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Abstract: In this paper, a novel distributed yet integrated approach for diagnostics and prognostics is 

presented. An experimental study is conducted to validate the performance. Results showed that 

distributed prognostics give better performance in leaser computational time. Also, the proposed 

approach helps in making the results of the machine learning techniques comprehensible and more 

accurate. These results will be handy in arriving at predictive maintenance schedule considering the 

criticality of the system, the dependency of the components, available maintenance resources and 

confidence level in the results of the prognostic.  
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1. INTRODUCTION 

Use of contemporary technologies for creating intelligent 

assets on manufacturing shop floor, is being widely explored 

by researchers for the realization of Industry 4.0. However, 

managing manufacturing operations of a shop floor, which 

consists of such advanced and intelligent assets, are still not 

aptly explored in the literature (Upasani et al. 2017). 

Maintenance is one such important operations planning 

aspects of any manufacturing shop floor. Maintenance is 

crucial in determining the overall efficiency of manufacturing 

operations as it contributes 3 to 12% in the overall 

manufacturing costs. The advent of current maintenance 

technology viz. condition-based maintenance plays an 

integral part in industry 4.0. It is based on online component 

monitoring, diagnostics, and prognostics of the physical 

assets. For example, Rastegari et al. (2017) highlighted 

Condition Based Maintenance (CBM) and its implementation 

in the manufacturing industries. Similarly, Zhang et al. 

(2016) proposed an approach for Tool Condition Monitoring 

(TCM) and Remaining Useful Life (RUL) prediction. A 

condition-based preventive maintenance approach integrated 

into a machine monitoring framework was presented in 

Mourtzis et al. (2016). Such approaches, though at the 

component level, make the maintenance planning more 

intelligent and capable. However, they fail to incorporate and 

utilize the typical characteristics of the overall intelligent 

manufacturing system. For instance, such approaches do not 

consider the machine to machine communication and 

autonomous decision making. Autonomous decision making 

is important for dynamic maintenance planning. Also, 

researchers have attempted to develop multi-sensor fusion-

based approaches for effective diagnostics and prognostics 

(Jain and Lad 2016). However, such approaches mostly rely 

on centralized data collection and decision-making. As, data 

from all sensors are collected, stored, and computed using 

machine learning techniques, at the single processor. 

Distributed approaches like Palau et al. (2018) and Palau et 

al. (2019) exist, which involve deploying prognostics 

algorithms at the asset level. However, they rely on 

identifying similar assets within a fleet and subsequently 

sharing data within these assets. Such approach is very 

subjective to the operator’s notion of similarity and boils 

down to centralised learning in an extreme case where all 

assets are deemed similar. Such a centralized system does not 

harness the typical characteristics of industry 4.0 viz., 

distributed intelligence, and autonomous decision making.  

Apart from these, there are various peripheral issues with the 

conversational diagnostics and prognostics approaches. 

Conventionally researchers are focused on the improvement 

of the accuracy of the results of diagnostics and prognostics 

separately. For example, Jain et al. (2014) focused only on 

the prognostics of the high-speed milling cutter. Similarly, 

Wang et al. (2015) focused only on tool wear predictions. 

Jain and Lad (2019) presented an integrated TCM system 

where diagnostics and prognostics were considered jointly. 

However, the authors used a centralized framework for data 

collection and processing. Another issue is the black-box 

nature of the machine learning approaches used for 

diagnostics and prognostics. Such approaches give imperfect 

interpretations of the outcomes, resulting in a low level of 

confidence in the solutions and, consequently, reduced 

implementation rate. Holzinger (2016) highlighted the 

disadvantages of machine learning techniques and the 

requirement of interactive machine learning in order to 

include humans in the loop. Similarly, Biran and Kathleen 

(2017) proposed a novel machine learning approach that 

focuses on domain knowledge and human reasoning. 

However, such human-centric machine learning approaches 

are still at the exploratory stage. The use of such human-

centric approaches for diagnostics, prognostics, and 

maintenance planning in manufacturing is missing. 

Subsequently, this paper attempts to present a novel system 

encompassing the above issues, especially, centralized 

framework for data collection and processing and black-box 

nature of machine learning based prognostics and diagnostics 
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approaches, through distributed yet integrated diagnostics, 

prognostic, and maintenance planning approach.  

