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Abstract

A Unified Framework for Simulating Impact-Induced Detonation of a Combustible
Material in an Elasto-Plastic Confiner

Haran Jackson

A new framework for the computational simulation of problems arising in continuum me-
chanics is presented. It is unified in the sense that it can describe all three major phases of
matter within the same set of equations. It is able to represent inviscid fluids, Newtonian
and non-Newtonian viscous fluids, elastic and plastic solids, and reactive species. These
materials are presented with a variety of equations of state, and there is a clear methodology
for extending the framework to more exotic materials using other constitutive equations. It
is capable of accurately modeling interfaces between regions occupied by different phases,
and by the vacuum.

The problem of impact-induced detonation in an elastoplastic confiner is one that incorpo-
rates the whole range of aforementioned material types, representing a challenge to existing
frameworks. This new framework is shown to accurately and efficiently solve this problem.

The framework comprises a modification and extension of the Godunov-Peshkov-Romenski
(GPR) model of continuum mechanics, along with a new set of operator-splitting-based
numerical solvers to allow for the efficient solution of the problems that it is put to, and a
new Riemann ghost fluid method for accurate simulation of material interfaces. In addition
to this work, novel mathematical analyses of the structure of the GPR equations - and the
numerical methods currently used to solve them - are presented in this study.

This new framework presents a range of benefits: the conceptual work required to implement
a computational simulation involving many different components is greatly reduced, saving
time and allowing for greater specialization of computational techniques. This has the po-
tential to streamline development of simulation software by reducing the number of different
systems of equations that require solvers, and cutting down on the amount of theoretical
work required, for example in the treatment of interfaces in multimaterial problems.
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Chapter 0

Introduction
0.1 Background

0.1.1 The Problem at Hand

A common theme over the course of humanity’s uncovering of the Laws of Physics has
been the unification of mathematical descriptions of formerly apparently-disparate physical
phenomena (for example Maxwell’s equations in unifying the theories of electromagnetism
and optics, or the proposed Grand Unified Theories of the electromagnetic, weak, and strong
interactions of the Standard Model). Computational Continuum Mechanics is yet to see
ubiquitous adoption of such a unified framework, with separate models used to describe
the various states of matter. These models differ not just in terms of the first-principles
descriptions they posit for the materials that they purport to describe, but also in their
mathematical characteristics. For example, the viscous stress terms in the Navier-Stokes
equations are empirically derived, and the resulting system is parabolic in nature. By contrast,
the Godunov-Romenski equations of elastoplastic deformation of metals are based on a first-
principles description of the microscopic material elements of the continuum, and the model
is hyperbolic in nature.

Unified models are not just aesthetically pleasing, but also practically useful. The conceptual
work required to implement a computational simulation involving many different compo-
nents is greatly reduced, saving time and allowing for greater specialization of computational
techniques. This has the potential to streamline development of simulation software by re-
ducing the number of different systems of equations that require solvers, and cutting down
on the amount of theoretical work required, for example in the treatment of interfaces in
multimaterial problems.

As an example for which a unified framework of Continuum Mechanics would be greatly
beneficial, we take the problem of impact-induced detonation of a combustible material in an
elastoplastic confiner. A graphical representation of this problem is shown in Figure 1 on page
2. A reactive liquid is encased in an elastoplastic solid, which is subjected to a large kinetic
impulse upon impact with another solid. This initiates a reaction in the combustible material,
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0.1 Background

Figure 1: Impact-induced detonation of a combustible material in an elastoplastic confiner,
at two different points in time (source: [84])

which propagates throughout the domain, deforming the confiner. As can be seen, three (or
possibly four) states of matter are present (a solid confiner, a liquid combustible confined
material, and a gaseous/vacuum surrounding environment). Without a unified framework
within which to describe this problem, several different sets of equations of motion must be
used, with specialized techniques to pass information across the many different inter-material
interfaces present.

0.1.2 Review of Current Solutions

The definition of a multiphase system is slightly ambiguous in the literature. Here it will
be taken to mean a system consisting of either two or more different materials (possibly
in the same phase of matter), or two or more volumes of (possibly the same) material
in different phases of matter. There are two aspects of multiphase systems that require
attention: multiphase flow, and multiphase heat transfer. The latter becomes important
when the phases are at different temperatures. In this study, the different phases will be
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assumed to be immiscible. There are many approaches available to solve these problems,
broadly including (but not limited to): Lagrangian and Arbitrary-Lagrangian-Eulerian (ALE)
methods [27, 119], volume of fluid (VOF) methods [94, 108], diffuse interface methods [118],
and level-set methods, including the ghost fluid method (GFM) approach [44, 97].

Without a unified model of continuum mechanics, capable of describing all phases in the
same framework, different sets of equations may have to be used in the different regions
occupied by different phases. These systems arise, for example, in fluid-structure interaction,
or oil-water interfaces. An overview of current approaches to multiphase systems will now
be given. The examples here are illustrative but not exhaustive.

There has been a huge amount of research activity in the field over the years, but current
approaches can be broadly classified as either monolithic or partitioned [60]. In a monolithic
scheme, all phases are described by the same set of nonlinear equations. The evolution of the
interfaces is implicit to the equations, unlike in partitioned schemes. See for example [62, 85].
The system is solved by a multivariate Newton-type method. It is often ill-conditioned, due
to the different scales of the state variables of the different phases. Thus, iterative solvers
are required, proving inefficient unless good preconditioners are available. Codes tend to be
very specialized to the specific problems they solve, and it requires expertise to develop and
maintain such methods.

In a partitioned scheme, the states of the different phases are calculated separately at each
time step, possibly using different models. See Rossi and Onate [114] for a recent overview
of some of the common algorithmic features of these schemes. The individual systems
do not suffer from the scaling-induced conditioning problems of monolithic schemes, but
attention now needs to be payed to the material interfaces. Modeling them can be unstable
and relatively computationally expensive (although typically not as expensive as solving the
full monolithic systems). One of the great benefits of partitioned schemes is that legacy
implementations of common models may be used in the domains occupied by materials that
they describe. These implementations are often well-used and relatively bug free, and tend
to be written efficiently for the kinds of problems that the solve. As an example of a software
suite taking advantage of this, see the Caltech’s Virtual Test Facility [2].

Under both types of schemes, the models describing the different phases may be formulated
in either a Lagrangian, an Eulerian, or an ALE framework. Solids models tend to come in
Lagrangian form, and often these are combined with ALE forms for the fluid phases, so that
the fluid meshes may deform to match the deformation of the solid (see, for example, Pin et
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al. [107]). These schemes tend to be very accurate, but like all Lagrangian schemes, they fail
if the meshes become highly contorted. Thus, adaptive remeshing is often necessary. Some
authors have coupled a Lagrangian solid scheme with an Eulerian fluid scheme, but extra care
must be taken when applying the boundary conditions to the interface, which corresponds
to the intersection of the Eulerian and Lagrangian meshes (see Legay et al. [73] for an
implementation using level sets, or Fedkiw [46] for a GFM coupling). Some authors, such
as Ryzhakov et al. [115], have found success in using the common Lagrangian formulations
for the solid, and a reformulated Lagrangian model for the fluid, implementing the necessary
adaptive remeshing. Yet another option is to model both the fluid and the solid in an Eulerian
framework, although this now necessitates a level set method or VOF method [59] to track
the interfaces. Also, these methods are more prone to losing small-scale geometric features
of the media, unless methods such as AMR are employed to combat this [60].

Gavrilyuk, Favrie, et al have presented thermodynamically consistent schemes where solid-
fluid interfaces are modeled with the diffuse interface method, with transverse velocities found
using a ghost fluid method [43]. The fluid is governed by the compressible Euler equations,
and the solid by a conservative hyperelastic model. This was later extended to encompass
solids conforming to the viscoplastic model of Maxwell type materials [42], and later still to
an arbitrary number of interacting hyperelastic solids and fluids governed by the compressible
Euler equations [91].

Michael and Nikiforakis [84] (building on the work of Schoch et al. [120]) couple various
Eulerian models of reactive and inert fluids and solids by use of a Riemann Ghost Fluid
Method, with the ghost states calculated using specialized mixed-material Riemann solvers
for each interaction. Whilst these techniques do not suffer from the mesh contortion issues
inherent in Lagrangian formulations of continuum mechanics, and the interface coupling tends
to be less computationally expensive than the iterative techniques demanded by monolithic
schemes, a fair amount of theoretical work needs to be done to derive analytical relations
describing the interactions between every pair of models used.

0.1.3 A New Approach

If it were possible to describe all phases with the same Eulerian model, the method of Michael
and Nikiforakis could be used, with only one type of Riemann solver needed to cope with
any multiphase problem posed. This would effectively be a partitioned scheme with the same
system solved in each domain.
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The Godunov-Peshkov-Romenski (GPR) model (proposed in 2014 by Ilya Peshkov and Eugeny
Romenski [101]) represents one such opportunity. It is able to describe both fluids and solids
within the same mathematical framework. In addition to this, the hyperbolic nature of the
GPR model ensures that the nonphysical instantaneous transmission of information appearing
in certain non-hyperbolic models (such as the Navier-Stokes equations, or Fourier heat equa-
tion) cannot occur. Additionally, the first-principles derivation of the mechanism by which
viscous effects appear under the GPR model has been commented on to be more appropriate
than the more phenomenological viscous law appearing in the traditional Navier-Stokes for-
mulation (see [102]). Parallelization also tends to be easier with hyperbolic models, allowing
us to leverage the great advances that have been made in parallel computing architectures
in recent years [1], and the use of the vast array of effective numerical solvers designed for
first-order hyperbolic systems (see [126] for an overview). As will be seen, the GPR model
also includes terms for heat conduction, which do not appear in the basic formulations of
many of the common models used in multiphase systems (e.g. the Euler equations, or the
Navier-Stokes equations, or the Godunov-Romenski equations of solid mechanics). Heat
conduction is often ignored in multiphase modeling, but such a framework based on the GPR
model would almost unavoidably include it.

It is interesting to note that de Brauer et al [19, 26] have presented a method for multimaterial
modeling of a similar system, including the distortion tensor of the GPR model (discussed in
0.2.1), but excluding the heat conduction terms. This method is based on level sets, similar
to the method presented in this study. It should be noted, however, that de Brauer et al do
not apply their method to the modeling of viscous flows.

Any unified model of continuum mechanics purporting to describe all phases of interest
must be at least as descriptive as competing models tailored to each individual phase if
the utmost model fidelity is required. Although the results for the GPR model applied to
standard test cases have been promising, both here and in other preliminary studies [18, 34],
more work is required to determine how faithfully the GPR model reproduces common agreed
phenomenological results.

Thus far, the GPR model has been solved for a wide array of different fluids (inviscid and
viscous Newtonian) and solids (elastic and elastoplastic) (see [18, 35, 99, 102]). It has also
been extended to incorporate the effects of electrodynamics (see [36]) and general relativity
(see [104]). It is yet to be formally extended to include non-Newtonian power-law fluids,
however. Additionally, until this point, it has not been used to model reactive processes,
such as those occurring in impact-induced detonation of combustible materials.
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The GPR model has been solved solely using the ADER-WENO method ([18, 35]). ADER-
WENO methods (described in Section 0.3) are extremely effective in producing arbitrarily-
high order solutions to hyperbolic systems of PDEs, but in some situations their accompanying
computational cost proves burdensome. Additionally, at present, there is no way of dealing
with material interfaces in the GPR model.

0.1.4 Objectives of this Study

The objective of this study is to develop the GPR model in various specific ways so that it
may be used to simulate the problem of impact-induced detonation of a combustible material
in an elastoplastic confiner (and thus also a range of other multimaterial, multiphase physical
processes - including those involving reactive species). The interfaces between these phases
and the exchange of state information between them need to be dealt with in any numerical
method employed. The GPR model must also be augmented in some way to capture the
kinetics of the chemical reactions present. Up until now, ADER-WENO methods have been
used to solve the GPR model. Whilst these are able to provide arbitrarily-high-order accuracy
solutions in both space and time, they are too slow for the practical applications of the
aforementioned type, even at second-order accuracy; faster numerical solvers are needed.

Thus, there are three main objectives to be addressed:

1. To combine the GPR model with the models used to describe the reactions of com-
bustible materials

2. To develop numerical methods for solving the GPR model in a reasonable amount of
time

3. To develop stable and accurate techniques to deal with the interfaces between different
materials in multimaterial / multiphase problems

The outline of this study is as follows. The GPR model - and the intuition behind its
derivation - are covered in 0.2.1. The numerical methods that are currently used to solve
this model - and others of a similar mathematical form - are covered in Section 0.3. This
includes a discussion of the WENO Method, the Discontinuous and Continuous Galerkin
Methods, and the Finite Volume Method that they are applied to.
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Objective 1 is addressed in Chapter 1. Analytical work is performed in Section 1.1 to enable
the use of a broad set of equations of state with the GPR model (allowing for the simulation
of all materials encountered in the impact-induced detonation problem). The GPR model is
extended to incorporate reactive species in Section 1.2. These extensions are demonstrated
to reproduce accepted numerical results in Section 1.3.

Objective 2 is addressed in Chapter 2. First, in Section 2.1, the recently-proposed improve-
ment on the ADER-WENO method of Montecinos and Balsara [89] is extended to work in
multiple dimensions. Next, a second-order operator splitting method for the GPR model is
presented in Section 2.2. This method is significantly faster than even the aforementioned
modified ADER-WENO method, while retaining a reasonable order of accuracy. For the
first time, in 2.2.4, the relaxation mechanism of the GPR model is modified to allow for
the simulation of non-Newtonian viscous fluids and elastoplastic solids (as required for the
elastoplastic confiner of the impact-induced detonation problem). A second-order operator
splitting method is presented for these material classes also. Many numerical tests are given
in Section 2.3, to demonstrate both the physical relevance of the modifications made to the
GPR model, and the accuracy of the solvers that have been derived. Discussion of the results
presented is given in Section 2.4.

Objective 3 is addressed in Chapter 3. An overview of Level Sets and Ghost Fluid Methods
is given in Section 3.1. A Riemann Ghost Fluid Method is derived for the GPR model in
Section 3.2, for both problems involving both heat conduction and no heat conduction. This
method is based on a novel eigenstructure analysis of the GPR model, which is provided in
the appendix. A range of multimaterial/multiphase tests are performed in Section 3.3 to
demonstrate the suitability of this method in modeling the evolution of interfaces between
every possible pairing of material types. A convergence study is also provided. Discussion of
the method, its limitations, and potential future improvements are given in Section 3.4.

Chapter 4 is dedicated to combining the ideas developed in the previous three chapters to
solve large physical problems that incorporate phenomena necessitating all the analytical and
numerical work that has been done. It is demonstrated in this chapter that the solutions
to the three objectives stated above are capable of being combined into a cohesive unified
continuum mechanics framework. Concluding remarks are made in Chapter 4.2. A discussion
of the work produced in this study is given in Section 4.2.1, with discussion of future possible
avenues of research given in Section 4.2.2.

Explicit forms of mathematical objects appearing in the GPR model are given in Chapter A.
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The fluxes, sources, and non-conservative matrices are given in Section A.1. Jacobians of
the conserved and primitive variables, and their fluxes and sources are given in Section A.2.
An eigenstructure analysis of the GPR model is performed in Chapter B. First, the primitive
system is derived in Section B.1. From this, the eigenvalues (Section B.2) and eigenvectors
(Section B.3) are derived, for both the case with heat conduction and without. Parameters
pertaining to the various different materials encountered in this study are given in Chapter C.
Properties of common materials are given in Section C.1, and equation of state parameters
are given in Section C.2.

0.2 Mathematical Model

0.2.1 Equations of Motion

The GPR model, first introduced in Peshkov and Romenski [101] - and expanded upon by
Dumbser et al. [35] and Boscheri et al. [18] - takes the following form:

∂ρ

∂t
+ ∂ (ρvk)

∂xk
= 0 (1a)

∂ (ρvi)
∂t

+ ∂ (ρvivk + pδik − σik)
∂xk

= 0 (1b)

∂Aij
∂t

+ ∂ (Aikvk)
∂xj

+ vk

(
∂Aij
∂xk

− ∂Aik
∂xj

)
= −ψij

θ1
(1c)

∂ (ρJi)
∂t

+ ∂ (ρJivk + Tδik)
∂xk

= −ρHi

θ2
(1d)

∂ (ρs)
∂t

+ ∂ (ρsvk +Hk)
∂xk

= ρ

T

(
ψklψkl
θ1

+ HkHk

θ2

)
(1e)

where ρ is density, v is velocity, δ is the Kronecker delta, p is pressure, σ is the sheer stress
tensor, A is the distortion tensor, J is the thermal impulse vector, T is temperature, s is
the entropy, and q is heat flux. ψ = ∂E

∂A
and H = ∂E

∂J
, and θ1 and θ2 are positive functions

(given below for the problems at hand).

Entropy does not decrease during the dissipative time evolution:

∂ (ρs)
∂t

+ ∂ (ρsvk +Hk)
∂xk

≥ 0 (2)
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(1e) can be replaced with the following equation, which will be used instead when solving
the model in this study:

∂ (ρE)
∂t

+ ∂ (ρEvk + (pδik − σik) vi + qk)
∂xk

= 0 (3)

where E is the total energy. Note that (1a), (1b), (1c), (1d), (3) can be written in the
following form:

∂Q

∂t
+ ∇ · F + B · ∇Q = S (4)

0.2.2 Relationships between Variables

The following definitions are given:

p = ρ2 ∂E

∂ρ

∣∣∣∣∣
s,A

(5a)

σ = −ρAT ∂E

∂A

∣∣∣∣∣
ρ,s

(5b)

T = ∂E

∂s

∣∣∣∣∣
ρ,A

(5c)

q = T
∂E

∂J
(5d)

To close the system, the EOS must be specified, from which the above quantities and the
sources can be derived. E is the sum of the contributions of the energies at the molecular
scale (microscale), the material element1 scale (mesoscale), and the flow scale (macroscale):

E = E1 (ρ, s) + E2 (ρ, s, A,J) + E3 (v) (6)

In previous studies, E1 has been taken to be one of the following forms:

1. The ideal gas EOS:

E1 = p

ρ (γ − 1) (7)

1The concept of a material element corresponds to that of a fluid parcel from fluid dynamics, applied to
both fluids and solids.
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2. The stiffened gas EOS:

E1 = p+ γp∞

ρ (γ − 1) (8)

3. The shock Mie-Gruneisen EOS:

E1 = pref

2

(
1
ρ0

− 1
ρ

)
+ p− pref

Γ0ρ0
(9)

A more general set of choices for E1 is given in Section 1.1.

Tabulated equations of state are common-place in the field (see [20, 74, 106] for a range of
use cases). There is no a priori reason why they cannot be used for E1 under the framework
presented in this study, in the same manner as other hydrodynamic systems (e.g. see [17, 56]).
This is out of scope of this study, however, and presents an avenue of future research. Note
that E1, cs, ct are permitted to depend upon ρ, p instead of ρ, s (as is the case in this study),
or indeed ρ, T if the material requires it (such as materials whose shear modulus depend on
temperature).

E2 has the following quadratic form:

E2 = cs (ρ, s)2

4 ∥dev (G)∥2
F + ct (ρ, s)2

2 ∥J∥2 (10)

∥·∥F is the Frobenius norm2. cs is the characteristic velocity of transverse perturbations.
In previous studies, cs has always been constant. In this study, it will be extended to have
a ρ dependence, as outlined in Section 1.1. ct is related to the characteristic velocity of
propagation of heat waves3:

ch = ct
ρ

√
T

cv
(11)

In previous studies, ct has been taken to be constant, as it will in this study.

2The Frobenius norm is defined by: ∥X∥F =
√∑

i,j |Xij |2
3Dumbser et al [35] denote this variable by α, which is avoided here due to a clash with a parameter of

the Godunov-Romenski EOS, used later in the study
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G = ATA is the Gramian matrix of the distortion tensor, and dev (G) is the deviator (trace-
free part) of G:

dev (G) = G− 1
3 tr (G) I (12)

E3 is the usual specific kinetic energy per unit mass:

E3 = 1
2 ∥v∥2 (13)

The following forms are taken:

θ1 = τ1c
2
s

3 |A|
5
3

(14a)

θ2 = τ2c
2
t

ρT0

ρ0T
(14b)

τ1 =


6µ
ρ0c2

s
viscous fluids

τ0
(

σ0
∥dev(σ)∥F

)n
elastoplastic solids

(15a)

τ2 = ρ0κ

T0c2
t

(15b)

where µ is the viscosity and κ is the thermal conductivity. The justification of these choices
is that classical Navier–Stokes–Fourier theory is recovered in the stiff limit τ1, τ2 → 0 (see
[35]). The power law for elastoplastic solids is based on the work [12].

Finally, we have the following relations:

σ = −ρc2
sG dev (G) (16a)

q = c2
tTJ (16b)

− ψ

θ1(τ1)
= − 3

τ1
|A|

5
3 A dev (G) (16c)

− ρH

θ2 (τ2)
= − Tρ0

T0τ2
J (16d)

The following constraint also holds [101]:

det (A) = ρ

ρ0
(17)
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0.2.3 Physical Intuition

The GPR model represents the same set of equations as the model of elastoplastic deforma-
tion originally proposed by Godunov and Romenski. Peshkov and Romenski were the first to
subsequently propose that these are the equations of motion for an arbitrary continuum - not
just a solid. In doing so, they were able to apply the model to fluids too. Note that material
elements have not only finite size, but also internal structure (encoded in the distortion),
unlike in previous continuum models.

The idea of τ1 - the strain dissipation time - has its roots in Frenkel’s “particle settled life
time” (see [48]). τ1 represents a continuous analogue of Frenkel’s object. It can be thought
of as the characteristic time taken for a particle to move by a distance roughly the same as
the particle’s size. Thus, the typical time taken for a material element to rearrange with its
neighbors is characterized by τ1 . As long as a continuum description is appropriate for the
material at hand, it is thus that the GPR model seeks to describe all three major phases of
matter. For example, we have the following relations:

τ1 =

∞ elastic solids

0 inviscid fluids
(18)

The equation governing J - and its contribution to the system’s total energy - are derived
from Romenski’s model of hyperbolic heat transfer, (see [81, 113]). These concepts were
later implemented in [109, 112]. The entropy flux is the derivative of the specific internal
energy with respect to J , and it is in this way that J is defined (as the variable conjugate to
the entropy flux). As remarked by Romenski, it is more convenient to evolve J and E than
q or the entropy flux, and thus the equations take the form given here. Similarly to τ1, τ2 is
a relaxation time, characterizing the average speed of relaxation of thermal impulse due to
heat exchange between neighboring particles.

0.3 Numerical Methods
The GPR model, being non-conservative, with stiff source terms, represents a particularly
challenging set of PDEs to solve. In this study they are solved by an ADER-WENO method.
The method produces arbitrarily high-order solutions to hyperbolic systems of PDEs and
has been shown to be particularly effective for a wide range of systems (e.g. the classical
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Euler equations of gas dynamics, the special relativistic hydrodynamics and ideal magneto-
hydrodynamics equations, and the Baer-Nunziato model for compressible two-phase flow -
see [7, 132]). The ADER method was first devised by Toro and collaborators (see [127] in
particular, and also [123, 125]). Dumbser et al [30] obviated the need for the cumbersome
analytic work required by the Cauchy-Kowalewski procedure by use of a Galerkin predictor,
as described in the following procedure.

First, the cell-wise constant state variable data from the current time step is reconstructed
using high-order spatial polynomials according to the WENO method. This reconstruction
is then extended to a reconstruction in both space and time for each individual cell in the
domain, using the Galerkin method. A finite volume solver is then used to couple neighboring
cells and produce the cell-wise constant data at the next time step.

0.3.1 WENO Reconstruction

First introduced by Liu et al. [78] and developed by Jiang and Shu [68], WENO methods are
used to produce high order polynomial approximations to piece-wise constant data. Many
variations exist. In this study, the method of [40] is used.

Consider the domain [0, L]. Take K,N ∈ N. The order of accuracy of the resulting method
will be N + 1. Take the set of grid points xi = i·L

K
for i = 0, . . . , K and let ∆x = L

K
.

Denote cell [xi, xi+1] by Ci. Given cell-wise constant data u on [0, L], an order N polynomial
reconstruction of u in Ci will be performed. Define the scaled space variable:

χi = 1
∆x (x− xi) (19)

Denoting the Gauss-Legendre abscissae on [0, 1] by {χ0, . . . , χN}, define the nodal basis of
order N : the Lagrange interpolating polynomials {ψ0, . . . , ψN} with the following property:

ψi (χj) = δij (20)

If N is even, take the stencils:


S1 =

{
Ci− N

2
, . . . , Ci+ N

2

}
S2 = {Ci−N , . . . , Ci}

S3 = {Ci, . . . , Ci+N}

(21)
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If N is odd, take the stencils:



S1 =
{
Ci−⌊N

2 ⌋, . . . , Ci+⌈N
2 ⌉
}

S2 =
{
Ci−⌈N

2 ⌉, . . . , Ci+⌊N
2 ⌋
}

S3 = {Ci−N , . . . , Ci}

S4 = {Ci, . . . , Ci+N}

(22)

The data is reconstructed on Sj as:

∑
p

ψp
(
χi (x)

)
ŵijp (23)

where the ŵijp are solutions to the following linear system:

1
∆x

∫ xk+1

xk

∑
p

ψp
(
χk (x)

)
ŵijp dx = uk ∀Ck ∈ Sj (24)

where uk is the value of u in Ck. This can be written as Mjŵ
ij = u[j0:jN ] where {j0, . . . , jN}

indexes the cells in Sj. The matrices of these linear systems, along with their inverses, can
be precomputed to accelerate the solution of these systems.

