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SUMMARY STATEMENT 17 

In response to warm temperature, rainbow trout rapidly reset intrinsic heart rate resetting within 1 h 18 

without associated changes in mRNA expression of related cardiac proteins. 19 

ABSTRACT  20 

We examined cardiac pacemaker rate resetting in rainbow trout following a reciprocal temperature 21 

transfer. In a first experiment performed in winter, 4°C-acclimated fish transferred to 12°C reset 22 

intrinsic heart rate after 1 h (56.8 ± 1.2 to 50.8 ± 1.5 bpm) and 12°C acclimated fish transferred to 4°C 23 

reset intrinsic heart rate after 8 h (33.4 ± 0.7 to 37.7 ± 1.2 bpm). However, in a replicate experiment, 24 

performed on a different brood year in the summer, intrinsic heart rate was not reset, even after 10 25 

weeks. Using this serendipitous opportunity, we examined mRNA expression of a suite of proteins in 26 

sinoatrial node (SAN), atrial and ventricle tissue after 1 h and longer than 3 weeks to assess changes 27 

associated with pacemaker rate resetting in both experimental groups. In addition to the changes in 28 

mRNA expression associated with thermal acclimation in contractile cardiac chambers, we observed 29 

downregulation of NKA α1c in the atrium and ventricle, and upregulation of HCN1 in the ventricle 30 

after > 3 weeks of warm acclimation associated with pacemaker resetting. However, we found no 31 

SAN mRNA expression changes at any time during warm acclimation, including the first hour, unique 32 

to the fish with pacemaker rate resetting. Thus, despite identifying changes in mRNA expression of 33 

contractile cardiac tissues, there was absence of changes in mRNA expression directly involved with 34 

the initial, rapid pacemaker rate resetting with warm acclimation. Importantly, pacemaker rate 35 

resetting with thermal acclimation does not always occur in rainbow trout. 36 

INTRODUCTION  37 

In ectothermic organisms such as fishes, acute increases in temperature result in an increase in 38 

metabolic oxygen demand due to a thermodynamic response. Nevertheless, over time, many fish 39 

species can acclimate to a new temperature and improve function. Thermal acclimation, as a whole, 40 

involves generalized (e.g., homeoviscous adaptation) and tissue specific changes, likely over different 41 

timescales (Fangue et al., 2014; Fu et al., 2018).  This study focuses on the resetting of the intrinsic 42 

cardiac pacemaker rate known to occur in rainbow trout (Oncorhynchus mykiss) during thermal 43 

acclimation. 44 

Intrinsic heart rate is the rate of the heartbeat without any neural or humoral influences. These 45 

neural and humoral effects are largely cholinergically and adrenergically mediated in fishes and 46 

respond to temperature  (Altimiras and Axelsson, 2004; Ekström et al., 2016; Gilbert et al., 2019; 47 

Graham and Farrell, 1989; Jose and Taylor, 1969; Wood et al., 1979). Thus, intrinsic heart rate can be 48 



 

 

measured in vivo by removing these influences with pharmacological agents (Ekström et al., 2016; 49 

Jose and Taylor, 1969). Also, intrinsic heart rate can be measured in vitro by placing the heart in 50 

physiological saline and physically removing it from these influences, as in the present study, because 51 

the fish heart is myogenic and beats rhythmically by itself (Graham and Farrell, 1989; Hiroko et al., 52 

1985). The myogenic heartbeat is a direct result of specialised pacemaker cells found in the sinoatrial 53 

node (SAN) that generate spontaneous action potentials (Farrell and Smith, 2017; Haverinen and 54 

Vornanen, 2007; Newton et al., 2014; Stoyek et al., 2015; Stoyek et al., 2016). Thus, the spontaneous 55 

depolarisation in SAN pacemaker cells sets intrinsic heart rate, which is then modulated by neural 56 

and humoral influences to set heart rate in vivo. 57 

Intrinsic heart rate is not necessarily fixed throughout the life of an animal. For instance, in 58 

ectotherms, acute warming typically increases the rate of SAN pacemaker cell depolarisation driving 59 

an increase in intrinsic heart rate (Aho and Vornanen, 2001) and thermal acclimation can reset the 60 

pacemaker rate. The effects of thermal acclimation on intrinsic heart rate have been studied in a 61 

wide range of ectothermic species, including in rainbow trout, goldfish, perch, guppy, medaka, 62 

American bullfrogs and common and wood frogs (Bowler and Tirri, 1990; Harri and Talo, 1975; 63 

Hiroko et al., 1985; Lotshaw, 1977). Specifically, warm acclimation resets the cardiac pacemaker to a 64 

slower rate in rainbow trout: 4°C-acclimated rainbow acclimated to 17°C decreased intrinsic heart 65 

rate from 31 bpm to 25 bpm when measured at 4°C and from 74 bpm to 61 bpm when measured at 66 

14°C (Aho and Vornanen, 2001).  Thus, thermal acclimation in rainbow trout resets the pacemaker 67 

rate in the opposite direction to that of the acute thermal response, which may then allow for 68 

further increases in heart rate, for example with acute warming or exercise, before reaching the 69 

maximum heart rate at the new acclimation temperature. What is less clear concerning pacemaker 70 

resetting for rainbow trout is the timescale for this thermal acclimation response. General 71 

assumptions are that pacemaker resetting takes several weeks at the new temperature, as reported 72 

by Aho and Vornanen (2001). Indeed, Ekström et al. (2016) concluded that pacemaker rate resetting 73 

in rainbow trout must occur over longer than 6 weeks because they found no change in intrinsic 74 

heart rate between 1 day and 6 weeks after rainbow trout were moved from 9°C to 16°C. However, 75 

alternative explanations for this result could be that either pacemaker resetting may occur rapidly, or 76 

under certain conditions it may not occur at all. In fact, the ability to reset pacemaker rate with 77 

thermal acclimation is currently assumed to be a taxon-specific response (Matikainen and Vornanen, 78 

1992), and may even only occur over a restricted temperature range and under certain conditions. 79 

For example, crucian carp acclimated to 5°C and 15°C did not reset pacemaker rate when 80 

measurements were made between 4°C and 35°C (Matikainen and Vornanen, 1992). Similarly, 81 

pacemaker rate was not reset in either Atlantic cod or bald rock cod (Egginton and Campbell, 2016; 82 

Lurman et al., 2012).  83 



 

 

Therefore, the aims of our study were two-fold: a) to resolve the time course of pacemaker rate 84 

resetting in rainbow trout; and b) to provide new mechanistic insights into intrinsic heart rate 85 

resetting by measuring gene expression of a suite of proteins potentially involved in the ionic 86 

currents associated with cardiac activity in the sino-atrial node [SAN], atrium and ventricle because 87 

such studies are quite limited for salmonids (Aho and Vornanen, 2001; Hassinen et al., 2007; 88 

Hassinen et al., 2008; Hassinen et al., 2017; Haverinen and Vornanen, 2007; Korajoki and Vornanen, 89 

2009; Korajoki and Vornanen, 2012). We specifically targeted proteins central to two competing 90 

models advanced for pacemaking in mammals (Lakatta and DiFrancesco, 2009): a) the calcium clock 91 

hypothesis, which suggests that spontaneous depolarisation is caused by spontaneous release of 92 

calcium sparklets from the sarcoplasmic reticulum via ryanodine receptors; and b) the membrane 93 

clock hypothesis, which suggests that spontaneous depolarisation is caused by hyperpolarisation-94 

activated cyclic nucleotide-gated (HCN) channels resulting in a “funny” current.  In doing so, and 95 

unexpectedly, we found that pacemaker resetting did not occur in both our acclimation experiments 96 

with rainbow trout. As a result, we used a Fluidigm microfluidics qPCR platform to evaluate mRNA 97 

expression of 28 functional proteins in 3 different cardiac tissues from rainbow trout acclimated to 98 

either 4°C or 12°C for more than 3 weeks (4-10 weeks). Differences in mRNA expression of functional 99 

genes in the SAN, atrium and ventricle were established, and differences associated with thermal 100 

acclimation were identified for each tissue type.  These characterizations then allowed identification 101 

of functional genes with mRNA expression patterns uniquely associated with the demonstrated 102 

slowing of pacemaker rate with warm acclimation in the first acclimation experiment. Thus, by 103 

comparing gene expression patterns across these experiments, we were able to distinguish the 104 

changes in mRNA expression potentially associated with pacemaker rate resetting responses during 105 

warm acclimation from the more general cardiac responses to warm acclimation.  106 

MATERIALS AND METHODS 107 

Study design 108 

The time-course of pacemaker rate resetting was followed during both cold-acclimation (4°C) and 109 

warm-acclimation (12°C). We measured intrinsic heart rate after as little as 1 h, and as long as 10 110 

weeks after transferring rainbow trout either from 4°C to 12°C, or from 12°C to 4°C (Table 1). We 111 

predicted that pacemaker rate resetting would take longer to occur with cold acclimation than with 112 

warm acclimation due to basic thermodynamics. However, mRNA expression in SAN, atrial and 113 

ventricle tissues was only examined during warm acclimation. The experiments were performed in 114 

accordance with the Animal Care Guidelines at the University of British Columbia (UBC) (Permit 115 