2. METHODOLOGY 

2.1 Distributed yet Integrated Diagnostics and Prognostics 

Approach 

Figure 1 represents the distributed architecture applied to one 

of the components of the manufacturing system viz. milling 

cutter. This component is connected with a number of 

Measuring and Computing Units (MCUs). An MCU is a 

sensor unit capable of collecting, storing, and computing the 

data. Such distribution of information collection and decision 

making is now possible and highly desirable in any Industry 

4.0 system (Xu et al. 2018, Sodhro et al. 2019).  Also, it helps 

in collecting big data in distributed manner and protecting 

against the failure of the central data server used in the case 

of conventional diagnostics and prognostics approaches. 

Three MCUs viz. force MCU (F MCU), vibration MCU (V 

MCU), acoustic emission MCU (AE MCU) are used in this 

work. Each of the MCUs is capable of processing the 

captured data, run diagnostics and prognostics algorithms and 

return health stage (i.e. current condition) or RUL estimates 

to the base station (where information about each 

components state obtained from all the MCUs is collected 

and processed). Initially, all the MCUs only predict the heath 

stage (elaborated in section “diagnostics module”) of the 

component. As soon as any MCU predicts the component in 

stage II or III, a fault (fault means change in current 

condition) is triggered by MCU which initializes the 

prognostics module of that particular MCU. All such MCUs 

then predict RULs of the component and report to the base 

station. The base station decides the suitable RUL for further 

maintenance planning. Suitable RUL may be decided based 

on the criticality of the component and confidence in 

predicted RUL or health stages, as discussed in section 2.2. 

With time, MCU’s performance is also analyzed, and the 

MCUs giving poor predictive performance are removed or 

are explored for better features and machine learning 

algorithms. 

Experimental Platform: An experimental platform pertaining 

to milling machine is designed. It allows investigation of the 

degradation behaviour of cutting tools by running run-to-

failure tests on 6 mm diameter high-speed steel milling 

cutters. The milling process used was face milling for 

generating a flat surface on a mild steel workpiece 

(165mmX100mm) at a fixed operating profile 

(feed=300mm/min, speed = 1000RPM, depth of cut = 0.25) 

in dry state. Mitutoyo TM-505 tool maker’s microscopy 

system at 15x eyepiece magnification and resolution of 

0.001mm, according to ISO/IEC 17025, was used to measure 

tool degradation (flank wear) of the tool. After every 1320 

mm of machining, tool wear was measured and recorded 

manually. The average value of cutter flank wear from four 

cutting edges was considered to represent the failure of the 

cutting tool, with wear threshold being 0.746mm. Three types 

of sensor measurements viz. cutting force, vibration, and 

acoustic emission were used to monitor the cutting tool 

condition in real-time. Online time-domain signals were 

collected with distinct sampling frequency (1 KHz for force 

MCU and 2.5 KHz for vibration and acoustic emission for 

the entire life of the tools. This experiment was carried out on 

six identical cutting tools. Two different failure types were 

witnessed, namely worn-out and breakage.  

 

Fig. 1. Flow diagram of distributed diagnostics and 

prognostics. 

Feature Selection: Pre-processing of data was performed by 

converting raw signals into more informative features or 

parameters. In specific, 31 statistical features were extracted 

by each MCU. The feature screening followed this. In this 

work, Pearson correlation methodology was applied for 

feature screening, to help identify highly correlated features 

and thus remove redundant features. A correlation value near 

-1 and 1 was considered as strongly correlated and value near 

to 0 was considered as unrelated features. Therefore, it helps 

in eliminating redundant features. In this way, 18 features for 

force MCU, 16 features for vibration MCU and 11 features 

for acoustic emission MCU were retained for further analysis. 

Three methods viz. logistic regression, random forest 

classifier, and decision tree classifier are applied for 

identifying the most relevant features. The accuracy of the 

results was calculated for each method (refer to table1). The 

top 5 features based on the most accurate method 

(highlighted in bold in table 1) for a particular MCU are then 

used for further diagnostics and prognostics. These features 

are listed in table 2. 

