, 2012]. The observed variation in feldspar Or 367 

content cannot, however, account for the spread in Kone Rb data (figure 3a), suggesting 368 

additional sources of enrichment/depletion. 369 

 370 

The effect of feldspar resorption was modelled for Ba and Rb, both strongly compatible in 371 

feldspar (figure 3a, b). Feldspar Ba compositions from the Afar were used for the modeling 372 

[Barberi et al., 1975]. Whilst the large spread in Ba for both Kone and Fentale quartz-hosted 373 

melt inclusions is consistent with small amounts of feldspar resorption (~10-20%), the model 374 

for Rb does not produce such a good fit for the Kone melts (figure 3a, b). Alkali feldspar 375 
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resorption occurred in the central Kenya peralkaline province, based on anomalous Ba 376 

enrichments [Macdonald and Bagiński, 2009]. Peccerillo et al. [2003] have linked high Ba 377 

concentration in trachytes from Gedemsa to feldspar accumulation. 378 

 379 

5.3 Reconstructing primary melt volatile contents and degassing behaviour   380 

5.3.1 H2O and CO2 systematics and estimates of magma storage depths 381 

Volatile elements will behave like incompatible elements during fractional crystallisation, if 382 

the melts are volatile-undersaturated. Mineral-melt volatile partitioning is assumed to be 383 

negligible in most phases. Partitioning of water into apatite, as a nominally hydrous mineral 384 

with an affinity for halogens, was considered [Mathez and Webster, 2005; Webster et al., 385 

2009]. Fractional crystallisation models for H2O and CO2 are marked on figure 4a-c; the data 386 

lie far below the modelled liquid line of descent, suggesting that the melts were saturated 387 

with an exsolved volatile phase during fractionation, even for the most primitive melts. The 388 

range in CO2 contents is largely due to degassing CO2 into an exsolved volatile phase; there 389 

may also, however, be some sequestration of CO2 into a shrinkage bubble [Hartley et al., 390 

2014], perhaps driven by post-entrapment crystallisation [Steele-Macinnis et al., 2011].  391 

 392 

The pressure dependence of H2O-CO2 solubility [Papale, 1999] suggest that the on-axis 393 

evolved silicic melts, from (figure 5b) are stored at lower pressures in the crust than the 394 

mafic parental melts (figure 5a). The olivine-hosted melt inclusions from the on-axis 395 

volcanic centre (Kone) record volatile contents consistent with storage pressures of up to 396 

~350 MPa (figure 5a), equivalent to a depth of ~13 km in the crust assuming an average 397 

crustal density of 2800 kgm
-3

 [Wilks et al., 2017] and a temperature of 1170 °C, estimated 398 

based on clinopyroxene-liquid thermometry [Iddon et al., 2019]. The quartz-hosted melt 399 

inclusions from the on-axis centres record volatile contents consistent with storage pressures 400 

of up to ~300 MPa (figure 5b), equivalent to a depth of up to ~11 km in the crust, assuming a 401 

temperature of ~765 °C [Gleeson et al., 2017] (upper bounds). There is significant overlap 402 

between both datasets, but this may be due to post-entrapment modification of CO2 contents 403 

in the olivine-hosted melt inclusions, H
+
 loss from the inclusions [Bucholz et al., 2013], or to 404 

magmas being stored at a range of depths. Corbetti and Fentale quartz-hosted melt inclusions 405 

record slightly lower values for H2O at similar CO2 contents to the Kone and Aluto samples, 406 
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which might suggest shallower storage pressures of ~170 MPa (figure 5b), equivalent to a 407 

depth of 6 km in the crust.  408 

 409 

The olivine-hosted melt inclusions from the off-axis BVF volcanic field record volatile 410 

contents consistent with slightly deeper storage pressures of up to ~500 MPa (figure 5a), 411 

equivalent to a depth of 18 km in the crust, assuming a temperature of 1170 °C [Iddon et al., 412 

2019]. These depth estimates are consistent with the suggestion of deeper fractionation of 413 

off-axis melts [Rooney et al., 2007]. Using a structural clinopyroxene-only geobarometer 414 

[Nimis and Ulmer, 1998] Rooney et al. [2007] estimated storage depths of <10 km for the 415 

axis-central Wonji Fault Belt (WFB) basalts, but storage depths of up to 35 km for the off-416 

axis melts. Our estimates of storage depths based on H2O-CO2 barometry are minima. 417 

Clinopyroxene-liquid geobarometry [Neave and Putirka, 2017] indicates deeper storage of 418 

Kone mafic melts, at up to 21 km [Iddon et al., 2019]. Basalts appear to be sourced from 419 

complex, multi-levelled storage systems both on and off the rift axis. 420 

 421 

The melt inclusions show evidence of extensive degassing. We may use the ratios of volatile 422 

to non-volatile elements that are thought to behave similarly (i.e. during crystallisation and 423 

melting) to estimate original H2O and CO2 concentrations in primitive basalt melts 424 

[Rosenthal et al., 2015]. Ratios of CO2 to incompatible elements such as Nb [Saal et al., 425 

2002] or Ba [Hauri et al., 2019; Le Voyer et al., 2017] are typically used to make estimates of 426 

primary melt CO2. Ratios of H2O to LREEs (La, Ce, Nd) are used to make estimates of 427 

primary melt H2O [Dixon et al., 2002; Michael, 1995]. Rosenthal et al. [2015] suggest a 428 

range of CO2/Ba ratios for non-enriched and enriched depleted mantle (DMM) from ~130 to 429 

~150 (figure 6a). Saal et al. [2002] and Le Voyer et al. [2019] suggest values closer to 100 430 

(figure 6a). Assuming CO2/Ba ratios of 100 and 140 (figure 6a) the on-axis WFB basalt 431 

primary melt is estimated to have contained 1.8 and 2.5 wt.% CO2 respectively. The off-axis 432 

primary melt is estimated to have contained between 0.7 and 1 wt.% CO2. These estimates 433 

suggest that between ~1.5 and ~2.2 wt.% CO2 has been lost from the WFB basalts prior to 434 

eruption, and presumably prior to fractionation; and between ~0.2 and ~0.5 wt.% CO2 is 435 

estimated to have been lost from the off-axis melts prior to eruption. 436 

 437 
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Estimates of H2O/Ce for depleted mantle range from 150 ± 10 [Dixon et al., 2002] to 245 ± 438 