Number - A15-0035). 116 



 

 

Fish supply, temperature treatments and sampling 117 

times 118 

Rainbow trout were obtained from the Sun Valley Trout Hatchery, where they had been reared in 119 

outdoor, flow-through raceways. Two replicate experiments were performed, one over winter from 120 

November through December of 2016, and a second on a subsequent brood year of trout from the 121 

same source over early summer from March through June of 2017.  122 

Overall experimental design was the same for the two experiments.  First, fish were pre-acclimated 123 

to either 4°C (±1⁰C) or 12°C (±1°C) in recirculating tanks inside an environmental chamber for 3-12 124 

weeks. Daily replacement with temperature-adjusted freshwater ensured good water quality, 125 

ammonia and oxygen levels (monitored daily).  Fish were fed a daily maintenance diet of BioTrout 4.0 126 

mm (Skretting, Vancouver) and held at a 12:12 h photoperiod. A subset of fish was sampled directly 127 

from the pre-experimental acclimation tanks (0 h; > 3weeks; 10-12 weeks). Sub-groups of fish were 128 

then placed into individual, 19 L mesh-covered buckets and moved into a new experimental tank at 129 

the opposite temperature, and were sampled 1 h, 8 h, and 24 h at the new acclimation temperature 130 

(Fig. S1-A).  This facilitated taking rapid samples during the initial stages following transfer. As control 131 

for fish handling, a group of 4°C-acclimated fish were placed in buckets and returned to the 4°C 132 

experimental tank and sampled after 1 h.   133 

Most of the fish used in experiment 1 were obtained in May 2016 (43 fish) and were held in outdoor 134 

flow-through tanks at UBC until October 2016, after which they were moved into temperature-135 

controlled tanks for the pre-acclimation period. In November of 2016, additional fish of the same 136 

brood year (27 fish) were obtained from the same source added to the pre-acclimation tanks to allow 137 

increased sample sizes. Molecular samples were taken over 2 days in December from fish acclimated 138 

for 1 h to 12°C, for 1 h at 4°C (a fish handling control group) and for > 3 weeks at both 4°C and 12°C 139 

(7 weeks and 4 weeks, respectively). Heart rate measurements were taken between late November 140 

and late December 2016. The fish used in the experiment had body mass = 337 ± 9 g (mean ± s.e.m.); 141 

n= 70.   142 

Fish for experiment 2 were placed directly into temperature-controlled pre-acclimation tanks at UBC 143 

in March 2017.  The experiment was conducted as described above. Molecular samples were taken 144 

during one day in May from fish acclimated for 10 weeks to either 4°C or 12°C (referred to as > 3 145 

weeks acclimation). Heart rate measurements were taken between early April and early June 2017. 146 

The fish used in this experiment had body mass = 258 ± 8 g; n=55.  Consequently, the fish used in 147 

these two experiments were of were the same strain, a similar size and received the same 148 



 

 

experimental treatments, but they were from different brood years and were acclimated at different 149 

times of the year. 150 

Intrinsic heart rate measurements 151 

Fish were individually euthanized with a blunt blow to the head, followed by destruction of the brain 152 

and spinal cord. The heart, including much of the sinus venous to ensure an intact SAN, was quickly 153 

excised (<2 min) and was placed (with the ventricle laterally cut to aid saline perfusion) in an 154 

oxygenated (100% oxygen) saline bath held at the appropriate acclimation temperature (either 4 ± 155 

1°C or 12 ± 1°C) maintained by a circulating water bath and recirculating chillers. The temperature of 156 

the physiological saline was monitored directly and contained: 140 mM NaCl, 2.8 mM KCl, 1.2 mM 157 

MgSO4, 1.8 mM CaCl2, 1.2 mM NaH2PO4, 3.9 mM TES free acid, 6.1 mM TES Na salt and 10 mM 158 

glucose with a pH of 7.8 at 10⁰C. The electrocardiogram (ECG) signal was recorded using two custom-159 

made stainless steel electrodes, one placed next to the SAN the other away from the heart (Fig. S1-160 

B). The ECG signal was amplified (100-1000x) and filtered ( high pass: 0.3 Hz, low pass: 0.1 kHz) with a 161 

Grass P55 AC amplifier (Astro-Med Inc).  Data acquisition used a PowerLab ML870 and ECG signals 162 

were digitally filtered (60 Hz line filter, 0-5 Hz high pass, 45 Hz low pass) and analysed using 163 

automated beat detection in LabChart 7 Pro software (AD instruments). After a stabilization period of 164 

30 min in the saline bath, the stable intrinsic heart rate (bpm) was recorded as an average from 165 

consecutive ECG waveforms (> 1 min) using automated beat detection. Intrinsic heart rates are 166 

presented as mean ± s.e.m. for n individuals. Fish were discarded if either the saline temperature 167 

occasionally drifted outside the experimental range after 30 min, or heart rate occasionally became 168 

arrhythmic or unstable. One-way ANOVAs with a post hoc Tukey test and student t-tests were 169 

conducted using Sigmaplot (ver. 13.0; Systat Software) and differences were considered significant 170 

when P<0.05.  171 

Quantitative reverse transcriptase (qRT-) PCR 172 

CARDIAC TISSUE SAMPLING 173 

Hearts from fish undergoing temperature acclimation were similarly removed into oxygenated saline 174 

to allow dissection of the ventricle (335 ± 20 mg), atrium (58 ± 4 mg) and SAN-regions (34 ± 2 mg) 175 

(Fig. S1-C). Each of these regions was placed into individual Eppendorf tubes for flash freezing with 176 

liquid nitrogen. The SAN region can include the sino-atrial canal (Haverinen and Vornanen, 2007; 177 

Newton et al., 2014; Stoyek et al., 2015; Stoyek et al., 2016), and so the considerable sample of the 178 

sinus venosus tissue included a minimal amount of atrial tissue to ensure inclusion of pacemaker 179 

cells. Tissues were stored at -80°C until analysed. 180 



 

 

Cardiac genes for qRT-PCR targeted those potentially implicated in pacemaker function and 181 

temperature acclimation (Table A1).  All genes had been previously sequenced in rainbow trout 182 

(D’Souza et al., 2014; Hassinen et al., 2008; Korajoki and Vornanen, 2009; Korajoki and Vornanen, 183 

2012) with the exception of the HCN genes, which have not been previously sequenced. Primer 184 

sequences (Table A1) were designed using Primer Express 3 (Life Technologies, Carlsbad, California, 185 

USA) with melting temperatures of 58-60°C (default settings). Specificity of each primer set was 186 

tested by cloning and sequencing. Each primer set was run individually on a CFX96 Touch Real-Time 187 

PCR Detection System (Bio-Rad, Hercules, California, United States) with SYBR™ Green PCR Master 188 

Mix (Applied Biosystems, Foster City, California, United States) and a mixed cardiac tissue sample. 189 

Cycling conditions were: 95°C for 10 min followed by 40 repeats of 95°C for 15 s and 55°C for 1 min. 190 

Products were cloned using TOPO™ TA Cloning™ Kit for Subcloning (Invitrogen, Carlsbad, California, 191 

United States), as per manufacturer’s protocol. One Shot™ TOP10 chemically competent E. coli cells 192 

(Invitrogen, Carlsbad, California, United States) were used for most assays; however, HCN isoforms 193 

were tested using Shot™ TOP10F' E. coli cells (Invitrogen, Carlsbad, California, United States) as these 194 

produced a higher yield. Plasmid extraction was performed using GeneJET Plasmid Miniprep Kit 195 

(Thermo Scientific, Waltham, Massachusetts, United States) and the resulting product was 196 

sequenced by either the NAPS core facility at UBC (Vancouver, BC, Canada) or Macrogen USA 197 

(Rockville, MD). Primers tested produced at least 9-10 clones of the expected sequence, and if not, 198 

the primers were discarded. In most cases and apart from isoforms of HCN, we did not try to 199 

distinguish between paralogues, unless previously identified in other work. When primer sequences 200 

were obtained from previous studies (Table A1), the products of these primers were not cloned and 201 

sequenced.  202 

RNA EXTRACTION 203 

RNA was extracted according to the manufacturer’s protocol from all tissue samples using 204 

MagMAX™-96 for Microarrays Total RNA Isolation Kits (Ambion, Austin, Texas, United States). Briefly, 205 

a tissue sample was weighed, and if necessary divided into a tissue sections weighing <90 mg. A 206 

tissue section was then placed into 200 µL of TRI reagent® (Sigma-Aldrich, St Louis, Missouri, United 207 

States) and briefly homogenised using a pellet pestle. More TRI reagent® was added to give a final 208 

