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Abstract

In this paper, we present a model-based reinforcement learning system where the
transition model is treated in a Bayesian manner. The approach naturally lends
itself to exploit expert knowledge by introducing priors to impose structure on the
underlying learning task. The additional information introduced to the system
means that we can learn from small amounts of data, recover an interpretable
model and, importantly, provide predictions with an associated uncertainty. To
show the benefits of the approach, we use a challenging data set where the
dynamics of the underlying system exhibit both operational phase shifts and
heteroscedastic noise. Comparing our model to NFQ and BNN+LV, we show how
our approach yields human-interpretable insight about the underlying dynamics
while also increasing data-efficiency.

1. Introduction

Machine learning methods [1] are designed to solve tasks where the underlying
system we want to model is only partly known or understood. The hope when
using machine learning methods is that we can reduce this uncertainty by
exploiting statistical patterns in data generated from the underlying system.

Reinforcement learning (RL) [2] is a machine learning paradigm designed to
learn in a dynamic environment where we can specify a goal or have a notion
of what a desirable behaviour is. The goal of RL is to learn a policy which
dynamically chooses actions in the environment in order to achieve a goal or a
behaviour. Specifically, an RL agent’s task is to learn a policy π which, given
the current state s of an environment, chooses an action a to achieve the goal
specified by a reward function r mapping system states to numerical rewards.
To learn a policy, any RL system needs to understand the underlying dynamics
governing the system, how the transition between states is effected by the actions
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taken. The next state s′ is determined by the latent and possibly stochastic
transition function s′ = f(s,a). How the dynamical system is treated is one of
the main distinctions among different approaches to RL. In model-based RL,
the dynamic model is an explicit part of the system, while in the model-free
counterpart the transition dynamics are implicit and cannot be disentangled
from the system.

Applying RL in an industrial setting often implies trying to derive an al-
ternative more efficient controller for an already existing system. In a critical
application it is unlikely that we will be able to deploy an untested policy as
this can lead to safety issues. This means that in practice we are often limited
by previously collected data created by a different, possibly known, control
mechanism in order to learn our model. In the literature, this scenario is re-
ferred to as batch RL [3], where we are presented with a set of state transitions
D = {(sn,an, s′n)}Nn=1 and are unable to interact with the original system to
find a policy. In order to be able to derive an efficient policy in this scenario,
we need to use the available data as efficiently as possible. Data efficiency in
machine learning comes from reducing the search space of solutions. In other
words, data efficiency arises from being able to exploit as much prior knowledge
of the system as possible [1].

To be able to use the available data as efficiently as possible we therefore
need a model which provides explicit and interpretable handles such that we
can easily introduce priors. The model-based approach to RL describes each
component of the system in a modular fashion thereby providing an interface
to incorporate prior knowledge. The challenge is how these priors should be
specified and how they should be included such that the hypothesis space can
be limited in a manner coherent with our knowledge of the system.

Gaussian processes (GPs) are stochastic processes that can be used to specify
probability distributions over the space of functions. While a GP specifies a dis-
tribution with support for all functions, it efficiently concentrates its probability
mass to functions with specific characteristics. These characteristics make GPs
well suited for RL as they do not impose hard constraints while still placing
a significant structure on the space of functions. In [4] the authors propose a
model-based RL method where Gaussian processes are used as priors for the
dynamics. They provide a principled approach of taking model uncertainty
into account when evaluating the performance of a policy, thereby reducing the
impact of model-bias. However, the approach has several restrictions, transition
dynamics are modelled as standard Gaussian processes (GPs) and policies and
rewards must be of specific forms.