Diagnostic Module: This predicts the current health state by 

assessing the information provided by the features selected 

for each MCU. During machining process a new tool 

progressively move to greater levels of wear and eventually 

Yes 

MCU 1 MCU 2 MCU n 

Run diagnostics module separately on each MCU 

Evaluate health stage based on each MCU 

Fault triggered by 

particular MCU? 

Initialize prognostics module separately on fault reporting MCU only 

RUL Predictions obtained from these MCUs 

Predicted RUL is/are communicated to base station 

Base station finds the critical RUL 

MCU performance estimation and 

elimination if required 

Maintenance 

planning 

No 



 

 

     

 

breakage. This paper uses a multi-stage categorization for 

tool wear. The tool is categorized in one of the following 

three stages: Stage I: Slight wear zone; Stage II: Moderate 

wear zone; and Stage III: Critical or worn out zone. The 

threshold for classification of the health stages is determined 

based on historical degradation information of the 

component. The tool is classified into one of the three health 

stages, as shown in figure 2. A similar classification is used 

by Jain and Lad (2017).  

An experimental dataset of 237 data points generated by six 

cutters was used for developing and validating the 

classification models. 60% of data are used for training while 

remaining data are used for testing. Features mentioned in 

table 2 for respective MCUs are used for the classification 

models. Six wear classification models are tested in terms of 

accuracy. A 10-fold cross-validation technique is employed 

on the test set in the python environment. The 

implementation results are given in table 3. Based on the 

accuracy, the Gaussian NB classifier, logistic regression 

classifier, and random forest classifier were selected for 

diagnostics based on force, vibration, and acoustic emission 

MCU, respectively. For each classifier, the precision and 

sensitivity index is calculated for all stages for the most 

accurate methods. The results are shown in table 4. In the 

confusion matrix, we observed that there were only a few 

cases where the classifier predicts stage III; when compared 

with actual values, it was found that most of the cases tool 

breaks down in stage II before reaching the fully worn-out 

stage. This implies that the tool can unexpectedly fail at any 

time after stage II. Consequently, the threshold for triggering 

prognostics is set as stage I to initiate appropriate 

maintenance actions. 

Prognostics Module: As soon as the diagnostics module of 

any of the MCU predicts stage II or III, the corresponding 

prognostics module is initiated. The prognostics module 

predicts the RUL of the cutting tool. In this approach, the 

prognostics module predicts the RUL of the tool by assessing 

the information provided by the features selected for each 

MCU. A deep learning-based technique viz. Long Short-

Term Memory (LSTM) is employed by each MCU to predict 

RUL. The LSTM is an artificial recurrent neural network 

architecture and has feedback connections (Palau et al. 2018). 

The LSTM model was optimized by running the model in the 

loop having a defined range of hyperparameters and Root 

Mean Square Error (RSME) was calculated; a combination of 

hyperparameters showing minimum RMSE was selected for 

the final model. The optimized set of hyperparameters for 

LSTM and calculated RMSE for each MCU is shown in table 

5. The model was cross-validated with the test set. Scatter 

plots in figure 3 show the predicted RUL through LSTM 

against the actual RUL values for the test dataset. It was 

observed that all points fall approximately on a straight line 

inclined at 45 degrees, which is highly desirable for the 

predictive models. Moreover, data scatterings are very less, 

which confirms the precision of prognostic models. One of 

the reasons for better predictive performance is the 

integration of diagnostics and prognostics. In the present 

approach, prognostics start only after the triggering of a fault 

by diagnostics modules of corresponding MCUs. This, in 

turn, removes the higher prediction error during the initial life 

of the component. Also, the integration reduces the 

computation load as diagnostics models are computationally 

less complex than prognostics models. The predicted RULs 

are communicated to the base station by each MCU for 

further analysis. One can select RUL obtained by any of the 

MCUs. For example, RUL prediction from the MCU 

showing minimum RUL may be selected in case failure is 

very critical. Alternatively, one can give different importance 

to different MCUs’ prediction, based on the past performance 

of the MCUs, and obtain a weighted RUL for further use. 

Preferences may be dynamically updated, and MCU, which is 

not contributing significantly in estimation of the RUL of the 

component may be removed. This helps in removing 

redundant or less critical sensors, making the prognostics 

system lean and effective. 