TRI reagent® volume of 15 µL per 1 mg of tissue. 0.2 µL of external standard mRNA (500 pg µL
-1

) per 209 

mg of tissue was then added to the tube with   �10 @ 1.0 mm ceria-stabilized zirconium oxide beads 210 

(Next Advance, Averill Park, New York, United States) in each tube. The tissue samples were fully 211 

homogenised with Bullet Blender24 (Next Advance, Averill Park, New York, United States) before 212 

adding 0.1 mL of 1-bromo-3-chloropropane per 1 mL of Tri reagent® to each tube and centrifuging at 213 

12,000 g for 10 min. The aqueous layer was removed and frozen at -80°C for storage. The aqueous 214 

layer for tissues weighing >90 mg, which had been processed in sections up till this point, were 215 



 

 

recombined with volumes relative to section weight, to make up 150 µL [(section weight/ sample 216 

weight) x 150 µL]. When all samples had been processed to this point, the aqueous layers were 217 

defrosted and placed in 96 well plates. RNA extraction then proceeded as in the ‘spin’ protocol using 218 

a Biomek FXP (Beckman Coulter, Brea, California, United States) automated liquid handling 219 

instrument. Purity was assessed using 260/280 ratios (1.97-2.45) and yield was calculated using 260 220 

nm absorbance. The RNA concentration was then normalised using the BioMek FXP (Beckman 221 

Coulter, Brea, California, United States) automated liquid handling instrument to 62.5 ng µL
-1

. 222 

FLUIDIGM QRT-PCR 223 

qRT-PCR was run using the Fluidigm BioMark
TM

 microfluidics platform (Fluidigm, South San Francisco, 224 

California, United States) with Evagreen® assays as fully described in Jeffries et al. (2014) for 33 225 

target genes and 8 reference genes (Table 2.1). Briefly, total RNA was used to synthesize cDNA with 226 

SuperScript™ VILO™ MasterMix (Invitrogen, Carlsbad, California, United States) as per the 227 

manufacturer’s protocol. cDNA was pre-amplified in a specific target amplification (STA) step using 228 

all the primer pairs (Table A1) and TaqMan™ Preamp Master Mix (Life Technologies, Carlsbad, 229 

California, USA). The BioMark protocol for pre-amplification was then followed (1.25 µL of cDNA, 230 

1.25 µL of 200 nM pooled primer mix and 2.5 µL of Master Mix). Any primers that were 231 

unincorporated were then removed using ExoSAP-IT™ High-Throughput PCR Product Clean Up (MJS 232 

BioLynx Inc, Brockville, Ontario, Canada) (2 µL of ExoSap-IT per 5 µL of post-PCR reaction volume), 233 

followed by 1:5 dilution in DNA Suspension Buffer (TEKnova, Hollister, California, United States).  234 

qRT-PCR was run with 96 by 96 dynamic arrays using the Biomark HD™. A sample premix (2.5 µL 2x 235 

SsoFast™ EvaGreen® Supermix with low ROX (Biotium, Fremont, California, United States), 0.25 µL 236 

20x DNA Binding Dye Sample Loading Reagent (Fluidigm, South San Francisco, California, United 237 

States) and 2.25 µL of the diluted pre-amplified product) and an assay premix (2.5 µL of 2x Assay 238 

Loading Reagent (Fluidigm, South San Francisco, California, United States), 2.25 µL 1x DNA 239 

Suspension Buffer (TEKnova, Hollister, California, United States) and 50 µM each of mixed forward 240 

and reverse primers) were made. These were loaded onto the 96.96 dynamic array and mixed using 241 

an IFC controller HX (Fluidigm, South San Francisco, California, United States). qRT-PCR was then run 242 

using the recommended protocol for Evagreen, GE Fast 96 x 96 PCR+Melt v2 protocol with Biomark 243 

HD™ (A thermal mixing protocol of 70°C for 40 min and 60°C for 30 s, then a hot start protocol of 244 

95°C for 60 s, followed by 30 qRT-PCR cycles of 96°C for 5 s and 60°C for 20 s. A melting protocol of 245 

60°C for 3 s followed using a 1°C increase every 3 s up to 95°C).  246 



 

 

QUALITY CONTROL 247 

The same number of samples (n=7) were used for each experimental group to ensure a balanced 248 

statistical design with ANOVA analyses. mRNA extraction and qPCR was performed on all original 7-249 

10 tissue samples per group and sample sizes were reduced by first excluding any individual where 250 

the SAN, atrial or ventricle sample was unavailable, and then by excluding the last samples that were 251 

homogenised. 252 

While using the Fluidigm approach offers the advantage of running many assays simultaneously, it 253 

can be difficult to optimize the conditions so that all assays perform well with differing mRNA 254 

expression levels.  As the aim of this study was only to gain a broad-scale picture, we did not 255 

optimise and rerun assays that failed quality criteria, and instead we chose to exclude data for any 256 

genes that did not meet our stringent quality control filters. Regardless, we report all efficiencies, r
2
 257 

and experimental Ct ranges in Table S1.  258 

Of 33 possible target genes, 28 met our quality control standards and were ultimately used for qRT-259 

PCR analysis. For the target genes that were excluded, the standard curves for α1A-adrenoceptor, β2-260 

adrenoceptor, HCN4b and NKA α1b were insufficient, while for ANP Ct values for some samples were 261 

too low for the Fluidigm system (i.e., 2.5Ct).  For the remaining 28 target genes, a measurement was 262 

excluded from further analysis if the difference between technical replicates was greater than 1 cycle 263 

(i.e., Nav1.4 in a single SAN sample from the fish acclimated to 4°C for 1 h with a pacemaker rate 264 

resetting response, and Nav1.6 in a single ventricle sample from fish acclimated to 4°C for >3 weeks 265 

without a pacemaker rate resetting response; Table S1). 266 

We utilized data for two reference genes (CCDC84 and SEP15) that have been used previously with 267 

salmonids (CCDC84; Jeffries et al., 2014) and zebrafish (SEP15; Xu et al., 2016). Both were confirmed 268 

as a suitable combination for an endogenous control using Normfinder (combined stability value of 269 

0.019). Six of the reference genes tested (18s, β-actin, EF1α, the external standard, DnaJA2 and 270 

MprPL40) were excluded using one of the following strict quality criteria: a) Ct values were outside 271 

the recommended detection limit (i.e., 6-25 Cts) for the Fluidigm system (i.e., 18s, β-actin, EF1α, 272 

DnaJA2 and MprPL40) (Table S1); b) the efficiency was ≤ 80% or ≥ 120% (18s and the external 273 

standard, respectively); or c) r
2
 was ≤ 0.980 (both 18s and the external standard). Stricter quality 274 

criteria were applied for to the reference genes than to the target genes because inaccurate 275 

reference gene measurements will affect every assay, whereas inaccurate target gene 276 

measurements will only affect that single assay. 277 

Standard curves, run in duplicate on both plates to give quadruplicates, were calculated from serial 278 

dilutions (0.2x, 0.04x, 0.008x and 0.0016x) from a cDNA mixture of all samples that was made up 279 



 

 

before the STA step (Bustin et al., 2009). The undiluted sample (1x) did not have a linear relationship 280 

with the other dilutions for any of the assays, and so was not used in the standard curve. When 281 

replicates had a range greater than 1 Ct, we excluded this dilution. If fewer than 3 dilutions 282 

remained, normally in association with high Ct values, we excluded the whole assay (i.e., α1A-283 

adrenoceptor, β2-adrenoceptor, HCN4b and NKA α1b) 284 

CALCULATING GENE EXPRESSION 285 

E
-ΔCt

 (Normalised Quantity) 286 

E
-ΔCt

, expression normalised to a housekeeping gene, was calculated for a semi-quantitative 287 

comparison of the expression of different target genes. This measure was obtained as in Scott et al. 288 

(2004) using the geometric mean of the reference genes as in Hellemans et al. (2007) (Eqn. A1).  289 

E
-ΔΔCt

 (Calibrated Normalised Quantity) 290 

E
-ΔΔCt

, expression of the target gene normalised to the expression of the reference genes then an 291 

inter-run calibrator sample (IRC), a 0.04x dilution of pooled sample (the highest standard curve 292 

measurement used), was calculated as in Pfaffl (2001) using the geometric means of the reference 293 

genes, as in (Eqn A2).  294 

Fold Change in E
-ΔΔCt 

with Warm Acclimation (Calibrated Normalised Relative Quantity) 295 

Fold change in E
-ΔΔCt

  of the target gene with warm acclimation was calculated for each pacemaker 296 

rate response group, by dividing E
-ΔΔCt12°C  

(Eqn A2) by the E
-ΔΔCtaverage4°C 

(Eqn A3),
  
in a method that is 297 

mathematically identical to Hellemans et al. (2007). 298 

STATISTICAL ANALYSIS OF mRNA EXPRESSION 299 

PCA analysis was performed using the PRCOMP package in R Studio (Team, 2014) with 68% 300 

confidence ellipses used to depict one standard deviation. FDR adjustments by GraphPad Prisim 7.00 301 