In this work, we will show how we can alleviate some of the limitations of
[4] to provide a richer and more efficient RL model. We will show how we can
introduce additional constraints on the dynamic model allowing for multiple
transitional signatures to be active simultaneously. Incorporating this knowledge
facilitates learning by allowing us to more precisely state what we want to learn
thereby significantly reducing the data requirements. Furthermore, decomposing
the transition model into several parts allows us to use reward shaping [2] in
order to discourage policies based on dynamic characteristics.
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Introducing constraints on the dynamic model based on abstract knowledge is
an inherently problem-dependent process. This work explores this process for the
heteroscedastic and bimodal Wet-Chicken benchmark [5, 6] which is both easy
to understand and challenging to model. A central challenge in this benchmark
is how to formulate a model which can represent bimodalities. One approach is
presented in [7], where multimodal regression tasks are interpreted as a density
estimation problem. A high number of candidate distributions is reweighed to
match the observed data without modeling the underlying generative process.
Reformulated in a Bayesian framework using latent variables, this approach has
been applied to the Wet-Chicken benchmark in [8, 9]. However, such models are
hard to interpret as they do not yield explicit models for the different modalities
or their relative importance. In this work, we are interested in formulating a
dynamics model which yields new interpretable insights about the underlying
system. We formulate a probabilistic model which contains such explicit models
by interpreting the Wet-Chicken benchmark as a data association problem [10, 11].
While many probabilistic interpretations of this problem assume that the relative
importance of different modes is constant [12, 13], we base our formulation on
the DAGP model [14] which learns a non-parametric model of each mode and
where the associations between the modes themselves is further controlled by a
non-stationary stochastic process.

The paper is outlined as follows. After introducing the Wet-Chicken bench-
mark, we show how high-level knowledge about this system can be used to
impose Bayesian structure. We derive an efficient inference scheme for both
the dynamics model and for probabilistic policy search based on variational
inference. We show that this approach yields interpretable models and policies
and is significantly more data-efficient than less interpretable alternatives.

2. The Wet-Chicken Benchmark

In the Wet-Chicken problem [5, 6], a canoeist is paddling in a two-dimensional
river. The canoeist’s position at time t is given by st = (xt, yt) ∈ R2, where xt
denotes the position along the river and yt the position across it. The river is
bounded by its length l = 5 and width w = 5. There is a waterfall at the end of
the river at x = l. The canoeist wants to get close to the waterfall to maximize
the reward r(st) = rt = xt. However, if the canoeist falls down the waterfall, he
has to start over at the initial position (0, 0).

The river’s flow consists of a deterministic velocity vt = yt · 3/w and stochastic
turbulence bt = 3.5 − vt, both of which depend on the position on the y-axis.
The higher yt is, the faster the river flows but also the less turbulent it becomes.
The canoeist chooses his paddle direction and intensity via an action at =
(at,x, at,y) ∈ [−1, 1]2. The transition function f : (st,at) 7→ st+1 = (xt+1, yt+1)
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is given by

xt+1 =


0 if x̂t+1 > l

0 if x̂t+1 < 0
x̂t+1 otherwise

yt+1 =


0 if x̂t+1 > l or ŷt+1 < 0
w if ŷt+1 > w

ŷt+1 otherwise
(1)

where

x̂t+1 = xt + (1.5 · at,x − 0.5) + vt + bt · τt,
ŷt+1 = yt + at,y,

(2)

and τt ∼ U(−1, 1) is a uniform random variable that represents the turbulence.
There is almost no turbulence at y = w, but the velocity is too high to paddle

back. Similarly, the velocity is zero at y = 0, but the canoeist can fall down
the waterfall unpredictably due to the high turbulence. A successful canoeist
must find a balance between handling the stochasticity and velocities within the
capabilities of the canoeist to get as close to the waterfall as possible. However,
as the canoeist moves closer to the waterfall, the distribution over the next states
become increasingly more bi-modal as the probability of falling down increases.
Together with the heteroscedasticity introduced by the turbulence dependent on
the current position, these properties make the Wet-Chicken problem especially
difficult for model-based reinforcement learning problems.