Define the oscillation indicator matrix:

Σmn =
N∑
α=1

∫ 1

0
ψ(α)
m ψ(α)

n dχ (25)

and the oscillation indicator for each stencil:

oj = Σmnŵ
ij
mŵ

ij
n (26)

The full reconstruction in Ci is:

wi (x) =
∑
p

ψp
(
χi (x)

)
w̄ip (27)
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0.3 Numerical Methods

where w̄ip = ωjŵ
ij
p is the weighted coefficient of the pth basis function, with weights:

ωj = ω̃j∑
k ω̃k

ω̃j = ζj
(oj + ε)r (28)

In this study, r = 8, ε = 10−14, ζj = 105 if Sj is a central stencil, and ζj = 1 if Sj is a side
stencil, as in [34].

The reconstruction can be extended to two dimensions by taking:

υi = 1
∆y (y − yi) (29)

and defining stencils in the y-axis in an analogous manner. The data in Ci is then recon-
structed using stencil Sj as:

∑
p,q

ψp
(
χi (x)

)
ψq
(
υi (x)

)
w̃ijpq (30)

where the coefficients of the weighted 1D reconstruction are used as cell averages:

Mjw̃
ij
p = w̄[j0:jN ]

p ∀p ∈ {0, . . . , N} (31)

The oscillation indicator is calculated for each p in the same manner as the 1D case. The
reconstruction method is easily further extensible to three dimensions, now using the coeffi-
cients w̄pq of the weighted 2D reconstruction as cell averages.

0.3.2 Galerkin Predictors

Take a non-conservative, hyperbolic system of the form:

∂Q

∂t
+ ∂F (Q)

∂x
+B (Q) · ∂Q

∂x
= S (Q) (32)

where Q is the vector of conserved variables, F is the conservative nonlinear flux, B is the
block matrix corresponding to the purely non-conservative component of the system, and
S (Q) is the algebraic source vector.
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0.3 Numerical Methods

Take the grid for the previous section, and time steps t0 < t1 < . . . while defining ∆tn =
tn+1 − tn. Combining the techniques presented in [32, 34], the Continuous Galerkin or Dis-
continuous Galerkin methods produce at each time step tn a local polynomial approximation
to Q on each space-time cell Ci × [tn, tn+1], using the WENO reconstruction as initial data
at the start of the time step (see [7] and [30] respectively for implementations of these two
variations). The order of this reconstruction in time is usually taken to be the same as the
spatial order, and the same basis polynomials are used. The process involves finding the
root of a non-linear system, and this process is guaranteed to converge in exact arithmetic
for certain classes of PDEs (see Jackson [64]). This root finding can be computationally
expensive relative to the WENO reconstruction, especially if the source terms of the PDE
system are stiff.

Now define the scaled time variable:

τn = 1
∆tn

(t− tn) (33)

Thus, (32) becomes:

∂Q

∂τn
+ ∂F ∗ (Q)

∂χi
+B∗ (Q) · ∂Q

∂χi
= S∗ (Q) (34)

where

F ∗ = ∆tn
∆x F B∗ = ∆tn

∆x B S∗ = ∆tnS (35)

The non-dimensionalization notation and spacetime cell indexing notation will be dropped
for simplicity in what follows. Now define the set of spatiotemporal basis functions:

{θk (χ, τ)} = {ψp (χ)ψs (τ) : 0 ≤ p, s ≤ N} (36)
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0.3 Numerical Methods

Denoting the Galerkin predictor by q, take the following set of approximations:

Q ≈ q = θβqβ (37a)
F (Q) ≈ θβFβ (37b)

B (Q) · ∂Q

∂χ
≈ θβBβ (37c)

S (Q) ≈ θβSβ (37d)

for some coefficients qβ,Fβ,Bβ,Sβ.

If {ψ0, ..., ψN} is a nodal basis, the nodal basis representation may be used:

Fβ = F (qβ) (38a)

Bβ = B (qβ) ·
(
∂θγ (χβ, τβ)

∂χ
qγ

)
(38b)

Sβ = S (qβ) (38c)

where (χβ, τβ) are the coordinates of the node corresponding to basis function θβ.

If a modal basis is used, Fβ,Bβ,Sβ may be found from the previous values of qβ in the
iterative processes described below.

For functions f (χ, τ) = fχ (χ) fτ (τ) and g (χ, τ) = gχ (χ) gτ (τ), define the following
integral operators:

[f, g]t = fτ (t) gτ (t) ⟨fχ, gχ⟩ (39a)
{f, g} = ⟨fτ , gτ ⟩ ⟨fχ, gχ⟩ (39b)

Multiplying (34) by test function θα, using the polynomial approximations for Q,F ,B,S,
and integrating over space and time gives:

{
θα,

∂θβ
∂τ

}
qβ = −

{
θα,

∂θβ
∂χ

}
Fβ + {θα, θβ} (Sβ − Bβ) (40)
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0.3 Numerical Methods

0.3.2.1 Discontinuous Galerkin Method

This method of computing the Galerkin predictor allows solutions to be discontinuous at
temporal cell boundaries, and is also suitable for stiff source terms.

Integrating (40) by parts in time gives:

(
[θα, θβ]1 −

{
∂θα
∂τ

, θβ

})
qβ = [θα,w]0 −

{
θα,

∂θβ
∂χ

}
Fβ (41)

+ {θα, θβ} (Sβ − Bβ)

where w is the reconstruction obtained at the start of the time step with the WENO method.
Define the following:

Uαβ = [θα, θβ]1 −
{
∂θα
∂τ

, θβ

}
(42a)

Vαβ =
{
θα,

∂θβ
∂χ

}
(42b)

Wα = [θα, ψγ]0 wγ (42c)
Zαβ = {θα, θβ} (42d)

Thus:

Uαβqβ = Wα − VαβFβ + Zαβ (Sβ − Bβ) (43)

This nonlinear system in qβ is solved by a Newton method. The source terms must be solved
implicitly if they are stiff. Note that W has no dependence on q.

0.3.2.2 Continuous Galerkin Method

This method of computing the Galerkin predictor is not suitable for stiff source terms, but
it provides substantial savings on computational cost and ensures continuity across temporal
cell boundaries.
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0.3 Numerical Methods

{ψ0, ..., ψN} must be chosen in such a way that the first N + 1 elements of {θβ} have only
a spatial dependence. The first N + 1 elements of q are then fixed by demanding continuity
at τ = 0:

q (χ, 0) = w (χ) (44)

where w is spatial the reconstruction obtained at the start of the time step with the WENO
method.

For a given vector v ∈ R(N+1)2 and matrix X ∈ M(N+1)2,(N+1)2 (R), let v = (v0,v1) and

X =
X00 X01

X10 X11

 where v0, X00 are the components relating solely to the first N + 1

components of v. We only need to find the latter components of q, and thus, from (40),
we have:

{
θα,

∂θβ
∂τ

}11

q1
β = {θα, θβ}11

(
S1

β − B1
β

)
−
{
θα,

∂θβ
∂χ

}11

F 1
β (45)

+ {θα, θβ}10
(
S0

β − B0
β

)
−
{
θα,

∂θβ
∂χ

}10

F 0
β

Define the following:

Uαβ =
{
θα,

∂θβ
∂τ

}11

(46a)

Vαβ =
{
θα,

∂θβ
∂χ

}11

(46b)

Wα = {θα, θβ}10 (Sβ − Bβ)0 −
{
θα,

∂θβ
∂χ

}10

F 0
β (46c)

Zαβ = {θα, θβ}11 (46d)

Thus:

Uαβq1
β = Wα − VαβF 1

β + Zαβ
(
S1

β − B1
β

)
(47)

Note that, as with the discontinuous Galerkin method, W has no dependence on the degrees
of freedom in q.
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0.3 Numerical Methods

0.3.3 Finite Volume Scheme

Following the formulation of [34], integrating (32) over [tn, tn+1] × Ci gives:

Qn+1
i = Qn

i + ∆tn
(
Sn

i − P n
i

)
− ∆tn

∆x
(
Dn

i+1 − Dn
i

)
(48)

where

Qn
i = 1

∆x

∫ xi+1

xi

Q (x, tn) dx (49a)

Sn
i = 1

∆tn∆x

∫ tn+1

tn

∫ xi+1

xi

S (Q) dxdt (49b)

P n
i = 1

∆tn∆x

∫ tn+1

tn

∫ xi+1

xi

B (Q) · ∂Q

∂x
dxdt (49c)

Dn
i = 1

∆tn

∫ tn+1

tn
D
(
Q− (xi, t) ,Q+ (xi, t)

)
dt (49d)

Q−, Q+ are the left and right extrapolated states at the xi boundary. Sn
i ,P

n
i ,D

n
i are

calculated using an N + 1-point Gauss-Legendre quadrature, replacing Q with qh.

M , as defined in Section 0.3.2, is a diagonalizable matrix with decomposition M = RΛR−1

where the columns of R are the right eigenvectors and Λ is the diagonal matrix of eigenvalues.
Define the following matrix:

|M | = R |Λ|R−1 (50)

Using these definitions, the interface terms arising in the FV formula have the following form:

D
(
q−, q+

)
= 1

2
(
F
(
q−
)

+ F
(
q+
)

+ B̂ ·
(
q+ − q−

)
− M̂ ·

(
q+ − q−

))
(51)

M̂ is chosen to either correspond to a Rusanov / Lax-Friedrichs flux [126]:

M̂ = max
(
max

∣∣∣Λ (q−
)∣∣∣ ,max

∣∣∣Λ (q+
)∣∣∣) (52)

or a Roe flux [38]:
M̂ =

∣∣∣∣∫ 1

0
M
(
q− + z

(
q+ − q−

))
dz

∣∣∣∣ (53)
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0.3 Numerical Methods

or a simplified Osher–Solomon flux [37]:

M̂ =
∫ 1

0

∣∣∣M (
q− + z

(
q+ − q−

))∣∣∣ dz (54)

B̂ takes the following form:

B̂ =
∫ 1

0
B
(
q− + z

(
q+ − q−

))
dz (55)

It was found that the Osher-Solomon flux would often produce slightly less diffusive results,
but that it was more computationally expensive, and also had a greater tendency to introduce
numerical artifacts.

0.3.4 Time Step and Boundary Conditions

Let Λn
i be the set of eigenvalues of the GPR system evaluated at Qn

i . Ccfl < 1 is a constant
(usually taken to be 0.9, unless the problem being simulated is particularly demanding,
requiring a lower value). A semi-analytic form for Λ is given in Section B.2. The eigenvalues
determine the speed of propagation of information in the solution to the Riemann Problem
at the cell interfaces, and the time step is chosen to ensure that the characteristics do not
enter into other cells between tn and tn+1:

∆tn = Ccfl · ∆x
maxi |Λn

i |
(56)

Transmissive boundary conditions (allowing material and heat to pass through) are imple-
mented by setting the state variables in the boundary cells to the same value as their non-
boundary neighbors. Reflective boundary conditions are implemented in the same way, except
that the directions of the velocity and thermal impulse vectors in the boundary cells are re-
versed.
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Chapter 1

Objective 1: Extending the GPR Model
1.1 Equations of State

1.1.1 Mie-Gruneisen Models

It is required to specify the microscale energy E1 appearing in (6). In this study, several
different possible choices for E1 are put into the same framework by expressing them in the
following Mie-Gruneisen form [83]:

E1 (ρ, p) = e (ρ, p) = eref (ρ) + p− pref (ρ)
ρΓ (ρ) (1.1a)

T = T refφ (ρ) + e− eref

cv
= T refφ (ρ) + p− pref (ρ)

cvρΓ (ρ) (1.1b)

φ (ρ) = exp
∫ ρ

ρ0

Γ
(
ρ

′
)

ρ′ dρ
′

 (1.1c)

The forms taken by eref , pref ,Γ for various different instances of this class are given in Table
1.1 on page 24. The first five entries in the table are standard results. The sixth is derived
thus. The Godunov-Romenski hyperelastic EOS is given by:

E (ρ, s, A) = c2
0

2α2

(∣∣∣ATA∣∣∣α/2
− 1

)2
+ cvT0

∣∣∣ATA∣∣∣γ/2 (
es/cv − 1

)
(1.2)

+ b2
0
4
∣∣∣ATA∣∣∣β/2 ∥∥∥dev

(
ATA

)∥∥∥2

Using the relation det (A) = ρ
ρ0

, this can be thought of as taking the form:

E1 (ρ, s) + cs (ρ)2

4 ∥dev (G)∥2
F (1.3)

where cs = b0
(
ρ
ρ0

)β
. Considering only the microscale energy component, note that we have:

p = ρ2∂E1

∂ρ
= ρ

(
c2

0
α

((
ρ

ρ0

)α
− 1

)(
ρ

ρ0

)α
+ γcvT0

(
ρ

ρ0

)γ (
es/cv − 1

))
(1.4)
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1.1 Equations of State

Therefore:

E1 − c2
0

2α2

((
ρ

ρ0

)α
− 1

)2

= p

γρ
− c2

0
γα

((
ρ

ρ0

)α
− 1

)(
ρ

ρ0

)α
(1.5)

Thus E1 can be put in Mie-Gruneisen form:

E1 =
p− c2

0ρ

α

((
ρ
ρ0

)α
− 1

) (
ρ
ρ0

)α
γρ

+ c2
0

2α2

((
ρ

ρ0

)α
− 1

)2

(1.6)

The following quantities are required when computing the eigenstructure of the system:

∂T

∂ρ
= 1
cv

(
∂e

∂ρ
− deref

dρ

)
(1.7a)

∂T

∂p
= 1
cv

∂e

∂p
(1.7b)

∂e

∂ρ
= deref

dρ
−

dpref

dρ
ρΓ (ρ) +

(
Γ (ρ) + ρΓ′ (ρ)

) (
p− pref (ρ)

)
(ρΓ (ρ))2 (1.8a)

∂e

∂p
= 1
ρΓ (ρ) (1.8b)

The relevant functions for each of the EOSs used in this study are given in Table 1.2 on page
25.

Although this is a versatile class of equations of state - and it is fit for the purposes that the
model is put to here - it should be noted that many other choices are available.

1.1.2 Variable Transverse Perturbation Speed

Taking (1.1a) and using the fact that p = ρ2eρ, we have:

eρ − Γ
ρ
e = pref

ρ2 − Γ
ρ
eref (1.9)
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1.1 Equations of State

The solutions to this equation for different forms of Γ, pref , eref take the form below, where
f is an arbitrary function of s, g depends on the form of Γ, and ê is a particular solution of
the equation (which will be equal to eref if pref = ρ2 ∂eref

∂ρ
).

e = f (s) g (ρ) + ê (ρ) (1.10)

We have:

p = ρ2eρ = ρ2
(
f (s) g′ (ρ) + ê

′ (ρ)
)

(1.11)

Thus:

p
ρ2 − ê

′ (ρ)
g′ (ρ) = f (s) = e− ê (ρ)

g (ρ) (1.12)

Therefore:

E1 (ρ, p) = e (ρ, p) = ê (ρ) + g (ρ)
g′ (ρ)

(
p

ρ2 − ê
′ (ρ)

)
(1.13)

We now add another term to the energy, giving it the following form:

E (ρ, p) = e (ρ, p) = f (s) g (ρ) + ê (ρ) +B (ρ)h (A) (1.14)

We then have:

p = ρ2
(
f (s) g′ (ρ) + ê

′ (ρ) +B
′ (ρ)h (A)

)
(1.15)

Thus:

p
ρ2 − ê

′ (ρ) −B
′ (ρ)h (A)

g′ (ρ) = f (s) = e− ê (ρ) −B (ρ)h (A)
g (ρ) (1.16)

Therefore:

e = g (ρ)
g′ (ρ)

(
p

ρ2 − ê
′ (ρ) −B

′ (ρ)h (A)
)

+ ê (ρ) +B (ρ)h (A) (1.17)
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1.2 Reactive Materials

Noting that g(ρ)
g′ (ρ) = ρ

Γ(ρ) , this can be expressed as:

E (ρ, p) = e (ρ, p) = E1 (ρ, p) +
(
B (ρ) − ρ

Γ (ρ)B
′ (ρ)

)
h (A) (1.18)

If the EOS comprises a microscale energy component of Mie-Gruneisen type, and a mesoscale
energy component with speed of transverse vibrations dependent upon ρ, then this provides
a method to recover the EOS in terms of ρ and p (by substituting B (ρ) = c2

s(ρ)
4 and

h (A) =
∥∥∥dev

(
ATA

)∥∥∥2

F
).

1.2 Reactive Materials

We now wish to simulate the mixture of two miscible materials, labelled 1 and 2. Let λ be
the mass fraction of material 1. Let material 1 undergo a chemical reaction at rate K to
form material 2. The GPR model can be extended to incorporate these factors thus:

∂ρ

∂t
+ ∂ (ρvk)

∂xk
= 0 (1.19a)

∂ (ρvi)
∂t

+ ∂(ρvivk + pδik − σik)
∂xk

= 0 (1.19b)

∂Aij
∂t

+ ∂ (Aikvk)
∂xj

+ vk

(
∂Aij
∂xk

− ∂Aik
∂xj

)
= − ψij

θ1 (τ1)
(1.19c)

∂ (ρJi)
∂t

+ ∂ (ρJivk + Tδik)
∂xk

= − ρHi

θ2 (τ2)
(1.19d)

∂ (ρE)
∂t

+ ∂ (ρEvk + (pδik − σik) vi + qk)
∂xk

= 0 (1.19e)

∂ (ρλ)
∂t

+ ∂ (ρλvk)
∂xk

= −ρK (1.19f)

The EOS is modified to include:

Er (λ) = −Qc (1 − λ) (1.20)

There are many different reaction rate laws that can be used to determine the form of K
appearing in (1.19f).
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1.3 Numerical Results

In discrete ignition temperature reaction kinetics, no reaction occurs below the ignition tem-
perature, Ti. Above Ti, the reaction proceeds at a constant rate K0 > 0:

K =

K0λ T ‘ ≥ Ti

0 T < Ti
(1.21)

A more sophisticated model of reaction kinetics was devised by Svante Arrhenius in 1889
[5, 6]:

K = Bce
− Ea

RcT λ (1.22)

where Bc is some prefactor (with units of frequency), and Ea is the activation energy of the
reactive species.

A more sophisticated model yet is the ignition and growth model [72]:

K = Iλb
(
ρ

ρ0
− 1 − a

)x
H (φI − φ) (1.23)

+G1λ
cφdpyH (φG1 − φ)

+G2λ
eφgpzH (φ− φG2)

where φ = 1−λ, H is the Heaviside function, and I,G1, G2, a, b, c, d, e, g, x, y, z, φI , φG1, φG2

are constants depending on the material being modeled.

1.3 Numerical Results

1.3.1 Seven-Wave Elastic Riemann Problem

This test is taken from [11]. The aim of the test is to validate the Mie-Gruneisen formulation
of the Godunov-Romenski EOS presented in 1.1.1, and the formulation of the mesoscale
GPR energy for the Godunov-Romenski EOS presented in 1.1.2.

28



1.3 Numerical Results

Figure 1.1: Density and velocity for the 7-wave elastic Riemann problem
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1.3 Numerical Results

Figure 1.2: Total stress for the 7-wave elastic Riemann problem
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1.3 Numerical Results

ρ p v A J λ

x < 0.25 1.4 1 0 3
√

1.4 · I3 0 0
x ≥ 0.25 0.887565 0.191709 (−0.577350, 0, 0) 3

√
0.887565 · I3 0 1

Table 1.3: Initial conditions for the viscous shock-induced detonation test

1.3.2 Shock-Induced Detonation

The GPR model is now combined with discrete ignition temperature reaction kinetics to
model a ZND detonation wave1 in a viscous, reactive, ideal gas. The test consists of a CJ
wave with speed 1, traveling into a region of totally unburnt gas. The initial conditions are
taken from Helzel et al. [55] and are given in Table 1.3 on page 31.

The material parameters are taken to be: γ = 1.4, cv = 2.5, ρ0 = 1, p0 = 1, cs = 1, ct = 1,
µ = 10−4, Pr = 0.75, Qc = 1, K0 = 250, Ti = 0.25. The results for grids of 400 and
1600 cells at time t = 0.5 are found in Figure 1.3 on page 32. They are to be compared
with those by Hidalgo and Dumbser [58]. The simulation with 400 cells corresponds well
with that found in [58], and the simulation with 1600 cells is very close to Hidalgo’s total
variation diminishing reference solution calculated with 10,000 cells.

The von Neumann spike is well resolved, with the thin reaction zone behind it (corresponding
to the region in which the concentration decreases from 1 to 0). The CJ state is maintained
correctly behind the reaction zone. The spurious wave in the density is explained in [58] as
being due to initialization errors occurring as a result of using exact algebraic conditions for
an ideal (infinitely thin) CJ detonation wave, which are solved with a viscous model with
finite reaction rate.

1.3.3 Heating-Induced Deflagration

As a step towards modeling the slow cooking off problem, the GPR model is now applied to the
situation presented by Clarke, Kassoy and Riley [23–25]. Here, the domain x ∈ [0, 8.5 × 10−6]

1Zel’dovich [133], von Neumann [128], and Doring [28] independently proposed this detonation model,
whereby reactive gas is compressed to high pressure by an infinitely thin shock wave into a von Neumann
spike, initiating the reaction. The reaction zone is located behind the spike. In the reference frame of the
shock, the gas moves supersonically ahead of the shock, subsonically in the reaction zone, and sonically in
the region behind the reaction zone (which is described by the Chapman-Jouget state [21, 70]. The energy
released in the reaction is transported acoustically to the shock to support it.
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1.3 Numerical Results

Figure 1.3: Pressure, density, concentration of reactant, and velocity (in the reference frame
of the shock) in the viscous shock-induced detonation test
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1.3 Numerical Results

is occupied by an ideal gas with initial conditions ρ = ρ0 = 1.176, p = p0 = 101325,
v = 0, A = I3, J = 0 and material parameters γ = 1.4, cv = 718, cs = 55, ct = 500,
µ = 1.98×10−5, Pr = 0.72. These values are chosen to be similar to air at room temperature.

Thermal energy is added at the left boundary at a high power of γp0c0
Pr(γ−1) (around 1.7 ×

108Wm−2). The test is performed with both a combustible and an inert gas. In the former
case, the initial concentration is set to λ = 1. Arrhenius reaction kinetics are used, with
Qc = 6γcvT0, Bc = 7×1010, ϵ = 1

20 . The subsequent evolutions of the systems for 400 cells
are shown in Figure 1.4 on page 34. Non-dimensionalized time and length variables t∗, x∗

are used, as in [24]:

t = µ

p0γ
t∗ (1.24a)

x = µc0

p0γ
x∗ (1.24b)

There are no analogues for ct and cs in the models used by Clarke et al. cs is given the
experimentally-derived value for CH3Cl at 30Â°C given in [35]. ct is chosen by trial and
error so that the GPR results corresponded with those in [24]. The results presented here
are thus close, but not identical to those of Clarke et al.

Note that heating the inert gas produces an acoustic wave of constant pressure, propagating
ahead of the temperature curve. This pressure wave is also present in the heating of the
combustible gas, where it proceeds in front of the combustion wave. The temperature
increase accompanying this acoustic wave is not enough to ignite the reactive gas, and the
thin reaction zone lags behind the acoustic wavefront. Although the combustion wave is
referred to as a detonation wave in [24], it would now commonly be called a deflagration
wave, as it travels subsonically and is not coincident with the shock wave. This phenomenon
of a second, faster shock overtaking the combustion wave demonstrated experimentally by
Kapila et al. [71], with a full mathematical analysis provided by Short [121], where it is
shown to result from the steep temperature gradient at the time of ignition.

1.3.4 Heating-Induced Detonation

It is now demonstrated that the heating-induced deflagration test can result in detonation
if the temperature gradient upon ignition is less steep. This test is identical to the previous
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1.3 Numerical Results

Figure 1.4: Temperature, pressure, and concentration of reactant in the heating-induced
deflagration test with inert gas (left) / reactive gas (right)
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test, with one exception: ϵ is given the higher value of 1
15 . Thus, the activation energy is

effectively lower, or equivalently, the whole gas volume is relatively closer to the ignition
temperature when the gas at the left boundary ignites. The results of this test are shown in
Figure 1.5 on page 36.

The von Neumann spike is present and well resolved, with a thin reaction zone appearing
behind it in the concentration plot. Unlike in 1.3.2, the system does not relax to the CJ
state behind the detonation wave, as thermal energy is continually added to the reflective
left boundary. The region behind the reaction zone is thus complex.
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Figure 1.5: Temperature, pressure, and concentration of reactant in the heating-induced
detonation test
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Chapter 2

Objective 2: Improved Numerical
Methods
2.1 Extending the Montecinos-Balsara ADER Method
The material in this section is published in [64, 65].