Comparison of Centralized and Distributed Prognostics: In 

this section, the performance of the distributed diagnostics 

and prognostics approach is compared with that of the 

centralized approach. For this, the minimum value of the 

predicted RULs from different MCUs is used in the case of 

the distributed approach. Table 6 shows the working of both 

the methods for cutter 5 data. For the diagnostics module, a 

centralized approach triggers the faults (stage II) at cut 

number 21, while the same is triggered at the 27th cut by a 

distributed approach. From the actual wear data, it was 

observed that the actual transition to stage II happened at the 

28th cut. Thus the distributed diagnostics show better 

capability in identifying the fault, thereby reducing the false 

alarm. For comparison of prognostics performance, RSME is 

used. The same are shown in Table 7 for both cutter 5 and 6. 

Also, computation time is also estimated. It was observed 

that distributed prognostics give better performance in leaser 

computational time.  

2.2 Conceptualization of a Novel Maintenance Planning 

System  

In general, condition-based maintenance is considered on-

time maintenance (Zhang et al. 2016). However, in a system 

consisting of many components and machines and having 

limited maintenance resources, on-time maintenance may not 

be possible. The predicted condition may still be subjected to 

allowable scheduled maintenance. The results obtained from 

the above-distributed diagnostics and prognostics approach 

will be handy in arriving at such predictive maintenance 

schedule considering the criticality of the 

components/system, the dependency of the components, 

available maintenance resources, confidence level in the 

results of the prognostic, etc. The distributed yet integrated 

diagnostics and prognostics approach presented in the 

previous section for one of the components of a machining 

system when applied to all the critical components of a 

machine tool is depicted in figure 4. The same can be 

extended to a shop floor. The base station continuously 

receives the RULs from MCUs of critical stage components 

from various machines in a system.  Additionally, the base 

station can be modelled as a maintenance agent having 

information about the stochastic, economic and structural 

dependencies of the components within a machine or among 

various machines in a multi-machine system. Multiple 



 

 

     

 

estimates of RUL are obtained from a distributed approach to 

provide confidence bound on the prediction; it helps the 

maintenance mangers in making more informed maintenance 

planning decisions. For example, if the component is not very 

critical, the maintenance manager may use a lesser 

conservative prediction (highest RUL out of predictions from 

various MCUs) to take advantage of group maintenance. 

Similarly, multiple estimates of the RUL will provide more 

flexibility in integrating the maintenance planning with other 

shop floor operations planning like production scheduling. 

Also, different MCUs measuring and computing different 

aspects of a component make the results easy to interpret and 

use in deciding further maintenance actions. Thus, the 

proposed distributed diagnostics and prognostics approach is 

more human-centric rather than a black-box approach.  

 

Fig. 2. Tool health stages (Jain and Lad 2019). 

Table 1. Accuracy predicted for all MCUs 
 Force 

MCU 

Vibration 

MCU 

Acoustic Emission 

MCU 

Logistic Regression 83.33% 88.60% 86.82% 

Random Forest Classifier 84.39% 81.40% 84.08% 

Decision Tree Classifier 89.65% 79.82% 89.55% 

 

Table 2. Selected features 
Force MCU Vibration MCU Acoustic Emission MCU 

Mean Crest Factor Kurtosis 

Median Skewness Crest Factor 

RMS Range of Values Coefficient of Variance 

Entropy K-factor Energy Operator 

Kurtosis Mode Residual Kurtosis 

Table 3. Accuracy comparison of different diagnostics classifier models applied on three MCUs 
Model Force MCU Vibration MCU Acoustic Emission MCU 

Logistic Regression 89.30% 88.60% 80.88% 

Random forest Classifier 85.26% 80.18% 82.11% 

Support Vector Machine 62.64% 79.76% 61.32% 

Decision Tree Classifier 80.18% 74.21% 67.54% 

K-Neighbors Classifier 84.56% 76.14% 76.84% 

Gaussian NB Classifier 90.70% 85.79% 59.82% 

 
Table 4. Performance measurement of selected classifiers using the confusion matrix 