3. Probabilistic Policy Search

We are interested in finding a policy specified by the parameters θπ which
maximizes the discounted return Jπ(θπ) =

∑T
t=0 γ

tr(st) =
∑T
t=0 γ

trt with a
constant discount factor γ ∈ [0, 1]. Starting from an initial state s0 we generate
a trajectory of states s0, . . . , sT obtained by applying the action at = π(st)
at every time step t. The next state is generated using the (latent) transition
function f , yielding st+1 = f(st,at).

Many environments have stochastic elements, such as the random drift in the
Wet-Chicken benchmark from Section 2. We take this stochasticity into account
by interpreting the problem from a Bayesian perspective where the discounted
return specifies a generative model whose graphical model is shown in Fig. 1.
Because of the Markov property assumed in RL, conditional independences
between the states yield a recursive definition of the state probabilities given by

p(st+1 |f,θπ) =
∫

p(f(st,at) |st,at) p(at |st,θπ) p(st) dat dst,

p(rt |θπ) =
∫

p(r(st) |st) p(st |θπ) dst.
(3)

With stochasticity or an uncertain transition model, the discounted return
becomes uncertain and the goal can be reformulated to optimize the expected
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Figure 1: The generative process for the return Jπ, where violet nodes are observed and
parameters are shown in yellow. It shows how starting from s0, a trajectory of length T is
generated with the policy parameterized by θπ . The return is generated by the rewards which
depend on their respective states only.

return

E[Jπ(θπ)] =
T∑
t=0

γt Ep(st|θπ)[rt]. (4)

A model-based policy search method consists of two key parts [4]. First, a
dynamics model is learned from state transition data. Second, this dynamics
model is used to learn the parameters θπ of the policy π which maximize the
expected return E[Jπ(θπ)]. We discuss both steps in the following.

3.1. An Interpretable Transition Model
We formulate a probabilistic transition model-based on high-level knowledge

about the Wet-Chicken benchmark. Importantly, we do not formulate a specific
parametric dynamics model as would be required to derive a controller. Instead,
we make assumptions on a level typically available from domain experts.

We encode that given a pair of current state and action ŝt = (st,at), the next
state st+1 is generated via the combination of three things: the deterministic
flow-behaviour of the river ft, some heteroscedastic noise process σt and the
possibility of falling down λt. This prior imposes structure which allows us to
explicitly state what we want to learn from the data and where we do not assume
prior knowledge: How does the river flow? What kind of turbulences exist?
When does the canoeist fall down? How do the actions influence the system?

Each question is explicitly answered by one of the model’s components. In
Section 4 we will visualize these components and discuss how they can be used
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Figure 2: The graphical model for the DAGP-based transition model, where violet nodes are
observed and variational parameters are blue. This model separates the flow-behaviour of the
river ft, the heteroscedastic noise process σt and the possibility of falling down λt. Latent
variables lt represent the belief that the tth data point is a drop event.

by experts to gain new insights about the system. Additionally, interpretable
transition models help to build trust in derived policies: Since experts can assess
the plausibility of the transition model, successful policies are unlikely to behave
unexpectedly on the true system.

We formulate a graphical model in Fig. 2 using the data association with GPs
(DAGP) model [14], which allows us to handle the multi-modality introduced by
falling down the waterfall. We specify this separation via the marginal likelihood

p(st+1 | ŝt) =
∫

p(st+1 |σt,ft, lt) p(lt | ŝt) p(σt | ŝt) p(ft | ŝt) dσt dlt dft, (5)

where ft =
(
f (1)
t , . . . ,f

(K)
t

)
. The marginal likelihood consists of the two GPs

p(σt | ŝt) and p(ft | ŝt) and the two likelihoods

p(st+1 |σt,ft, lt) =
K∏
k=1
N
(
st+1

∣∣∣f (k)
t ,
(
σ(k)
t

)2)I(l(k)
t =1)

,

p(lt | ŝt) =
∫
M(lt |softmax(λt)) p(λt | ŝt) dλt

(6)

where M denotes a multinomial distribution. These likelihood describe the
regression and classification tasks implied by the problem respectively: In our
case, we use K = 2 modes, one for staying in the river and one for falling
down the waterfall. For every data point we infer a posterior belief p(lt) about
which mode the data point belongs to, as we assume this separation can not be
predetermined using expert knowledge.