(GraphPad Software; CA) and other statistical analysis was performed Sigmaplot 14.0 (Systat; CA).  302 

Four primary questions were examined with our qRT-PCR study. First, how does mRNA expression 303 

differ among cardiac tissues? - by comparing the mRNA expression in the SAN, atrium and ventricle in 304 

fish acclimated to 4°C for at least 3 weeks (Experiment 1).  Second, how does cardiac tissue mRNA 305 

expression change with thermal acclimation? - by comparing mRNA expression in fish acclimation to 306 

either 4°C or 12°C after at least 3 weeks (Experiment 1). Third, what changes in mRNA expression are 307 

specifically associated with pacemaker rate resetting? - by comparing fish in Experiment 1 and 308 

Experiment 2 that had been acclimated for more than 3 weeks to either 4°C or 12°C. To answer these 309 

question, genes were placed into one of three groups:  310 



 

 

1) mRNA changes associated with warm acclimation, but not pacemaker rate resetting: For 311 

these genes, the fold change in mRNA expression was significantly different between 4°C 312 

and 12°C in Experiments 1 and 2, but not different with warm acclimation between the two 313 

Experiments.  314 

2) mRNA changes only associated with pacemaker rate resetting: For these genes, the fold 315 

change in mRNA expression was significantly different between 4°C and 12°C only in 316 

Experiment 1, which meant a significant difference with warm acclimation between the two 317 

Experiments.  318 

3) mRNA changes associated with no pacemaker rate resetting: between 4°C and 12°C, only 319 

in Experiment 2, which meant a significant difference with warm acclimation between the 320 

two Experiments. 321 

Lastly, we examined if the mRNA expression changes associated with pacemaker rate resetting 322 

during full thermal acclimation could also be driving the initial resetting of pacemaker rate by 323 

comparing mRNA expression in control fish moved from 4°C to 4°C for 1 h, and experimental fish 324 

moved from 4°C to 12°C for 1 h. The mRNA expression changes seen within this first hour were then 325 

compared to those changes in mRNA only associated with pacemaker rate resetting. 326 

COMPARISON OF mRNA EXPRESSION IN CARDIAC TISSUE 327 

TYPES 328 

Differences in mRNA expression patterns were compared between cardiac tissue types with principal 329 

component analysis, using E
-ΔΔCt

. A 68% confidence limit elipse was plotted around each tissue type 330 

to graphically ilustrate one standard deviation for the distribution. 331 

Significant differences in genes between cardiac tissues were identified by comparing E
-ΔΔCt

 mRNA 332 

expression using a one-way ANOVA with a Tukey’s post-hoc test. If the test for normality (Shapiro-333 

Wilk) or equal variance (Levene's) failed, the non parametric Kruskal-Wallis ANOVA with a Dunn’s 334 

post-hoc test was run. 335 

For mRNA expression of the membrane clock and calcium clock proteins, relative expression is as 336 

important as overall expression. Therefore, pie charts were created to qualitatively compare the 337 

relative expression for each tissue type from average E
-ΔCt

 values for HCN expression (Fig. S2) and 338 

calcium clock expression (Fig. S3).  339 

A semi-quantitative measure of total mRNA expression for each functional gene group was 340 

calculated from the total E
-ΔCt

 values of all the genes in each group for each individual. These were 341 



 

 

compared among cardiac tissues, using a one-way ANOVA with a Tukey’s post-hoc test. If the test for 342 

normality (Shapiro-Wilk) or equal variance (Levene's) failed, the non parametric Kruskal-Wallis 343 

ANOVA with a Dunn’s post-hoc test was run. FDR adjustment was performed within each thermal 344 

acclimation group  345 

COMPARISON OF mRNA EXPRESSION BETWEEN WARM- AND 346 

COLD-ACCLIMATED FISH 347 

Differences in mRNA expression patterns were compared between warm- and cold- acclimated fish 348 

with principal component analysis, using E
-ΔΔCt

. A 68% confidence limit elipse was plotted around 349 

each tissue type to graphically ilustrate one standard deviation for the distribution. 350 

Significant differences in genes between warm- and cold-acclimated fish were established by 351 

comparing E
-ΔΔCt

 mRNA expression, within tissue and treatment groups, with Student’s t-test (Fenna, 352 

2013; Hassinen et al., 2008; Korajoki and Vornanen, 2012). If the test for normality (Shapiro-Wilk) or 353 

equal variance (Levene's) failed, the non-parametric Mann-Whitney test was run. 354 

FDR adjustment was performed within each tissue for each temperature and thermal acclimation 355 

group. 356 

COMPARISON OF THE FOLD CHANGE IN mRNA EXPRESSION 357 

WITH WARMING 358 

Signficant differences between the pacemaker rate resetting responses were established by 359 

comparing the fold change in E
-ΔΔCt

 with warm acclimation for mRNA expression between fish with 360 

and without a pacemaker rate resetting response using Student’s t-test. If the test for normality 361 

(Shapiro-Wilk) or equal variance (Levene's) failed, the non-parametric Mann-Whitney test was run. 362 

FDR adjustment was performed within each tissue for each thermal acclimation group. 363 

CORRECTING FOR MULTIPLE COMPARISONS 364 

Multiple comparisons increase the likelihood of false positive results. Therefore, false discovery rate 365 

(FDR) adjustments were applied to all ANOVAs and Student’s t-tests using a two-stage step-up 366 

method (Benjamini et al., 2006). However, unadjusted P-values are also presented for comparison. 367 

DATA PRESENTATION 368 

Data presentation, including Venn diagrams for comparisons of cold- and warm-acclimation and 369 

comparisons of the fold changes in mRNA expression with warm acclimation, was done using R 370 



 

 

Studio (Team, 2014), GraphPad Prism 7.00 (GraphPad Software; CA) and Inkscape 0.92 (Inkscape 371 

Team). 372 

RESULTS 373 

Pacemaker rate resetting  374 

In Experiment 1, fish rapidly reset intrinsic heart rate during both warm acclimation and cold 375 

acclimation (Fig. 1). When intrinsic heart rate was measured at 4°C, it was significantly higher after 4-376 

6 weeks in 4°C-acclimated fish (36.1 ± 0.9 bpm) compared with 12⁰C-acclimated fish (33.4 ± 0.7 bpm) 377 

(P=0.044 Student’s t-test) (Table 1). After transferring 4⁰C-acclimated fish to 12⁰C, resetting of the 378 

pacemaker rate (from 56.8 ± 1.2 bpm to 50.8 ± 1.5 bpm) was first seen after 1 h, and the new rate 379 

persisted through until the 24 h measurement (50.3 ± 1.5 bpm) (Fig. 1). Fish-handling control fish 380 

transferred back to 4⁰C, however, maintained a heart rate of 57.9 ± 1.9 bpm after 1 h, confirming 381 

that the pacemaker rate resetting was caused by the temperature change. Similarly, significant 382 

pacemaker rate resetting (from 33.4 ± 0.7 bpm to 37.7 ± 1.2 bpm) was seen when 12⁰C-acclimated 383 

fish were moved to 4⁰C, but this was first detected after 8 h, rather than 1 h, and again persisted 384 

unchanged for the 24 h measurement (37.7 ± 1.2 bpm) (Fig. 1).  385 

In Experiment 2, fish did not reset pacemaker rate with either temperature acclimation. When 4⁰C-386 

acclimated fish were moved to 12⁰C, intrinsic heart rate was unchanged after both 24 h (52.7 bpm ± 387 

2.2 bpm vs 57.5 ± 2.7 bpm) and 10-12 weeks (53.3 ± 2.8 bpm vs 52.2 ± 2.3 bpm) (Table 1). Similarly, 388 

when 12⁰C-acclimated fish were moved to 4⁰C, intrinsic heart rate was unchanged after both 24 h 389 

(30.6 ± 1.7 bpm vs 29.2 ± 0.6 bpm) and 10-12 weeks (29.9 ± 1.1 bpm vs 29.4 ± 1.1 bpm) (Table 1). 390 

mRNA expression 391 

mRNA EXPRESSION DIFFERENCE BETWEEN TISSUES 392 

ACCLIMATED TO 4°C FOR MORE THAN 3 WEEKS  393 

Principal component analysis revealed mRNA expression in the ventricle was distinct from both SAN 394 

and atrium. SAN and atrium had a minor overlap of 68% confidence intervals for PC1, and PC1 and 395 

PC2 explained 35.9% and 19.4% of variance in gene expression, respectively (Fig. 2-A), perhaps in 396 

part due to the minor atrial content of the SAN sample. Nevertheless, mRNA expression in the SAN 397 

and atrium did differ specifically for the membrane clock component HCN1, the calcium clock 398 

component Cav1.3 and collagen α1a (Fig. 3). Furthermore, the mRNA expression of membrane clock 399 

proteins was highest for SAN (Fig. S2), unlike the calcium handling protein mRNA expression (Fig. S3) 400 

which were not significantly different among the three cardiac tissues. 401 



 