Hyperbolic systems of PDEs can be solved to arbitrary orders of accuracy by using the ADER-
WENO method. These PDE systems may be non-conservative and non-homogeneous, and
contain stiff source terms. ADER-WENO requires a spatiotemporal polynomial reconstruc-
tion of the data in each spacetime cell, at each time step. This reconstruction is obtained as
the root of a nonlinear system, resulting from the use of a Galerkin method. It was proved
in [64] that for traditional choices of basis polynomials, the eigenvalues of certain matrices
appearing in these nonlinear systems are always 0, regardless of the number of spatial di-
mensions of the PDEs or the chosen order of accuracy of the ADER-WENO method. This
guarantees fast convergence to the Galerkin root for certain classes of PDEs.

Montecinos and Balsara have presented a new, more efficient class of basis polynomials for
the one-dimensional ADER-WENO method. This new class of basis polynomials, originally
presented for conservative systems, is extended to multidimensional, non-conservative sys-
tems here, and the corresponding property regarding the eigenvalues of the Galerkin matrices
is proved.

2.1.1 Method of Montecinos and Balsara

[89] have proposed a new, more efficient class of basis polynomials. While the method was
given for conservative, one-dimensional systems in the original paper, it is extended here to
general non-conservative, multidimensional systems.

Take a non-homogeneous, non-conservative, hyperbolic system of the form:

∂Q

∂t
+ ∇ ·

−→
F (Q) + −→

B (Q) · ∇Q = S (Q) (2.1)
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2.1 Extending the Montecinos-Balsara ADER Method

where Q is the vector of conserved variables, −→
F = (F1, F2, F3) and −→

B = (B1, B2, B3)
are respectively the conservative nonlinear fluxes and matrices corresponding to the purely
non-conservative components of the system, and S (Q) is the algebraic source vector.

Define spatial variables x(1), x(2), x(3). Take the space-time cell:

C =
[
x

(1)
i1 , x

(1)
i1+1

]
×
[
x

(2)
i2 , x

(2)
i2+1

]
×
[
x

(3)
i3 , x

(3)
i3+1

]
× [tn, tn+1] (2.2)

Define the scaled spatial and temporal variables:

χ(k) =
x(k) − x

(k)
ik

x
(k)
ik+1 − x

(k)
ik

(2.3a)

τ = t− tn
tn+1 − tn

(2.3b)

Thus, C becomes:

(
χ(1),χ(2),χ(3),τ

)
∈ [0, 1]4 (2.4)

By rescaling −→
F ,

−→
B ,S by the appropriate constant factors, and defining ∇̃ =

(
∂χ(1) , ∂χ(2) , ∂χ(3)

)
,

within C equation (2.1) becomes:

∂Q

∂τ
+ ∇̃ ·

−→
F (Q) + −→

B (Q) · ∇̃Q = S (Q) (2.5)

A basis {ψ0, ..., ψN} of PN and inner product ⟨·, ·⟩ are now required to produce a polynomial
reconstruction of Q within C. Traditionally, this basis has been chosen to be either nodal
(ψi (αj) = δij where {α0, . . . , αN} are a set of nodes, e.g. the Gauss-Legendre abscissae -
see [33]), or modal (e.g. the Legendre polynomials - see [7]).

[89] take the following approach. ⟨·, ·⟩ is taken to be the usual integral product on [0, 1].
Supposing that N = 2n+ 1 for some n ∈ N, Gauss-Legendre nodes {α0, . . . , αn} are taken.
The basis Ψ = {ψ0, ..., ψN} ⊂ PN is taken with the following properties for i = 0, . . . , n:

ψi (αj) = δij ψ′
i (αj) = 0

ψn+1+i (αj) = 0 ψ′
n+1+i (αj) = δij

(2.6)
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2.1 Extending the Montecinos-Balsara ADER Method

Define the following subsets:

Ψ0 = {ψi : 0 ≤ i ≤ n} (2.7a)
Ψ1 = {ψi : n+ 1 ≤ i ≤ 2n+ 1} (2.7b)

The WENO method (as used in [31]) produces an order-N polynomial reconstruction:

w
(
χ(1), χ(2), χ(3)

)
(2.8)

of the data at time tn in:

[
x

(1)
i1 , x

(1)
i1+1

]
×
[
x

(2)
i2 , x

(2)
i2+1

]
×
[
x

(3)
i3 , x

(3)
i3+1

]
(2.9)

It is used as initial data in the problem of finding the Galerkin predictor. Taking representa-
tion:

w = wabcψa
(
χ(1)

)
ψb
(
χ(2)

)
ψc
(
χ(3)

)
(2.10)

we have for 0 ≤ i, j, k ≤ n:

wijk = w (αi, αj, αk) (2.11a)
w(n+i+1)jk = ∂χ(1)w (αi, αj, αk) (2.11b)
wi(n+j+1)k = ∂χ(2)w (αi, αj, αk) (2.11c)
wij(n+k+1) = ∂χ(3)w (αi, αj, αk) (2.11d)

Take the following temporal nodes, where τ1, . . . , τN are the usual Legendre-Gauss nodes
on [0, 1] and τ0 = 0 or τ0 = 1 if we are performing a Continuous Galerkin / Discontinuous
Galerkin reconstruction, respectively:

{τ0, . . . , τN} (2.12)

Define Φ = {φ0, ..., φN} ⊂ PN to be the set of Lagrange interpolating polynomials on the
temporal nodes. We now define the spatiotemporal polynomial basis Θ = Φ ⊗ Ψ ⊗ Ψ ⊗ Ψ =
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2.1 Extending the Montecinos-Balsara ADER Method

{θβ} for 0 ≤ β ≤ (N + 1)4 − 1. Define subsets Θιξκ = Φ ⊗ Ψι ⊗ Ψξ ⊗ Ψκ =
{
θιξκµ

}
where

ι, ξ, κ ∈ {0, 1} for 0 ≤ µ ≤ (N + 1) (n+ 1)3 − 1.

Denoting the Galerkin predictor by q, take the following set of approximations:

Q ≈ θβqβ = θιξκµ qιξκµ (2.13a)
−→
F (Q) ≈ θβ

−→
F β = θιξκµ

−→
F ιξκ
µ (2.13b)

−→
B (Q) · ∇̃Q ≈ θβBβ = θιξκµ Bιξκ

µ (2.13c)
S (Q) ≈ θβSβ = θιξκµ Sιξκ

µ (2.13d)

for some coefficients qβ,
−→
F β,Bβ,Sβ. The nodal basis representation is used for the coeffi-

cients of Θ000:

−→
F 000
µ = −→

F
(
q000
µ

)
(2.14a)

B000
µ = B1

(
q000
µ

)
q100
µ +B2

(
q000
µ

)
q010
µ +B3

(
q000
µ

)
q001
µ (2.14b)

S000
µ = S

(
q000
µ

)
(2.14c)

In general, we have:

−→
F ιξκ
µ = ∂ιχ∂

ξ
υ∂

κ
ζ

(−→
F (Q)

)
(2.15a)

Bιξκ
µ = ∂ιχ∂

ξ
υ∂

κ
ζ

(−→
B (Q) · ∇̃Q

)
(2.15b)

Sιξκ
µ = ∂ιχ∂

ξ
υ∂

κ
ζ (S (Q)) (2.15c)

where the right-hand-side is evaluated at the nodal point corresponding to µ. The full
expressions are omitted here for brevity’s sake, but note that for a one-dimensional system:

F 1
100
µ =

∂F
(
q000
µ

)
∂Q

· q100
µ (2.16a)

B100
µ =

∂B1
(
q000
µ

)
∂Q

· q100
µ

 · q100
µ (2.16b)

+B1
(
q000
µ

)
·
(
∂2θ000

κ (χµ, τµ)
∂χ2 q000

µ + ∂2θ100
κ (χµ, τµ)
∂χ2 q100

µ

)

S100
µ =

∂S
(
q000
µ

)
∂Q

· q100
µ (2.16c)
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2.1 Extending the Montecinos-Balsara ADER Method

where χµ, τµ are the spatial and temporal coordinates where θ100
µ = 0 and ∂χθ100

µ = 1. Note
that ∂B1

∂Q
is a rank 3 tensor.

Consider functions f, g of the following form:

f
(
τ, χ(1), χ(2), χ(3)

)
= fτ (τ) f1

(
χ(1)

)
f2
(
χ(2)

)
f3
(
χ(3)

)
(2.17a)

g
(
τ, χ(1), χ(2), χ(3)

)
= gτ (τ) g1

(
χ(1)

)
g2
(
χ(2)

)
g3
(
χ(3)

)
(2.17b)

Define the following integral operators:

[f, g]t = fτ (t) gτ (t) ⟨f1, g1⟩ ⟨f2, g2⟩ ⟨f3, g3⟩ (2.18a)
{f, g} = ⟨fτ , gτ ⟩ ⟨f1, g1⟩ ⟨f2, g2⟩ ⟨f3, g3⟩ (2.18b)

Multiplying (2.13b) by test function θα, using the polynomial approximations for Q,
−→
F ,

−→
B ,S,

and integrating over space and time gives:

{
θα,

∂θβ
∂τ

}
qβ = {θα, θβ} (Sβ − Bβ) −

{
θα,

∂θβ
∂χ(k)

}
F kβ (2.19)

2.1.2 Discontinuous Galerkin Method

This method of computing the Galerkin predictor allows solutions to be discontinuous at
temporal cell boundaries, and is also suitable for stiff source terms. Integrating (2.19) by
parts in time gives:

(
[θα, θβ]1 −

{
∂θα
∂τ

, θβ

})
qβ = [θα,w]0 + {θα, θβ} (Sβ − Bβ) (2.20)

−
{
θα,

∂θβ
∂χ(k)

}
F kβ

where w is the reconstruction obtained at the start of the time step with the WENO method.
Take the following ordering:

θ(N+1)3h+(N+1)2i+(N+1)j+k (τ, χ, υ, ζ) = φh (τ)ψi (χ)ψj (υ)ψk (ζ) (2.21)
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where 0 ≤ h, i, j, k ≤ N . Thus, define the following:

Uαβ = [θα, θβ]1 −
{
∂θα
∂τ

, θβ

}
=
(
R1 −M τ,1

)
⊗ (Mχ)3 (2.22a)

V k
αβ =

{
θα,

∂θβ
∂χ(k)

}
= M τ ⊗ (Mχ)k−1 ⊗Mχ,1 ⊗ (Mχ)3−k (2.22b)

W α = [θα,Ψγ]0 wγ = R0 ⊗ (Mχ)3 (2.22c)
Zαβ = {θα, θβ} = M τ ⊗ (Mχ)3 (2.22d)

where {Ψγ} = Ψ ⊗ Ψ ⊗ Ψ and:


M τ

ij = ⟨φi, φj⟩ M τ,1
ij =

〈
φ

′
i, φj

〉
Mχ

ij = ⟨ψi, ψj⟩ Mχ,1
ij =

〈
ψi, ψ

′
j

〉
R1
ij = φi (1)φj (1) R0

i = φi (0)

(2.23)

Thus:

Uαβqβ = W α + Zαβ (Sβ − Bβ) − V
(k)
αβ F kβ (2.24)

Take the definitions:

D = (Mχ)−1 Mχ,1

E = (R1 −M τ,1)
(2.25)

Noting that E1 = R0, we have, by inversion of U :

q =
(
1 ⊗ I3

)
w +

(
E−1M τ ⊗ I3

)
(S − B) (2.26)

−
(
E−1M τ ⊗ Ik−1 ⊗D ⊗ I3−k

)
F k

Thus, we have:

qhijk = wijk +
(
E−1M τ

)
hm

(Smijk − Bmijk) (2.27)

−
(
E−1M τ

)
hm

(
Din (F 1)mnjk +Djn (F 2)mink +Dkn (F 3)mijn

)
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Note then that qιξκ is a function of Sιξκ,Bιξκ,
−→
F :

qιξκ = F
(
Sιξκ

)
+ F

(
Bιξκ

)
+ Gιξκ

(−→
F 000, . . . ,

−→
F 111

)
(2.28)

where F ,Gιξκ are linear functions. Note in turn that, by (2.15c):

Sιξκ = H

 ⋃
(0, 0, 0) ≤ (a, b, c) ≤ (ι, ξ, κ)

qabc

 (2.29)

where H is a nonlinear function.

In the case of stiff source terms, the following Picard iteration procedure can be used to solve
(2.27), as adapted from [89]:

(
qιξκ

)
m+1

= F


H


(
qιξκ

)
m+1

∪
⋃

(0, 0, 0) ≤ (a, b, c) ≤ (ι, ξ, κ)
(a, b, c) ̸= (ι, ξ, κ)

(
qabc

)
m




(2.30)

+ F
((

Bιξκ
)
m

)
+ Gιξκ

((−→
F 000

)
m
, . . . ,

(−→
F 111

)
m

)

2.1.3 Continuous Galerkin Method

This method of computing the Galerkin predictor is not suitable for stiff source terms, but is
less computationally expensive and ensures continuity across temporal cell boundaries. The
first N + 1 elements of q are fixed by imposing the following condition:

q (χ, 0) = w (χ) (2.31)

For v ∈ R(N+1)2 and X ∈ M(N+1)2,(N+1)2 (R), let:

v =
(
v0,v1

)
(2.32a)

X =
X00 X01

X10 X11

 (2.32b)
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where v0, X00 are the components relating solely to the first N + 1 components of v. We
only need to find the latter components of q, and thus, from (2.19), we have:

{
θα,

∂θβ
∂τ

}11

q1
β = {θα, θβ}11

(
S1
β − B1

β

)
−
{
θα,

∂θβ
∂χ(k)

}11

F k
1
β (2.33)

+ {θα, θβ}10
(
S0
β − B0

β

)
−
{
θα,

∂θβ
∂χ(k)

}10

F k
0
β

Define the following:

Uαβ =
{
θα,

∂θβ
∂τ

}11

(2.34a)

V k
αβ =

{
θα,

∂θβ
∂χ(k)

}11

(2.34b)

W α = {θα, θβ}10 (Sβ − Bβ)0 −
{
θα,

∂θβ
∂χ(k)

}10

F k
0
β (2.34c)

Zαβ = {θα, θβ}11 (2.34d)

Thus:

Uαβq1
β = W α + Zαβ

(
S1
β − B1

β

)
− V k

αβF k
1
β (2.35)

Note that, as with the discontinuous Galerkin method, W has no dependence on the degrees
of freedom in q. As the source terms are not stiff, the following iteration is used:

Uαβ
(
q1
β

)
m+1

= W α + Zαβ
((

S1
β

)
m

−
(
B1
β

)
m

)
− V k

αβ

(
F k

1
β

)
m

(2.36)

2.1.4 Convergence Properties

In [64] it was proved that for traditional choices of polynomial bases, the eigenvalues of
U−1V i are all 0 for any N ∈ N, for i = 1, 2, 3. This implies that in the conservative,
homogeneous case (−→B = S = 0), owing to the Banach Fixed Point Theorem, existence and
uniqueness of a solution are established, and convergence to this solution is guaranteed. As
noted in [39], in the linear case it is implied that the iterative procedure converges after at
most N + 1 iterations. A proof of this result for the Montecinos-Balsara polynomial basis
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2.1 Extending the Montecinos-Balsara ADER Method

class is now provided here. For the theory in linear algebra required for this section, please
consult a standard textbook on the subject, such as [93].

Take the definitions (2.23), (2.25). Consider that:

U−1V k = E−1M τ ⊗ Ik−1 ⊗D ⊗ I3−k (2.37)

Therefore:

(
U−1V k

)m
=
(
E−1M τ

)m
⊗
(
Ik−1

)m
⊗Dm ⊗

(
I3−k

)m
(2.38)

A matrix X is nilpotent (Xk = 0 for some k ∈ N) if and only if all its eigenvalues are 0.
Note that U−1V k is nilpotent if Dm = 0 for some m ∈ N.

Note that if p ∈ PN then p = ajψj for some unique coefficient vector a. Thus, taking inner
products with ψi, we have ⟨ψi, ψj⟩ aj = ⟨ψi, p⟩ for i = 0, ..., N . This produces the following
result:

p = ajψj ⇔ a = (Mχ)−1 x, xi = ⟨ψi, p⟩ (2.39)

Taking a ∈ RN+1, define:

p = a0ψ0 + . . .+ aNψN ∈ PN (2.40)

Note that:

(
Mχ,1a

)
i

=
〈
ψi, ψ

′

0

〉
a0 + . . .+

〈
ψi, ψ

′

N

〉
aN =

〈
ψi, p

′〉 (2.41)

Thus, by (2.39):

(
(Mχ)−1 Mχ,1a

)
i
ψi = (Da)i ψi = p′ (2.42)

By induction:

(Dma)i ψi = p(m) (2.43)
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for any m ∈ N. As p ∈ PN , DN+1a = 0. As a was chosen arbitrarily, DN+1 = 0. No
specific choice has been made for N ∈ N and thus the result holds in general.

Thus, in the case that −→
B = S = 0, existence and uniqueness of a solution are established,

and convergence to this solution is guaranteed for the iterative solution to (2.24) in the
Discontinuous Galerkin case, and (2.35) in the Continuous Galerkin case.

2.2 Operator Splitting Methods

The material in this section is published in [63] and [66].

A new second-order numerical scheme based on an operator splitting is proposed for the
GPR model. The homogeneous part of the system is solved with a finite volume method
based on a WENO reconstruction, and the temporal ODEs are solved using some analytic
results presented here. Whilst it is not possible to attain arbitrary-order accuracy with this
scheme (as with ADER-WENO schemes used previously), the attainable order of accuracy is
often sufficient, and solutions are computationally cheap when compared with other available
schemes. The new scheme is compared with an ADER-WENO scheme for various test cases,
and a convergence study is undertaken to demonstrate its order of accuracy.

A method for modeling non-Newtonian fluids (dilatants and pseudoplastics) by a power law
under the GPR model is also presented, along with a new numerical scheme for solving
this system. The scheme is also modified to solve the corresponding system for power-law
elastoplastic solids. The method is found to perform favorably against problems with known
exact solutions, and numerical solutions published in the open literature. It is simple to
implement, and to the best of the authors’ knowledge it is currently the only method for
solving this modified version of the GPR model.

2.2.1 Strang Splitting

Note that (1a), (1b), (1c), (1d), (3) can be written in the following form:

∂Q

∂t
+ ∇ · F (Q) + B (Q) · ∇Q = S (Q) (2.44)
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As described in [126], a viable way to solve inhomogeneous systems of PDEs is to employ an
operator splitting. That is, the following subsystems are solved:

∂Q

∂t
+ ∇ · F (Q) + B (Q) · ∇Q = 0 (2.45a)

dQ

dt
= S (Q) (2.45b)

The advantage of this approach is that specialized solvers can be employed to compute the
results of the different subsystems. Let Hδt, Sδt be the operators that take data Q (x, t)
to Q (x, t+ δt) under systems (2.45a) and (2.45b) respectively. A second-order scheme (in
time) for solving the full set of PDEs over time step [0,∆t] is obtained by calculating Q∆t

using a Strang splitting:

Q∆t = S
∆t
2 H∆tS

∆t
2 Q0 (2.46)

In the scheme proposed here, the homogeneous subsystem will be solved using a WENO
reconstruction of the data, followed by a finite volume update, and the temporal ODEs will
be solved with appropriate ODE solvers. It should be noted that there are other choices of
solvers for the homogeneous system that could have been made (e.g. see MUSCL, SLIC,
and WAF, among others in [126]). The WENO method was chosen due to the arbitrarily
high-order spatial reconstructions it is able to produce. This new scheme will be referred to
here as the Split-WENO method.

Noting that dρ
dt

= 0 over the ODE time step, the operator S entails solving the following
systems:

dA

dt
= −3

τ1
(detA)

5
3 A dev (G) (2.47a)

dJ

dt
= − 1

τ2

Tρ0

T0ρ
J (2.47b)

These systems can be solved concurrently with a stiff ODE solver. The Jacobians of these
two systems to be used in an ODE solver are given in A.2 and A.2. However, these systems
can also be solved separately, using the analytical results presented in 2.2.3 and 2.2.4, under
specific assumptions. The second-order Strang splitting is then:

Q∆t = D
∆t
2 T

∆t
2 H∆tT

∆t
2 D

∆t
2 Q0 (2.48)
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whereDδt, T δt are the operators solving the distortion and thermal impulse ODEs respectively,
over time step δt. This allows us to bypass the relatively computationally costly process of
solving these systems numerically.

The constraint (17) is enforced by rescaling the singular values of the distortion all by the
same factor at each time step, to ensure that detA = ρ

ρ0
.

2.2.2 Homogeneous System

A WENO reconstruction of the cell-averaged data is performed at the start of the time
step (as described in [40]). Focusing on a single cell Ci at time tn, we have wn (x) =
wn

pΨp (χ (x)) in Ci where Ψp is a tensor product of basis functions in each of the spatial
dimensions. The flux in C is approximated by F (x) ≈ F (wp) Ψp (χ (x)). wp are stepped
forwards half a time step using the update formula:

w
n+ 1

2
p − wn

p

∆t/2 = − F
(
wn

k

)
· ∇Ψk (χp) (2.49)

− B
(
wn

p

)
·
(
wn

k ∇Ψk (χp)
)

i.e.

wn+ 1
2

p = wn
p − ∆t

2∆x

 F
(
wn

k

)
· ∇Ψk (χp)

+B
(
wn

p

)
·
(
wn

k ∇Ψk (χp)
) (2.50)

where χp is the node corresponding to Ψp. This evolution to the middle of the time step is
similar to that used in the second-order MUSCL and SLIC schemes (see [126]) and, as with
those schemes, it is integral to giving the method presented here its second-order accuracy.

Integrating (2.45a) over C gives:

Qn+1
i = Qn

i − ∆tn
(

P
n+ 1

2
i + D

n+ 1
2

i

)
(2.51)
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where

Qn
i = 1

V

∫
C

Q (x, tn) dx (2.52a)

P
n+ 1

2
i = 1

V

∫
C

B
(
Q
(
x, tn+ 1

2

))
· ∇Q

(
x, tn+ 1

2

)
dx (2.52b)

D
n+ 1

2
i = 1

V

z

∂C

D
(
Q−

(
s, tn+ 1

2

)
,Q+

(
s, tn+ 1

2

))
ds (2.52c)

where V is the volume of C and Q−, Q+ are the interior and exterior extrapolated states
at the boundary of C, respectively.

Note that (2.45a) can be rewritten as:

∂Q

∂t
+ M (Q) · ∇Q = 0 (2.53)

where M = ∂F
∂Q

+ B. Let n be the normal to the boundary at point s ∈ ∂C. For the GPR
model, M̂ = M (Q (s)) · n is a diagonalizable matrix with decomposition M̂ = R̂Λ̂R̂−1

where the columns of R̂ are the right eigenvectors and Λ̂ is the diagonal matrix of eigenvalues.
Define also F̂ = F · n and B̂ = B · n. Using these definitions, the interface terms arising
in the FV formula have the following form:

D
(
Q−,Q+

)
= 1

2
(
F̂
(
Q+

)
+ F̂

(
Q−

))
(2.54)

+ 1
2
(
B̃
(
Q+ − Q−

)
+ M̃

(
Q+ − Q−

))

M̃ is chosen to either correspond to a Rusanov/Lax-Friedrichs flux (see [126]):

M̃ = max
(
max

∣∣∣Λ̂ (Q+
)∣∣∣ ,max

∣∣∣Λ̂ (Q−
)∣∣∣) (2.55)

or a Roe flux (see [38]):
M̂ =

∣∣∣∣∫ 1

0
M
(
q− + z

(
q+ − q−

))
dz

∣∣∣∣ (2.56)

or a simplified Osher–Solomon flux (see [37, 38]):

M̃ =
∫ 1

0

∣∣∣M̂ (
Q− + z

(
Q+ − Q−

))∣∣∣ dz (2.57)
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where

∣∣∣M̂ ∣∣∣ = R̂
∣∣∣Λ̂∣∣∣ R̂−1 (2.58)

B̃ takes the following form:

B̃ =
∫ 1

0
B̂
(
Q− + z

(
Q+ − Q−

))
dz (2.59)

It was found that the Osher-Solomon flux would often produce slightly less diffusive results,
but that it was more computationally expensive, and also had a greater tendency to introduce
numerical artifacts.

P
n+ 1

2
i ,D

n+ 1
2

i are calculated using an N + 1-point Gauss-Legendre quadrature, replacing
Q
(
x, tn+ 1

2

)
with wn+ 1

2 (x).