We place independent GP priors on the f (k), σ(k) and λ(k). Given the data
a fixed set of assignments L, our modelling assumptions imply independence
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between the K modes. However, this independence is lost if the assignments are
unknown and a discrete optimization problem has to be solved when doing joint
inference over the different modes and the association problem. We approximate
the exact posterior via a factorized variational distribution

q(f ,λ,σ,U) =
K∏
k=1

T∏
t=1

q(f (k)
t ,u

(k)) q(λ(k)
t ,u

(k)
λ ) q(σ(k)

t ,u
(k)
σ ) (7)

which introduces variational inducing inputs and outputs U as described in [14–
16]. These inducing inputs independently characterize the respective model parts
and enable us to do inference via stochastic optimization.

The variational parameters are optimized by minimizing a lower bound to the
marginal likelihood which can be efficiently computed via sampling and enables
stochastic optimization.

LDAGP = Eq(F ,λ,σ,U)

log
p
(
S′,F ,λ,σ,U

∣∣∣ Ŝ)
q(F ,λ,σ,U)


=

T∑
t=1

Eq(ft)[log p(s′t |ft,λt,σt)] +
T∑
t=1

Eq(λt)[log p(lt |λt)]

−
K∑
k=1

KL(q
(
u(k),u(k)

λ ,u
(k)
σ

)
‖ p
(
u(k),u(k)

λ ,u
(k)
σ

)
)

(8)

To gain informative gradients with respect to the assignments l and assignment
process λ, we use a continuous relaxation based on Concrete random variables [17].
We represent the belief about lt as a K-dimensional discrete distribution q(lt).
Instead of drawing discrete samples from q(lt) when calculating LDAGP, we draw
samples l̂t from a concrete random variable. Based on a temperature parameter,
concrete random variables yield samples which are almost discrete but which
still yield informative gradients. For details we refer to [14].

We obtain an explicit representation of the GP posteriors during variational
inference which allows us to efficiently propagate samples through the model to
simulate trajectories used for policy search. Predictions for an unknown state ŝ∗
are mixtures of K independent Gaussians given by,

q(s′∗ | ŝ∗) =
∫ K∑

k=1
q(l(k)
∗ | ŝ∗) q(s′(k)

∗ | ŝ∗) dl∗

=
∫ K∑

k=1
q(l(k)
∗ | ŝ∗) q(s′(k)

∗ |f (k)
∗ σ

(k)
∗ ) q(f (k)

∗ ,σ
(k)
∗ | ŝ∗) dl∗ df∗ dσ∗

≈
K∑
k=1

l̃(k)
∗ s̃
′(k)
∗ .

(9)
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We sample from the assignment process l∗ and heteroscedastic noise process σ∗.
The K predictive posteriors q(s′(k)

∗ |f (k)
∗ σ

(k)
∗ ) are then given by K independent

shallow GPs and can be computed analytically.

3.2. Policy Learning
After training a transition model, we use the variational posterior q(st+1 |

ŝt) to train a policy by sampling roll-outs and optimizing policy parameters via
stochastic gradient descent on the expected return E[Jπ(θπ)]. The expected
return is approximated using the variational posterior given by

E[Jπ(θπ)] =
T∑
t=0

γt Ep(st|θπ)[rt] ≈
T∑
t=0

γt Eq(st|θπ)[rt]

=
∫ T∑

t=0

[
γt Eq(st|θπ)[rt]

]
p(s0)

T−1∏
t=0

q(st+1 |st,θπ) ds0 . . . dsT

≈ 1
P

P∑
p=1

T∑
t=0

γtrpt .