12 [Le Voyer et al., 2017] (figure 6b). If we assume similar primary melt ratios for the MER 439 

melts, the WFB basalt primary melt is estimated to have contained 0.8-1.2 wt.% H2O. The 440 

off-axis primary melt is estimated to have contained between 0.6 wt.% and 0.8 wt.% H2O. 441 

This suggests that minimal H2O has been lost from the basalts prior to eruption (which is 442 

consistent with the high pressure of storage and high solubility of H2O), or that the H2O/Ce 443 

ratios presented in the literature are inappropriate for continental rift settings. In all likelihood 444 

this applies to the CO2/Ba ratios as well. Global variation in H2O/Ce ratios are apparent, with 445 

a much higher H2O/Ce ratio of 400 reported for HIMU-influenced MORB from the 446 

equatorial Atlantic [Kendrick et al., 2017] and for basalts sourced from ‘plume’ mantle 447 

sources (Hauri et al., 2019). Ethiopian basalts are thought to be derived from melting induced 448 

by the impact of a plume at the base of the subcontinental lithospheric mantle [Rooney et al., 449 

2011]. 450 

 451 

5.3.2 Sulfur degassing and sulfide saturation 452 

Fractional crystallisation models reproduce the sulfur concentrations in the olivine-hosted 453 

melt inclusions, but significantly overpredict the sulfur contents of the quartz-hosted melt 454 

inclusions (figure 4d). The behavior of sulfur is complex; at sulfide saturation it partitions 455 

between an exsolved volatile phase as well as an immiscible sulfide liquid or mineral phase, 456 

depending on temperature, or a sulfate-bearing phase depending on redox conditions. Under 457 

reducing conditions sulfide (S
2-

) is the dominant sulfur species [Carroll and Rutherford, 458 

1987; Mavrogenes and O’Neill, 1999]. At higher oxidation states S
6+

 becomes the dominant 459 

species [Fortin et al., 2015; Jugo, 2009; Li et al., 2009]. Our data suggests that sulfur 460 

behaves incompatibly in the mafic melts (i.e. the melt does not reach saturation in either a 461 

solid or liquid immiscible sulfide/sulfate phase nor an exsolved sulfur-bearing volatile phase) 462 

before concentrations drop dramatically in the quartz-hosted melt inclusions, down to < 0.2 463 

wt.% (figure 4d).  464 

 465 

The sulfur concentration at sulfide saturation (SCSS) was estimated using a number of 466 

models [Fortin et al., 2015; Li et al., 2009] (figure 4d). The oxygen fugacities of MER 467 

magmas are thought to be within one log unit of the QFM buffer (QFM to QFM+1; [Gleeson 468 

et al., 2017; Iddon et al., 2019; Peccerillo et al., 2003; Rooney et al., 2007; Rooney et al., 469 
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2012]. Temperatures of 1170 °C [Iddon et al., 2019] and 765 °C [Gleeson et al., 2017] (upper 470 

bounds), and pressures of 300 MPa and 220 MPa were assumed for the mafic and silicic 471 

compositions respectively (figure 4d). The modified Li and Ripley [2009] model [Gleeson et 472 

al., 2017] shows the SCSS is higher than the sulfur concentration in the olivine-hosted melt 473 

inclusions, before dropping to closely follow the concentrations in the quartz-hosted melt 474 

inclusions. These trends indicate that melts reach sulfide saturation somewhere in the Daly 475 

Gap.  476 

 477 

However, for the oxygen fugacity prevalent in MER magmas (~QFM) [Gleeson et al., 2017; 478 

Iddon et al., 2019; Peccerillo et al., 2003; Rooney et al., 2007; Rooney et al., 2012], the 479 

model by Jugo et al [2010] is preferred. It links the SCSS with sulfur content at anhydrite 480 

saturation (SCAS), predicting an exponential increase in the SCSS with increasing fO2 from 481 

QFM because of the contribution of sulfate [Jugo et al., 2010]. Model results for an fO2 of 482 

QFM are similar, this time plotting much higher than the sulfur concentration in the olivine-483 

hosted melt inclusions, but again following the sulfur concentration in the quartz-hosted melt 484 

inclusions (figure 4d). The depletion of chalcophile elements such as copper observed in the 485 

peralkaline rhyolites (see Supplementary Material) provides further evidence for the 486 

formation of a liquid immiscible or mineral sulfur-bearing phase at some point during magma 487 

fractionation over the Daly Gap. Scaillet and MacDonald [2006] investigated experimentally 488 

the partitioning of sulfur between melt and sulfide or sulfate for peralkaline rhyolites. They 489 

determined that, for all values of fO2, peralkaline melts can carry between 5 and 20 times 490 

more sulfur than their metaluminous equivalents before reaching sulfide saturation.  491 

 492 

Once there is a free exsolved volatile phase, sulfur will further partition into it. Scaillet and 493 

MacDonald (2006) have investigated experimentally the partitioning of sulfur between melt 494 

and the exsolved fluid phase. For a pantellerite at temperatures of 765 °C and an fO2 of QFM, 495 

a fluid-melt partition coefficient, D f -m, of ~50 might be expected [Scaillet and Macdonald, 496 

2006]. Experiments suggest that after 80% crystallisation of a basaltic alkaline melt 497 

containing 1000 ppm S and 1 wt% H2O, between 60 and 90% of the bulk sulfur partitions 498 

into the aqueous fluid. We calculate the mass of sulfur that partitions into the fluid phase 499 

using the difference between the fractional crystallisation model and the observed melt S 500 

concentrations. The bulk sulfur contents in the melt-sulfide-exsolved volatile phase after 94% 501 
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crystallisation would be ~ 6 wt%. This sulfur is partitioned between the melt sulfur, solid and 502 

liquid immiscible sulfur-bearing phases, and the exsolved volatile phase. For an average melt 503 