2.2.3 Thermal Impulse ODEs

Taking the EOS for the GPR model (6) and denoting by E(A)
2 , E

(J)
2 the components of E2

depending on A and J respectively, we have:

T = E1

cv
(2.60)

= E − E
(A)
2 (ρ, s, A) − E3 (v)

cv
− 1
cv
E

(J)
2 (J)

= c1 − c2 ∥J∥2

where:

c1 = E − E
(A)
2 (A) − E3 (v)

cv
(2.61a)

c2 = c2
t

2cv
(2.61b)

Over the time period of the ODE (2.47b), c1, c2 > 0 are constant. We have:

dJi
dt

= −
(

1
τ2

ρ0

T0ρ

)
Ji
(
c1 − c2 ∥J∥2

)
(2.62)
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Therefore:

d

dt

(
J2
i

)
= J2

i

(
−a+ b

(
J2

1 + J2
2 + J2

3

))
(2.63)

where

a = 2ρ0

τ2T0ρcv

(
E − E

(A)
2 (A) − E3 (v)

)
(2.64a)

b = ρ0c
2
t

τ2T0ρcv
(2.64b)

Note that this is a generalized Lotka-Volterra system in {J2
1 , J

2
2 , J

2
3 }. It has the following

analytical solution:

J (t) = J (0)
√√√√ 1
eat − b

a
(eat − 1) ∥J (0)∥2 (2.65)

2.2.4 Distortion ODEs

Let k0 = 3
τ1

(
ρ
ρ0

) 5
3 > 0 and let A have singular value decomposition UΣV T . Then:

G =
(
UΣV T

)T
UΣV T = V Σ2V T (2.66)

tr (G) = tr
(
V Σ2V T

)
= tr

(
Σ2V TV

)
= tr

(
Σ2
)

(2.67)

Therefore:

dA

dt
= −k0UΣV T

(
V Σ2V T − tr (Σ2)

3 I

)
(2.68)

= −k0UΣ
(

Σ2 − tr (Σ2)
3

)
V T

= −k0UΣ dev
(
Σ2
)
V T
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It is a common result that1:

dΣ = UTdAV (2.69)

and thus:

dΣ
dt

= −k0Σ dev
(
Σ2
)

(2.70)

Using a fast 3 × 3 SVD algorithm (such as in [82]), U, V,Σ can be obtained, after which the
following procedure is applied to Σ, giving A (t) = UΣ (t)V T .

Denote the singular values of A by a1, a2, a3. Then:

Σ dev
(
Σ2
)

=


a1
(
a2

1 − â
)

0 0
0 a2

(
a2

2 − â
)

0
0 0 a3

(
a2

3 − â
)
 (2.71)

where

â = a2
1 + a2

2 + a2
3

3 (2.72)

Letting xi = a2
i

det(A)
2
3

= a2
i(

ρ
ρ0

) 2
3

we have:

dxi
dτ

= −3xi (xi − x̄) (2.73)

where τ = 2
τ1

(
ρ
ρ0

) 7
3 t and x̄ is the arithmetic mean of x1, x2, x3. This ODE system travels

along the surface Ψ = {x1, x2, x3 > 0, x1x2x3 = 1} to the point x1, x2, x3 = 1. This surface
is symmetrical in the planes x1 = x2, x1 = x3, x2 = x3. As such, given that the system is
autonomous, the paths of evolution of the xi cannot cross the intersections of these planes
with Ψ. Thus, any non-strict inequality of the form xi ≥ xj ≥ xk is maintained for the
whole history of the system. By considering (2.73) it is clear that in this case xi is monotone
decreasing, xk is monotone increasing, and the time derivative of xj may switch sign.

1This does not necessitate the U, V are constant. See section 3.2 of [49] for a full derivation.
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Note that we have:


dxi

dτ
= −xi (2xi − xj − xk) = −xi

(
2xi − xj − 1

xixj

)
dxj

dτ
= −xj (2xj − xk − xi) = −xj

(
2xj − xi − 1

xixj

) (2.74)

Thus, an ODE solver can be used on these two equations to effectively solve the ODEs for
all 9 components of A. Note that:

dxj
dxi

= xj
xi

2xj − xi − 1
xixj

2xi − xj − 1
xixj

(2.75)

This has solution:

xj =
c+

√
c2 + 4 (1 − c)x3

i

2x2
i

(2.76)

where

c = −
xi,0

(
xi,0x

2
j,0 − 1

)
xi,0 − xj,0

∈ (−∞, 0] (2.77)

In the case that xi,0 = xj,0, we have xi = xj for all time. Thus, the ODE system for A has
been reduced to a single ODE, as xj (xi) can be inserted into the RHS of the equation for
dxi

dτ
. However, it is less computationally expensive to evolve the system presented in (2.74).

2.2.4.1 Bounds on the Solutions

If any of the relations in xi ≥ xj ≥ xk are in fact equalities, equality is maintained throughout
the history of the system. This can be seen by noting that the time derivatives of the equal
variables are in this case equal. If xj = xk then xi = 1

x2
j
. Combining these results, the path

of the system in (xi, xj) coordinates is in fact confined to the curved triangular region:

{
(xi, xj) : xi ≤ x0

i ∩ xi ≥ xj ∩ xi ≥ 1
x2
j

}
(2.78)
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Figure 2.1: Region to which xi, xj are confined in the evolution of the distortion ODEs
(shaded)

This is demonstrated in Figure 2.1 on page 54. By (2.74), the rate of change of xi at a
particular value xi = x∗

i is given by:

−x∗
i

(
2x∗

i − xj − 1
x∗
ixj

)
(2.79)

Note that:

d

dxj

(
2x∗

i − xj − 1
x∗
ixj

)
= −1 + 1

x∗
ix

2
j

= 0 (2.80)

⇒ xj = 1√
x∗
i

d2

dx2
j

(
2x∗

i − xj − 1
x∗
ixj

)
= −2
x∗
ix

3
j

< 0 (2.81)

Thus, xi decreases fastest on the line xi = 1
x2

j
(the bottom boundary of the region given in

Figure 2.1 on page 54), and slowest on the line xi = xj. The rates of change of xi along
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these two lines are given respectively by:

dxi
dτ

= −2xi
(
xi −

√
1
xi

)
(2.82a)

dxi
dτ

= −xi
(
xi − 1

x2
i

)
(2.82b)

These have implicit solutions:

τ = (f (√xi) + g (√xi)) −
(
f
(√

x0
i

)
+ g

(√
x0
i

))
≡ F1

(
xi;x0

i

)
(2.83a)

τ = (f (xi) − g (xi)) −
(
f
(
x0
i

)
− g

(
x0
i

))
≡ F2

(
xi;x0

i

)
(2.83b)

where

f (xi) = 1
6 log

(
x2
i + xi + 1
(xi − 1)2

)
(2.84a)

g (xi) = 1√
3

tan−1
(

2xi + 1√
3

)
(2.84b)

As (2.73) is an autonomous system of ODEs, it has the property that its limit x1 = x2 =
x3 = 1 is never obtained in finite time, in precise arithmetic. In floating point arithmetic we
may say that the system has converged when xi − 1 < ϵ (machine epsilon) for each i. This
happens when:

τ > F2
(
1 + ϵ;x0

i

)
(2.85)

This provides a quick method to check whether it is necessary to run the ODE solver in a
particular cell. If the following condition is satisfied then we know the system in that cell
converges to the ground state over the time interval in which the ODE system is calculated:

2
τ1

(
ρ

ρ0

) 7
3

∆t > F2
(
1 + ϵ; max

{
x0
i

})
(2.86)

If the fluid is very inviscid, resulting in a stiff ODE, the critical time is lower, and there is
more chance that the ODE system in the cell reaches its limit in ∆t. This check potentially
saves a lot of computationally expensive stiff ODE solves. The same goes for if the flow is
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slow-moving, as the system will be closer to its ground state at the start of the time step
and is more likely to converge over ∆t. Similarly, if the following condition is satisfied then
we know for sure that an ODE solver is necessary, as the system certainly will not have
converged over the timestep:

2
τ1

(
ρ

ρ0

) 7
3

∆t < F1
(
1 + ϵ; max

{
x0
i

})
(2.87)

2.2.4.2 Newtonian Fluids

We now explore cases when even the reduced ODE system (2.73) need not be solved numer-
ically. Define the following variables:

m = x1 + x2 + x3

3 (2.88a)

u = (x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2

3 (2.88b)

It is a standard result that m ≥ 3
√
x1x2x3. Thus, m ≥ 1. Note that u is proportional to the

internal energy contribution from the distortion. From (2.73) we have:

du

dτ
= −18

(
1 −m

(
m2 − 5

6u
))

(2.89a)
dm

dτ
= −u (2.89b)

Combining these equations, we have:

d2m

dτ 2 = −du

dτ
= 18

(
1 −m

(
m2 − 5

6u
))

(2.90)

Therefore:


d2m
dτ2 + 15mdm

dτ
+ 18 (m3 − 1) = 0

m (0) = m0

m
′ (0) = −u0

(2.91)
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We make the following assumption, noting that it is true in all physical situations tested in
this study:

m (t) = 1 + η (t) , η ≪ 1 ∀t ≥ 0 (2.92)

Thus, we have the linearized ODE:


d2η
dτ2 + 15dη

dτ
+ 54η = 0

η (0) = m0 − 1
η

′ (0) = −u0

(2.93)

This is a Sturm-Liouville equation with solution:

η (τ) = e−9τ

3
(
ae3τ − b

)
(2.94)

where

a = 9m0 − u0 − 9 (2.95a)
b = 6m0 − u0 − 6 (2.95b)

Thus, we also have:

u (τ) = e−9τ
(
2ae3τ − 3b

)
(2.96)

Denote the following:

m∆t = 1 + η

 2
τ1

(
ρ

ρ0

) 7
3

∆t
 (2.97a)

u∆t = u

 2
τ1

(
ρ

ρ0

) 7
3

∆t
 (2.97b)
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Once these have been found, we have:

xi + xj + xk
3 = m∆t (2.98a)

(xi − xj)2 + (xj − xk)2 + (xk − xi)2

3 = u∆t (2.98b)

xixjxk = 1 (2.98c)

This gives:

xi = Ξ
6 + u∆t

Ξ +m∆t (2.99a)

xj = 1
2


√√√√xi (3m∆t − xi)2 − 4

xi
+ 3m∆t − xi

 (2.99b)

xk = 1
xixj

(2.99c)

where

Ξ = 3

√
6
(√

81∆2 − 6u3
∆t + 9∆

)
(2.100a)

∆ = −2m3
∆t +m∆tu∆t + 2 (2.100b)

Note that taking the real parts of the above expression for xi gives:

xi =
√

6u∆t

3 cos
(
θ

3

)
+m∆t (2.101a)

θ = tan−1


√

6u3
∆t − 81∆2

9∆

 (2.101b)

At this point it is not clear which values of {xi, xj, xk} are taken by x1, x2, x3. However, this
can be inferred from the fact that any relation xi ≥ xj ≥ xk is maintained over the lifetime
of the system. Thus, the stiff ODE solver has been obviated by a few arithmetic operations.

2.2.4.3 Power Law Fluids

The stress-strain relationships for various kinds of fluids are shown in Figure 2.2 on page 59.
Dilatants and pseudoplastics may be modeled using the following power law, with n > 1 and
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Figure 2.2: Stress-strain relationships for different kinds of fluids (source: [130])

0 < n < 1, respectively (see [122]):

σ = K |γ̇|n−1 γ̇ (2.102)

γ̇ = ∇v + ∇vT − 2 tr (∇v)
3 I (2.103)

K > 0 is known as the consistency, and K |γ̇|n−1 is the apparent viscosity. The norm is
taken to be:

|X| =
√

1
2XijXij = ∥X∥F√

2
(2.104)

In [35] it was noted that when expressing the state variables as an asymptotic expansion in
the relaxation parameter τ1, to first order we have:

σ = 1
6τ1ρ0c

2
s

(
∇v + ∇vT − 2

3 tr (∇v) I
)

(2.105)

Thus, for a power law fluid, we require that:

1
6τ1ρ0c

2
s = K |γ̇|n−1 (2.106)
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Taking moduli of both sides of (2.105), we also have:

|σ| = 1
6τ1ρ0c

2
s |γ̇| (2.107)

Combining these two relationships, we obtain:

τ1 = 6K 1
n

ρ0c2
s

∣∣∣∣ 1σ
∣∣∣∣

1−n
n

:= τ0

∣∣∣∣ 1σ
∣∣∣∣

1−n
n

(2.108)

Take the singular value decomposition A = UΣV T . Note that:

σ = −ρc2
sA

TA dev
(
ATA

)
= −ρc2

sV Σ2 dev
(
Σ2
)
V T (2.109)

Thus:

∥σ∥kF = ρkc2k
s

∥∥∥Σ2 dev
(
Σ2
)∥∥∥k

F
(2.110)

Thus, according to (2.108), and letting k = 1−n
n

, we have:

dΣ
dt

= − 3
τ0

(
ρ

ρ0

) 5
3 ρkc2k

s

2 k
2

∥∥∥Σ2 dev
(
Σ2
)∥∥∥k

F
Σ dev

(
Σ2
)

(2.111)

Let:

xi = a2
i

det (A)
2
3

= a2
i(

ρ
ρ0

) 2
3

(2.112)

then Σ2 = det (A)
2
3 X where X = diag (x1, x2, x3). Thus, we have:

dxi
dt̃

= −3 ∥X dev (X)∥kF xi (xi − x̄) (2.113)

where:

t̃ = 2
τ0

(
ρ

ρ0

) 4k+7
3
(
ρc2

s√
2

)k
t (2.114)
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Note that:

9 ∥X dev (X)∥2
F = 4

(
x4

1 + x4
2 + x4

3

)
(2.115)

− 2
(
x2

1x
2
2 + x2

3x
2
2 + x2

1x
2
3

)
+

∑
i ̸=j,j ̸=k,k ̸=i

x2
ixjxk − 4

∑
i ̸=j

x3
ixj

Defining m,u as before, we have:

∥X dev (X)∥2
F = 1

2u
2 + 4m2u− 6m4 + 6m (2.116)

This leads to the following coupled system of ODEs:

du

dt̃
= −18dτ

dt̃

(
1 −m

(
m2 − 5

6u
))

(2.117a)
dm

dt̃
= −dτ

dt̃
u (2.117b)

where we have defined the variable τ by:

dτ

dt̃
=
(1

2u
2 + 4m2u− 6m4 + 6m

) k
2

(2.118)

Using the approximation solution from before:

m (τ) = 1 + e−9τ

3
(
ae3τ − b

)
(2.119a)

u (τ) = e−9τ
(
2ae3τ − 3b

)
(2.119b)

It is straightforward to verify that:
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dτ

dt̃
= 1

54 k
2



108ae−6τ − 324be−9τ

+180a2e−12τ − 612abe−15τ

+459b2e−18τ − 24a2be−21τ

+ (48ab2 − 4a4) e−24τ

+ (16a3b− 24b3) e−27τ

−24a2b2e−30τ + 16ab3e−33τ

−4b4e−36τ



k
2

(2.120)

≡ f (τ)
k
2

54 k
2

f (τ) is approximated by g (τ) ≡ ce− c
λ
τ , where:

c = 108a− 324b+ 180a2 − 612ab+ 459b2 (2.121a)
− 24

(
a2b− 2ab2 + b3

)
− 4 (a− b)4

λ = 18a− 36b+ 15a2 − 204ab
5 + 51b2

2 (2.121b)

− 8a2b

7 + 2ab2 − 8b3

9 − a4

6 + 16a3b

27

− 4a2b2

5 + 16ab3

33 − b4

9

Note that f (0) = g (0) and ∫∞
0 (f (τ) − g (τ)) dτ = 0. Thus, we have:

dτ

dt̃
≈
(
c

54

) k
2
e− kc

2λ
τ (2.122)

Therefore:

τ ≈ 2λ
kc

log
(
kc

2λ

(
c

54

) k
2
t̃+ 1

)
(2.123)

= 2λ
kc

log
 kc

τ0λ

(
ρ

ρ0

) 4k+7
3
(√

cρc2
s

6
√

3

)k
t+ 1
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2.2.4.4 Elastoplastic Solids

For elastoplastic materials governed by the power law described in (15a):

dΣ
dt

= − 3
τ0

(
ρ

ρ0

) 5
3
(

3
2

)n
2 ρnc2n

s ∥dev (Σ2 dev (Σ2))∥nF
σn0

Σ dev
(
Σ2
)

(2.124)

Thus, we have:

dxi
dt̃

= −3 ∥dev (X dev (X))∥nF xi (xi − x̄) (2.125)

where:

t̃ = 2
τ0

(
ρ

ρ0

) 4n+7
3
√3

2
ρc2

s

σ0

n t (2.126)

Note that:

27
2 ∥dev (X dev (X))∥2

F = 3
2

∑
i ̸=j,j ̸=k,k ̸=i

x2
ixjxk (2.127)

− 2
∑
i ̸=j

x3
ixj

− 3
(
x2

1x
2
2 + x2

3x
2
2 + x2

1x
2
3

)
+ 4

(
x4

1 + x4
2 + x4

3

)

Thus we have:

∥dev (X dev (X))∥2
F = 1

6u
2 + 4m2u− 6m4 + 6m (2.128)

This leads to the following coupled system of ODEs:

du

dt̃
= −18dτ

dt̃

(
1 −m

(
m2 − 5

6u
))

(2.129a)
dm

dt̃
= −dτ

dt̃
u (2.129b)
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where we have defined the variable τ by:

dτ

dt̃
=
(1

6u
2 + 4m2u− 6m4 + 6m

)n
2

(2.130)

Then we have:

du

dτ
= −18

(
1 −m

(
m2 − 5

6u
))

(2.131a)
dm

dτ
= −u (2.131b)

Using the approximate solution (2.119a), (2.119b) again, it is straightforward to verify that:

dτ

dt̃
= 1

54n
2



108ae−6τ − 324be−9τ

+108a2e−12τ − 396abe−15τ

+297b2e−18τ − 24a2be−21τ

+ (48ab2 − 4a4) e−24τ

+ (16a3b− 24b3) e−27τ

−24a2b2e−30τ + 16ab3e−33τ

−4b4e−36τ



n
2

(2.132)

≡ f (τ)
n
2

54n
2

f (τ) is approximated by g (τ) ≡ ce−λτ , where:

c = 108a− 324b+ 108a2 − 396ab+ 297b2 (2.133a)
− 24

(
a2b− 2ab2 + b3

)
− 4 (a− b)4

λ = 18a− 36b+ 9a2 − 132ab
5 + 33b2

2 (2.133b)

− 8a2b

7 + 2ab2 − 8b3

9 − a4

6

+ 16a3b

27 − 4a2b2

5 + 16ab3

33 − b4

9

Note that f (0) = g (0) and ∫∞
0 (f (τ) − g (τ)) dτ = 0. Thus, we have:

dτ

dt̃
≈
(
c

54

)n
2
e− nc

2λ
τ (2.134)
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Therefore:

τ ≈ 2λ
nc

log
(
nc

2λ

(
c

54

)n
2
t̃+ 1

)
(2.135)

= 2λ
nc

log
 nc

τ0λ

(
ρ

ρ0

) 4n+7
3
(√

c

6
ρc2

s

σ0

)n
t+ 1


Thus, the value of A at time ∆t is found by substituting the following into (2.119a), (2.119b):

τ = 2λ
nc

log
 nc

τ0λ

(
ρ

ρ0

) 4n+7
3
(√

c

6
ρc2

s

σ0

)n
∆t+ 1

 (2.136)

The results are in turn substituted into (2.101a), (2.99b), (2.99c).

2.2.5 Distortion Correction in Fluids

Owing to the linearization step in (2.93), the method presented will perform poorly if the
mean of the normalized singular values of the distortion, m, deviates significantly from 1.
To avert this, the following resetting procedure was applied globally for fluid flow problems
when m > 1.03:

E 7→ E − c2
S

4 ∥dev (G)∥2
F (2.137a)

A 7→
(
ρ

ρ0

)1/3

I (2.137b)

This is justified by the fact that the distortion is not a macroscopically-measurable quantity.
This transformation leaves the density, pressure, and velocity of the fluid unchanged, and was
found to improve the stability of the numerical scheme, while at the same time producing
correct results, as demonstrated in the following section.
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ρ p v A J

x < 0 1 1/γ (0,−0.1, 0) I3 0
x ≥ 0 1 1/γ (0, 0.1, 0) I3 0

Table 2.1: Initial conditions for the slow opposing shear flow test

2.3 Numerical Results

2.3.1 Newtonian Fluids & Elastic Solids

2.3.1.1 Strain Relaxation

In this section, the approximate analytic solver for the distortion ODEs, presented in 2.2.4.2,
is compared with a numerical ODE solver. Initial data was taken from [10]:

A =


1 0 0

−0.01 0.95 0.02
−0.015 0 0.9


−1

(2.138)

Additionally, the following parameter values were used: ρ0 = 1, cs = 1, µ = 10−2, giving
τ1 = 0.06. As can be seen in Figure 2.3 on page 67, Figure 2.4 on page 67, and Figure 2.5
on page 67, the approximate analytic solver compares well with the numerical solver in its
results for the distortion tensor A, and thus also the internal energy and stress tensor. The
numerical ODE solver was the odeint solver from SciPy 0.18.1, based on the LSODA solver
from the FORTRAN library ODEPACK (see [95]).

2.3.1.2 Stokes’ First Problem

This problem is one of the few test cases with an analytic solution for the Navier-Stokes
equations. It consists of two ideal gases in an infinite domain, meeting at the plane x = 0,
initially flowing with equal and opposite velocity ±0.1 in the y-axis. The initial conditions
are given in Table 2.1 on page 66.

The flow has a low Mach number of 0.1, and this test case is designed to demonstrate the
efficacy of the numerical methods in this flow regime. The exact solution to the Navier-Stokes
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2.3 Numerical Results

Figure 2.3: Components of the distortion tensor in the Strain Relaxation Test

Figure 2.4: Singular values of the distortion tensor and the energy in the Strain Relaxation
Test

Figure 2.5: Components of the stress tensor in the Strain Relaxation Test
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2.3 Numerical Results

equations is given by2:

v = v0 erf
(

x

2
√
µt

)
(2.139)

Heat conduction is neglected, and γ = 1.4, cv = 1, ρ0 = 1, cs = 1. The viscosity is variously
taken to be µ = 10−2, µ = 10−3, µ = 10−4 (resulting in τ1 = 0.06, τ1 = 0.006, τ1 = 0.0006,
respectively). Due to the stiffness of the source terms in the equations governing A in the
case that µ = 10−4, the step (2.50) in the WENO reconstruction under the Split-WENO
method was not performed, and w

n+ 1
2

p ≡ wn
p was taken instead. This avoided the numerical

diffusion that otherwise would have emerged at the interface at x = 0.

The results of simulations with 200 cells at time t = 1, using reconstruction polynomials of
order N = 2, are presented in Figure 2.6 on page 69. The GPR model solved with both the
ADER-WENO and Split-WENO methods closely matches the exact Navier-Stokes solution.
Note that at µ = 10−2 and µ = 10−3, the ADER-WENO and Split-WENO methods are
almost indistinguishable. At µ = 10−4 the Split-WENO method matches the curve of the
velocity profile more closely, but overshoots slightly at the boundaries of the center region.
This overshoot phenomenon is not visible in the ADER-WENO results.

2.3.1.3 Viscous Shock

This test is designed to demonstrate that the numerical methods used are also able to cope
with fast flows. First demonstrated by Becker [14], the Navier-Stokes equations have an
analytic solution for Pr = 0.75 (see Johnson [69] for a full analysis). As noted by Dumbser
et al. [35], if the wave has non-dimensionalized upstream velocity v̄ = 1 and Mach number
Mc, then its non-dimensionalized downstream velocity is:

a =
1 + γ−1

2 M2
c

γ+1
2 M2

c

(2.140)

2In this problem, the Navier-Stokes equations reduce to vt = µvxx. Defining η = x
2

√
µt

, and assuming
v = f (η), this becomes f ′′ + 2ηf ′ = 0. The result follows by solving this equation with the boundary
conditions v (±∞) = ±v0.
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2.3 Numerical Results

Figure 2.6: Velocity profiles in Stokes’ First Problem (for µ = 10−2, 10−3, 10−4), solved with
an ADER-WENO scheme and a Split-WENO scheme (N = 2)
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2.3 Numerical Results

The wave’s velocity profile v̄ (x) is given by the roots of the following equation:

1 − v̄

(v̄ − a)a = c1 exp (−c2x) (2.141a)

c1 =
(1 − a

2

)1−a
(2.141b)

c2 = 3
4Re

M2
c − 1
γM2

c

(2.141c)

c1, c2 are constants that affect the position of the center of the wave, and its stretch fac-
tor, respectively. Following the analysis of Morduchow and Libby [90], the non-dimensional
pressure and density profiles are given by:

p̄ = 1
v̄

(
1 + γ − 1

2 M2
c

(
1 − v̄2

))
(2.142)

ρ̄ = 1
v̄

(2.143)

To obtain an unsteady shock traveling into a region at rest, a constant velocity field v = Mcc0

is imposed on the traveling wave solution presented here (where c0 is the adiabatic sound
speed). Thus, if p0, ρ0 are the downstream (reference) values for pressure and density:

v = Mc0 (1 − v̄) (2.144a)
p = p0p̄ (2.144b)
ρ = ρ0ρ̄ (2.144c)

These functions are used as initial conditions, along with A = 3
√
ρ̄I and J = 0. The

downstream density and pressure are taken to be ρ0 = 1 and p0 = 1
γ

(so that c0 = 1).
Mc = 2 and Re = 100. The material parameters are taken to be: γ = 1.4, p∞ = 0,
cv = 2.5, cs = 5, ct = 5, µ = 2 × 10−2, κ = 28

3 × 10−2 (resulting in τ1 = 0.0048,
τ2 = 0.005226̇).