(10)

We expand the expectation to explicitly show the marginalization of the states
in the trajectory. Due to the Markovian property of the transition dynamics,
the integral factorizes along t. The integral is approximated by averaging over
P samples propagated through the model starting from a known distribution
of initial states p(s0). State transitions can be efficiently sampled from the
variational posterior of the dynamics model by repeatedly taking independent
samples of the different GPs.

The expected return in (10) can be optimized using stochastic gradient
descent via the gradients

∇θπJπ(θπ) ≈ 1
P

P∑
p=1

T∑
t=0

γt∇θπr
p
t (11)

of the Monte Carlo approximation as they are an unbiased estimator of the
true gradient. The gradients of the samples can be obtained using automatic
differentiation tools such as TensorFlow [18]. The P roll-outs can be trivially
parallelized. Importantly, we only need a small number of Monte Carlo samples
at every iteration, since we use the gradients of the samples directly.

4. Results

To solve the Wet-Chicken problem, we first train the dynamics model on
batch data sampled from the true dynamics and then optimize neural policies
with respect to this dynamics model. As the DAGP-based dynamics model
is designed to be interpretable, we first discuss how, additionally to a joint
posterior, the independent posteriors of its components yield insights about
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Figure 3: The separation of different aspects of the Wet-Chicken in DAGP-based transition
models benchmark yields new and interpretable information about the underlying dynamics.
The different parts of the model explicitly show flow speeds (Fig. 3a), turbulence (Fig. 3b),
drop behaviour (Fig. 3c) and drop probabilities (Fig. 3d) with respect to the current position
in the river and action a = 0. The model has learned that the river is turbulent on the left
and fast on the right, leading to consistent medium drop probabilities on the left due to
stochasticity and a sharp boundary on the right, where the flow speed dominates. Note that
a drop resets the position to the initial state irrespective of the current state. It is therefore
correctly learned to be represented by the constant zero function (Fig. 3c).

the Wet-Chicken problem. We then show how successful policies can be found
with less data compared to the model-free NFQ [19] and model-based Bayesian
Neural Networks with latent variables (BNN+LV) [8], two approaches which
do not makes use of high-level expert knowledge. Thirdly, we show how the
human-interpretable components of the dynamics models can be used for reward
shaping, allowing us to easily formulate a requirement for conservative policies.

4.1. Dynamics Model
The benchmark has two-dimensional state and action spaces from which we

sample uniform random transitions with varying N in the range 100 to 5000.
For N ≥ 250, our model is able to identify the underlying dynamics. In Fig. 4
we show the joint predictive posterior of a DAGP-based transition model. The
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Figure 4: Linear cuts through the DAGP-based transition model with the waterfall on the
right at xt = 5. The plots show the dependency between xt and xt+1 with respect to the
action at = 0 and, from top to bottom, yt ∈ {0, 1, 2.5, 4, 5}. The DAGP-based transition
model successfully separates the two modes introduced through flow (blue) and drop (green)
behaviours and predicts the probability of being assigned to the drop mode (violet). While
drops can be modelled using a constant noiseless function, the flow speed (gradient and bias)
and heteroscedastic noise (variance) varies in the different cuts. For low yt, the river flows
slowly but is very turbulent, while for high yt, the river flows fast but deterministically.

10



different plots show linear cuts through the Wet-Chicken system with respect to
the action at = 0 and yt ∈ {0, 1, 2.5, 4, 5}. The transition model has successfully
identified the two modes introduced through flow and drop behaviours and their
relative importance. These cuts require additional examination to recover new
knowledge about the system’s behaviour. In contrast, the separation of the
learning problem in the DAGP-based dynamics model gives us explicit and
separate posteriors about the different system components via the independent
GP posteriors shown in Fig. 3. This belief can directly be reasoned about with
experts to evaluate the environment in which policies will be trained, raising
confidence in their correctness.