 

mRNA EXPRESSION CHANGES AS A RESULT OF WARM 402 

ACCLIMATION  403 

Principal component analysis also revealed differences in mRNA expression between warm 404 

acclimation and cold acclimation; PC1 and PC2 explained 24.0% and 22.1% of variance in gene 405 

expression, respectively (Fig. 2-B). Warm acclimation and pacemaker rate resetting in Group 1 was 406 

associated with differential expression of 20 genes: 6 in SAN, 5 in atrium and 9 in ventricle (Fig. 4). 407 

Specifically, a membrane clock component (HCN2a2) was significantly downregulated with warm 408 

acclimation in the SAN, but not in the atrium (Fig. 4). Notably, HCN4a1/2 was the dominant HCN 409 

isoform and was upregulated relative to total HCN expression in all three tissue types (Fig. S2). Warm 410 

acclimation also downregulated mRNA expression of calcium clock components calsequestrin and 411 

SERCA2 in both SAN and atrium, while mRNA expression of S100 was downregulated only in SAN and 412 

mRNA expression of RYR3 was downregulated only in the atrium (Fig. 4). mRNA expression of NKA 413 

α1a and NKA α1c were also downregulated in both SAN and atrium. However, mRNA expression of 414 

Kir2.1 and Kir2.2, ERG, Cx43 and collagen 1α1 did not change significantly in either atrium or ventricle, 415 

and neither SERCA2 or calsequestrin were downregulated in the ventricle for fish that reset 416 

pacemaker rate (Fig. 4). 417 

mRNA EXPRESSION CHANGES ASSOCIATED WITH 418 

PACEMAKER RATE RESETTING  419 

Of the 20 gene expression changes associated with warm acclimation, 9 fitted the criteria for ‘mRNA 420 

changes only associated with pacemaker rate resetting’ (i.e., they were observed only in Experiment 421 

1) (Fig. 4, Fig. 5, Fig. 6 and Fig. S4).  Specifically, downregulation of calcium clock components S100 422 

and SERCA2 mRNA expression occurred only in SAN, downregulation of calsequestrin mRNA 423 

expression occurred only in atrium, and upregulation of HCN1, HCN4a1/2 and NKA α3 mRNA 424 

expression occurred only in ventricle. Downregulation of NKA α1c expression with warm acclimation 425 

was the only change common to SAN, atrial and ventricular tissue that was unique to the fish in 426 

Experiment 1 (Fig. 4, Fig. 5 and Fig. S4). However, after FDR adjustment, only the upregulation of 427 

HCN1 in ventricle and the downregulation of NKA α1c in atrium remained significant (Fig. 4, Fig. 5, 428 

Fig. 6 and Fig. S4). 429 

Of the 14 gene expression changes observed with warm acclimation in Experiment 2 (5 in the SAN, 6 430 

in the atrium and 3 in the ventricle), 6 fitted the criteria for ‘mRNA changes associated with no 431 

pacemaker rate resetting’ (i.e., they were observed only in Experiment 2) (Fig. 6). Specifically, 432 

upregulation of membrane clock component HCN3 and TGF-β1 occurred in both SAN and atrium, 433 

downregulation of HCN2a1 and HCN2a2 and an upregulation of collagen 1α1 occurred only in 434 

atrium, and a downregulation of calsequestrin occurred only in ventricle (Fig. 4, Fig. 5 and Fig. S4). 435 



 

 

However, after FDR adjustment only the upregulation of membrane clock component HCN3 in SAN 436 

and atrium remained significant (Fig. 4, Fig. 5, Fig. 6 and Fig. S4). 437 

Gene expression changes that fitted the criteria for ‘mRNA changes associated with warm 438 

acclimation, but not pacemaker rate resetting’ (Fig. 6) included downregulation of the membrane 439 

clock component HCN2a2 and the calcium clock component calsequestrin mRNA expression in SAN, 440 

downregulation of RYR3 mRNA expression in atrium, and an upregulation of HCN3 mRNA expression 441 

in ventricle (Fig. 4, Fig. 5 and Fig. S4). However, after FDR adjustment none of these expression 442 

changes remained significant (Fig. 4, Fig. 5, Fig. 6 and Fig S4). 443 

mRNA expression changes observed 1 h after warm acclimation in fish with a pacemaker rate 444 

resetting response (Fig. 7) included upregulation the membrane clock component HCN2b1/2 and 445 

calcium clock component NCX in SAN, downregulation of TGF-β1 in SAN and atrial tissues, 446 

upregulation of calsequestrin in atrium, upregulation of Nav1.5 in ventricle and downregulation of 447 

TRPC1 in ventricle. However, none of these changes were significant after FDR adjustment. None of 448 

these genes showed expression patterns that fitted the criteria for ‘mRNA changes only associated 449 

with pacemaker rate resetting’ in the fish acclimated for > 3 weeks (Fig. 6, Fig. 7). 450 

DISCUSSION  451 

Before our study was undertaken, it was assumed that thermal acclimation was a typical 452 

homogenous process within species, and differences observed in pacemaker resetting response to 453 

thermal acclimation were species-specific (Matikainen and Vornanen, 1992). However, unexpected 454 

results from our study demonstrated that pacemaker resetting does not always occur in rainbow 455 

trout. While Experiment 1 showed intrinsic heart rate resetting in response both warm and cold 456 

acclimation, Experiment 2 did not show intrinsic heart rate resetting, even after 10 weeks 457 

acclimation to either 4°C or 12°C. This means that the lack of pacemaker resetting responses in fishes 458 

cannot be attributed solely to species differences, as suggested previously by Matikainen and 459 

Vornanen, 1992. What might turn off pacemaker resetting awaits further study, but the present 460 

results suggest seasonal acclimatisation or previous life experiences could be a factor. Indeed 461 

differences in both intrinsic heart rate, and in the electrophysiology of cardiac myocytes have been 462 

previously observed in a number of fish species, although not in salmonids (Filatova et al., 2019; 463 

Harri and Talo, 1975; Matikainen and Vornanen, 1992). A severe hypoxic stress event is one 464 

experience that could affect intrinsic heart rate resetting in rainbow trout (Sutcliffe, 2018) . Even so, 465 

our two experimental groups were from different brood years with different life experiences and 466 

sampled at different times of year, all of which could contribute to the variation in the pacemaker 467 

resetting response to thermal acclimation seen here.  468 



 

 

The second novel discovery from our study was the speed at which intrinsic heart rate resetting can 469 

occur, which we quantified by reciprocally transferring rainbow trout to either 4°C or 12°C.  In the 470 

fish with a pacemaker resetting response (Experiment 1), intrinsic heart rate was significantly 471 

different after just 1 h of warm acclimation to 12°C, and after just 8 h of cold acclimation to 4°C. The 472 

changes in heart rate were in the direction expected, adding confidence to our novel finding rapid 473 

intrinsic heart rate resetting. Furthermore, the change in intrinsic heart rate was faster with warm 474 

acclimation, as expected, and most likely as a result of faster reaction rates at higher temperatures. 475 

Similarly, changes in CTmax and CTmin in sheepshead minnow were more rapid for warm vs cold 476 

acclimation (Fangue et al., 2014).   477 

Few studies have explicitly examined the timescale to reset intrinsic heart rate with temperature 478 

acclimation; they typically examine heart rate after many days or weeks.  For example, heart rate 479 

resetting was observed after 4-10 days in American bullfrogs and wood frogs (Lotshaw, 1977), after 2 480 

weeks in the common frog (Harri and Talo, 1975), after 3 weeks in perch (Talo and Tirri, 1991), after 481 

4 weeks in rainbow trout (Aho and Vornanen, 2001) and after 2 months in goldfish (Hiroko et al., 482 

1985; Tsukuda, 1990).  Only one study (Ekstrom et al., 2016) examined the time course of pacemaker 483 

resetting between 1 day and 6 weeks after transfer from 9°C to 16°C and in rainbow trout. However, 484 

they observed of no intrinsic heart rate resetting. While they concluded that pacemaker rate 485 

resetting takes longer than 6 weeks, our study offers two alternative explanations that likely depend 486 

the specific population or group of rainbow trout: a) intrinsic heart rate may not reset, like our 487 

Experiment 2; or b) the resetting had been completed by their first measurement at 24 h, like our 488 

Experiment 1. Whatever the explanation, our study demonstrates that pacemaker resetting can be 489 

significantly faster rate than previously assumed, within hours rather than weeks, and even with cold 490 

acclimation. 491 

Pacemaker resetting is not the only cardiac response to thermal acclimation. While not the focus of  492 

our study, cardiac thermal acclimation responses identified in numerous other studies include 493 

decreases in the stiffness of the ventricle tissues, in the weight of the ventricle relative to body size, 494 

in cardiac force, in the density of cardiac β-adrenergic receptors and in the cardiac sensitivity to β-495 

adrenergic stimulation (Aho and Vornanen, 1999; Aho and Vornanen, 2001; Altimiras and Axelsson, 496 