The results of a simulation with 200 cells at time t = 0.2, using reconstruction polynomials
of order N = 2, are presented in Figure 2.7 on page 72 and Figure 2.8 on page 73. The
shock was initially centered at x = 0.25, reaching x = 0.65 at the final time. Note that
the density, velocity, and pressure results for both methods match the exact solution well,
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2.3 Numerical Results

ρ p v A J

x < 0 2 1 0 3
√

2 · I3 0
x ≥ 0 0.5 1 0 1

3√2 · I3 0

Table 2.2: Initial conditions for the heat conduction test

with the ADER-WENO method appearing to produce a slightly more accurate solution. The
results for the two methods for the stress tensor and heat flux are close.

2.3.1.4 Heat Conduction in a Gas

This is a simple test case to ensure that the heat transfer terms in the implementation are
working correctly. Two ideal gases at different temperatures are initially in contact at position
x = 0. The initial conditions for this problem are given in Table 2.2 on page 71.

The material parameters are taken to be: γ = 1.4, cv = 2.5, ρ0 = 1, p0 = 1, cs = 1,
ct = 2, µ = 10−2, κ = 10−2 (resulting in τ1 = 0.06, τ2 = 0.0025). The results of a
simulation with 200 cells at time t = 1, using reconstruction polynomials of order N = 2,
are presented in Figure 2.9 on page 73. The ADER-WENO and Split-WENO methods are in
perfect agreement for both the temperature and heat flux profiles. As demonstrated in [35],
this means that they in turn agree very well with a reference Navier-Stokes-Fourier solution.

2.3.1.5 Elastic Riemann Problems

These two tests are taken from [18, 124]. The aim of the tests is to demonstrate the efficacy
of the Split-WENO method in solving Riemann problems in purely elastic solids. Both tests
comprise a 1D bar of copper, governed by the Godunov-Romenski EOS, with the following
parameters (in CGS units): ρ0 = 8.9, cv = 3.94 × 10−4, T ref = 300, c0 = 3.909, α = 1,
β = 3, γ = 2, b0 = 2.1. In both cases, the copper occupies the domain x ∈ [0, 1], with
transmissive boundary conditions imposed at each end. In the region x ∈ [0.5, 1], we have
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2.3 Numerical Results

Figure 2.7: Density, velocity, and pressure for the Viscous Shock problem, solved with an
ADER-WENO scheme and a Split-WENO scheme (N = 2)
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2.3 Numerical Results

Figure 2.8: Viscous stress and heat flux for the Viscous Shock problem, solved with both an
ADER-WENO scheme and a Split-WENO scheme (N = 2)

Figure 2.9: Temperature and heat flux in the problem of Heat Conduction in Gas, solved
with an ADER-WENO scheme and a Split-WENO scheme (N = 2)
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2.3 Numerical Results

the values:

ρ = 8.9 (2.145a)
E = 0 (2.145b)
v = 0 (2.145c)
A = I (2.145d)

In the first test, the region x ∈ [0, 0.5] starts with values:

ρ = 9.3684 (2.146a)
E = 1.5180 (2.146b)
v = 0 (2.146c)

A =


20/19 0 0

0 1 0
0 0 1

 (2.146d)

In the second test, the region x ∈ [0, 0.5] starts with values:

ρ = 9.3684 (2.147a)
E = 2.0257 (2.147b)

v =
(

0 1 0
)T

(2.147c)

A =


20/19 0 0
−1/19 1 0

0 0 1

 (2.147d)

The tests are both run to final time t = 0.06. The resulting densities and y-velocities are
shown in Figure 2.10 on page 75. The first test results in a 3-wave solution structure,
comprising: a rarefaction wave traveling to the left, a contact discontinuity moving to the
right with speed 0.3948, and a shock wave moving rightwards with speed 5.5380. The
second test has a 5-wave solution structure: two rarefaction waves traveling to the left of
the domain, and three waves towards the right. These constitute a contact discontinuity, a
rarefaction, and a shock. As can be seen, the numerical method closely matches the exact
solution, and are comparable in quality to the results obtained in [18], in which the authors
employed a high-order ADER-WENO-ALE scheme.
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2.3 Numerical Results

Figure 2.10: Density and velocity in the 3-wave and 5-wave purely elastic Riemann problems
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2.3.1.6 Speed

Both the ADER-WENO scheme and the Split-WENO scheme used in this study were im-
plemented in Python3. All array functions were precompiled with Numba’s JIT capabili-
ties and the root-finding procedure in the Galerkin predictor was performed using SciPy’s
Newton-Krylov solver, compiled against the Intel MKL. Clear differences in computational
cost between the ADER-WENO and Split-WENO methods were apparent, as is to be ex-
pected, owing to the lack of Galerkin method in the Split-WENO scheme. The wall times
for the various tests undertaken in this study are given in Table 2.3 on page 78, comparing
the combined WENO and Galerkin methods of the ADER-WENO scheme to the combined
WENO and ODE methods of the Split-WENO scheme. All computations were performed
using an Intel Core i7-4910MQ, on a single core. The number of time steps taken are given
in Table 2.4 on page 78. The differences between the methods in terms of the number of
time steps taken in each test result from the fact that, for numerical stability, CFL numbers
of 0.8 and 0.7 were required by the ADER-WENO method and the Split-WENO method,
respectively.

Note that, unlike with the ADER-WENO scheme, the wall time for the Split-WENO scheme
is unaffected by a decrease in the viscosity in Stokes’ First Problem (and the corresponding
increase in the stiffness of the source terms). This is because the analytic approximation to
the distortion ODEs obviates the need for a stiff solver. The large difference in ADER-WENO
solver times between the µ = 10−3 and µ = 10−4 cases is due to the fact that, in the latter
case, a stiff solver must be employed for the initial guess to the root of the nonlinear system
produced by the Discontinuous Galerkin method (as described in [58]).

2.3.1.7 Convergence

To assess the rate of convergence of the Split-WENO method, the convected isentropic vortex
convergence study from [35] was performed. The initial conditions are given as ρ = 1 + δρ,
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p = 1 + δp, v = (1, 1, 0) + δv, A = 3
√
ρI, J = 0, where:

δT = −(γ − 1) ϵ2

8γπ2 e1−r2 (2.148a)

δρ = (1 + δT )
1

γ−1 − 1 (2.148b)
δp = (1 + δT )

γ
γ−1 − 1 (2.148c)

δv = ϵ

2πe
1−r2

2


− (y − 5)
x− 5

0

 (2.148d)

The 2D domain is taken to be [0, 10]2. ϵ is taken to be 5. The material parameters are taken
to be: γ = 1.4, cv = 2.5, ρ0 = 1, p0 = 1, cs = 0.5, ct = 1, µ = 10−6, κ = 10−6 (resulting
in τ1 = 2.4 × 10−5, τ2 = 10−6). Thus, this can be considered to be a stiff test case.

The convergence rates in the L1, L2, L∞ norms for the density variable are given in Table
2.5 on page 78 and Table 2.6 on page 78 for WENO reconstruction polynomial orders of
N = 2 and N = 3, respectively. As expected, both sets of tests attain roughly second order
convergence. For comparison, the corresponding results for this test from [35] - solved using
a third-order P2P2 scheme - are given in Table 2.7 on page 80 for comparison.

2.3.2 Non-Newtonian Fluids & Elastoplastic Solids

2.3.2.1 Strain Relaxation Test

The aim of this test is to gauge the accuracy of the approximate analytic solver for the
distortion equations.

Take initial data used by [10]:

A =


1 0 0

−0.01 0.95 0.02
−0.015 0 0.9


−1

(2.149)

The following parameter values were used: ρ0 = 1, cs = 0.219, n = 4, σ0 = 9 × 10−4, τ0 =
0.1.
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ADER-WENO Split-WENO Speed-up
Stokes’ First Problem (µ = 10−2) 265s 38s 7.0
Stokes’ First Problem (µ = 10−3) 294s 38s 7.7
Stokes’ First Problem (µ = 10−4) 536s 38s 14.1

Viscous Shock 297s 56s 5.3
Heat Conduction in a Gas 544s 94s 5.8

Table 2.3: Wall time for various tests (all with 200 cells) under the ADER-WENO method
and the Split-WENO method

Timesteps (ADER-WENO) Timesteps (Split-WENO)
Stokes’ First Problem (µ = 10−2) 385 442
Stokes’ First Problem (µ = 10−3) 386 443
Stokes’ First Problem (µ = 10−4) 385 442

Viscous Shock 562 645
Heat Conduction in a Gas 942 1077

Table 2.4: Time steps taken for various tests (all with 200 cells) under the ADER-WENO
method and the Split-WENO method

Grid Size ϵ (L1) ϵ (L2) ϵ (L∞) O (L1) O (L2) O (L∞)
20 2.87 × 10−3 7.15 × 10−3 6.21 × 10−2

40 5.81 × 10−4 1.62 × 10−3 1.73 × 10−2 2.30 2.14 1.85
60 1.98 × 10−4 5.39 × 10−4 5.94 × 10−3 2.65 2.70 2.63
80 1.23 × 10−4 3.47 × 10−4 3.41 × 10−3 1.67 1.52 1.92

Table 2.5: Convergence rates for the Split-WENO method (N = 2)

Grid Size ϵ (L1) ϵ (L2) ϵ (L∞) O (L1) O (L2) O (L∞)
10 1.01 × 10−2 2.58 × 10−2 1.27 × 10−1

20 1.68 × 10−3 4.02 × 10−3 2.93 × 10−2 2.59 2.68 2.11
30 5.34 × 10−4 1.57 × 10−3 1.70 × 10−2 2.83 2.32 1.34
40 3.32 × 10−4 8.94 × 10−4 7.55 × 10−3 1.65 1.95 2.82

Table 2.6: Convergence rates for the Split-WENO method (N = 3)
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The evolution of the components of the distortion, according to both the approximate ana-
lytical solver and a stiff numerical ODE solver, are given in Figure 2.11 on page 80, Figure
2.12 on page 80, and Figure 2.13 on page 81. As can be seen, the approximate analytic
solver compares well with the exact solution for the distortion, A, and thus also the stress
tensor and the energy.

2.3.2.2 Poiseuille Flow

The aim of this test is to gauge both the performance of the modified formulation of the
GPR model in simulating power-law fluids, and the accuracy of the new numerical scheme
we have presented to solve it. The problem of poiseuille flow has been chosen due to the
availability of an analytical solution against which to compare.

This test consists of a fluid traveling down a channel of constant width L, with a constant
pressure gradient ∆p along the length of the channel. No-slip boundary conditions are
imposed on the channel walls. For a non-Newtonian fluid obeying a power law, the steady-
state velocity profile across the channel is given by [47]:

v = ρ

k

(
∆p
K

)1/n ((
L

2

)k
−
(
x− L

2

)k)
(2.150a)

k = n+ 1
n

(2.150b)

where x ∈ [0, L].

In this case, L = 0.25, ∆p = 0.48, K = 10−2. The fluid is initially at rest, with ρ0 = 1,
A = I, p = 100/γ. It follows an ideal gas EOS with γ = 1.4, cs = 1. The pressure
gradient is imposed by means of a body force, implemented as a constant source term to
the momentum equation.

The final time was taken to be 20, so that in each case the system had reached steady state.
100 cells were taken across the width of the channel. A third order WENO method was used,
with a CFL number of 0.6.

Results for various values of n are shown in Figure 2.14 on page 81. The exact solutions are
shown as dotted lines, with the numerical solutions in solid colors. Note that there is good
agreement between the numerical solutions and exact solutions for all values of n.
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Grid Size ϵ (L1) ϵ (L2) ϵ (L∞) O (L1) O (L2) O (L∞)
20 9.44 × 10−3 2.20 × 10−3 2.16 × 10−3

40 1.95 × 10−3 4.50 × 10−4 4.27 × 10−4 2.27 2.29 2.34
60 7.52 × 10−4 1.74 × 10−4 1.48 × 10−4 2.35 2.35 2.61
80 3.72 × 10−4 8.66 × 10−5 7.40 × 10−5 2.45 2.42 2.41

Table 2.7: Convergence rates for the ADER-DG PNPM method (N,M = 2)

Figure 2.11: Distortion components during the Strain Relaxation Test: approximate analytical
solution (crosses) and numerical ODE solution (solid line)

Figure 2.12: Stress tensor components during the Strain Relaxation Test: approximate ana-
lytical solution (crosses) and numerical ODE solution (solid line)
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Figure 2.13: Total energy during the Strain Relaxation Test: approximate analytical solution
(crosses) and numerical ODE solution (solid line)

Figure 2.14: Velocity profiles for different dilatants (left) and pseudoplastics (right), in steady
Poiseuille flow
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Figure 2.15: Velocity profiles for the Lid-Driven Cavity Test under the new formulation (solid
line), for a dilatant with n = 1.5. Slices are taken through the center of the domain, in both
axes, and compared with those of [15] and [92].

2.3.2.3 Lid-Driven Cavity

This lid-driven cavity test has been chosen here as a famous multidimensional problem against
which the power-law fluid framework we have presented can be benchmarked. See [122] for
detailed analysis of this problem, under power-law fluids and other non-Newtonian fluids.

The test consists of a square grid, with one side at a constant velocity of 1, and the other
three stationary, with no-slip boundary conditions imposed. The fluid obeys an ideal gas
EOS with γ = 1.4 and cs = 1. It obeys a viscosity power law with K = 10−2, for various n.
It is initially at rest, with ρ = 1, p = 1, A = I.

The grid is chosen to have size 100 × 100. A third order WENO method is used, with a CFL
number of 0.5.

Figure 2.15 on page 82 and Figure 2.16 on page 83 show the results of running the system
to steady state, for n = 1.5 and n = 0.5, respectively. The results are compared with those
of [15] and [92]. As can be seen, there is very good agreement for the case n = 1.5, with
the split solver performing slightly less well for the case n = 0.5. The 2D streamline plots
found in Figure 2.17 on page 83 take the characteristic forms found in the aforementioned
literature.

82



2.3 Numerical Results

Figure 2.16: Velocity profiles for the Lid-Driven Cavity Test under the new formulation (solid
line), for a pseudoplastic with n = 0.5. Slices are taken through the center of the domain,
in both axes, and compared with those of [15] and [92].

Figure 2.17: Streamplots for the Lid-Driven Cavity Test, for a pseudoplastic with n = 0.5
(left) and a dilatant with n = 1.5 (right)
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2.3.2.4 Elastoplastic Piston

We now demonstrate the ability of our new numerical scheme to deal with problems involving
elastoplastic materials. This test is taken from [99], with exact solutions found in [80].

In this test, a piston with speed 20ms−1 is driven into copper initially at rest. An elastic
shock wave develops, followed by a plastic shock wave. The following parameters were used:
ρ0 = 8930, cs = 2244, σ0 = 9 × 107, τ0 = 1. The shock Mie-Gruneisen EOS is used for the
internal energy, with p0 = 0, c0 = 3940,Γ0 = 2, s = 1.48. 400 grid cells were used, with a
third order WENO method, and a CFL number of 0.7.

Figure 2.18 on page 85 and Figure 2.19 on page 85 demonstrate the results using the split
solver for various values of n. These results are compared with the exact solution to the
problem under ideal plasticity (to which the former results should converge as n → ∞). The
split solver is able to cope with larger values of n than those that have been presented in
[99]. The results here are correspondingly closer to the ideal plasticity solution that they
approximate, than those found in the aforementioned paper.

2.3.2.5 Cylindrical Shock

The purpose of this test is to demonstrate the efficacy of the split solver in multidimensional
elastoplastic problems.

This test is taken from [12]. It consists of a slab of copper, occupying the domain [0, 20]2,
initially at rest. The region r ≤ 2 is at ambient conditions, with zero pressure. The region
r > 2 is at raised pressure 1010 and temperature 600.

The simulation is run to time t = 10−5, on a grid of shape 500 × 500. A fourth order
WENO scheme is used, with a CFL number of 0.8. The resulting radial density, velocity,
stress tensor, and temperature profiles are given in Figure 2.20 on page 87, Figure 2.21 on
page 87, Figure 2.22 on page 88, Figure 2.23 on page 88, and 2D heatmaps for density and
speed are given in Figure 2.24 on page 92.

The results are compared with those of the 1D radially-symmetric scheme found in [12],
which are in turn compared with the 2D results from the same publication. As can be seen,
the 2D results computed using the new split solver for the GPR model more closely match the
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2.3 Numerical Results

Figure 2.18: Density and velocity in the elastoplastic piston test, for various values of power-
law parameter n

Figure 2.19: Zoom view of density and velocity in the elastoplastic piston test, for various
values of power-law parameter n
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1D radially-symmetric results than the 2D results from the aforementioned publication, with
the spikes in both variables around r = 2 and the wave around r = 6 being more accurately
resolved. Additionally, the temperature jump around r = 2 is more sharply resolved.

2.4 Conclusions

2.4.1 Newtonian Fluids & Elastic Solids

In summary, a new numerical method based on an operator splitting, and including some
analytical results, has been proposed for the GPR model of continuum mechanics. It has been
demonstrated that this method is able to match current ADER-WENO methods in terms of
accuracy on a range of test cases. It is significantly faster than the other currently available
methods, and it is easier to implement. The author would recommend that if very high
order-of-accuracy is required, and computational cost is not important, then ADER-WENO
methods may present a better option, as by design the new method cannot achieve better
than second-order accuracy. This new method clearly has applications in which it will prove
useful, however.

In a similar manner to the operator splitting method presented in [75], the Split-WENO
method is second-order accurate and stable even for very stiff problems (in particular, the
reader is referred to the results of the µ = 10−4 variation of Stokes’ First Problem in 2.3.1.2
and the convergence study in 2.3.1.7). However, it will inevitably suffer from the incorrect
speed of propagation of discontinuities on regular, structured grids. This is due to a lack
of spatial resolution in evaluating the source terms, as detailed in [75]. This issue can be
rectified by the use of some form of shock tracking or mesh refinement, as noted in the
cited paper. It is noted in [33] that operator splitting-based methods can result in schemes
that are neither well-balanced nor asymptotically consistent. The extent to which these two
conditions are violated by the Split-WENO method - and the severity in practice of any
potential violation - is a topic of further research.

It should be noted that the assumption (2.92) used to derive the approximate analytical
solver may break down for situations where the flow is compressed heavily in one direction
but not the others. The reason for this is that one of the singular values of the distortion
tensor will be much larger than the others, and the mean of the squares of the singular values
will not be close to its geometric mean, meaning that the subsequent linearization of the
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2.4 Conclusions

Figure 2.20: 1D density profiles for the 2D Cylindrical Shock Test: GPR model with split
solver (left) and results from [12] (right)

Figure 2.21: 1D velocity profiles for the 2D Cylindrical Shock Test: GPR model with split
solver (left) and results from [12] (right)
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Figure 2.22: 1D stress tensor profiles for the 2D Cylindrical Shock Test: GPR model with
split solver (left) and results from [12] (right)

Figure 2.23: 1D temperature profiles for the 2D Cylindrical Shock Test: GPR model with
split solver (left) and results from [12] (right)
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ODE governing the mean of the singular values fails. It should be noted that none of the
situations covered in this study presented problems for the approximate analytical solver, and
situations which may be problematic are in some sense unusual. In any case, a stiff ODE
solver can be used to solve the system (2.74) if necessary, utilizing the Jacobians derived in
the appendix, and so the Split-WENO method is still very much usable in these situations,
albeit slightly slower.

It should be noted that both the ADER-WENO and Split-WENO methods, as described
in this study, are trivially parallelizable on a cell-wise basis. Thus, given a large number
of computational cores, deficiencies in the Split-WENO method in terms of its order of
accuracy may be overcome by utilizing a larger number of computational cells and cores.
The computational cost of each time step is significantly smaller than with the ADER-
WENO method, and the number of grid cells that can be used scales roughly linearly with
number of cores, at constant time per iteration.

2.4.2 Non-Newtonian Fluids & Elastoplastic Solids

In summary, a formulation for modeling power-law dilatants and pseudoplastics under the
GPR model has been presented. A new numerical method - based on an operator splitting,
combined with some analytical results - has also been presented for solving this version of
the GPR model, and this numerical method has been applied also to the case of elastoplastic
solids under a power-law plasticity model. It has been demonstrated through numerical
simulation that the modified GPR formulation is able to accurately describe the evolution
of non-Newtonian fluids, and the new numerical scheme has been shown to be an effective
method by which to solve this system, and the existing corresponding system for elastoplastic
solids.

Under circumstances in which the flow is compressed heavily in one direction relative to the
other directions, it should be noted that the linearization assumption (2.92) used to derive
the approximate analytical solver may break down. As discussed in [63], this is due to the
fact that one of the singular values of the distortion will be much larger than the others, and
the mean of the squares of the singular values will be distant to the geometric mean. The
subsequent linearization of the ODE governing the mean of the singular values will then fail.
It should be noted that none of the situations covered in this study presented problems for
the approximate analytical solver, and situations which may be problematic are in some sense
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unusual. In any case, a stiff ODE solver can be used to solve the systems (2.47a), (2.47b)
if necessary, and so this method is still very much usable in these situations, albeit slightly
slower.

It may be that it is possible to find a more efficient (yet still sufficiently accurate) numerical
method to solve (2.45a) than the WENO method that was used in this study. This method
was chosen due to its well-known performance characteristics (see [7, 40, 68]), but the
authors are aware that further performance gains may be possible, and this is an area of
further investigation.

As detailed in [75], solvers based on a temporal splitting suffer from a lack of spatial resolution
in evaluating the source terms. Thus, it should be noted that the operator splitting method
presented here may suffer from the incorrect speed of propagation of discontinuities on
regular, structured grids. This issue can be rectified, however, by the use of some form of
shock tracking or mesh refinement, as noted in the cited paper. The effect on the propagation
speeds of discontinuities can be more evident if the underlying temporal ODEs have non-zero
equilibrium states. Noting that the singular values of the distortion cannot be 0 (as this
would imply zero density), we have, by (2.73), that at equilibrium the scaled squares of the
singular values obey the follow relations:

x1 − x1 + x2 + x3

3 = 0 (2.151a)

x2 − x1 + x2 + x3

3 = 0 (2.151b)

x3 − x1 + x2 + x3

3 = 0 (2.151c)

The set of solutions to this system is x1 = x2 = x3. As x1x2x3 = 1 for all time (due
to the constraint (17)), we have that the only equilibrium solution of the ODE system is
x1, x2, x3 = 1. Given any initial values for x1, x2, x3, the system tends towards this state.

[33] note that operator splitting-based methods can result in schemes that are neither well-
balanced, nor asymptotically consistent. The extent to which these two conditions are vio-
lated by this method – and the severity in practice of any potential violation – is a topic of
further research.

It should be noted that the new numerical scheme presented in this study is trivially paral-
lelizable on a cell-wise basis. Thus, given a large number of computational cores, deficiencies
in this method in terms of its order of accuracy may be overcome by utilizing a larger number
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of computational cells and cores. The number of grid cells that can be used scales roughly
linearly with number of cores, at constant time per iteration.
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Figure 2.24: 2D plots of density and speed for the Cylindrical Shock Test
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Chapter 3

Objective 3: Simulating Material
Interfaces
The material in this section is published in [67].

A framework for simulating the interactions between multiple different continua is presented.
Each constituent material is governed by the same set of equations, differing only in terms
of their equations of state and strain dissipation functions. The interfaces between any
combination of fluids, solids, and vacuum are handled by a new Riemann Ghost Fluid Method
(RGFM), which is agnostic to the type of material on either side (depending only on the
desired boundary conditions).

The Godunov-Peshkov-Romenski (GPR) model is used for modeling the continua (having
recently been used to solve a range of problems involving Newtonian and non-Newtonian
fluids, and elastic and elastoplastic solids), and this study represents a novel approach for
handling multimaterial problems under this model.

The resulting framework is simple, yet capable of accurately reproducing a wide range of
different physical scenarios. It is demonstrated here to accurately reproduce analytical results
for known Riemann problems, and to produce expected results in other cases, including some
featuring heat conduction across interfaces, and impact-induced deformation and detonation
of combustible materials. The framework thus has the potential to streamline development
of simulation software for scenarios involving multiple materials and phases of matter, by
reducing the number of different systems of equations that require solvers, and cutting down
on the amount of theoretical work required to deal with the interfaces between materials.

3.1 Ghost Fluid Methods
Ghost fluid methods, combined with level set methods, are used to model the evolution of
interfaces between different materials. They are detailed here, as it is with such a method
that this study proposes to model the interfaces between different materials described by the
GPR model.
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3.1 Ghost Fluid Methods

Figure 3.1: Original Ghost Fluid Method

3.1.1 Level Set Methods

Given a function φ : Rn → R, the level set of φ at level c is defined as:

Γc = {x : φ (x) = c} (3.1)

In this study, problems involvingm different materials were assigned the functions φ1, . . . , φm−1 :
Rn → R, such that the region occupied by material i is considered to be exactly that in
which φ1, . . . , φi−1 > 0, φi, . . . , φm−1 < 0. The locations of the zero level sets correspond
to the locations of the interfaces.