While drops can be modelled using a constant noiseless function, the flow
speed and heteroscedastic turbulence varies throughout the system. For low y
the river flows slowly but is very turbulent while for high y the river flows fast
but deterministically. In the turbulent regime, falling down is possible but not
certain for most x, while in the flow dominated regime, a drop becomes highly
probable under a certain distance from the waterfall. Note that even though
the turbulence as defined in Section 2 is independent of x, the heteroscedastic
noise process has uncovered the implicit dependency for high x as most possible
turbulence values lead to falling down and thus assignment to the other mode.
Similarly, the flow speed shown in Fig. 3a is negative in the top left corner. This
is due to the fact that the flow mode models the position after one step under the
condition of not falling. As most turbulence into the direction of the waterfall
leads to a drop, the posterior mean is further away from the waterfall as the
turbulence dominates the low flow speed on the left side of the river.

4.2. Policy Learning
Given a posterior for the dynamics model, we now train a neural policy using

probabilistic model rollouts. We sample initial states from the training data,
use a horizon of T = 5 steps and average over P = 20 samples with γ = 0.9.
We use a two-layer neural network with 20 ReLU-activated units each as our
policy parametrization. For every state transition, we sample independently
from the different model components to generate a sample for the next state
using (9). This incorporates both the stochasticity in the system introduced via
heteroscedastic noise and the Bayesian uncertainty about the correct model in
the policy search. During training, the policy thus implicitly learns to consider
the stochasticity of the Wet-Chicken benchmark as different sample-trajectories
generate gradients with respect to different realizations of the stochasticity of
the Wet-Chicken benchmark. Figure 5b shows how a successful policy has found
a trade-off between the unpredictability on the left and the uncontrollable speed
on the right.

In Table 5a, we compare policy search based on the DAGP-based dynamics
model with a standard GP dynamics model and NFQ. We present expected
returns for training runs with different amounts of data averaged over 10 ex-
periments together with standard errors. A policy applying uniformly random
actions yields a return of about 1.5 and a return above 2.2 indicates that a
successful policy has been found. We ran NFQ for 20 full model learning and
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N NFQ BNN+LV GP DAGP
100 0.66± 0.16 — 1.41 ± 0.01 1.18± 0.09
250 1.71± 0.07 1.62± 0.20 1.54± 0.01 2.33 ± 0.01
500 1.60± 0.10 2.18± 0.07 1.56± 0.01 2.25 ± 0.01
1000 1.99± 0.06 2.27± 0.01 2.13± 0.01 2.32 ± 0.01
2500 2.26± 0.02 2.30 ± 0.01 1.91± 0.01 2.28± 0.01
5000 2.33 ± 0.01 2.30± 0.01 1.91± 0.01 2.28± 0.01

(a) Comparison of expected returns

0 2.5 5

0

2.5

5
waterfall

y

x

(b) A successful Wet-Chicken policy

Figure 5: Using interpretable DAGP-based transition models with structurally informative
priors, successful policies can be learned based on 250 observations. In contrast, about 2500
observations are needed to find a policy using the model-free NFQ. As GP based transition
models are not capable of representing bimodal dynamics, training does not yield successful
policies. The chosen optimal movement direction of a successful policy (right) is denoted by
both the arrows and background color.

sampling iterations using a neural network with one 10-unit hidden layer with
sigmoid activations.

A standard GP cannot model heteroscedastic noise or multi-modality. For
any point in the input space, the GP can therefore only predict that the agent
will always fall down, never fall down or, via very high uncertainties, that any
state in system is possible. None of these possibilities represent the dynamics
well enough to allow the policy search to derive a policy, illustrating our need
for a more structured model. For N ≥ 250, the DAGP-based dynamics model
identifies the underlying dynamics well and policies can be found reliably.