S content of 340 ppm in the peralkaline rhyolitic melts, an exsolved volatile phase might 504 

contain 1.7 wt.%, with the remaining 4.3% sequestered in the solid and/or liquid immiscible 505 

sulfur-bearing phases.  506 

 507 

5.3.3 Behaviour of halogens and lithium during differentiation and degassing 508 

Fractional crystallisation models reproduce well the incompatibility of Cl in the mafic melts; 509 

however, they fail to predict the lower chlorine concentrations observed in the evolved 510 

peralkaline melts (figure 4e), which suggests that chlorine is being lost to another phase. Cl 511 

partitioning into apatite is included in the model (see Supplementary Material for partition 512 

coefficients), but there may be loss to some other chlorine-bearing accessory mineral, such as 513 

mica [Iddon et al., 2019], which may not be captured. Here we consider the loss of chlorine 514 

to an exsolved volatile phase as the dominant process causing melt depletion in chlorine.  515 

 516 

The solubility of Cl in silicate melts has a complex pressure dependence. At pressures >200 517 

MPa it shows a negative dependence, becoming increasingly soluble in silicate melts with 518 

dropping pressure; however, this changes to a positive dependence at pressures < 200 MPa 519 

[Lukanin, 2015; 2016]. In a closed system, where the exsolved volatile phase is not lost, this 520 

relationship can reverse again at even shallower pressures [Lukanin, 2015; 2016]; this may 521 

account for the continued, if slightly subdued, rise in melt Cl contents following the Daly 522 

Gap (figure 4e). However, H2O-CO2 solubility relationships indicate that many of the quartz-523 

hosted melt inclusions were trapped at pressures >150 MPa (figure 5b). Cl solubility shows a 524 

strong compositional dependence, becoming increasingly soluble with increasing melt alkali 525 

content and decreasing silica activity [Carroll, 2005]. The influence of the negative 526 

temperature dependence on Cl solubility is also amplified in alkali-rich melt compositions 527 

[Carroll and Webster, 1994]. The quartz-hosted melt inclusions show a positive correlation 528 

between melt Cl concentration and peralkalinity (figure 7a). 529 

 530 

Published experimental data for silicate melts coexisting with low-Cl fluids, or with 531 

supercritical Cl-bearing fluids show that Cl partitions strongly into aqueous fluids relative to 532 
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silicate melts by a factor of ∼20 to 300 [Kilinc and Burnham, 1972]. For low bulk Cl 533 

contents, Cl concentrations decrease in rhyolitic melts coexisting with a single aqueous fluid 534 

phase as pressure increases from 200 to 800 MPa and the fluid/melt partition coefficient for 535 

Cl increases with increasing pressure. However, with increasing concentration of Cl in the 536 

solution at pressures below ∼200 MPa, the binary system H2O-NaCl is characterized by an 537 

immiscibility gap (a subcritical region) where a Cl-poor aqueous fluid coexists with a Cl-rich 538 

hydrosaline brine [Carroll, 2005]. The compositions of the aqueous fluid and the brine are 539 

invariant at constant pressure and temperature, which means that Cl and H2O concentrations 540 

in the fluids and the coexisting silicate melt will be fixed (Gibbs’ phase rule) [Balcone-541 

Boissard et al., 2016; Signorelli et al., 2001]. A constant Cl concentration in the melt as more 542 

Cl is added to the system is the typical expression of the melt being saturated with both a 543 

hydrosaline liquid and an H2O-rich aqueous fluid and this behaviour defines the solubility 544 

limit for Cl [Carroll, 2005; Shinohara, 1994; Signorelli and Carroll, 2002]. 545 

 546 

The MER data show an increase in Cl with melt evolution, with no plateau, suggesting that 547 

perhaps formation of a chlorine-bearing hydrosaline brine does not occur at the pressures of 548 

melt inclusion entrapment (figure 4e). The Cl solubility model by Webster et al. [2015] was 549 

established using experiments in which the solubility of Cl was determined for silicate melts 550 

saturated in a hydrosaline brine, with or without a coexisting vapour phase. The modelled Cl 551 

solubilities, assuming temperatures of 1170 °C [Iddon et al., 2019] and 765 °C [Gleeson et 552 

al., 2017, upper bounds], and pressures of 300 MPa and 220 MPa for the mafic and silicic 553 

compositions respectively, are much higher than the observed data for the MER melt 554 

inclusions (figure 4e). This suggests that hydrosaline brine formation does not occur. Instead 555 

the trends in the data are consistent with the partitioning of chlorine into an exsolved 556 

supercritical fluid phase. 557 

 558 

The fractional crystallisation models accurately reproduce the incompatibility of F in the 559 

mafic melts but fail to predict the lower F contents in the evolved peralkaline melts (figure 560 

4f). As F partitioning into apatite is considered by the crystallisation model, and there is no 561 

evidence for fluorine-bearing phases such as fluorite, loss to an exsolved volatile phase is 562 

considered. F solubility is generally high in silicate melts but could be reduced by the rapid 563 

increase in SiO2 driven by fractional crystallisation over the Daly Gap (figure 2). Increasing 564 
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melt polymerisation has been linked to increased F partitioning into an exsolved volatile 565 

phase [Bailey, 1977; Martini, 1984]. The low halogen contents of melt inclusions at Corbetti 566 

relative to the other datasets may be a consequence of lower melt peralkalinity (figure 4e and 567 

f). This cannot account for the situation at Fentale where Cl contents, along with melt 568 

peralkalinity, are in line with Kone and Aluto samples (figure 4e).  569 

 570 

The total mass of chlorine and fluorine partitioned into the aqueous fluid phase may be 571 

estimated using the difference between the fractional crystallisation models and the observed 572 

concentrations. This analysis yields apparent fluid-melt partition coefficients (D f -m) of 1.75 573 

for F, and 3 for Cl, consistent with experimentally determined results [Borodulin et al., 2009; 574 

Iveson et al., 2017]. Borodulin et al. [2009] carried out experiments on F partitioning 575 

between high-silica peralkaline rhyolites and aqueous fluids at 750°C and 100 MPa 576 

suggesting a D f -m of 1.7±1.6. Iveson et al. [2017] conducted experiments at 810-860°C, 577 

150-405 MPa and fO2 NNO-0.5 to NNO+2 on hydrous rhyodacites showing that Cl strongly 578 

partitions into a fluid over a melt phase with a D f -m ranging from 3.5 to 22.7. This 579 

partitioning of Cl into an exsolved volatile phase is thought to remain > 700 MPa; at lower 580 

pressures partitioning towards melt has been observed to increase [Kilinc and Burnham, 581 