Given the local velocity field v : Rn → R3, the functions φ are advected according to the
level set equation [96]:

∂φ

∂t
= v · ∇φ (3.2)

φ1, . . . , φm−1 are renormalized to resemble a straight line at every time step, to avoid un-
wanted distortions such as becoming a multivalued function.

3.1.2 Original Ghost Fluid Method

The Original Ghost Fluid Method of Fedkiw et al. [45] (an adaptation of the work of
Glimm et al. [50]) is a numerical method for the Euler equations for simulating interfaces
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3.1 Ghost Fluid Methods

between multiple materials. The primitive variables for the Euler equations in 1D are given
by P =

(
ρ v p

)T
.

Suppose the interface between two fluids is modeled on spatial domain [0, 1], divided into
N cells with width ∆x = 1

N
. Let the time step be ∆t and let P n

i be the set of primitive
variables in cell i at time tn = n∆t. Let the level set function f have root xn where
xn ∈

[(
i+ 1

2

)
∆x,

(
i+ 3

2

)
∆x

]
. Thus, at time tn the interface lies between the cells with

primitive variables P n
i , P n

i+1. Define two sets of primitive variables:

P
(1)
j =


P n

j j ≤ i(
ρ
(
sni , p

n
j , γ

n
i

)
vnj p

n
j

)
j > i

(3.3)

P
(2)
j =


P n

j j ≥ i+ 1(
ρ
(
sni+1, p

n
j , γ

n
i+1

)
vnj p

n
j

)
j < i+ 1

(3.4)

where:

ρ (s, p, γ) =
(
p

s

) 1
γ (3.5)

All cells in P (1) to the left of the interface have the same state variables as those of P n. All
cells to the right have the same pressure and velocity as their counterparts in P n, but the
same entropy as P n

i . This affects their density. The situation is analogous for P (2). This is
demonstrated in Figure 3.1 on page 94.

P (1),P (2) are stepped forward by time step ∆t using a standard Eulerian method. f is
advected using (3.2), taking the velocity in each cell to be that of P n. Now let f (xn+1) = 0
where xn+1 ∈

[(
k + 1

2

)
∆x,

(
k + 3

2

)
∆x

]
for some k. Define:

P n+1
j =

P
(1)
j j ≤ k

P
(2)
j j > k

(3.6)

The rationale behind the original GFM is that in most applications, pressure and velocity
are continuous across the interface, and thus the ghost cells may take the real pressure and
velocity values. Entropy is generally discontinuous at a contact discontinuity, resulting in
large truncation errors if a standard finite difference scheme is used to solve the system.
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3.1 Ghost Fluid Methods

Figure 3.2: Original Ghost Fluid Method, with the isobaric fix

Figure 3.3: Qualitative structure of the solution to the Riemann Problem, showing the
different possible types of waves

Thus, entropy is extrapolated as a constant from the interface boundary cell into the ghost
region.

Fedkiw et al. advised to use the isobaric fix technique. This involves setting the entropy of
cell i, and all cells in the right ghost region, to that of cell i− 1, and setting the entropy of
cell i+ 1, and all cells in the left ghost region, to that of cell i+ 2. This is demonstrated in
Figure 3.2 on page 96.

Effectively, the ghost regions behave like they are composed of the same fluid as the regions
they extend (as they have the same entropy), facilitating calculation of the next time step,
but they have the same pressure and velocity profiles as the real fluids they replace, meaning
the boundary conditions at the interface are upheld.
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3.1 Ghost Fluid Methods

3.1.3 Riemann Ghost Fluid Method

The Riemann Problem in its general form is the solution of the following initial value problem.
Given a set of variables P dependent on space and time, and a hyperbolic set of equations
which govern their spatio-temporal evolution, P (x, t) is sought for t > 0, given the initial
condition:

P (x, 0) =

PL x < 0

PR x > 0
(3.7)

This problem is denoted by RP (PL,PR). Exact solvers exist for the Riemann Problem
for various sets of governing equations, such as the Euler equations [126], the equations
of non-linear elasticity [11], or the shallow water equations [3], among others. There also
exist approximate solvers for general conservative [77, 87] or non-conservative [29] hyperbolic
systems of PDEs. The references given here form a very small sample of the work that has
been done in this area.

The solution of the Riemann Problem usually takes the form of a set of waves, between
which P is constant. The waves can either be a contact discontinuity (across which pressure
and velocity are continuous), a shock (across which all variables may be discontinuous), or a
rarefaction (along which the variables vary continuously between their values on either side
of the wave). The number and form of the waves are determined by the governing equations
and the initial conditions. The states of the variables either side of the contact discontinuity
in the middle are known as the star states. This qualitative description is depicted in Figure
3.3 on page 96.

Liu et al. [76] demonstrated that the original GFM fails to resolve strong shocks at material
interfaces. This is because the method effectively solves two separate single-fluid Riemann
problems. The waves present in these Riemann problems do not necessarily correspond to
those in the real Riemann problem across the interface. The Riemann Ghost Fluid Method
of Sambasivan et al. [116, 117] aims to rectify this.

Given P n and xn ∈
[(
i+ 1

2

)
∆x,

(
i+ 3

2

)
∆x

]
, the ghost cells for fluid 1 are populated with

the left star state of RP
(
P n

i−1,P
n
i+2

)
, and the ghost cells for fluid 2 are populated with

the right star state. RP
(
P n

i−1,P
n
i+2

)
is solved rather than RP

(
P n

i ,P
n
i+1

)
, as P n

i ,P
n
i+1

often contain errors generated by the fact that they lie on the material interface. P n+1 is
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Figure 3.4: Riemann Ghost Fluid Method

then generated as before from the newly formed P (1),P (2). This process is demonstrated
in Figure 3.4 on page 98.

3.2 A Riemann Ghost Fluid Method for the GPR Model

3.2.1 Solving the Riemann Problem

Barton et al. have presented an RGFM for the equations of non-linear elasticity [10, 13].
Owing to the similarity of the structure of the non-linear elasticity equations to those of
the GPR model (differing only in the presence of source terms, the form of the shear stress
tensor, and possibly the EOS), their method is built upon here. The resulting method is
named the GPR-RGFM.

The Riemann Problem of the GPR model takes the form demonstrated in Figure 3.5 on
page 99. Assuming all waves are distinct, there are four waves on either side of the contact
discontinuity. On each side, one wave corresponds to the thermal impulse (manifesting as a
heat wave) and the other three correspond to the distortion components in the axis in which
the Riemann Problem is considered (manifesting as two shear waves and one longitudinal
pressure wave). It is important to note that - owing to the source terms - the star states
are not constant in the spacetime region in which they reside, so the method presented here
produces only an approximation to them.

The method is presented here along the first spatial axis. It can easily be adapted along
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3.2 A Riemann Ghost Fluid Method for the GPR Model

Figure 3.5: Riemann Problem for the GPR model, assuming all waves are distinct

any axis by taking the components of all relevant vector quantities (velocity, distortion, and
thermal impulse) in the direction normal to the interface.

Denote the vector of primitive variables by P . Take the set of left eigenvectors L (B.28)
with eigenvalues {λi} . We have the standard set of relations along characteristics (curves
along which dx

dt
= λi):1

L · dP = dt · L · S (3.8)

In what follows, we enact an operator splitting of the two processes present in the system
(3.8):

L · dP = 0 (3.9a)
dP

dt
= S (3.9b)

P ∗K is now sought, where K = L or K = R, denoting the left or right sides of the interface,

1Take the hyperbolic system ∂P
∂t +M ∂P

∂x = S. Let li
TM = λili

T . Along characteristics corresponding
to λi:

lT
i

(
∂P

∂t
+M

∂P

∂x

)
= lT

i

(
∂P

∂t
+ dx

dt

∂P

∂x

)
= lT

i

dP

dt
= lT

i S
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3.2 A Riemann Ghost Fluid Method for the GPR Model

Figure 3.6: Different sets of characteristic curves, traveling from their respective initial points
to the star region

respectively. Take the following linearization:

dP K ≈ P ∗K − P K (3.10)

13 relations from (3.9a) are taken: 4 regarding the 4 sets of characteristics traveling into the
contact discontinuity from side K (with speeds greater or less than v for K = L or K = R,
respectively), and 9 relating to the contact discontinuity itself. This is demonstrated in Figure
3.6 on page 100. 4 more relations must be derived to solve the system for P ∗K .

Define the total stress tensor as:

Σ ≡ pI − σ (3.11)

The values of Σ, T under variables P ∗K are obtained by expanding the following Taylor
series:

Σ∗ = Σ + (ρ∗ − ρ) ∂Σ
∂ρ

+ (p∗ − p) ∂Σ
∂p

+ (A∗
mn − Amn) ∂Σ

∂Amn
+O

(
dP 2

)
(3.12a)

T ∗ = T + (ρ∗ − ρ) ∂T
∂ρ

+ (p∗ − p) ∂T
∂p

+O
(
dP 2

)
(3.12b)
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Thus, we have:

Σ∗ − Σ ≈ (p∗ − p) I − (ρ∗ − ρ) ∂σ
∂ρ

− (A∗
mn − Amn) ∂σ

∂Amn
(3.13a)

T ∗ − T ≈ (ρ∗ − ρ) ∂T
∂ρ

+ (p∗ − p) ∂T
∂p

(3.13b)

These are the extra required relations. Thus we have:

L̂K ·
(
P ∗K − P K

)
= cK (3.14)

where L̂K takes the form found in (3.29), with ξ = −1 for K = R and ξ = 1 for K = L,
and:

cK =


Σ∗K

1 − ΣK
1

T ∗K − TK

0

 (3.15)

The inverse of L̂K takes the form found in (3.30).

L̂K , L̂K−1 are evaluated at P K . It remains to find expressions for Σ∗ and T ∗ in terms
of P L,P R to close the system. The obtained values depend on the boundary conditions
chosen, as explained below.

3.2.1.1 Stick Boundary Conditions

The following boundary conditions are used:

Σ∗L
1 = Σ∗R

1 (3.16a)
T ∗L = T ∗R (3.16b)
v∗L = v∗R (3.16c)
q∗L

1 = q∗R
1 (3.16d)

Taking the relevant rows of P ∗K = P K + L̂K−1cK :
v∗

J∗
1

 =
vK

JK1

+ Y K

Σ∗
1

T ∗

−

ΣK
1

TK

 (3.17)
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Thus:

Σ∗
1

T ∗

 =
(
Y L − Y R

)−1
 vR

JR1

−

 vL

JL1

+ Y L

ΣL
1

TL

− Y R

ΣR
1

TR

 (3.18)

3.2.1.2 Slip Boundary Conditions

The following boundary conditions are used:

Σ∗L
11 = Σ∗R

11 (3.19a)
Σ∗L

12 ,Σ∗R
12 = 0 (3.19b)

Σ∗L
13 ,Σ∗R

13 = 0 (3.19c)
T ∗L = T ∗R (3.19d)
v∗L

1 = v∗R
1 (3.19e)

q∗L
1 = q∗R

1 (3.19f)

Taking the relevant rows of P ∗K = P K + L̂K−1cK :

 v∗
1

J∗
1

 =
 vK1
JK1

+ Ỹ K




Σ∗

11

0
0
T ∗

−


ΣK

11

ΣK
12

ΣK
13

TK



 (3.20)

where

Ỹ K =
Y K

1

Y K
4

 (3.21)

Thus:

Σ∗
11

T ∗

 =
(
Ŷ L − Ŷ R

)−1
 vR1

JR1

−

 vK1
JL1

+ Y L

ΣL
1

TL

− Y R

ΣR
1

TR

 (3.22)
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where

Ŷ K =
Y K

11 Y K
14

Y K
41 Y K

44

 (3.23)

3.2.1.3 Vacuum Boundary Conditions

The following boundary conditions are used:

Σ∗
1 = 0 (3.24a)
q∗

1 = 0 (3.24b)

Taking the relevant row of P ∗K = P K + L̂K−1cK :

J∗
1 = JK1 + Y K

4 ·

 0
T ∗

−

ΣK
1

TK

 (3.25)

As q∗
1 = 0 implies that J∗

1 = 0, we have:

T ∗ = 1
Y K

44

Y K
4 ·

ΣK
1

TK

− JK1

 = TK +
Y K

4,:3 · ΣK
1 − JK1

Y K
44

(3.26)

3.2.1.4 Iteration

(3.14) is solved for P ∗K , which is taken to be the star state if the following conditions are
satisfied:

∣∣∣Σ∗L
1 − Σ∗R

1

∣∣∣
min (ρL0 , ρR0 ) × min (cLs , cRs )2 < TOL (3.27a)∣∣∣vL1 − vR1

∣∣∣
min (cLs , cRs ) < TOL (3.27b)∣∣∣qL1 − qR1

∣∣∣
min (q̃L, q̃R) < TOL (3.27c)∣∣∣TL − TR

∣∣∣
min (TL0 , TR0 ) < TOL (3.27d)
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where

q̃ = c2
t

ρ0

√
T 3

0
cV

(3.28)

These convergence criteria are chosen so that the variables required to be less than TOL are
dimensionless. At every iteration, (3.9b) is solved using the ODE solvers described in 2.2.4.

3.2.2 Linear Conditions

We now obtain L̂K and its inverse in order to solve (3.14). Replacing the first four lines of
(B.28) with the conditions (3.13a), (3.13b), we have:

L̂K =



−∂σd

∂ρ
ed −Π1 −Π2 −Π3 03,6

∂T
∂ρ

∂T
∂p

01,3 01,3 01,3 01,6


(
QΞ1 −1

ρ
Q:,1:3Π2 −1

ρ
Q:,1:3Π3 ξDQ 04,2

)
(

−1
ρ

0 eT
dA

−1 eT
dA

−1Π−1
1 Π2 eT

dA
−1Π−1

1 Π3 01,6

) 03,5 I3 03,3 03,6

03,5 03,3 I3 03,6

(
02,15 I2

)



(3.29)

Thus, the inverse of the left-eigenvector matrix becomes:

L̂K−1 =




X−1I5,4

06,4

Y

02,4

 ,


011,4

ξ (DQ)−1

02,4

 ,


−cTp
cTρ

cΠ−1
d w

012,1

 ,



02,3 02,3

−Π−1
1 Π2 −Π−1

1 Π3

I3 03,3

03,3 I3

06,3 06,3


,

 015,2

I2




(3.30)

where:

X =



B̃11 B̃12 (−Π1)11 (−Π1)12 (−Π1)13

B̃21 B̃22 (−Π1)21 (−Π1)22 (−Π1)23

B̃31 B̃32 (−Π1)31 (−Π1)32 (−Π1)33

D̃11 D̃12 C̃11 C̃12 C̃13

D̃21 D̃22 C̃21 C̃22 C̃23


(3.31a)
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Y = −ξQ−1D−1QΞ1X
−1I5,4 (3.31b)

and also:

B̃ =
(

−∂σd

∂ρ
ed

)
(3.32a)

C̃ =
 0 0 0
A−1
d1 A−1

d2 A−1
d3

 (3.32b)

D̃ =
 ∂T

∂ρ
∂T
∂p

−1
ρ

0

 (3.32c)

By inversion of block matrices2:

X−1 =
 D̃−1C̃Z−1 D̃−1

(
I − C̃Z−1B̃D̃−1

)
−Z−1 Z−1B̃D̃−1

 (3.33)

where

Z = Π1 + ρ

Tp

(
Tp
∂σd

∂ρ
+ Tρed

)
eT

dA
−1 (3.34)

3.2.3 Systems without Heat Conduction

If the heat conduction terms are dropped from the GPR model, the eigenstructure of the
system changes, along with the solution of the linear conditions. Ξ retains the same definition,
but is now a 3×3 matrix (comprising the top-left corner of Ξ under heat conduction). Thus,

2
(
A B
C D

)−1
=
( (

A−BD−1C
)−1 −

(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1

(
I + C

(
A−BD−1C

)−1
BD−1

))
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Q,D are also 3 × 3 matrices. Taking the eigenvectors (B.42), the linear conditions become:

L̂K =



(
−∂σd

∂ρ
ed −Π1 −Π2 −Π3

)
(
QΞ1 −1

ρ
QΠ2 −1

ρ
QΠ3 ξDQ

)
(I −BA−1C)−1 (

I2 −BA−1 −BA−1Π−1
1 Π2 −BA−1Π−1

1 Π3 02,3

) 03,5 I3 03,3 03,3

03,5 03,3 I3 03,3




(3.35)

L̂K−1 =




X−1I5,4

06,3

Y

 ,
 011,3

ξ (DQ)−1

 ,


1 0
0 1

−Π−1
1

∂σ1
∂ρ

Π−1
1 e1

09 09

 ,



02,3 02,3

−Π−1
1 Π2 −Π−1

1 Π3

I3 03,3

03,3 I3

03,3 03,3




(3.36)

where:

X =



B̃11 B̃12 (−Π1)11 (−Π1)12 (−Π1)13

B̃21 B̃22 (−Π1)21 (−Π1)22 (−Π1)23

B̃31 B̃32 (−Π1)31 (−Π1)32 (−Π1)33

∆−1
11 ∆−1

12 (−∆−1BA−1)11 (−∆−1BA−1)12 (−∆−1BA−1)13

∆−1
21 ∆−1

22 (−∆−1BA−1)21 (−∆−1BA−1)22 (−∆−1BA−1)23


(3.37a)

Y = −ξQ−1D−1QΞ1X
−1I5,4 (3.37b)

where

∆ = I −BA−1C (3.38a)
B̃ =

(
−∂σ1

∂ρ
e1

)
(3.38b)

B =
 ρ 0 0(

ρc2
0 + σ11 − ρ∂σ11

∂ρ

) (
σ21 − ρ∂σ21

∂ρ

) (
σ31 − ρ∂σ31

∂ρ

) (3.38c)

By inversion of block matrices:

X−1 =
−BA−1Z̃

(
I +BA−1Z̃B̃

) (
I −BA−1Π−1

1 B̃
)

−Z̃ Z̃B̃
(
I −BA−1Π−1

1 B̃
)  (3.39)
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where

Z̃ =
(
Π1 − B̃BA−1

)−1
(3.40)

3.3 Numerical Results

The GPR-RGFM is now assessed. The first fives tests in this chapter are Riemann problems
that have appeared elsewhere in the literature. Reference solutions to these problems have
been calculated by various methods, as described for each test individually. The sixth test
is new; it assess the ability of the GPR-RGFM to correctly model heat conduction across
interfaces. The last two tests are well-known two-dimensional problems, to demonstrate the
applicability of the method to multiple dimensions. The stiffened gas EOS parameters for
three commonly-used fluids are given in Table 3.1 on page 107.

ρ0 cv γ p∞ cs ct µ Pr

Air 1.18 718 1.4 - 55 50 1.85 × 10−5 0.714
Helium 0.163 3127 5/3 - 55 50 1.99 × 10−5 0.688
Water 997 950 4.4 6 × 108 1 1 10−3 7

Table 3.1: EOS parameters for different fluids (using SI units)

3.3.1 Helium Bubble

The interface between two different gases is now modeled. As in Test B of Wang et al.
[129], a bubble of helium - surrounded by air - initially occupies the region x ∈ [0.4, 0.6]. A
shock front in the air, initially at x = 0.05, travels towards the helium bubble. The initial
conditions are given in Table 3.2 on page 108 and the EOS parameters for each material are
given in Table 3.1 on page 107.

200 cells are used. Reference solutions are computed using the exact solver for mixed ideal
gas Riemann problems under the Euler equations (presented in [126]). The results for times
t = 7 × 10−4 and t = 14 × 10−4 are displayed in Figure 3.7 on page 109. In the former,
the shock is about to hit the helium bubble (corresponding to the region of low density). In
the latter, the shock has traveled through the helium bubble, compressing it slightly, and the
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bubble itself has moved almost 0.1 spatial units to the right. There is good correspondence
with the results in [129] and the sharp discontinuity in density is maintained.

ρ p v A J

x < 0.05 1.3333 1.5 × 105
(

35.35
√

10 0 0
) (

1.3333
1.18

) 1
3 I3 0

0.05 ≤ x < 0.4 1 105 0
(

1
1.18

) 1
3 I3 0

0.4 ≤ x < 0.6 0.1379 105 0
(

0.1379
0.163

) 1
3 I3 0

0.6 ≤ x ≤ 1 1 105 0
(

1
1.18

) 1
3 I3 0

Table 3.2: Initial conditions for the helium bubble test

3.3.2 Water-Air Shock Tube

This test comprises an interface between water and air, with initial data taken from Chinnayya
et al. [22] (see Table 3.3 on page 108). The aim of this test is to evaluate the ability of
the GPR-RGFM at capturing interfaces between qualitatively different fluids. The water is
initially at high pressure, and the air at atmospheric pressure. Due to the large difference in
state variables and qualitative characteristics of the two fluids, this is an example of a test
with which the original GFM for the Euler equations does not perform well.

The results using the GPR-RGFM with 200 cells are shown in Figure 3.8 on page 110,
along with the exact solution to the Euler equations (computed using the extension to the
stiffened gas equations of the exact Riemann solver presented in [126]). As can be seen,
the material interface is captured well, with the correct intermediate density found by the
numerical method.

ρ p v A J

0 ≤ x < 0.7 1000 109 0 I3 0
0.7 ≤ x ≤ 1 50 105 0 3

√
50 · I3 0

Table 3.3: Initial conditions for the water-air shock tube test
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3.3 Numerical Results

Figure 3.7: Density, pressure, and velocity for the helium bubble test with GPR-RGFM at
times t = 7 × 10−4 (left) and t = 14 × 10−4 (right)
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Figure 3.8: Density, pressure, velocity, and internal energy for the water-air shock tube test
with GPR-RGFM
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3.3.3 PBX9404-Copper Shock Tube

This test is taken from [13], with the aim of testing the ability of the GPR-RGFM to model
interfaces between fluids and solids. High pressure, reacted PBX9404 is in contact with
copper at position x = 0.5 on domain x ∈ [0, 1], with both materials initially at rest. The
pressure of the PBX is initially 18.9GPa, and the entropy of the copper is initially 0. The
PBX follows an ideal gas EOS, with parameters ρ0 = 1840, γ = 2.85, cs = 1, µ = 10−2.
The copper follows the Godunov-Romenski EOS, with parameters ρ0 = 8930, cv = 390,
T0 = 300, c0 = 3939, α = 1, β = 3, γ = 2, b0 = 2141. The test is run until time
t = 0.5 × 10−6, using 500 cells.

The exact solution to this test is calculated using the iterative solver described in [11]. The
error in the wavespeeds is calculated from the residual error in the traction and velocities
across the central contact, as required by the Rankine–Hugoniot conditions and boundary
conditions. The wavespeeds are found by iteratively reducing the residual using the Newton–
Raphson method.

Plots for density, velocity, and total stress are given in Figure 3.9 on page 112. As can be
seen, the GPR-RGFM is able to reproduce the solution to high fidelity, with a perfectly sharp
discontinuity in the density, and a very well resolved discontinuity in the total stress.

3.3.4 Aluminium in Vacuum

This test is taken from [10]. The initial conditions of the test consist of a slab of aluminium,
initially with velocity

(
2 0 0.1

)
, meeting a vacuum at point x = 0.5, on the domain x ∈

[0, 1]. The distortion of the aluminium is initially given by:

A =


1 0 0

−0.01 0.95 0.02
−0.015 0 0.9


−1

(3.41)

The initial density of the aluminium is thus given as ρ = ρ0 det (A). The aluminium is
modeled using the Godunov-Romenski EOS, with parameters ρ0 = 2.71, cv = 9 × 10−4,
T0 = 300, c0 = 5.037, α = 1, β = 3.577, γ = 2.088, b0 = 3.16, ct = 2, κ = 204.

The test was run until time t = 0.06, using 500 cells. The results of solving this problem
with the GPR-RGFM, not including thermal conduction (as in [10]), are given in Figure 3.10
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Figure 3.9: Density, velocity, and total stress for the Copper-PBX test with GPR-RGFM
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ρ p v A J

x < 0 2 1 0 3
√

2 · I3 0
x ≥ 0 0.5 1 0 1

3√2 · I3 0

Table 3.4: Initial conditions for the heat conduction test

on page 114. The results of solving the problem, including thermal conduction, are given
in Figure 3.11 on page 115. The exact solutions are calculated using the iterative method
presented in [11], as described in the previous test.

As can be seen, in both cases, the GPR-RGFM is able to accurately capture the longitudinal
wave and the two transverse shock waves that propagate to the left side of the initial point of
contact. Note that at t = 0.06, the vacuum occupies the region [∼ 0.65, 1]. As this region
is empty, the plots in the aforementioned figures are shown over the interval [0, 0.7], to give
greater resolution to the region of interest.

Without thermal conduction, the interface suffers from a “heating error” of the same kind
discussed in [10], manifesting itself as a slight undershoot in the density of the metal at
the interface. Note that by incorporating thermal conduction into the numerical method,
this heating error completely disappears, without the use of an entropy fix (as in [10]). It
must be noted that, in this case, the waves in the state variables now appear to be slightly
more diffused than the reference solution. This is the expected effect of incorporating the
phenomenon of thermal conduction into this physical problem.