BNN+LV is a more expressive model that can represent both heteroscedas-
ticity and multi-modality. Due to the model’s structure however, it is hard to
incorporate high-level expert knowledge and therefore, more sturcture has to be
learned from the data. BNN+LV reliably finds good policies for N ≥ 1000 and
sometimes finds good policies for N = 500. As this approach is model-based
and formulates a reasonable general-purpose prior on the wfor the dynamics, the
results fall between the more informed DAGP, which is successful with less data,
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Training Original Conservative Drop
Reward Return Return %
rorig 2.32 ± 0.01 −1.22± 0.02 21.8± 0.2
rcons 2.17± 0.01 −1.00 ± 0.01 18.9 ± 0.1

(a) Drop risk reduction with reward shaping

0 2.5 5
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2.5

5
waterfall

y

x

(b) A conservative Wet-Chicken policy

Figure 6: As the different components of a DAGP-based transition model are easily inter-
pretable, they can be used for reward shaping. We formulate a conservative reward function
rcons which penalizes drops and can easily be evaluated in the transition model. A resulting
policy (right) has worse return with respect to the original reward function rorig but effectively
reduces the risk of falling.

and NFQ, which is more uninformed.
NFQ is a model-free approach. Instead of learning a dynamics model and

using rollouts in that model to find a good policy, NFQ directly models the
optimal Q-function and thus the optimal policy. A Q-function represents the
expected return after taking a specified action in a specified state. Since the
expected return already takes into account both the heteroscedasticity and multi-
modality of the system, the Q-function itself can be modelled with a standard
function approximator such as a neural network. Thus, no special modelling is
needed when applying NFQ to the Wet-Chicken benchmark and given enough
data, NFQ is able to find successful policies. However, at the same time, not
modelling the dynamics explicitly also prevents us from utilising the high-level
expert knowledge we have about the system, thus increasing the required amount
of data: Using DAGP-based dynamics models, a successful policy can be found
with about an order of magnitude less data.

4.3. Reward Shaping
We have shown how a dynamics model informed by high-level expert knowl-

edge increases data efficiency. A further advantage of the decomposition of the
dynamics model in interpretable components is that the predictions of these
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DAGP
N K = 1 K = 2 K = 3 K = 4 K = 5
250 1.41± 0.01 2.33 ± 0.01 1.64± 0.38 1.31± 0.25 1.65± 0.08
500 1.54± 0.01 2.25 ± 0.01 1.97± 0.23 1.48± 0.21 2.14± 0.10
1000 2.13± 0.01 2.32 ± 0.01 1.99± 0.17 2.09± 0.12 2.16± 0.09
2500 1.91± 0.01 2.28 ± 0.01 2.15± 0.03 2.06± 0.12 2.17± 0.03
5000 1.91± 0.01 2.28 ± 0.01 2.19± 0.06 1.95± 0.16 2.08± 0.13

Table 1: Comparison of expected returns for different settings of K

components can be used to influence the policy search. In this example, we want
to find a more conservative policy which, when compared to Fig. 5b, sacrifices
some return in order to avoid falling down the waterfall.

Any successful agent has the implicit incentive to avoid drops as they move the
canoeist away from the waterfall. However, a successful policy still accepts that
it will fall down sometimes due to turbulence. To encourage more conservative
behaviour, we use a conservative reward

rcons(s) = rorig(s) · (1− p(drop |s))− 5 · p(drop |s) (12)

which includes the original Wet-Chicken reward function rorig((x, y)) = x. For
every state, the DAGP-based dynamics model yields an explicit drop-probability
which can easily be evaluated. The conservative reward punishes a high drop
probability reweighed with the maximum original reward maxs rorig(s) = 5.

Figure 6 shows a resulting conservative policy. Such a policy avoids both the
turbulent states on the left and the fast flowing states on the right. It tries to
reach a sweet spot, which, compared to Fig. 5b, is further away from the waterfall
and therefore safer. We compare 10 runs with N = 1000 observations using the
original reward and the conservative reward. The resulting conservative policies
yield lower return than the more aggressive default policies but reliably reduce
drop probabilities as well. The interpretable nature of the dynamics models have
allowed us to easily influence policy behaviours.