Index  Force MCU Vibration MCU Acoustic Emission MCU 

Stage I Stage II Stage III Stage I Stage II Stage III Stage I Stage II Stage III 

Precision 0.95 0.64 0.43 1 0.67 0 0.89 0.52 0 

Sensitivity 0.87 0.70 1 0.78 0.71 0 0.84 0.54 0 

   

Force MCU Vibration MCU Acoustic Emission MCU 

Fig. 3. Scatter plot drawn between actual and predicted remaining useful life 
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Table 5. Hyperparameters combination for the LSTM model of each sensor and the RMSE 
S. No MCU Optimal Parameters Value RMSE 

LSTM_nodes batch_size epochs 

1 Force 5 1 1040 2.658 

2 Vibration 5 1 1040 2.599 

 

Fig. 4. Diagrammatic representation of distributed health management paradigm 

Table 6. Distributed Vs. centralized approach (results are for tool 5) 
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21 II ALL 17.8 19 I I I 
     

22 II ALL 17.1 18 I I I 
     

23 II ALL 15.9 17 I I I 
     

24 II ALL 15 16 I I I 
     

25 II ALL 14 15 I I I 
     

26 II ALL 13 14 I I I 
     

27 II ALL 12.5 13 I I II AE 
  

11.5 11.5 

28 II ALL 11.0 12 I I II AE 
  

10.7 10.7 

29 II ALL 9.8 11 II I II AE,F 10 
 

9.9 9.9 

30 II ALL 9.1 10 II I II AE,F 9 
 

8.9 8.9 

31 II ALL 7.9 9 II I II AE,F 8 
 

7.8 7.8 

32 III ALL 6.3 8 III I II AE,F 7 
 

6.8 6.8 

33 II ALL 5.8 7 II I II AE,F 6 
 

5.8 5.8 

34 II ALL 5 6 II I II AE,F 5 
 

4.8 4.8 

35 II ALL 4 5 II I II AE,F 4 
 

4.3 4 

36 II ALL 3.0 4 II I II AE,F 3 
 

3.3 3 

37 III ALL 4.8 3 III II II AE,F,V 2 2.5 1.8 1.8 



 

 

     

 

38 II ALL 5.7 2 II II II AE,F,V 1 1.6 0.8 0.8 

39 III ALL 0 1 III II II AE,F,V 0 0.4 24.2 0 

40 III ALL 0 0 III II II AE,F,V 20 0.0 63.4 0.0 

 

Table 7. Comparison between distributed prognostics and 

centralized prognostics  
Distributed Centralized 

RMSE(Cutter 5) 1.077034641 1.343944525 
RMSE(Cutter 6) 0.845888785 1.345163151 

Average RMSE 0.961461713 1.344553838 

Computational Time 10 mins 17 mins 

3. CONCLUSIONS 

In this paper, a novel integrated yet distributed diagnostics, 

prognostics, and maintenance planning approach is 

developed. Each sensor works like an edge device performing 

local level diagnostic and prognostic. The different sensors 

measuring and computing different aspects of a component 

helps in providing more insight in the confidence bound 

obtained on the prediction thus it makes the results easy to 

interpret and use in deciding further maintenance actions. 

Thus, the proposed distributed diagnostics and prognostics 

approach is more human-centric rather than a black-box 

approach. Thus multiple estimates of RUL are obtained from 

each sensor; it helps the maintenance mangers in taking more 

informed maintenance planning decisions. A comprehensive 

analytical investigation is conducted via a case study to 

validate the model. The implementation results showed that 

integrated yet distributed diagnostics and prognostics 

approach give better performance in leaser computational 

time. The superiority of the proposed approach over the 

centralized approach is demonstrated in terms of accuracy 

and time. Also, the proposed approach helps in making the 

results of the machine learning techniques comprehensible 

and more accurate.  A novel maintenance planning system is 

conceptualized. Herein, integrated yet distributed results will 

be handy in arriving at a predictive maintenance schedule 

considering the criticality of the system, the dependency of 

the components, available maintenance resources, confidence 

level in the results of the prognostic, etc. In essence, the 

proposed approach is more human-centric and expected to 

emerge as a promising solution for maintenance planning 

under the concept of Industry 4.0.  
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