2004; Anttila et al., 2013; Brett, 1971; Casselman et al., 2012; Chen et al., 2013; Chen et al., 2015; 497 

Costa et al., 2002; Drost et al., 2014; Eliason et al., 2011; Eliason et al., 2013; Farrell, 1991; Fry, 1947; 498 

Gilbert et al., 2019; Graham and Farrell, 1989; Keen et al., 1993; Keen et al., 2016; Keen et al., 2017; 499 

Klaiman et al., 2011; Klaiman et al., 2014; Shiels and Farrell, 1997; Steinhausen et al., 2008; Verhille 500 

et al., 2013; Wood et al., 1979). Whether these responses are homogenous with thermal acclimation 501 

or even whether they occurred in our study are unknown. However, we did observe some mRNA 502 

expression changes in atrial and ventricle tissue that might be related to the previous studies that 503 



 

 

have examined mRNA expression in atrial and in ventricle tissue during warm acclimation to identify 504 

what mRNA expression changes might be causing these responses. For example, similar to Hassinen 505 

et al. (2007) and by Korajoki and Vornanen (2012 and 2009), fish with an intrinsic heart rate resetting 506 

response had no change in Kir2.1 and Kir2.2 expression, a downregulation in SERCA2 in atrial and 507 

ventricle tissue, and a downregulation of calsequestrin in only atrial tissue during warm acclimation. 508 

However, other previously observed differences in mRNA expression with warm acclimation that we 509 

did not not observe, i.e. ERG, Cx43 and collagen 1α1  (Fenna, 2013; Hassinen et al., 2008).  Whether 510 

this difference reflects a different experimental temperatures among studies (4°C and 12°C in our 511 

study vs 4°C and 18-19°C previously), or some other variable is unclear. For fish that did not reset 512 

intrinsic heart rate, downregulation in SERCA2 was not observed, downregulation of calsequestrin 513 

was observed only in the ventricle and an upregulation of collagen α1a was observed in the atrium. 514 

While previous studies report other cardiac changes during thermal acclimation, heart rate was not 515 

measured in parallel with mRNA expression, something that we feel should be done to confirm 516 

resetting.  517 

We identifies a number of novel mRNA expression changes in the atrium and ventricles of the fish 518 

that reset intrinsic heart rate, as well as in those that did not. Resetting of intrinsic heart rate with 519 

acclimation was associated with downregulation of NKA α1c and RYR3 was observed in atrium and 520 

ventricle, a downregulation of NKA α1a in the atrium, a downregulation of NCX in the ventricle, and 521 

an upregulation in NKA α1a, Nav1.6, HCN1, HCN3 and HCN4a1/2 in the ventricle of the. Of these 522 

changes only the downregulation in the ventricle of RYR3 and upregulation in the ventricle of HCN3 523 

was observed also in the fish that did not reset intrinsic heart rate. Other changes observed in the 524 

atrium of fish that didn’t reset intrinsic heart rate were downregulation of HCN2a1 and HCN2a2, and 525 

upregulation of HCN3, and TGF-β1, as well as an upregulation of HCN 2b1 in the ventricle. What role 526 

these novel changes play in thermal acclimation is unclear as in this study we did not confirm any 527 

differences in cardiac thermal acclimation responses between the two groups of fish other than in 528 

intrinsic heart rate resetting. 529 

SAN, not ventricle or atrial, tissues is responsible for resetting pacemaker rate. Therefore, mRNA 530 

expression differences between SAN tissue and other cardiac tissues such as the atrium likely reflect 531 

a role in pacemaking. However, since the SAN occupies a small region of the heart and cannot be 532 

easily defined by eye, we conservatively dissected the SAN tissue to reduce the risk of accidently 533 

missing SAN tissue, but this meant that a minimal portion of atrial tissue was included. Despite this 534 

potential contamination, mRNA expression patterns seen in the SAN were not necessarily seen in 535 

atrium, and vice versa.  For example, HCN1, collagen 1α1, and Cav1.3 were differentially expressed 536 

between the atrial and SAN tissues. Therefore, the mRNA expression ascribed solely the SAN tissue is 537 



 

 

done with a good measure of confidence and, if anything, any expression differences identified 538 

would potentially be underestimated. 539 

 Our is the first in fishes to examine the mRNA expression of components of the calcium and the 540 

molecular clock in the SAN.  Both clocks are hypothesised to drive spontaneous depolarisation of 541 

pacemaker cells in the SAN in mammals, and evidence exists that may (Hassinen et al., 2017; 542 

Marchant and Farrell, 2019) or may not be the case in fishes (Wilson and Farrell, 2013). Therefore, 543 

the differentially higher expression of HCN1, a molecular clock component, observed in SAN 544 

compared with atrial tissues is of significant interest. This is similar to observations in mammals 545 

(Marionneau et al., 2005) where HCN1 is the fastest activating HCN isoform and is activated at the 546 

highest voltage (Wahl-Schott and Biel, 2009). If rainbow trout HCN1 has similar properties, then its 547 

significantly increased expression in the SAN could mean that the molecular clock is responsible for 548 

the SAN’s rapid rate of depolarisation. This, along with physiological experiments demonstrating that 549 

HCN antagonists do slow down heart rate in vivo in rainbow trout (Altimiras and Axelsson, 2004; 550 

Keen and Gamperl, 2012), and calcium antagonists have only small effects on heart rate (Haverinen 551 

and Vornanen, 2007), lends support to a membrane clock theory of spontaneous depolarisation in 552 

rainbow trout. However, a high HCN1 mRNA expression does not necessarily correlate with a 553 

functional role in the spontaneous depolarisation of pacemaker cells. Also, it was the HCN4 isoform 554 

that dominated in all cardiac tissues from rainbow trout.  Furthermore, in brown trout, cardiac 555 

pacemaker cells have a high HCN expression, but no If current, suggesting a membrane clock may not 556 

function in the spontaneous depolarisation of pacemaker cells in this species (Hassinen et al., 2017). 557 

Thus, further work is needed to resolve the mechanism responsible for spontaneous depolarisation 558 

in salmonids, and further studies of mRNA expression may not be the best way forward.  559 

Key to understanding what drives pacemaker rate, is understanding what causes it to reset. Despite 560 

this, changes in mRNA expression with temperature acclimation have not been previously examined 561 

in SAN of any fish. If HCN1, and other molecular clock components set the pacemaker rate, we would 562 

expect changes in expression of these isoforms in SAN after warm acclimation in fish that reset 563 

intrinsic heart rate. However, we observed very few mRNA expression changes that were unique to 564 

the SAN. These were restricted to downregulation of HCN2a2 and s100, components of the 565 

membrane clock and the calcium clock, respectively. Conversely, mRNA expression in a different 566 

calcium clock component, calsequestrin, was observed unique to the SAN of fish that did not reset 567 

intrinsic heart rate. However, if a mRNA expression change is associated with heart resetting, it will 568 

probably  would not only be observed in fish with a pacemaker rate resetting response, it would also 569 

be unique to those fish. Identifying these changes was greatly aided by comparisons between fish in 570 

Experiment 1 and fish in Experiment 2. These would be genes with significantly different mRNA 571 

expression between warm- and cold-acclimated fish, only in fish with a pacemaker rate resetting 572 



 

 

response, along with a greater fold change in mRNA expression changes with warm acclimation. Of 573 

these changes the genes most likely to be responsible are those which occurred in the SAN such as 574 

NKA α1c, S100 and SERCA2. However, no mRNA expression changes unique to the fish that reset 575 

intrinsic heart rate were significant after FDR adjustment. Therefore, we did not identify any strong 576 

links between mRNA expression and intrinsic heart rate resetting. 577 

This leads back to the rapid pacemaker resetting response observed in vitro. None of the mRNA 578 

expression that were unique to the fish that reset intrinsic heart rate with >3 weeks acclimation were 579 

present in the fish after just 1 h of warm acclimation. While changes in mRNA expression might not 580 

be expected to occur so rapidly, this lack of association does suggest that the initial and rapid 581 

resetting of pacemaker rate, and perhaps pacemaker resetting in general, is not driven by changes in 582 

mRNA expression.  Therefore, future studies of pacemaker setting in fishes should consider 583 

alternative mechanisms, such as post-transcriptional protein modifications.  584 

In conclusion, pacemaker rate resetting with thermal acclimation occurred much more rapidly than 585 

previously shown in any ectotherm, even though we also showed thermal acclimation can occur in 586 

rainbow trout without pacemaker rate resetting. The rapid pacemaker rate resetting response, 587 

however, was not associated with any significant changes in mRNA expression for key proteins in the 588 