1972]. Figures 7c and 7d shows the relationship between the halogens and melt H2O 582 

contents. Constant melt Cl and F above 2 wt.% H2O demonstrates that melt concentrations 583 

are being buffered by a single supercritical fluid phase.     584 

 585 

Whilst the fractional crystallisation model provides a reasonable fit to the observed Li data, 586 

suggesting it behaves relatively incompatibly, the spread in the data might be explained by 587 

semi-volatile behaviour (figure 4h). Some of the quartz-hosted melt inclusions show Li 588 

enrichment over that predicted from fractional crystallisation, examples from Fentale show a 589 

corresponding slight enrichment in CO2 and depletion in H2O in comparison to the other 590 

datapoints. Li is complex, as at shallow crustal pressures it can partition into a number of 591 

mineral phases [Bindeman and Davis, 2000; Nikogosian and Sobolev, 1997], but has also 592 

been observed to behave as a volatile element in some H2O-rich magmas. It has been 593 

suggested that Li may diffuse into an exsolved volatile phase as rapidly as water [Koga et al., 594 

2008], whilst other experimental studies have shown that in silica-rich magmas Li will 595 

preferentially partition into a volatile-bearing fluid over the melt [Kent et al., 2007], 596 
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particularly in the presence of chlorine [Webster et al., 1989]. At Mount St Helens melt 597 

inclusion enrichment in Li has been attributed to shallow accumulation of CO2-rich fluids 598 

from deeper degassing magmas and rapid diffusive re-equilibration of the melt inclusions 599 

[Berlo et al., 2004]. At Pantelleria, Neave et al [2012] explain Li enrichment in melt 600 

inclusions by entrapment in the presence of a Cl-rich brine.  601 

 602 

5.4 Predicted volatile outgassing during explosive MER peralkaline eruptions  603 

If we assume that the system is closed with no passive degassing, the fractional crystallisation 604 

models for Kone may be used to calculate the volume of pre-eruptive volatiles exsolved 605 

during the evolution from a basaltic parent to a pantelleritic rhyolite melt. The proportions of 606 

the different volatile species in the exsolved volatile phase can also be estimated. The H2O 607 

contents of the basaltic parental melts is ~1.2 wt.% which, under conditions of no degassing 608 

and complete incompatibility, would increase to 55 wt.% in the residual melt after ~94% 609 

crystallisation (figure 4b). The melts actually hold ~7 wt.% H2O after 94% crystallisation at 610 

220 MPa (figure 5b), which means that the remainder has exsolved for these pressure 611 

conditions. In reality, migration of an exsolved volatile phase would likely occur over long 612 

timescales during fractionation. For this reason we predict the mass of the H2O and CO2 in 613 

the pre-eruptive exsolved volatile phase in the peralkaline rhyolite based on the quartz-hosted 614 

melt inclusions alone, assuming that any exsolved volatiles that existed prior to the Daly Gap 615 

will have been lost to outgassing during decompression of the low viscosity melt on ascent to 616 

shallower storage regions and over the long course of evolution (figure 4a and c). The 617 

pervasive loss of deep-derived exsolved volatiles from stored magmas is consistent with the 618 

diffuse degassing of a CO2-rich magmatic gas observed over much of the MER [Hunt et al., 619 

2017; Hutchison et al., 2016a]. We calculate that, after fractionation from trachytic to 620 

evolved pantelleritic melt (~60% crystallisation) and with no degassing, H2O contents would 621 

rise from 7 wt.% to 17 wt.% and CO2 contents would rise from 0.02 wt.% to 0.05 wt.%. As 622 

the melts hold ~7 wt.% H2O and ~0.025 wt.% CO2 after 94% crystallisation at 220 MPa 623 

(figure 5b), this means that ~10 wt.% H2O and ~0.025 wt.% CO2 will have been exsolved 624 

from the rhyolite for these pressure conditions.  625 

 626 

Using the same method for the halogens, but assuming volatile retention in the mafic melts 627 

(figure 4e and f), we find that this exsolved volatile phase will also contain 0.7 wt.% F, and 628 
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0.6 wt.% Cl. Exsolved S contents of 1.7 wt.% were estimated based on measured values of 629 

~340 ppm in melt inclusions and experimental fluid-melt partition coefficients [Scaillet and 630 

Macdonald, 2006]. We therefore estimate that a total exsolved volatile phase of ~13 wt.% 631 

may develop during late-stage fractionation crystallisation, which is equivalent to ~4.5 vol.% 632 

(from the Ideal Gas Law) at a pressure of 220 MPa and temperature of 765 °C [Gleeson et 633 

al., 2017, upper bounds]. 634 

 635 

The mass of the exsolved volatile phase may be used to make estimates of the potential yield 636 

of an explosive peralkaline eruption at one of the MER calderas. Caldera-forming eruptions 637 

may have produced >10 km
3
 eruptive volume [Hutchison et al., 2016b]. Assuming an 638 

average bulk magma density of 2300 kg/m
3
, we calculate a volatile yield of 2300 Mt H2O 639 

(where 1 Mt is equal to 1 x 10
12

 kg), 6 Mt CO2, 390 Mt S, 150 Mt F, and 150 Mt Cl for an 640 

eruption of 10 km
3
 peralkaline magma. An additional component from syn-eruptive 641 

degassing by exsolution can also be estimated, recorded in the difference between the matrix 642 

glass and melt inclusion compositions. Whilst F and Cl contents appear similar, matrix 643 

glasses show on average a ~50 ppm difference in S. Assuming that melt H2O and CO2 644 

retention at atmospheric pressure is minimal, a melt fraction of 65 vol.% for the erupted 645 

magma, and a melt density of 2275 kg/m
3
, a syn-eruptive degassing (from exsolution) of 365 646 

MT of H2O, 1 Mt of CO2, and 0.5 Mt of S is estimated. This brings the estimated total 647 

volatile yield for an explosive peralkaline eruption to 2665 Mt H2O, 7 Mt CO2, 390.5 Mt S, 648 

150 Mt F, and 150 Mt Cl, for eruptions of 10 km
3
. Post-caldera eruptions are much smaller 649 

(between 0.01-1 km
3
) [Hutchison et al., 2016b], and are typically crystal-poor. Making 650 

similar assumptions, but with a melt fraction of 90 vol.% for the erupted magma, the 651 

estimated total volatile yield for a post-caldera peralkaline eruption would be 3-265 Mt H2O, 652 