3.3.5 Heat Conduction in a Gas

This test is based on the Heat Conduction in a Gas Test of Dumbser et al. [35]. Two
ideal gases at different temperatures are initially in contact at position x = 0. The initial
conditions for this problem are given in Table 3.4 on page 113.

The material parameters are taken to be: γ = 1.4, cv = 2.5, ρ0 = 1, p0 = 1, cs = 1, ct = 1,
µ = 10−2, κ = 10−2. An interface is initially placed between the two volumes of air at
x = 0.5. The final time is taken to be t = 1, and 200 cells are used. Results are displayed in
Figure 3.12 on page 117, using the results from [35] as a reference. The material interface
is denoted by a dashed vertical line.
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Figure 3.10: Density, velocity, and total stress for the aluminium-vacuum test with GPR-
RGFM, not including thermal conduction
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Figure 3.11: Density, velocity, and total stress for the aluminium-vacuum test with GPR-
RGFM, including thermal conduction
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The temperature curve generated using the GPR-RGFM matches very well the reference
solution. The interface has moved to x = 0.53756, as is to be expected, as the cooler
gas on the left expands as it heats up, and the hotter gas on the right contracts as it
cools. Initially, the mass of the left volume is 1 and the right volume is 0.25. At t = 1,
these masses are 0.9997 and 0.2503, respectively. Thus, mass on either side is conserved
to a good approximation. Although the GPR-RGFM results for the heat flux match the
reference solution well over most of the domain, there are aberrations in a small region around
the interface. Although this doesn’t affect the temperature curve, these discrepancies are
undesirable, and possible methods to rectify them are discussed in Chapter 4.2.

3.3.6 Inter-Material Heating-Induced Acoustic Wave

The test assesses the ability of the GPR-RGFM to conduct heat between two different
materials. Take the material parameters for air and helium from Section 3.3.1. Take the
scaled spatial variable x∗ defined by:

x = µaircair0
p0γair

x∗ (3.42)

The domain x∗ ∈ [0, 90] is used. Thermal energy is added at the left boundary at a high
power of γairp0cair

0
Pair

r (γair−1) (around 1.7 × 108Wm−2). Three scenarios are tested:

1. The domain is filled with air.

2. The domain comprises two volumes of air, initially separated at x∗ = 22.5.

3. The domain comprises a volume of air (left) and a volume of helium (right), initially
separated at x∗ = 22.5.

The initial conditions for the two gases in all scenarios are given in Table 3.5 on page 118.
The results of the test are shown in Figure 3.13 on page 119 and Figure 3.14 on page 120
for various times. The material interface is represented by a dashed vertical line in scenarios
2 and 3. All simulations used 400 cells.

As the left wall heats up, a temperature gradient develops and the acoustic wave described
appears. The results for scenarios 1 and 2 are indistinguishable, as they should be, and there

116



3.3 Numerical Results

Figure 3.12: Temperature, heat flux, and density for the inter-material heat conduction test
with GPR-RGFM
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ρ p v A J

air 1.18 101325 0 I3 0
helium 0.164 101325 0 I3 0

Table 3.5: Initial conditions for the inter-material heating-induced acoustic wave test

are no aberrations around the material interface in scenario 2. In scenario 3, the acoustic
wave hits the interface at around t = 2 × 10−9 and then speeds up (as it should, the speed
of sound in helium being around three times that of air). The heat flux wave increases in
intensity after passing into the helium, owing to the fact that the wave is traveling faster.
As expected, all variables displayed are continuous across the interface.

In scenarios 2 and 3 the interface moves to the right as the air heats up and expands. The
masses of the air volumes in these two scenarios at various times are given in Table 3.6 on
page 118, demonstrating that mass is conserved well as the interface moves.

Time (×10−9) 0 1 2 3 4 5
Mass in Scenario 2 (×10−6) 1.254 1.255 1.253 1.252 1.252 1.253
Mass in Scenario 3 (×10−6) 1.254 1.253 1.248 1.254 1.255 1.255

Table 3.6: Mass of the air volume in scenarios 2 and 3 at various times

3.3.7 Convergence Study

In order to determine the order of convergence of the Riemann Ghost Fluid Method pre-
sented in this study, the tests from 3.3.2, 3.3.3, and 3.3.4 were run with cell counts of
50, 100, 150, 200, 250, 300, and the error as compared with the exact solutions were calcu-
lated at the interfaces. The reason for choosing these two tests was to incorporate a range of
different interface types (gas-liquid, fluid-solid, and solid-vacuum). The results are displayed
in Table 3.7 on page 121. As can be seen, in all tests, the convergence rate is roughly
first-order.
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Figure 3.13: Temperature and pressure for the inter-material heating-induced acoustic wave
test with: a single volume of air (top); two volumes of air initially separated at x∗ = 22.5
(middle); air and helium initially separated at x∗ = 22.5 (bottom).
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Figure 3.14: Heat flux for the inter-material heating-induced acoustic wave test with: a single
volume of air (top); two volumes of air initially separated at x∗ = 22.5 (middle); air and
helium initially separated at x∗ = 22.5 (bottom).
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Water-Air Test PBX-Copper Test Aluminium-Vacuum Test
# Cells Error Rate Error Rate Error Rate

50 17.67419797 20.27348796 0.04232714
100 7.98596866 1.146 10.14165497 0.999 0.02180830 0.957
150 5.20404021 1.056 6.57517319 1.069 0.01365700 1.154
200 4.19411427 0.750 4.99100631 0.958 0.01005346 1.065
250 3.32431075 1.042 3.73732754 1.296 0.00793378 1.061
300 2.77425968 0.992 3.10851219 1.010 0.00571356 1.800

Table 3.7: Convergence Rates for the Water-Air Test, PBX-Copper Test, and Aluminium-
Vacuum Test

3.4 Discussion
The Riemann Ghost Fluid Method presented in this study has been demonstrated to be an
effective way of accurately simulating the interfaces between several different materials (in
all three main phases of matter, plus vacuum), described by the GPR model. Unlike in many
existing implementations, heat conduction across the interface was simulated accurately,
leading to the representation of physical phenomena that are often overlooked, and to the
redundancy of numerical techniques that are sometimes used to enforce more empirically-
accurate results (such as entropy and temperature fixes).

The framework presented here greatly simplifies the conceptual framework required for mul-
timaterial interactions. Implementation should be easier and quicker, and future work can
be more focused on a single model, rather than several fundamentally different frameworks.

3.4.1 Limitations

Throughout this study, the various fluids have been assumed to be immiscible. Whilst this is
a common assumption in situations where mixing is low or practically non-existent, there are
many problems which may require it. An area of further research would be the implementation
of a mixture model such as that proposed by Romenski et al. [109, 112], which uses the
same thermal conduction system as the GPR model.

The truncation of the Taylor series expansions (3.12a) and (3.12b) used to find the star
states of the heat flux and the viscous stress tensor implicitly assumes that there are only
small differences between the side states and the star states of the variables upon which
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q∗
1,σ

∗
1 depend (ρ, p, J1, and A1). If this is the case, higher order terms of the expansion

can be neglected. If it is not, however, the method may fail. The linearized nature of the
GPR-RGFM solver also implicitly assumes that all waves of interest present in the Riemann
Problem are shocks. Thus, strong rarefactions may cause the method to fail.

3.4.2 Potential Improvements

As noted in Section 3.3.5, the GPR-RGFM method does not necessarily ensure the continuity
of the normal component of heat flux across interfaces that feature discontinuous temperature
jumps. This is despite the method accurately modeling both the heat conduction across the
interface over time, and the corresponding evolution to thermal equilibrium between the
two materials. The reason for this is that the star states produced by the linearized solver
presented in 3.2.1 represent the state of the system at a time slightly beyond the point in
time at which they are applied to neighboring ghost cells. With more simple systems of PDEs
- such as the Euler equations - this often doesn’t matter, as the star states are constant in
time, or their time evolution is easily calculated. Owing to the source terms in the GPR
equations, however, the star states evolve in a manner for which an analytical solution is
not available. Thus, when the star states are applied to the ghost cells, they contain higher
heat fluxes and slightly different temperatures to the actual values at the interface at that
moment in time, leading to the slight aberration apparent in the heat flux in Figure 3.12 on
page 117.

A possible solution to this is as follows: Take materials L and R either side of an interface.
Given the states straddling the interface, QL, QR, derive Q∗

L using the procedure outlined in
3.2.1. Then, by inverting this procedure, derive a state Q̃R such that ifQL, Q̃R are both states
for material L (rather than for materials L and R, respectively), following the procedure in
3.2.1 obtains the same star state, Q∗

L. The derivation of such an inverse mapping should be
feasible, possibly with the addition of some physical constraints. In this way, Q̃R represents
a state for the righthand cell at the current time, which - if cell R were occupied by material
L - would result in the same state on the lefthand side of the interface at the end of the
current timestep as if the righthand cell were occupied by QR and material R.

Another clear improvement to the GPR-RGFM method presented would be to use a better
Riemann solver than the iterative, linearized solver devised in 3.2.1. Let L be the matrix of
left eigenvectors of the primitive system. As noted previously, the solver relies upon the fact
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that each of the following relations holds along the characteristic to which it corresponds:

L · dP
dt

= L · S (3.43)

Methods to accurately integrate (3.43) from the left and right interface boundary states to
their respective star states warrant further research.

Alternatively, a completely different approximate Riemann solver could be employed, such as
the universal HLLEM solver of Dumbser et al. [29]. This path-conservative formulation of
the HLLEM solver works for general non-conservative systems (such as the GPR model) and
is simple to implement. It’s based upon a new path-conservative HLL method (building on
the original method of Harten, Lax, and van Leer [54]) but is claimed to be able to represent
linearly degenerate intermediate waves “with a minimum of smearing” by evaluating the
eigenvalues and eigenvectors of the intermediate characteristic fields (given in Chapter B).

There are iterative exact Riemann solvers for the equations of non-linear elasticity (to which
the GPR model reduces as τ1 → ∞). Thus, they will work for applications of the GPR model
to solids problems (and perhaps to very viscous fluids problems too). Although these solvers
are computationally expensive, they are only used once at each material interface point at
each time step, and thus the added accuracy that they provide may be desirable. There are
two ways to formulate the equations of non-linear elasticity: one in which the deformation
tensor (the analogue of the inverse of the GPR model’s distortion tensor) is evolved in time,
and one in which its inverse (the analogue of A) is evolved instead. Miller’s exact solver [87]
uses the first formulation and the solver of Barton et al. [11] uses the second. The former
can be used to evolve A−1, from which A can be calculated. Unfortunately, both solvers
critically assume that the source terms of the system vanish, and so are unlikely to produce
the correct boundary conditions for the GPR-RGFM when modeling relatively inviscid fluids.
It should also be noted that they cannot be used for problems involving heat conduction
across material interfaces, and they do not take the thermal conduction subsystem of the
GPR model into account.
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Chapter 4

Impact-Induced Detonation in an
Elastoplastic Confiner
The material in this section is published in [67].

4.1 Numerical Results

4.1.1 Taylor Bar

This follows a similar form to that found in [18, 80]. A bar of aluminium of dimensions
100 × 500 travels towards a solid wall at speed 0.015. The surrounding environment is a
vacuum. The aluminium bar is modeled by the shock Mie-Gruneisen equation of state, with
parameters ρ0 = 2.785, cv = 9 × 10−4, c0 = 0.533, Γ0 = 2, s = 1.338. The aluminium
also follows a plasticity law with parameters b0 = 0.305, σY = 0.003, τ0 = 1, n = 20. The
domain has dimensions 300 × 510, with ∆x,∆y = 1.

The density and plastic deformation of the bar at times t = 0.0025 and t = 0.005 are shown
in Figure 4.1 on page 125. Unfortunately there are no experimental results for this test, but
the reader is asked to note the good agreement here with the results found in [80]. In that
study, the boundary between the bar and the vacuum is captured using a Lagrangian scheme,
and it is reassuring that the same behavior is captured here with a characteristically different
numerical method.

4.1.2 Aluminum Plate Impact

This test follows the form found in Michael & Nikiforakis [84] (based on the original for-
mulation found in [61]). An aluminum projectile impacts upon an aluminum plate at speed
400. The domain is [0, 0.03]× [0, 0.04], with the projectile initially occupying [0.001, 0.006]×
[0.014, 0.026], and the plate occupying [0.006, 0.028] × [0.003, 0.037]. We have ∆x,∆y =
10−4. The surroundings are taken to be a vacuum. The aluminium follows a Godunov-
Romenski EOS with parameters ρ0 = 2710, cv = 900, T0 = 300, c0 = 5037, α = 1,
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Figure 4.1: Density (top) and plastic deformation (bottom) for the Taylor bar test, at times
t = 0.0025 (left) and t = 0.005 (right)
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β = 3.577, γ = 2.088, b0 = 3160, σY = 4 × 108, τ0 = 1, n = 100. Gauges are placed
initially at x = 0.0078125, 0.0114375, 0.0150625, 0.0186875, 0.0223125 to measure the
state variables over time, and these gauges are permitted to move with the local velocity of
the material. The test is run until time t = 5 × 10−6.

The pressure contours throughout the aluminium at various times are shown in Figure 4.2 on
page 127. Despite relying on a slightly different plasticity model to that found in [84], it can
be seen that these plots are in very good agreement with those found in the aforementioned
publication. Note that release waves can be seen on the sides of the plate, in agreement
with Michael & Nikiforakis.

Plots over time of the x-velocity, pressure, density, and total stress - as measured by the
gauges - are given in Figure 4.3 on page 128. Note the good agreement between these
plots and those found in [61, 84], both in terms of their qualitative shape, and the arrival
times of the waves that they represent. One can clearly see the separation between the elastic
precursor wave and the trailing plastic wave in the impacted plate, and the subsequent return
waves that are generated once these waves reach the end of the plate. This implies that the
GPR-RGFM has correctly captured the aluminium-vacuum interface.

4.1.3 Confined C4 Detonation without Back Plate

This test is a variation of that found in [84]. A steel bar of length 0.03 and width 0.018
impacts upon a steel plate of depth 0.003, which is covering a region of depth 0.009 composed
of C4 . The bar is initially traveling with speed 700. The system is surrounded by air.

The steel is modeled using a shock Mie-Gruneisen EOS, with parameters ρ0 = 7870, cv =
134, c0 = 4569, Γ0 = 2.17, s = 1.49, b0 = 3235, σY = 0.53 × 109, τ0 = 1, n = 10.
The C4 is modeled using a JWL EOS, with parameters ρ0 = 1601, cv = 2.487 × 106/1601,
Γ0 = 0.8938, A = 7.781 × 1013, B = −5.031 × 109, R1 = 11.3, R2 = 1.13, b0 = 1487.
The air is modeled using an ideal gas EOS, with parameters ρ0 = 1.18, cv = 718, γ = 1.4,
b0 = 50, µ = 1.85 × 10−5. The reaction of the C4 is captured using the ignition and growth
model, with parameters Q = 9 × 109/1601, I = 4 × 106, G1 = 1.4 × 10−20, G2 = 0,
a = 0.0367, b = 2/3, c = 2/3, d = 1/3, x = 7, y = 2, φI = 0.022, φG1 = 1.

Figure 4.5 on page 130 displays the resulting pressure and C4 concentration at times t = 2.4×
10−6 and t = 4.9×10−6. As can be seen, the kinetic energy of the bar is correctly transmitted
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Figure 4.2: Pressure contour plots for the aluminium plate impact test, at times 0.5µs, 1µs,
3µs, 5µs
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Figure 4.3: x-velocity, pressure, density, and total stress over time, as measured by the
various gauges of the aluminium plate impact test
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4.1 Numerical Results

Figure 4.4: Pressure (left) and reactant concentration (right) for the confined detonation
test, at times 2.4µs (top) and 4.9µs (bottom)

to the steel plate, with the plate deforming in a manner qualitatively identical to that found
in [84]. This energy is in turn transmitted to the C4, leading to an exothermic reaction and a
symmetrical wavefront that travels through the material. The C4 concentration is depleted
to 0.93 at time t = 2.4 × 10−6 and to 0.915 at time t = 4.9 × 10−6.

4.1.4 Confined C4 Detonation

This test is identical to the previous test, except a steel plate of depth 0.003 is now placed
behind the C4, so that the explosive is entirely confined. As can be seen from Figure 4.4 on
page 129, the kinetic energy of the bar is once again correctly transmitted to the steel plate
and C4, with the same deformation occurring in the first steel plate. At time t = 2.4×10−6 we
see the wave in the C4 both partially rebounding off the backplate back into the reactant, and
partially traveling on through the backplate. At the earlier time, the reactant concentration
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Figure 4.5: Pressure (left) and reactant concentration (right) for the confined detonation
test (without back plate), at times 2.4µs (top) and 4.9µs (bottom)

has been depleted to 0.88, and at the later time to 0.865. This corroborates the results of
[84], in that the presence of the backplate accelerates the reactive processes.

4.1.5 Confined C4 Detonation with Air Gap

This problem is designed to test the ability of the framework presented in this study to capture
the interaction of widely varying media. It is identical to the previous problem, except an
air gap is now placed between the first steel plate and the C4. The air has the same EOS
parameters as the surrounding air.

As can be seen in Figure 4.6 on page 131, the rod displaces the air (with the numerical
method coping with contact of the region representing the plate with the region representing
the C4). The displacement of the air enables the kinetic energy of the rod to be transmitted
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Figure 4.6: Pressure (left) and reactant concentration (right) for the confined detonation
test (with air gap), at times 2.4µs (top) and 4.9µs (bottom)

through the plate and into the C4, as before. The earlier time of t = 2.4 × 10−6 corresponds
with the instant after the plate makes contact with the C4. The concentration is depleted
to 0.9998 at t = 2.4 × 10−6 and 0.894 at t = 4.9 × 10−6. The latter value is lower than the
corresponding value in the previous test, as the reaction has been delayed by the presence of
the air gap.

4.2 Discussion

4.2.1 Conclusions

The results of these numerical tests demonstrate the power of combining the several different
novel ideas presented in this study into a coherent framework. The tests feature all three
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major phases of matter, reactive species, and the vacuum, and the results corroborate those
obtained in previous studies.

In achieving these results, it was necessary to first perform the analytical work present in
Section 1.1 and Section 1.2, to enable the use of a broad set of equations of state with the
GPR model, and to extend the GPR model to incorporate reactive species. Next, it was
required to develop new numerical methods to solve this (extended) model (in Section 2.2),
to allow for the solution of these problems in significantly less time than with the previously-
used ADER-WENO method, while retaining a reasonable order of accuracy. In 2.2.4, the
relaxation mechanism of the GPR model was modified to allow for the simulation of non-
Newtonian viscous fluids and elastoplastic solids (as required for the elastoplastic confiner of
the impact-induced detonation problem). Finally, it was required to derive a Riemann Ghost
Fluid Method for this extended GPR model in Section 3.2 (for both problems involving both
heat conduction and no heat conduction) to allow for modeling the evolution of interfaces
between every possible pairing of material types.

For completeness and reproducibility, explicit forms of mathematical objects appearing in
the GPR model have been provided in Chapter A, the eigenstructure analysis of the GPR
model is given in Chapter B, and parameters pertaining to the various different materials
encountered in this study are given in Chapter C. It should be straightforward for others to
implement and validate the methods developed in this study, enabling them to leverage a
unified framework for simulating a vast array of different physical phenomena. This should
bring the aforementioned benefits of reducing the conceptual work required to implement such
simulations; saving time and streamlining development of simulation software by reducing
the number of different systems of equations that require solvers.

4.2.2 Future Research

The generality of the physical phenomena captured by the framework presented in this study
allows it to be extended in many different ways. Two major avenues of further investigation
are presented in this section.

4.2.2.1 Different constitutive equations

Equations of State Although the tests in this study have demonstrated the suitability of
this framework to model materials governed by a wide range of Mie-Gruneisen-type equations
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of state (discussed in 1.1.1), there are many other kinds of EOS that can be used. As
mentioned in 0.2.2, it is straightforward to utilize other EOSs that express the internal energy
in terms of the density, entropy, pressure, or temperature (if required), and other more exotic
EOSs such as tabulated EOSs. The derivatives of the internal energy with respect to ρ, p are
required in the computation of eigenvalues and eigenvectors of the system matrix, for both
the Finite Volume flux updates (see 0.3.3) and the RGFM method (see 3.2.1). Ideally, these
derivatives would have an analytical expression, but they can also be calculated numerically, if
required. Of course, it is required to validate the use of such EOSs by solving well-understood
physical problems numerically.

Relaxation Functions Another material-dependent aspect of this framework is the choice
of functions θ1, θ2 that govern the relaxation mechanisms of the distortion tensor and the
thermal impulse vector respectively (see 0.2.2). In this study, we have used pre-existing
forms of θ1 for inviscid and Newtonian viscous fluids, elastic solids, and elastoplastic solids
governed by a power law in the stress tensor. A new form for θ1 was presented in 2.2.4.3 for
(power-law) non-Newtonian fluids. There are many more relationships that can be explored,
however, between the stress tensor and the strain or other variables such as temperature and
pressure.

One other such class of materials is Bingham plastics. These are materials that do not strain
until the stress reaches a specific minimum σY :

γ̇ =

0 |σ| ≤ σY

1
µ

(
1 − σY

|σ|

)
σ |σ| ≥ σY

(4.1)

Taking the analysis from 2.2.4.3, under the GPR model we have (to first order):

σ = 1
6τ1ρ0c

2
sγ̇ (4.2)

Thus, the definition of θ1 in (14a) can be used with:

τ1 =


∞ |σ| ≤ σY

6µ
ρ0c2

s(1− σY
|σ| )

|σ| ≥ σY
(4.3)
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Figure 4.7: The steady-state solution to Poiseuille flow problem for a Bingham plastic with
σY = 0.01 (left) and σY = 0.02 (right). The numerical solution is in orange, and the exact
solution in blue.

Figure 4.7 on page 134 demonstrates the results of the Poiseuille flow problem from 2.3.2.2,
now featuring Bingham plastics with σY = 0.01, 0.02. Solved with the ADER-WENO method
on a grid of 400 cells, it is demonstrated that the numerical and exact steady-state solutions
almost perfectly coincide. This is a promising result for the usage of our unified framework
with more exotic materials, but more work remains to be done in applying the methodology
to more tests, and adapting the new solver presented in Section 2.2 to this new form for τ1.

Many different models of solid plasticity have been presented over the years (e.g. see [9,
12, 41, 79, 86, 88] for a sample), and there exist more advanced concepts such as damage
in the realm of solid mechanics (e.g. [8]). The solids models referenced here are similar
in mathematical structure to the GPR model, differing mainly in the form of the relaxation
function θ1. Some of the models incorporate extra state variables to track the more complex
properties that they describe. It is conceivable - but remains to be demonstrated - that these
features are compatible with the RGFM presented in Section 3.2.

Reactive Models Reaction pathways and networks for reactive species can become arbi-
trarily complex (see [98] for a recent review of complex kinetic modeling methodologies),
and there is much potential work in extended the framework presented in this study to en-
compass reactive systems such as those presented in the aforementioned paper. Care needs
to be taken when multiple reactants and products are present, with different properties such
as viscosity and thermal conduction, as these affect the relaxation rates of the distortion
tensor and thermal impulse vector (now representing the distortion and thermal impulse of
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the mixture of the different materials present). Appropriate mixture models must be used
for µ, κ (see [4, 16, 52, 53, 57, 131] for several different approaches that have been devised
over the years).

4.2.2.2 Extensions to the GPR model

Several extensions to the GPR model have been presented over the last few years since its
initial presentation by Peshkov and Romenski, allowing it to simulate more exotic physical
phenomena. They will be briefly noted here. In each case, work remains to be done in
extended the solvers presented in Section 2.2, and the RGFM presented in Section 3.2 to
operate under these extended models.

Electrodynamics Dumbser et al [36] have coupled the GPR model with electrodynamics,
enabling modeling of moving elastoplastic dielectric solids and inviscid or viscous fluids in
the presence of electromagnetic fields. The resulting PDE system tends in the stiff limit to
the viscous and resistive magnetohydrodynamics (MHD) equations. The density, distortion,
and thermal impulse evolution equations (1a), (1c), (1d) take their usual form, with the
momentum and energy evolution equations (1b), (3) taking the modified form below, along
with new evolution equations for the electric field D, magnetic field B, and the artificial
scalar φ:

∂ (ρvi)
∂t

+ ∂ (ρvivk + pδik − σik + βik)
∂xk

= 0 (4.4a)

∂Di

∂t
+ ∂ (vkDi − viDk − ϵikjbj)

∂xk
+ vi

∂Dk

∂xk
= −di

η
(4.4b)

∂Bi

∂t
+ ∂ (vkBi − viBk + ϵikjdj + φδik)

∂xk
+ vi

∂Bk

∂xk
= 0 (4.4c)

∂ (ρE)
∂t

+ ∂ (ρEvk + (pδik − σik + βik) vi + qk + ϵijkdibj)
∂xk

= 0 (4.4d)

∂φ

∂t
+ ∂ (c2

hBk)
∂xk

= 0 (4.4e)

where ϵijk is the Levi-Civita tensor, η is the resistivity, and d,b are the electric and magnetic
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fields in the comoving frame:

d = 1
ϵ′ D + v × B (4.5a)

b = 1
µ′ B − v × D (4.5b)

where ϵ′, µ′ are the electric permittivity and magnetic permeability of the material.