SAN, and we did not identify any mRNA expression changes that that would be a strong candidate to 589 

be driving the pacemaker resetting response. Nevertheless, differential changes in mRNA expression 590 

during thermal acclimation were discovered among SAN, atrial and ventricular, including novel 591 

candidate genes in SAN tissue that are associated with warm acclimation but independent of 592 

resetting pacemaker rate. 593 

LIST OF SYMBOLS AND ABBREVIATIONS 594 

°C Degrees Celsius 

µg Microgram 

µL Microlitre 

µM Micromolar 

18s  18s ribosomal RNA 

ANOVA Analysis of variance 

ANP Atrial natriuretic peptide 

bpm Beats per minute 

cAMP Cyclic adenosine monophosphate 

Cav1.3 L-type calcium voltage-gated channels subunit α1D  



 

 

Cavβ2 L-type calcium voltage-gated channels subunit β2  

CCDC84  Coiled-coil domain containing 84  

cDNA Complementary deoxyribonucleic acid 

Col1α1 Collagen type 1a1 

Ct Cycle threshold 

CTmax Critical thermal maximum 

CTmin Critical thermal minimum 

Cx43 Connexin 43  

DnaJA2  DnaJ heat shock protein family (Hsp40 member A2)  

EF1-α  Elongation factor 1-α  

ERG Ether-à-go-go related gene  

E
-ΔCt 

Expression normalised to reference genes 

E-ΔΔCt Expression normalised to reference genes and inter-run calibrators 

FDR False discovery rate 

g Gram 

h Hour 

HCN1 Hyperpolarisation-activated cyclic nucleotide-gated channel 1  

HCN2a1 Hyperpolarisation-activated cyclic nucleotide-gated channel 2a1  

HCN2a2 Hyperpolarisation-activated cyclic nucleotide-gated channel 2a2  

HCN2b1 Hyperpolarisation-activated cyclic nucleotide-gated channel 2b1  

HCN2b1/2 Hyperpolarisation-activated cyclic nucleotide-gated channel 2b1/2  

HCN3 Hyperpolarisation-activated cyclic nucleotide-gated channel 3 

HCN4a1/2 Hyperpolarisation-activated cyclic nucleotide-gated channel 4a1/2  

HCN4b Hyperpolarisation-activated cyclic nucleotide-gated channel 4b  

IRC Inter-run calibrator 

Kir2.1 Potassium voltage-gated channel subfamily J member 2 

Kir2.2 Potassium voltage-gated channel subfamily J member 12  

L Litre 

M Molar 

mg Milligram 

min Minute 

mL Millilitre 

mm Millimetre 

mM Millimolar 



 

 

mRNA Messenger ribonucleic acid 

Mrpl40  39s ribosomal protein L40 

n Sample size (number of animals or tissue samples in each group) 

Nav1.4 Sodium voltage-gated channel α subunit 4  

Nav1.5 Sodium voltage-gated channel α subunit 5  

Nav1.6 Sodium voltage-gated channel α subunit 8  

NCX Sodium-calcium exchanger 

NKA α1a Sodium/potassium ATPase subunit α1a  

NKA α1b Sodium/potassium ATPase subunit α1b  

NKA α1c Sodium/potassium ATPase subunit α1c 

NKA α3 Sodium/potassium ATPase subunit α3 

P-value Probability value 

pg Picogram 

Q10 Temperature coefficients 

qRT-PCR Quantitative real-time polymerase chain reaction 

RYR3 Ryanodine receptor 3  

s Second 

S100  S100 calcium binding protein  

SAN Sinoatrial node 

sem Standard error of the mean 

SEP15  15 kDa selenoprotein 

SERCA2 Sarcoplasmic/ endoplasmic reticulum calcium ATPase 2  

TGF-β1 Transforming growth factor β1  

TRPC1 Transient receptor potential cation channel subfamily C member 1  

UBC University of British Columbia 
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Table A1 - All primer pairs used for Fluidigm qRT-PCR analysis.   601 

All primers were designed specifically for this study from the sequence given by the accession number or copied directly from the study, unless indicated 602 

otherwise. Primers are displayed in the 5’ to 3’ direction. 603 

Target Forward Primer Reverse Primer Accession Number/ Source 

Study 

18s (Reference Gene) CGGTCGGCGTCCAACTT CAATCTCGCGTGGCTGAA AF243428 

β-actin (Reference Gene) TGGGGCAGTATGGCTTGTATG CTGGCACCCTAATCACTCT Ojima (2007) 

CCDC84 (Reference Gene) GCTCATTTGAGGAGAAGGAGGATG CTGGCGATGCTG TTCCTGAG Jeffries et al. (2014) 

DnaJA2 (Reference Gene) TTGTAATGGAGAAGGTGAGG  TGGGCCGCTCTCTTGTATGT Hassinen et al. (2007) 

EF1-α (Reference Gene) ACCCTCCTCTTGGTCGTTT TGATGACACCAACAGCAACA Raida and Buchmann (2007) 

External standard (Reference Gene) GTGCTGACCATCCGAG GCTTGTCCGGTATAACT Ellefsen et al. (2008) 

Mrpl40 (Reference Gene) CCCAGTATGAGGCACCTGAAGG GTTAATGCTGCCACCCTCTCAC Jeffries et al. (2014) 

SEP15 (Reference Gene) TCACAGCAAACCACATTTTGG AAGATGCCCAGAGTGACACACA AY255833 

Hyperpolarisation-activated cyclic nucleotide-gated 

channel 1 (HCN1) 

CGCTGAGGATCGTGAGGTTT TGAGCCGGGAAAGTCTCAGT AF421883   

Hyperpolarisation-activated cyclic nucleotide-gated 

channel 2a1 (HCN2a1) 

ATCGTGGACTTTGTCTCCTCCAT GATCCCCTTCTCCACGATCA XM_014141001 

Hyperpolarisation-activated cyclic nucleotide-gated 

channel 2a2 (HCN2a2) 

CTGCAGGACTTCCCCTCAGA CCAGGTGTCATTCACCATCTTG XM_014191309 

Hyperpolarisation-activated cyclic nucleotide-gated 

channel 2b1 (HCN2b1) 

CGCCAGTACCAGGAGAAGTACA AGCTGGCAGTTTGTGGAAAGA XM_014148806    



 

 

Hyperpolarisation-activated cyclic nucleotide-gated 

channel 2b1/2 (HCN2b1/2) 

CCAGTGCAGTGATGCGTATCTT ACAGCCATCCCAGTGACACA AY148882 

 Hyperpolarisation-activated cyclic nucleotide-

gated channel 3 (HCN3) 

ACGGACGTATGGCTGACTATCA CCGGAAACATGGCATAGCA XM_014176849 

Hyperpolarisation-activated cyclic nucleotide-gated 

channel 4a1/2 (HCN4a1/2) 

TGGGAGGAGATCTTCCATATGAC CAGGTTGACGATACGCACCAT XM_014175391 and 

XM_014126754.1 

Hyperpolarisation-activated cyclic nucleotide-gated 

channel 4b (HCN4b) 

CGGGCGCTGAGAATCGT CGGAGCAACCTCAACAAACTC XM_014170228 

L-type calcium voltage-gated channels subunit α1D 

(Cav1.3) 

CGGCAAGTCGCCCAAGT GCGGAGCGTGCTCGTAGTAG NM_001124328 

L-type calcium voltage-gated channels subunit β2 

(Cavβ2) 

TGACATAGATGCCACAGGCTTAGA GAGCGGAGGTGGACTGGAA DQ198264 

Calsequestrin CCAACCCTACATCAAATTCTTTGC TCATTTTCAGGGTCAGCTCCTT NM_001160499  

Sodium-calcium exchanger (NCX) GCAATGCCGTCAACGTCTT GGTAGATGGCAGCGATGGA NM_001124598 

Ryanodine receptor 3 (RYR3) AGGCTTCCTCGGCTTTCAC TGTCGGAAGTTGGAGATCTTCTT EF032937 

Sarcoplasmic/ endoplasmic reticulum calcium 

ATPase 2 (SERCA2) 

GTGCTCGTCACGATAGAGATGTG CAGCAGGGACTGGTTCTCTGA Primers designed off 

sequences from Korajoki 

and Vornanen (2012) 

S100 calcium binding protein (S100) GTCAAGACTGGAGGCTCAGAG GATCAAGCCCCAGAAGTGTTTG Jeffries et al., 2014 

Transient receptor potential cation channel 

subfamily C member 1 (TRPC1) 

GAAGCGGAAGCGTGATGAG GGTAGCGGTGGACAAGACAAC NM_001185053     

Ether-à-go-go-related gene (ERG) TCCACGACGCACGAGAAAC ACACGACTGGTCTGGAAATGAGT NM_001124676 

Potassium voltage-gated channel subfamily J GCCCCAGAGCCGCTTT AGAGACATTGATGAACTGCACGTT DQ435674 