<0.01-0.7 Mt CO2, 0.4-40 Mt S, 0.2-15 Mt F, and 0.2-15 Mt Cl.  653 

 654 

The much larger Tambora eruption of 1815 (~50 km
3
) [Oppenheimer, 2003] is thought to 655 

have released ~100 Mt Cl, 70 Mt F, and 60 Mt S [Sigurdsson and Carey, 1992] and the S 656 

release from Mount Pinatubo (~20 km
3
) has been estimated at 10 Mt [Gerlach et al., 1996; 657 

Wallace and Gerlach, 1994]. This suggests that the output of S and halogens may be more 658 

significant from peralkaline explosive eruptions, such as those during the formation of the 659 

MER calderas, than from their metaluminous and peraluminous counterparts. Neave et al. 660 
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[2012] highlighted this in their estimates of the S yield from Pantelleria, predicting the 661 

release of 80-160 Mt S during the eruption of the 7 km
3
 Green Tuff. They interpreted the 662 

higher yields of sulfur as relating to high sulfur concentrations at sulfide saturation combined 663 

with high fluid/melt partition coefficients, allowing peralkaline melts to retain sulfur for 664 

longer during their early differentiation and then release it into aqueous exsolved fluids 665 

[Scaillet and Macdonald, 2006]. Alkali-related halogen retention and high initial parental 666 

melt volatile contents, perhaps due to small fraction melting of enriched subcontinental 667 

lithospheric mantle, may also play a role in increasing predicted volatile outputs. Our results 668 

further suggest that large, explosive continental rift-related eruptions may be significant 669 

sources of HCl into the upper troposphere or stratosphere. Injection of HCl into the 670 

stratosphere has also been linked to the ozone destruction and, in the troposphere, to the 671 

production of acid rain [Kutterolf et al., 2013].  672 

 673 

5.5 Implications of our results for MER Magma Storage 674 

We interpret the behaviour of the volatile species, in particular the timing of volatile 675 

saturation and the various controls on melt volatile solubilities, as providing evidence for a 676 

vertically extended magmatic storage system beneath the MER (figure 8). Mafic magma 677 

batches, both on- and off-axis, are stored at depths extending down to 18 km in the crust, and 678 

potentially deeper, where they are saturated with an exsolved volatile phase (figure 5a). Over 679 

the course of the Daly Gap, from which melts are not preserved, on-axis magmas saturate in 680 

both an exsolved volatile phase and in sulfide. Settling of sulfides and growth of finely 681 

disseminated bubbles in the magma will lower bulk magma density, promoting its rise to 682 

shallower depths of ~8-6 km. Cl and F partition into the exsolved volatile phase with fluid-683 

melt partition coefficients of ~3 and ~1.75 (figure 8) (Kilinc and Burnham, 1972; Shinohara 684 

et al., 1989). In the shallower parts of the reservoir fractional crystallisation drives the magma 685 

composition towards rhyolite, generating extensive crystal mushes. The substantial exsolved 686 

volatile phase may accumulate to form a low density, gas-rich roof zone. Continued 687 

fractional crystallisation leads to melts becoming peralkaline, thus increasing halogen 688 

solubility in the melt (figure 7a, b) (Anfiligov et al., 1973; Carroll, 2005; Glyuk, 1980). 689 

There may also be evidence in some cases for the accumulation of exsolved volatiles from 690 

deeper degassing magmas (figure 4h). This might suggest magmatic recharge or mafic 691 

underplating occurs. 692 
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 693 

Magmatic evolution at multiple storage depths has been proposed for other peralkaline 694 

systems in the MER and wider EARS based on petrological evidence. Rooney et al. (2012) 695 

suggested a two-step polybaric process at Chefe Donsa, with fractionation of basalts at mid-696 

upper crustal depths occurring prior to extraction and ascent of those liquids to form a second 697 

trachytic-rhyolitic fractionating storage region. Rooney et al. (2012) highlight the importance 698 

of exsolved volatiles in controlling the eruptibility of intermediate magmas. MacDonald et al. 699 

(2008) postulate that a region of several dynamic, interacting, independent reservoirs and 700 

conduits, stretching down to depths of 10 km in the crust, feeds the Greater Olkaria volcanic 701 

complex. Again, they highlight the influence of an exsolved volatile-rich phase, with negative 702 

Ce anomalies linked to an oxidising, halogen-rich exsolved volatile phase (Macdonald et al., 703 

2008). Direct evidence of volatile loss is also observed, with vesiculation common at the 704 

borders between magmatic inclusions and comenditic hosts (Macdonald et al., 2008). 705 

Macdonald et al. (2012) suggest that mafic recharge and underplating may be a fundamental 706 

source of volatiles for the Greater Olkaria volcanic complex. 707 

 708 

5.6 Magma fluxes in the MER 709 

The mass of a pre-eruptive exsolved volatile phase was calculated based on the assumption 710 

that any exsolved volatile phase that existed prior to the Daly Gap will have been lost through 711 

outgassing. Lee et al. (2016) examined the diffuse soil degassing in the Magadi-Natron 712 

Basin, on the border between Kenya and Tanzania, linking the loss of 4 Mt/yr CO2 to the 713 

extensional tectonics of the EARS. Extrapolation of their results provides estimates for a CO2 714 

flux on the order of tens of Mt per year for the entire Eastern branch of the EARS, 715 

comparable to emissions from the global mid-ocean ridge system (53-97 Mt/yr; Lee et al., 716 

2016). Numerous authors have highlighted the importance of structural controls on fluid and 717 

vapour migration in volcanic areas (Hutchison et al., 2015; Robertson et al., 2016), degassing 718 

in the MER is concentrated in discrete areas of volcanic and off-edifice activity (Hunt et al., 719 

2017). Characterisation of these areas led Hunt et al. (2017) to estimate a much lower CO2 720 

flux of 0.52-4.36 MT/yr for the central and northern portions of the MER and 3.9-32.7 MT/yr 721 

for the EARS.  722 

 723 
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Taking an average CO2 loss of 1.1 wt.% (see section 5.3.1), and assuming loss is solely via 724 

diffuse soil degassing, the CO2 fluxes presented by Hunt et al. (2017) may be used to 725 

estimate the mass of degassing basaltic melt per year of ~45-395 Mt beneath the MER and 726 