The following contribution is added to E in the EOS (6):

Eem = 1
2ρ

(
1
ϵ′ D

2 + 1
µ′ B

2
)

(4.6)

The Maxwell stress, β takes the form:

β = ρEemI − 1
ϵ′ D ⊗ D − 1

µ′ B ⊗ B (4.7)

It is straightforward to solve the resulting homogeneous system of PDEs with the methods
presented in 2.2.2. Combining (4.4b) and (4.5a), the new temporal ODE to solve is:

dDi

dt
= − 1

ηϵ′Di − 1
η

(v × B)i (4.8)

Denoting Dt
i as the value of Di at time t after the current timestep:

D∆t
i =

(
D0
i + ϵ′ (v × B)i

)
e

− ∆t
ηϵ′ − ϵ′ (v × B)i (4.9)

Thus, it should be possible to solve this system in the framework presented in Section 2.2.
To use the RGFM with this system, a similar eigenstructure analysis to that performed in
Chapter B will need to be undertaken, and new boundary conditions will need to devised in
the methodology presented in 3.2.1.

Multiphase Systems Romenski et al [111] have recently proposed an extension to the
GPR model for simulating multiphase mixtures (in particular the problem of compressible
fluid flows in elastoplastic porous media). The model features 2 types of phase interaction:
phase pressure relaxation to a common value, and interfacial friction.
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Taking two phases, let the volume fraction, phase mass fraction, and velocity of the ith
phase be denoted by α(i), c(i),v(i). Note that c(1) + c(2) = 1 and vi = c(1)v

(1)
i + c(2)v

(2)
i .

The density and distortion evolution equations (1a), (1c) take their usual form, with the
momentum and energy evolution equations (1b), (3) taking the modified form below, along
with new evolution equations for the relative phase velocity w = v(1) − v(2), c(1), and α(1).

∂ (ρvi)
∂t

+ ∂ (ρvivk + pδik − σik + wiEwk
)

∂xk
= 0 (4.10a)

∂
(
ρc(1)

)
∂t

+
∂
(
ρc(1)vk + ρEwk

)
∂xk

= 0 (4.10b)

∂wk
∂t

+ ∂ (wlvl + Ec(1))
∂xk

+ vl

(
∂wk
∂xl

− ∂wl
∂xk

)
= −λk

θ̃
(4.10c)

∂
(
ρα(1)

)
∂t

+
∂
(
ρα(1)vk

)
∂xk

= −ρφ

θ̂
(4.10d)

∂ (ρE)
∂t

+ ∂ (ρEvk + vi (pδik − σik + ρwiEwk
) + ρEc(1)Ewk

)
∂xk

= 0 (4.10e)

where θ̃, θ̂ characterize the rate of pressure and velocity relaxation. The total energy now
contains contributions from the volume fractions, phase mass fractions, and the relative
phase velocity. Depending on the form chosen for θ̃, θ̂, it may be possible to derive semi-
analytical solutions for the temporal ODEs presented by this system, in a similar manner to
those performed in 2.2.4. Care must be taken when choosing the RGFM boundary conditions
between regions occupied by different multiphase mixtures, if it is desired to apply the theory
from Section 3.2 to this system.

Another similar, recent attempt at modeling multiphase systems in a GPR-like framework
is that of Groom et al [51]. This paper presents a one-dimensional theory, working towards
the formulation of a three-dimensional, hyperbolic, two-phase, two-pressure, two-velocity,
two-temperature model for viscous, miscible and compressible fluids. This system may also
be amenable to being incorporated into the framework developed in this study.

Yet another GPR-like model of multiphase systems was presented in [100]. Here, a frame-
work is presented for simulating two-phase continua experiencing stress-induced solid–fluid
transitions. It is similar to the GPR system, with the addition of four extra state variables:
the Burgers tensor B, the defect flux density D, and both of their divergence vectors. The
source term for the distortion tensor takes a different form to that used in this study, and the
Burgers tensor and defect flux density contain source terms also. Thus, a significant amount
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of work will need to be performed to adapt the operator splitting numerical solver presented
in Chapter 2 to this system, but it may be possible. Once again, care must be taken in
choosing boundary conditions involving B,D and their divergence vectors, if the RGFM of
Chapter 3 is used to simulate impermeable interfaces between different regions occupied by
materials that can undergo stress-induced phase transitions, described by this model.

Riemann-Cartan Geometry and General Relativity Peshkov et al [103] have recently
applied elements of Riemann-Cartan geometry to fluid mechanics, with the aim of model-
ing turbulence effects. The authors associate the rotational degrees of freedom of the the
distortion tensor field with the dynamics of microscopic, unresolved vortexes. The concept
of the rank-3 four-torsion tensor is introduced, and is used to characterize the distortion
field’s spin. Two new evolution equations are introduced, for rank-2 components B,D of
the rank-3 four-torsion tensor. These are similar in structure to the magnetic and electric
fields encountered in (4.4c), (4.4b) (although B,D are now rank-2, rather than rank-1). It
may be that this system is amenable to solution in a similar manner to the method given in
(4.9).

Another recent development in this area - in part building upon the material of the afore-
mentioned study - is the introduction of general relativistic effects into the GPR system
[105, 110]. A significant amount of work lies ahead with regards to this extended model, in
the construction of numerical solvers of the kind developed in this study, and the implemen-
tation of immiscible multimaterial modeling. The resulting framework has the potential to
be very powerful, however.
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Appendix A

System Matrices
A.1 Fluxes, Sources, and Non-Conservative Terms

The mixed-material GPR model takes the form ∂Q
∂t

+ ∂F (Q)
∂x

+ B (Q) · ∂Q
∂x

= S (Q) where
Q,F , B,S are given in (A.1), (A.2), (A.3).

A.2 Jacobians

Jacobian of the Conserved System

Define the following variables:

ψ̃ = ρ
∂E

∂A

∣∣∣∣∣
ρ,p

(A.4a)

Ψij = ρvivj − σij (A.4b)

Φij = vivj − ∂σij
∂ρ

(A.4c)

ℵmnij = −∂σmn
∂Aij

(A.4d)

Ωk
ij = vkψ̃ij + vmℵmkij (A.4e)

∆i = vi

E + ρ
∂E

∂ρ

∣∣∣∣∣
p,A

− ∂σim
∂ρ

vm + ∂T

∂ρ
Hi (A.4f)

Πi = vi

(
ρ
∂E

∂p
+ 1

)
+ ∂T

∂p
Hi (A.4g)

Υ = Γ
∥v∥2 + c2

t ∥J∥2 +Qλ−

E + ρ
∂E

∂ρ

∣∣∣∣∣
p,A

 (A.4h)

The Jacobians of the GPR system are given in (A.5), (A.6), (A.7), (A.8), (A.9).
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A.2 Jacobians

Q
=

                                      ρ ρ
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v 1
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A.2 Jacobians
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A.2 Jacobians
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A.2 Jacobians
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A.2 Jacobians
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A.2 Jacobians
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A.2 Jacobians
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A.2 Jacobians
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A.2 Jacobians

Jacobian of Distortion ODEs

The Jacobian of the source function is used to speed up numerical integration of the ODE.
It is derived thus:

∂ dev (G)ij
∂Amn

= δinAmj + δjnAmi − 2
3δijAmn (A.10)

Thus:

∂ (Adev (G))ij
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(A.11)

=
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3AklAklδtj
)

+Ait
(
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3δtjAmn
)

= δimAknAkj − 1
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Thus:
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 5
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′
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 5 (A dev (G)) ⊗ A−T − 2A⊗ A+ 3 (A⊗ A)1,3
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G

′ ⊗ I + I ⊗G
)2,3



where G′ = AAT and Xa,b refers to tensor X with indices a, b transposed.

Jacobian of Thermal Impulse ODEs

As demonstrated in 2.2.3, we have:

dJi
dt

= Ji
2
(
−a+ b

(
J2

1 + J2
2 + J2

3

))
(A.13)
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A.2 Jacobians

where

a = 2ρ0

τ2T0ρcv
(E − E2A (A) − E3 (v)) (A.14a)

b = ρ0c
2
t

τ2T0ρcv
(A.14b)

Thus, the Jacobian of the thermal impulse ODEs is:


b
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 (A.15)
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Appendix B

Eigenstructure
B.1 Primitive System

Taking the ordering P of primitive variables in (B.17), note that (3), (1b), (1c), (1d) can
be stated as:

Dρ

Dt
+ ρ

∂vk
∂xk

= 0 (B.1a)

Dvi
Dt

+ 1
ρ

∂Σik

∂xk
= 0 (B.1b)

DAij
Dt

+Aik
∂vk
∂xj

= −ψij
θ1

(B.1c)
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Dt

+ 1
ρ

∂Tδik
∂xk

= −Hi

θ2
(B.1d)

DE

Dt
+ 1
ρ

∂ (Σikvi + THk)
∂xk

= 0 (B.1e)

Dλ

Dt
= −K (B.1f)

where the total stress tensor Σ = pI + ρATψ. Note that:

DE
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K

Thus, the energy equation becomes:
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(B.3)
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B.1 Primitive System

Simplifying:

Dp
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+ 1
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(B.4)

We have123:
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0 (B.9a)

c2
tT

ρEp
= ρc2

h

Tp
(B.9b)

∂E

∂A

∣∣∣∣∣
ρ,p

=
(

1 − 2ρ2Ep
∂ log (cs)

∂ρ

)
ψ (B.9c)

−ρAT ∂E

∂A

∣∣∣∣∣
ρ,p

= σ + ρ2Ep

(
σ

ρ
− ∂σ

∂ρ

)
(B.9d)

1

p− ρ2Eρ

ρEp
=
ρ2 Eρ|s − ρ2 Eρ|p

ρ Ep|ρ
= ρ

Eρ|s −
(
Eρ|s + Es|ρ sρ|p

)
Es|ρ sp|ρ

(B.5)

= ρ
− sρ|p
sp|ρ

= ρ
∂p

∂ρ

∣∣∣∣
s

2

c2
tT

ρEp
= c2

tT

ρcvTp
= ρc2

h

Tp
(B.6)

3

∂E

∂A

∣∣∣∣
ρ,p

=
(
c2

s − ρ

Γ
∂c2

s

∂ρ

)
ψ

c2
s

=
(

1 − 2 ρ
2

ρΓ
∂ log (cs)

∂ρ

)
ψ (B.7)

∂σ

∂ρ
= ∂

∂ρ

(
−ρc2

sA
T ψ

c2
s

)
= −c2

sA
T ψ

c2
s

− ρ
∂c2

s

∂ρ
AT ψ

c2
s

(B.8)

= σ

ρ
+ 2∂ log (cs)

∂ρ
σ
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B.1 Primitive System

The full system then becomes:

Dρ

Dt
+ ρ

∂vk
∂xk

= 0 (B.10a)

Dp

Dt
+ ρc2

0
∂vi
∂xi

+
(
σik − ρ

∂σik
∂ρ

)
∂vi
∂xk

+ ρc2
h

Tp

∂Jk
∂xk

= c̃s
∥ψ∥2

F

θ1Ep
+ ∥H∥2

θ2Ep
+ Eλ
Ep

K (B.10b)

DAij
Dt

+Aik
∂vk
∂xj

= −ψij
θ1

(B.10c)

Dvi
Dt

− 1
ρ

∂σik
∂ρ

∂ρ

∂xk
+ 1
ρ

∂p

∂xi
− 1
ρ

∂σik
∂Amn

∂Amn
∂xk

= 0 (B.10d)

DJi
Dt

+ Tρ
ρ

∂ρ

∂xi
+ Tp

ρ

∂p

∂xi
= −Hi

θ2
(B.10e)

Dλ

Dt
= −K (B.10f)

where:

c̃s (ρ, p, A) = 1 − 2ρ2Ep
∂ log (cs)

∂ρ
(B.11)

Thus, the GPR system can be written in the following form:

∂P

∂t
+ M · ∇P = Sp (B.12)

Defining the following variables:

ℵ̃ij = −∂σij
∂ρ

(B.13a)

Ω̃ij = ρσij + ρ2ℵ̃ij (B.13b)

we have M taking the form given in (B.14), (B.15), (B.16), and P,SP taking the forms
given in (B.17).
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B.1 Primitive System

P
=

                                    ρ p A
11

A
21

A
31

A
12

A
22

A
32

A
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A
23

A
33 v 1 v 2 v 3 J
1
J

2
J

3

                                    

S
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=
−

                                       1 θ 1

                                       

0
−
c̃ s

∥ψ
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E
p

ψ
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ψ
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ψ
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ψ
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ψ
22

ψ
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ψ
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ψ
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B.2 Eigenvalues

B.2 Eigenvalues
Considering the primitive system matrix (B.14), it is clear that the eigenvalues of the GPR
system in the first spatial axis consist of v1 repeated 8 times, along with the roots of:

∣∣∣∣∣∣ (v1 − λ) I Ξ2

Ξ1 (v1 − λ) I

∣∣∣∣∣∣ = 0 (B.18)

where

Ξ1 = −1
ρ



∂σ11
∂ρ

−1 ∂σ11
∂A11

∂σ11
∂A21

∂σ11
∂A31

∂σ21
∂ρ

0 ∂σ21
∂A11

∂σ21
∂A21

∂σ21
∂A31

∂σ31
∂ρ

0 ∂σ31
∂A11

∂σ31
∂A21

∂σ31
∂A31

−Tρ −Tp 0 0 0

 (B.19)

Ξ2 =



ρ 0 0 0(
ρc2

0 + σ11 − ρ∂σ11
∂ρ

) (
σ21 − ρ∂σ21

∂ρ

) (
σ31 − ρ∂σ31

∂ρ

)
ρc2

h

Tp

A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0


(B.20)

By the properties of block matrices4, the remaining eigenvalues are v1 and the roots of∣∣∣(v1 − λ)2 I − Ξ1Ξ2

∣∣∣ = 0. Thus, λi = v1 ±
√
λ̃i where the λ̃i are the eigenvalues of the

following matrix:

Ξ = Ξ1Ξ2 =


Ω1

11 +
(
c2

0 + σ11
ρ

− ∂σ11
∂ρ

)
Ω1

12 +
(
σ21
ρ

− ∂σ21
∂ρ

)
Ω1

13 +
(
σ31
ρ

− ∂σ31
∂ρ

)
c2

h

Tp

Ω1
21 Ω1

22 Ω1
23 0

Ω1
31 Ω1

32 Ω1
33 0

Tρ + Tp
(
c2

0 + σ11
ρ

− ∂σ11
∂ρ

)
Tp
(
σ21
ρ

− ∂σ21
∂ρ

)
Tp
(
σ31
ρ

− ∂σ31
∂ρ

)
c2
h


(B.21)

where Ω is given shortly. Similar results hold for the other two spatial directions. In general it
is not possible to express the eigenvalues of Ξ in terms of the eigenvalues of its submatrices.
Note, however, that if ct = 0 then one of the eigenvalues is 0 and the remaining eigenvalues
can be found analytically, using the form given in the appendix of [35].

4If A is invertible, det
(
A B
C D

)
= det (A) det

(
D − CA−1B

)
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B.3 Eigenvectors

It is straightforward to verify the following:

∂σij
∂Amn

= −c2
sρ

 δin (A dev (G))mj + δjn (A dev (G))mi
+AmiGjn + AmjGin − 2

3GijAmn

 (B.22)

The quantity Ω is named here the acoustic tensor, due to its similarity to the acoustic tensor
described in [11]:

Ωd
ij = −1

ρ

∂σid
∂Akd

Akj − σid
ρ
δdj (B.23)

= c2
s

 δid (Gdev (G))dj + (Gdev (G))id δdj
+ (Gdev (G))ij +GijGdd + 1

3GdjGid


= c2

s

(
EdGdev (G) +Gdev (G)Ed +Gdev (G) +GddG+ 1

3GdG
T
d

)

where Ed
ij = δidδjd.

B.3 Eigenvectors

With Heat Conduction

By hyperbolicity of the system, Ξ can be expressed as:

Ξ = Q−1D2Q (B.24)

where D is a diagonal matrix with positive diagonal entries. The eigenvectors corresponding
to λi = v1 ±

√
λ̃i take the form

(
û 06 ũ 02

)T
where û ∈ R5, ũ ∈ R4 satisfy:

 v1I Ξ2

Ξ1 v1I

 û

ũ

 =
(
v1 ±

√
λ̃i

) û

ũ

 (B.25)

Thus, Ξ2ũ = ±
√
λ̃iû and Ξ1û = ±

√
λ̃iũ. Combining these results, Ξũ = λ̃iũ. Thus, ũ is

a right eigenvector of Ξ and, taking the form Q−1ei for some i = 1 . . . 4.
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B.3 Eigenvectors

The four eigenvectors corresponding to eigenvalues of the form v1 +
√
λ̃i are columns 1-4 of

matrix R in (B.26). Those corresponding to eigenvalues of the form v1 −
√
λ̃i are columns

5-8. By inspection (using the system matrix (B.14)), it can be verified that the remaining 9
eigenvectors (corresponding to eigenvalue v1) are the remaining columns.

Note that the index d appearing in these representations should be taken as 1, 2, 3 for
eigenvectors in directions x, y, z, respectively. 0m,n is defined to be the 0-matrix of shape
(m,n) and In the identity matrix of size n.

R =




1
2Ξ2 (D2Q)−1 1

2Ξ2 (D2Q)−1

06,4 06,4
1
2 (DQ)−1 −1

2 (DQ)−1

02,4 02,4

 ,


−cTp
cTρ

cΠ−1
d w

012,1

 ,



02,3 02,3

−Π−1
1 Π2 −Π−1

1 Π3

I3 03,3

03,3 I3

06,3 06,3


,

 015,2

I2




(B.26)

where

(Πk)ij = ∂σid
∂Ajk

(B.27a)

w = Tp
∂σd

∂ρ
+ Tρed (B.27b)

c = 1
eT

d (ΠdA)−1 w + Tp

ρ

(B.27c)

A similar analysis yields the left eigenvectors as the rows of (B.28).

L =



QΞ1 −1
ρ
Q:,1:3Π2 −1

ρ
Q:,1:3Π3 DQ 04,2

QΞ1 −1
ρ
Q:,1:3Π2 −1

ρ
Q:,1:3Π3 −DQ 04,2


(

−1
ρ

0 eT
dA

−1 eT
dA

−1Π−1
1 Π2 eT

dA
−1Π−1

1 Π3 01,6

) 03,5 I3 03,3 03,6

03,5 03,3 I3 03,6

(
02,15 I2

)


(B.28)
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B.3 Eigenvectors

Without Heat Conduction

If the system does not include the heat conduction terms, the eigenstructure of the system
matrix changes. Ξ1,Ξ2,Ξ now take the following values:

Ξ1 = −1
ρ


∂σ11
∂ρ

−1 ∂σ11
∂A11

∂σ11
∂A21

∂σ11
∂A31

∂σ21
∂ρ

0 ∂σ21
∂A11

∂σ21
∂A21

∂σ21
∂A31

∂σ31
∂ρ

0 ∂σ31
∂A11

∂σ31
∂A21

∂σ31
∂A31

 (B.29)

Ξ2 =



ρ 0 0(
ρc2

0 + σ11 − ρ∂σ11
∂ρ

) (
σ21 − ρ∂σ21

∂ρ

) (
σ31 − ρ∂σ31

∂ρ

)
A11 A12 A13

A21 A22 A23

A31 A32 A33


(B.30)

Ξ = Ξ1Ξ2 =


Ω1

11 +
(
c2

0 + σ11
ρ

− ∂σ11
∂ρ

)
Ω1

12 +
(
σ21
ρ

− ∂σ21
∂ρ

)
Ω1

13 +
(
σ31
ρ

− ∂σ31
∂ρ

)
Ω1

21 Ω1
22 Ω1

23

Ω1
31 Ω1

32 Ω1
33

 (B.31)

Using the eigendecomposition Ξ = Q−1D2Q as before, we have:

R =




1
2Ξ2 (D2Q)−1 1

2Ξ2 (D2Q)−1

06,3 06,3
1
2 (DQ)−1 −1

2 (DQ)−1

 ,


1 0
0 1

−Π−1
1

∂σ1
∂ρ

Π−1
1 e1

09 09

 ,



02,3 02,3

−Π−1
1 Π2 −Π−1

1 Π3

I3 03,3

03,3 I3

03,3 03,3




(B.32)

By considering their products with the first 8 columns of R, two of the left eigenvectors
corresponding the the 7th and 8th right eigenvectors must come in the form of the rows of
the following matrix:

(
W X Y Z

)
(B.33)
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B.3 Eigenvectors

where W ∈ R2,5 and X, Y, Z ∈ R2,3, and:

WΞ2
(
D2Q

)−1
+ Z (DQ)−1 = 0 (B.34a)

WΞ2
(
D2Q

)−1
− Z (DQ)−1 = 0 (B.34b)

W

 02,3

−Π−1
1 Π2

+X = 0 (B.34c)

W

 02,3

−Π−1
1 Π3

+ Y = 0 (B.34d)

Solving this system for X, Y, Z:

Z = 0 (B.35a)
X = W:,3:5Π−1

1 Π2 (B.35b)
Y = W:,3:5Π−1

1 Π3 (B.35c)

Define:

ℵ ≡



(Ξ2)11 (Ξ2)12 (Ξ2)13 1 0
(Ξ2)21 (Ξ2)22 (Ξ2)23 0 1
(Ξ2)31 (Ξ2)32 (Ξ2)33 C11 C12

(Ξ2)41 (Ξ2)42 (Ξ2)43 C21 C22

(Ξ2)51 (Ξ2)52 (Ξ2)53 C31 C32


(B.36)

=



B11 B12 B13 1 0
B21 B22 B23 0 1
A11 A12 A13 C11 C12

A21 A22 A23 C21 C22

A31 A32 A33 C31 C32


where

B =
 ρ 0 0(

ρc2
0 + σ11 − ρ∂σ11

∂ρ

) (
σ21 − ρ∂σ21

∂ρ

) (
σ31 − ρ∂σ31

∂ρ

) (B.37a)

C = Π−1
1

(
−∂σ1

∂ρ
e1

)
(B.37b)
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B.3 Eigenvectors

By the properties of block matrices:

ℵ−1 =
−A−1C (I −BA−1C)−1

A−1
(
I + C (I −BA−1C)−1

BA−1
)

(I −BA−1C)−1 − (I −BA−1C)−1
BA−1

 (B.38)

By the orthonormality of eigenvectors, we must have:

Wℵ =
 0 0 0 1 0

0 0 0 0 1

 (B.39)

Thus, it is straightforward to confirm that:

W =
(

(I −BA−1C)−1 − (I −BA−1C)−1
BA−1

)
(B.40)

Thus, we have:

W =
(
I −BA−1C

)−1 (
I2 −BA−1

)
(B.41a)

X = −
(
I −BA−1C

)−1
BA−1Π−1

1 Π2 (B.41b)

Y = −
(
I −BA−1C

)−1
BA−1Π−1

1 Π3 (B.41c)

Finally, combining the preceding results with (B.33), we have:

L =



QΞ1 −1
ρ
QΠ2 −1

ρ
QΠ3 DQ

QΞ1 −1
ρ
QΠ2 −1

ρ
QΠ3 −DQ


(I2 −BA−1C)−1 (

I2 −BA−1 −BA−1Π−1
1 Π2 −BA−1Π−1

1 Π3 02,3

) 03,5 I3 03,3 03,3

03,5 03,3 I3 03,3




(B.42)
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Appendix C

Model Parameters
The parameters for different materials under different equations of state are given in the
tables below. All variables are given in SI units.

C.1 Material Properties

Material ρ0 p0 T0 cv cs µ ct κ Pr

Air 1.18 10100 721 1 1.85 × 10−5 1 0.714
Helium 0.163 10100 3127 1 1.99 × 10−5 1 0.688
Water 1000 10000 950 10−4 10−3 10−4 7
PBX 1840 10000 - 10−4 10−5 - -

Aluminium 2710 0 300 900 3160 - -
Copper 8930 0 300 390 2141 - -
Steel 7860 0 298 134 2888 - -
C4 1590

Table C.1: Reference parameters for various materials

C.2 Equation of State Parameters

Ideal/Stiffened Gas Shock Mie-Gruneisen Godunov-Romenski
γ p∞ c0 Γ0 s c0 α β γ

Air 1.4 - - - - -
Helium 1.66 - - - - -
Water 4.4 6 × 108 - - - -
PBX 2.85 - - - - -

Aluminium - - 5037 1 3.577 2.088
Copper - - 3939 2 1.5 3939 1 3 2
Steel - - 4030 1.43 1.24
C4 - -

Table C.2: Parameters for the Ideal-/Stiffened-Gas, Shock Mie-Gruneisen, and Godunov-
Romenski equations of state
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C.2 Equation of State Parameters

Material τ1 σY n

Copper 0.1 9 × 108 10
Aluminium 1 4 × 108 20

Table C.3: Plasticity parameters for various materials
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