 

 

member 2 (Kir2.1) 

Potassium voltage-gated channel subfamily J 

member 12 (Kir2.2) 

CTACGGCTACCGCTGTGTGA GGACTGGAAGACCACCATGAA DQ435676  

Sodium voltage-gated channel α subunit 4 (Nav1.4) TGTGCTCCGAGCCCTTAAA CGCCCACAATGGTTTTCAG EF203231  

Sodium voltage-gated channel α subunit 5 (Nav1.5) TGCCACCCCTGCTGGTA CGTGGACTGCTTTCCCAGAT EF203232  

Sodium voltage-gated channel α subunit 8 (Nav1.6) CGACACCTTCACCTGCAACA CATTGGTGACGAAGTCGTTCA EF203233 

Sodium/potassium ATPase subunit α1a (NKA α1a) CCTTGGATGAGCTTAACAGGAAA GCCCGAACCGAGGATAGAC AY319391   

Sodium/potassium ATPase subunit α1b (NKA α1b) CCCATGGATTTGCTGGGTAT CCTCCATGTCGTTCATTATCTTGT AY319390 

Sodium/potassium ATPase subunit α1c (NKA α1c) TGCCAGAGGTATTGTCATCAACAC GAGGCGAGGGTAGCAATACG AY319389   

Sodium/potassium ATPase subunit α3 

(NKA α3) 

GCCAGCAATGGACATATGAACA ACTGACGAAGAAGGCTGTGTGA AY319388 

a1A adrenoceptor TGGGCTCTGTCTGTCACAATCT AGGCGCCGGCTCCTT NM_001124653  

a1B adrenoceptor ACCGAAGAACCGGGCTATG CATAAGCGGCAGGTAGAAGGA NM_001124650 

β2 adrenoceptor GCCTAAGCCCCAAGGACAAG AGCTCCACGGTCCCAACAT NM_001124440 

ANP precursor TCTGCTCCTGCTTTGTCAACA AGGGTATGGTCTGCCCAACA NM_001124211 

Collagen type 1a (Col1α1) CCCGAGCCATGCCAGAT CAGATAACTTCGTCGCACATGAC NM_001124177     

Connexin 43 (Cx43) TGGCAGCACCATCTCCAA GGGTGTCGTCAGGGAAGTCA NM_001124563 

Transforming growth factor β1 (TGF-β1) GGGCTGGAAGTGGATCCAT GGGCCGATGCAGTAGTTAGC KF870471   
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 809 

FIGURE LEGENDS 810 

Figure 1 – Changes in intrinsic heart rate over time in response to an acute temperature change, 811 

for fish from Experiment 1 (performed in the winter) 812 

Red symbols are for fish acutely transferred from 4⁰C- to 12⁰C with intrinsic heart rate 813 

measurements being made at 12⁰C (n=6-9) while blue symbols are for fish acutely transferred from 814 

12⁰C to 4⁰C with intrinsic heart rate measurements being made at 4⁰C (n=4-6).  815 

The data are presented as mean ± SEM. Dissimilar letters are used to indicate statistically significant 816 

differences between time points within an experimental group (one-way ANOVA).  817 

Figure 2 – Principal component analysis of mRNA expression of cardiac function genes. 818 

 (A) Principal component analysis plot of sinoatrial node, atrial and ventricle mRNA expression of 819 

cardiac function genes, in fish acclimated to 4°C for more than 3 weeks from Experiment 1 (n=7). All 820 

E-ΔΔCt shown in Figure 3 were used in the PCA analysis, and plots were created from PC1 and PC2 821 

which explained 35.9% and 19.4% of variance respectively. 68% confidence limit ellipses were 822 

plotted around each tissue type. (B) Principal component analysis plot of mRNA expression of cardiac 823 

function genes, in the SAN of fish acclimated to 4°C and 12°C from Experiment 1 (n=7). All E-ΔΔCt 824 

shown in Figure 6A were used in the PCA analysis, and plots were created from PC1 and PC2 which 825 



 

 

explained which explained 24.0% and 22.1% of variance respectively. 68% confidence limit ellipses 826 

were plotted around each tissue type. Component Loadings are given in Table S2. 827 

Figure 3 – Sinoatrial node, atrial and ventricle mRNA expression of cardiac function genes in fish 828 

acclimated to 4°C for more than 3 weeks from Experiment 1.  829 

Expression (E
-ΔΔCt

) is normalised first to the geometric mean of the reference genes, CCDC84 and 830 

SEP15, and then an inter-run calibrator, and presented as mean ± SEM (n=7). Table shows the 831 

statistical comparisons between cardiac tissues for the data displayed in the graph on the right. * is 832 

used to indicate statistically significant differences with FDR adjustment (<0.05)    833 

Figure 4 – mRNA expression of cardiac function genes, in the SAN (A), atrium (B), and ventricle (C) 834 

of fish acclimated to 4°C and 12°C for more than 3 weeks for fish from Experiment 1. 835 

Expression (E
-ΔΔCt

) is normalised to the geometric mean of the reference genes, CCDC84 and SEP15, 836 

then an inter-run calibrator and presented as mean ± SEM (n=7 except in those examples specified in 837 

the methods) * is used to indicate statistically significant differences with FDR adjustment (<0.05), 838 

and (*) is used to indicate statistically significant differences without FDR adjustment (<0.05) 839 

between 4°C and 12°C acclimations (Student’s t test or Mann-Whitney test) 840 

Figure 5 – mRNA expression of cardiac function genes, in the SAN (A), atrium (B) and ventricle (C) 841 

of fish acclimated to 4°C and 12°C for more than 3 weeks from Experiment 2. 842 

Expression (E
-ΔΔCt

) is normalised to the geometric mean of the reference genes, CCDC84 and SEP15, 843 

then an inter-run calibrator and presented as mean ± SEM (n=7) * is used to indicate statistically 844 

significant differences with FDR adjustment (<0.05), and (*) is used to indicate statistically significant 845 

differences without FDR adjustment (<0.05) between 4°C and 12°C acclimations (Student’s t test or 846 

Mann-Whitney test). 847 

Figure 6 - Venn Diagrams showing mRNA expression changes after more than 3 weeks of warm 848 

acclimation that occur only in fish that reset intrinsic heart rate (Experiment 1), that only occur in 849 

fish that don’t reset intrinsic heart rate (Experiment 2) and in both groups of fish.  850 

This figure combines data from Fig. 4, Fig. 5 and Fig. S4. 851 

Figure 7 – mRNA expression of cardiac function genes, in the SAN (A), atrium (B) and ventricle (C) 852 

of fish acclimated to 4°C and 12°C for 1 hour with an intrinsic heart rate resetting response. 853 



 

 

Expression (E
-ΔΔCt

) is normalised to the geometric mean of the reference genes, CCDC84 and SEP15, 854 

then an inter-run calibrator and presented as mean ± SEM (n=7) * is used to indicate statistically 855 

significant differences with FDR adjustment (<0.05), and (*) is used to indicate statistically significant 856 

differences without FDR adjustment (<0.05) between 4°C and 12°C acclimations (Student’s t test or 857 

Mann-Whitney test). 858 

TABLES 859 

Table 1 - Intrinsic heart rate measurements of fish both with and without a pacemaker intrinsic 860 

heart rate resetting response, at a variety of temperature acclimations, time points and 861 

temperatures. 862 

Fish Group 
Temperature 

Treatment 

Saline 

Measurement 

Temperature 

(°C) 

Time at Treatment 

Temperature 

Intrinsic 

Heart 

Rate 

s.e.m. N 

Pacemaker 

Rate Reset 

(Group 1) 

4°C 4 6 weeks 36.1 0.9 4 

Acute change 

from 12°C to 

4°C 

4 0 h (also >3 weeks (3-4 

weeks) acclimation to 

12°C measured at 4°C) 

33.4 0.7 6 

1 h 31.8 0.9 4 

8 h 37.7 1.2 7 

24 h 37.7 1.2 6 

Acute change 

from 4°C to 

12°C 

12 0 h (also >3 weeks (4-6 

weeks) acclimation to 4°C 

measured at 12°C) 

56.8 1.2 8 

1 h 50.8 1.5 7 

8 h 52.0 1.0 10 

24 h 50.3 1.5 6 

4°C to 4°C 12 1 h 57.9 1.9 8 



 

 

Pacemaker 

Rate not 

Reset (Group 

2) 

Acute change 

from 12°C to 

4°C 

4 0 h 30.6 1.7 4 

24 h 29.2 0.6 8 

Acute change 

from 4°C to 

12°C 

12 0 h 52.7 2.2 5 

24 h 57.5 2.7 8 

4°C 4 10-12 weeks 29.9 1.1 7 

12°C 4 10-12 weeks 29.4 1.1 7 

4°C 12 10-12 weeks 53.3 2.8 8 

12°C 12 10-12 weeks 52.5 2.3 8 
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