~355-2970 Mt beneath the EARS. Assuming a melt density of 2750 kg/m
3
  and crystal 727 

densities of 3320 kg/m
3
 (clinopyroxene), 3400 kg/m

3
 (olivine), and 2680 kg/m

3
 (plagioclase), 728 

typical phase proportions (40% plagioclase, 35% olivine and 25% clinopyroxene; Iddon et 729 

al., 2019), and a bulk crystallinity of 45%, these estimates of degassing mass of basalt equate 730 

to volumes of ~0.02-0.14 km
3
 per year and ~0.1-1 km

3
 per year for the MER and EARS 731 

respectively.    732 

 733 

If we assume an average crustal thickness of 32 km for the ~1000 km long MER (Casey et 734 

al., 2006), spreading rates of ~5 mm a year (Saria et al., 2014) would require the intrusion of 735 

~0.16 km
3
 magma a year if extension was predominantly magma-assisted (Bastow et al., 736 

2010; Keir et al., 2011; Kendall et al., 2005), comparable with the results of this study based 737 

on the upper bounds of CO2 flux estimates (Hunt et al., 2017). Wadge et al. (2016) have 738 

documented 21 historical eruptions along the EARS over the past 200 years. A minimum of 5 739 

km
3
 of predominantly basalt was erupted on to the surface, with high intrusion/extrusion 740 

ratios (4-15; Wadge et al., 2016). Based on these figures a magma flux for the whole EARS 741 

of ~0.13-0.40 km
3
/year may be estimated, which is within range of the magma degassing 742 

rates calculated above. 743 

 744 

6. Implications for geophysical volcano monitoring 745 

InSAR observations of volcano deformation are increasingly being used as a monitoring 746 

technique as satellite coverage grows. As a remote technique it is ideal for countries such as 747 

Ethiopia which have a high number of potentially active volcanic sites, many of which are 748 

largely inaccessible or too costly to monitor. Magma injection may cause an inflation of a 749 

volcanic edifice, whilst withdrawal might result in a period of deflation (Segall, 2013). 750 

Modelling of the spatial and temporal characteristics of the deformation signal can also be 751 

used to estimate the source depth and geometry, providing vital information about magma 752 

storage [Biggs et al., 2011; Hutchison et al., 2016a; Lloyd et al., 2018]. Using InSAR Biggs 753 

et al. [2011] identified four volcanic edifices in the MER (Aluto, Corbetti, Bora, and 754 

Haledebi; see figure 1 for locations) that have undergone significant deformation between 755 
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1993 and 2010. However, there are many factors that influence the deformation signal at a 756 

volcanic edifice. Magma rheology, edifice type, hydrothermal activity, tectonic setting, and 757 

stress fields all play a key role [Biggs et al., 2014b]. Some volcanoes will show significant 758 

pre- and syn-eruptive deformation, whilst some will not [Biggs et al., 2014], and the volume 759 

of erupted material is often much greater than the subsurface volume change implied by the 760 

deformation [Anderson and Segall, 2011; McCormick Kilbride et al., 2016; Rivalta and 761 

Segall, 2008; Segall, 2013].  762 

 763 

Understanding volatile behaviour is important for the interpretation of geodetic 764 

measurements. Exsolution of magmatic gases can lead to an inflation signal not related to 765 

magma injection, and outgassing or resorption into a crystalline mush can equally cause 766 

subsidence [Caricchi et al., 2014]. In these cases, a coupled geodetic and gravity survey can 767 

differentiate between the behaviour of melt and exsolved volatiles, as an exsolved volatile 768 

phase will lower the bulk magma density [Gottsmann and Battaglia, 2008]. The presence of a 769 

low density exsolved volatile phase will increase the compressibility of magma, which can 770 

result in muted ground displacements [Biggs et al., 2014; McCormick-Kilbride et al., 2016]. 771 

The difference between the volume erupted (𝑉𝑒) and the subsurface volume change (ΔV) is 772 

controlled by the bulk compressibility of the magma [Huppert and Woods, 2002]:  773 

𝛽𝑚 =
1

𝛽𝑟
+

1

𝜌

𝛿𝜌

𝛿𝑃
 

, where 𝛽𝑟 is the effective bulk modulus of the surrounding wall rock; 𝜌 is the bulk magma 774 

density; and P is pressure. The bulk compressibility of the country rock is also vital (Johnson, 775 

1992): 776 

𝛽𝑐 =
3

4𝜇
 

, where 𝜇 is the shear modulus of the host rock. Considering the simplest example of a 777 

spherical source, 𝑟, the ratio between 𝑉𝑒 and ∆V (for the ‘Mogi’ source) [Rivalta and Segall, 778 

2008]: 779 

𝑟 =
𝑉𝑒

∆𝑉
= 1 +

𝛽𝑚

𝛽𝑐
 

, would be 1 for an incompressible magma. However, a significant exsolved volatile phase 780 

will increase 𝛽𝑚 by an order of magnitude, therefore, a large volume eruption can be 781 
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accommodated by expansion of the remaining magma, resulting in a minor volume change in 782 

the reservoir (r>>1) [Johnson, 1992; McCormick Kilbride et al., 2016]. Country rock 783 

compressibility is different for deep prolate sources, where: 784 

𝛽𝑐 =
1

𝜇
 

, is more appropriate [Anderson and Segall, 2011; McCormick-Kilbride et al., 2016; Rivalta 785 

and Segall, 2008]. Crustal 𝜇  is not well constrained, it may range from ~0.1 GPa for very 786 

compliant rocks to 30 GPa for much stiffer crust [Gudmundsson, 2005]. The exact value for 787 

βr also varies, depending on the density of microfractures in the rock, but a value of 10
10

 Pa 788 

is typically used [Tait et al., 1989]. Assumptions about geometry and material properties are 789 

important, for example a sill geometry, which is perhaps more appropriate for the MER 790 

calderas, would be significantly more compressible than a spherical source [Biggs et al., 791 

2011]. 792 

 793 

Assuming no outgassing occurred, the 𝛽𝑚 of MER magmas was calculated to be between 794 