4.4. Effects of Model Misspecification
In Section 3 we have formulated a dynamics model informed by high-level

expert knowledge. One important insight we assumed is the bimodal nature
of the Wet-Chicken problem introduced by the waterfall. In Section 4.2, we
compared our model to standard GPs and showed that modelling multi-modality
is critical to solve Wet-Chicken. We extend this comparison in this experiment
and discuss the effects of model misspecification on our model’s performance.
Specifically, we investigate the case where additional modes are available to
dynamics model to solve the underlying data association problem.

Table 1 shows results for K ∈ {1, . . . , 5}, where K = 1 is equivalent to
standard GPs. All models have been trained for the same number of iterations
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(a) Transition model with K = 4 and successful policy training
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(b) Transition model with K = 4 and failed policy training

Figure 7: Comparison of linear cuts through two DAGP-based transition models with K = 4
at yt = 5 and at = 0. The respective upper plots show the predictive posterior of the different
modes while the lower plots show assignment probabilities to the different modes. For both
models, one mode (green, dotted) model drops and two modes (blue and yellow, dashed)
represent flow behaviour. A third more uninformed mode (violet) is almost irrelevant in the
first model but explains some data through a high noise variance in the second model. A
significant amount of predictions from the second model are uninformed, leading to the failure
of the policy search.
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and, for K > 1, all models have comparable marginal likelihoods. While 250
data points are enough with K = 2 to reliably solve the Wet-Chicken problem,
more data is needed until working policies can be found with K > 2 (e.g. for
K = 5, double the data was needed until one of the runs found a working policy).
Most notably, performance fluctuates significantly with misspecified models for
different repetitions of the same experiment and good policies can not be found
reliably.

Using the additional modes available, the model can now find representations
of the systems where multiple modes jointly represent the river’s flow. This
showcases how data association problems are inherently ill-posed in general [10,
11]. The additional representative power for K > 2 introduces symmetries in
the optimization landscape which both significantly complicate training [12, 20]
and lead to undesired generalization behaviour which is not driven by knowledge
about the underlying system.

An example for undesired generalization is shown in Fig. 7 which compares
two models trained with K = 4 and N = 2500. While both models explain
the overall training data well, the cuts through the system at yt = 5 give an
intuition why the first model leads to a successful policy, while the second model
does not. Both models represent drops via one of the modes and share the
remaining three modes to jointly explain the flow behaviour. In the first model,
two alternating modes have learned essentially equivalent models and a third
more uninformed mode is almost irrelevant. The second model is similar, but the
uninformed mode’s model is closer to the RBF prior and more relevant. Note
that due to the high noise variance, this choice of model still explains the data
only slightly worse. Still, the second model does not generalize according to the
underlying system. A significant amount of predictions from the second model
are uninformed, leading to the failure of the policy search.

Significantly longer training or specialized optimization schemes may lead to
robust inference for K > 2. However, this experiment shows the significance of
encoding available abstract prior knowledge to avoid pathologic model behaviours.
Models for K = 2 both reliably identify the system using standard optimization
methods and yield immediately interpretable results.

5. Conclusion and Discussion

In this paper we have presented a Bayesian reinforcement learning model-
based on non-parametric Gaussian process priors. The model is motivated by
the observation that in real world scenarios high-level prior knowledge of the
system dynamics is often available. We believe that many tasks are characterised
by dynamics that can be decomposed into several attributes. For example, when
a physical structure is excited by a force oscillating at its natural frequency its
response will change drastically. The approach we have presented is based on
learning a modular dynamic model which decomposes this type of transitional
behaviour into separate components. The model learns both the individual
components and the underlying structure of how the components interact within

16



the system. The use of Gaussian process priors to quantify the uncertainty
within components allows us to perform probabilistic policy search.

The interpretable structure of our model facilitates data efficient learning
by easily incorporating prior knowledge. We showed experimentally how this
significantly reduces the data requirements compared to a model free approach.
Furthermore, the same knowledge can be used as a means for directing the
policy search by discouraging solutions which exhibit a specific dynamic, such as
avoiding falling down the waterfall in the Wet-Chicken benchmark.
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