1.98 x 10
-8

 Pa
-1

 and 3.71 x 10
-9

 Pa
-1

 based on the results of the fractional crystallisation model 795 

and H2O-CO2 solubility pressure estimates. This gives predicted 𝑟 values of 23-16 for depths 796 

of 3-8 km, assuming a spherical source and 𝜇 of 0.3 GPa. Assuming a prolate source these 797 

values change to 17-12. As r is proportional to 𝛽𝑚, it is predicted to decrease with increasing 798 

magma reservoir depth. This analysis suggests that the geodetic displacements observed at 799 

MER volcanoes [Biggs et al., 2011; Hutchison et al., 2016a; Lloyd et al., 2018] are likely 800 

muted. For a cumulative subsurface volume change of 0.013 km
3
 at ~5 km depth, as observed 801 

by Hutchison et al. [2016] during rapid inflation events at Aluto, an eruptible volume of 802 

~0.25 km
3
 would be predicted (figure 9). For a subsurface volume change of 0.01 km

3
/y at 803 

~6.5 km depth, as observed by Lloyd et al. [2018] at Corbetti between 2009 and 2017, an 804 

eruptible volume of ~1.2 km
3
 would be predicted (figure 9).  805 

 806 

A number of volcanic monitoring techniques have been deployed across Ethiopia over the 807 

past decade. Mickus et al [2007] presented gravity data that imaged a Bouger anomaly 808 

beneath Aluto and Corbetti volcanoes that they interpreted to be high density bodies (~3000 809 

kg/m
3
) in the lower crust (7-17 km). This could imply that there was no low-density volatile-810 

rich cap at Aluto or Corbetti during the data acquisition period (i.e. outgassing occurred), and 811 
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that any subsurface volume changes observed from the deformation data would be equivalent 812 

to the eruptible volume of magma. However, it may also imply that the features responsible 813 

for the Bouger anomaly are denser and/or deeper than modelled [Mickus et al., 2007].    814 

 815 

The lower density of an exsolved volatile phase will also dramatically lower seismic 816 

velocities [Neuberg and O'Gorman, 2002]. Crustal velocities are typically 5-10% higher 817 

beneath the rift axis, thought to be the result of mafic intrusions beneath the different 818 

volcanic centres [Keranen et al., 2004]. However, low-velocity zones are also identified at 819 

upper crustal depths beneath these sites, with mid-crustal low-velocity zones also located 820 

beneath the WFB and SDFZ [Kim et al., 2012]. Wilks et al. [2017] identified seismic b value 821 

anomalies in the shallow crust beneath Aluto, thought to correlate with regions of gas 822 

accumulation. 823 

 824 

 As electrical resistivity is sensitive to fluid content, magnetotelluric (MT) surveys can 825 

identify the presence of partial melt beneath volcanoes [Johnson et al., 2016]. In section 3.5 it 826 

was highlighted that the electrical resistivity of a magmatic reservoir is dependent on the state 827 

of the magma itself [Gaillard and Marziano, 2005]. Dissolved volatiles can increase melt 828 

conductivity [Laumonier et al., 2017]; however, exsolved volatile phases have low 829 

conductivities (10
-2

-10 ohm m
-1

). This has led to resistive regions beneath volcanoes 830 

sometimes being interpreted as gas-rich caps [Aizawa et al., 2009]. This would still be 831 

consistent with the absence of increased electrical conductivity observed beneath Aluto 832 

[Hübert et al., 2018; Samrock et al., 2015]. However, if exsolved volatiles escape and mix 833 

with groundwater they can produce highly conductive regions of fluid [Aizawa et al., 2009]. 834 

This might be observed beneath Aluto, where shallow regions of conductivity have been 835 

interpreted as relating to active hydrothermal systems [Hübert et al., 2018; Samrock et al., 836 

2015].   837 

 838 

7. Conclusions 839 

Olivine- and quartz-hosted melt inclusions provide the first large-scale study of major, trace, 840 

and volatile element concentrations in MER melts. Modelling indicates that the pantelleritic 841 

quartz-hosted melt inclusion compositions can be achieved by protracted fractional 842 

crystallisation (>90%) of an enriched alkali-transitional basaltic parent similar to that of the 843 
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olivine-hosted melt inclusions. These parental melts are sourced from complex, vertically 844 

extended mafic magmatic systems, that exist both on- and off-axis.  845 

 846 

Mafic melts are saturated in H2O and CO2 at depths of >13 km. Over the course of the Daly 847 

Gap, melts saturate in both a sulfide phase and an exsolved volatile phase, into which S and 848 

halogens partition.  Sulfide settling and the formation of disseminated low density bubbles 849 

are expected to lower bulk magma density, promoting rise to shallow magma storage regions 850 

in the crust, where further fractionation is accompanied by the development of a substantial 851 

saline, exsolved volatile phase. There is no evidence of brine formation in the melt inclusion 852 

compositions. Possible fluxing of deep derived fluids is indicated by melt Li concentrations, 853 

perhaps suggesting magmatic underplating and/or magmatic recharge by more primitive 854 

compositions. Based on our results, an explosive, caldera-forming eruption (VEI >5) in the 855 

MER could outgas up to 2300 Mt H2O, 6 Mt CO2, 390 Mt S, 150 Mt F, and 150 Mt Cl into 856 

the lower troposphere or stratosphere. The S and halogen yield of such an eruption is 857 

significantly larger than would be expected from a metaluminous or peraluminous 858 

counterpart. These gas emissions would have severe environmental consequences and pose a 859 

risk to the health of humans and livestock in Ethiopia if they were injected into the lower 860 

troposphere.  861 

 862 

The accumulation of a large fraction (up to 4.5 vol% or 13 wt% at 200 MPa) of a pre-eruptive 863 

exsolved volatile phase may also cause the under-estimation of intruded magma volumes by 864 

geodetic monitoring. Subsurface changes in volume of 0.013 km
3
 and 0.07 km

3
 at 5-6 km 865 

depth inferred from ground displacements at Aluto and Corbetti may well correspond to 866 

much larger eruptible melt volumes of 0.25 km
3
 and 1.19 km

3
 if a low density, compressible 867 

exsolved volatile phase is present. The characteristics of this exsolved volatile phase will also 868 

have an effect on gravity, seismic, and electrical resistivity data, so must be considered as 869 

fledgling volcanic monitoring schemes continue to be developed in Ethiopia.  870 

 871 

A significant proportion of volatiles are also lost from deep mafic melts through diffuse 872 

degassing through the crust. Based on CO2/Ba ratios we calculate that ~1.1 wt.% CO2 may be 873 

lost from basalts in the MER system. This suggests that recently presented CO2 fluxes would 874 
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require ~0.02-0.14 km
3
 basaltic melt to be intruded every year beneath the MER, consistent 875 

with previous magma flux estimates of ~0.16 km
3
/year for the MER [Saria et al., 2014]. 876 
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Figure captions 892 

Figure 1: Topographic map of the Main Ethiopian Rift (MER). Axis-central calderas are 893 

outlined in dark blue, with Quaternary magmatic segments deposits highlighted in white 894 

(adapted from Corti, 2008). The red lines represent the Wonji Fault Belt, where the majority 895 

of extensional stress is accommodated; the black lines represent the older, less active border 896 

faults (adapted from Corti, 2008). 897 

Figure 2: Melt inclusion and matrix glass analyses. Plot a) shows the total alkalis versus 898 

silica (TAS) diagram..The melt inclusions plotting in the basalt field are hosted by olivine; 899 

the melt inclusions in the trachyte and rhyolite fields are hosted by quartz. Plot b) shows the 900 

classification diagram for peralkaline rhyolites and trachytes [Macdonald, 1974]. Plots c)-k) 901 

are major element variation diagrams.  Two sigma errors, unless shown, are smaller than 902 

symbols. 903 

Figure 3: Trace element geochemistry for basaltic, trachytic and peralkaline rhyolitc melt 904 

inclusions and matrix glasses of Main Ethiopian Rift volcanic rocks erupted from Kone, 905 

Aluto, Fentale, Butajira Volcanic Field and Corbetti. Melt inclusions with Zr <500 ppm 906 

hosted by Qz; Zr > 500 ppm hosted by quartz. Melt inclusion and matrix glass trace element 907 

compositions plotted against Zr (a-h) and Rb/Nb plotted against Rb (i); lines show 908 

compositions predicted by fractional crystallisation Rhyolite-Melts models [Ghiorso and 909 

Gualda, 2015] for Kone. The lines distinguished by crosses show feldspar assimilation 910 

models for Kone and Fentale (a and b). The shaded region in i shows the field of Precambrian 911 

basement  [Peccerillo et al., 1998]. 912 

Figure 4: Melt inclusion and matrix glass volatile element compositions plotted against Zr; 913 

the degree of fractionation, predicted from trace element behavior, is shown along the top. 914 

The black lines show where fractional crystallisation has been calculated using the most 915 

primitive melt after the Daly Gap and blue lines show predicted melt compositions during 916 

fractional crystallisation in the presence of an exsolved volatile phase. Bulk fluid-melt 917 

partition coefficients (from +1 to 0) for the models are shown above relevant lines. The 918 

dotted black lines (c) show the sulfur content at sulfide saturation (SCSS), as predicted by the 919 

models of Fortin et al. (2015) and Jugo et al. (2010) respectively. The red solid line (d) shows 920 

Cl melt solubility as predicted by the model of Webster et al. (2015).  921 

Figure 5: Plots of melt CO2 content versus melt H2O content (wt%) for a) olivine-hosted 922 

melt inclusions and b) quartz-hosted melt inclusions. Melt storage pressure conditions 923 
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estimated using Papale [1999]. Isobars for mafic melt storage were calculated based on a 924 

temperature of 1170 °C [Iddon et al., 2019], and for evolved melt storage a temperature of 925 

~765 °C (upper bounds) [Gleeson et al., 2017] was assumed. c) Depths of magma storage 926 

(assuming a crustal density of 2800 gm
-3

) [Wilks et al., 2017] plotted against longitude. 927 

Figure 6: Ratios of volatile to non-volatile incompatible elements in Main Ethiopian Rift 928 

melt inclusions. CO2/Ba ratios (a) are used to estimate original CO2 concentrations in primary 929 

melts; ratios for enriched [Rosenthal et al., 2015] and non-enriched primary melts [Saal et 930 

al., 2002] are shown by dashed lines. H2O/Ce ratios (b) are used to estimate original H2O 931 

concentrations in primary melts; estimates of primary melts  [Dixon et al., 2002; Le Voyer et 932 

al., 2017] are shown by dashed lines. 933 

Figure 7: Halogen contents against peralkalinity in Main Ethiopian Rift melt inclusions (a-934 

b), expressed as the agpaitic index (A.I., defined by molar (Na + K)/Al), and H2O contents (c-935 

d).  936 

Figure 8: Schematic showing a vertically extended magmatic system beneath the MER. 937 

Mafic melts, saturated in H2O and CO2, are stored down to at least 15 km beneath both the 938 

axis-central caldera systems (right) and off-axis volcanic fields (left). Magmas become 939 

saturated in sulfide (which may settle out) and an exsolved volatile phase within the Daly 940 

Gap, which may promote magma buoyancy and rapid rise through the crust. Beneath the 941 

axis-central calderas melts rise to 6-8 km depth, where they begin to fractionate. Highly 942 

evolved residual liquids (peralkaline rhyolites) develop in an extensive mush-rich reservoir 943 

and a volatile-rich roof zone may form. Mafic melts are forced to erupt around the shadow 944 

zone, external of caldera margins. Mafic recharge may also result in the fluxing of deep CO2- 945 

and Li-rich fluids to shallower levels. The exsolved volatiles are thought to interact with 946 

active hydrothermal systems, whilst intense pre- and syn-rift faulting also likely aids 947 

outgassing (white arrows).  948 

Figure 9: Plot showing the changes in volume observed using InSAR at Aluto and Corbetti 949 

volcanoes over the past decade. Based on the assumption that no outgassing has occurred, r 950 

values (real magma volume change/observed volume change from InSAR) were predicted at 951 

a depth of ~5 km for Aluto and ~6.5 km for Corbetti. The eruption volumes these correspond 952 

to predict that large volumes of eruptible magma may be responsible for much smaller 953 

changes in volume observed at the surface due to the enhanced compressibility of vapour-954 

bearing magma.       955 
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