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Abstract
Treatment with the CXCR4 antagonist, plerixafor (AMD3100), has been proposed for clinical

use in patients with WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syn-

drome and in pulmonary fibrosis. However, there is controversy with respect to the impact of

plerixafor on neutrophil dynamics in the lung, which may affect its safety profile. In this study,

we investigated the kinetics of endogenous neutrophils by direct imaging, using confocal intrav-

ital microscopy in mouse bone marrow, spleen, and lungs. Neutrophils are observed increasing

their velocity and exiting the bone marrow following plerixafor administration, with a concomi-

tant increase in neutrophil numbers in the blood and spleen, while the marginated pool of neu-

trophils in the lung microvasculature remained unchanged in terms of numbers and cell velocity.

Use of autologous radiolabeled neutrophils and SPECT/CT imaging in healthy volunteers showed

that plerixafor did not affectGM-CSF-primedneutrophil entrapment or release in the lungs. Taken

together, these data suggest that plerixafor causes neutrophil mobilization from the bonemarrow

but does not impact on lung marginated neutrophil dynamics and thus is unlikely to compromise

respiratory host defense both in humans andmice.
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1 INTRODUCTION

The CXCR4 antagonist plerixafor (AMD3100) is used clinically for

the acute mobilization of HSPCs for bone marrow transplants.1 Pler-

ixafor also causes a dose- and time-dependent blood leukocytosis in

humans.2 Studies in both mice and humans have shown that plerixafor

also affects neutrophil dynamics, most notably increasing circulating

neutrophil numbers as early as an hour after administration.3–5 Initial

work fromour group showed thatwhen plerixaforwas infused directly

Abbreviations: IVM, Intravital microscopy; L-IVM, Lung intravital microscopy; S-IVM, Spleen intravital microscopy;WHIM,Warts Hypogammaglobulinemia Immunodeficiency and

Myelokathexis; PCLS, Precision Cut Lung Slices.
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into the femoral artery of anaesthetized mice, there was an increase

in the number of neutrophils collected via cannulation of the femoral

vein, suggesting that plerixafor led to the mobilization of neutrophils

from the bone marrow (BM).3 This supported the hypothesis that

the CXCR4-CXCL12 axis is important, not only for HSPC, but also

neutrophil retention in the bone marrow.3,6 Consistent with this

hypothesis, a severe blood neutropenia is a characteristic of theWarts,

Hypogammaglobulinemia, Immunodeficiency, and Myelokathexis

(WHIM) syndrome, a genetic disease associated with gain-of-function
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mutations of CXCR4.7,8 Indeed, patients and mouse models of this

disease exhibit an increase in the numbers of mature neutrophils in

the bone marrow reserve7,8 and in patients with WHIM syndrome

the blood neutropenia can be corrected by the administration of

plerixafor.9 Likewise, myeloid-specific deletion of CXCR4 in mice has

been shown to result in reduced numbers of mature neutrophils in the

BM and a blood neutrophilia.10

Contrary to these findings, an alternative view is that the blood

neutrophilia induced by plerixafor may be due to neutrophil de-

margination from the lung microvasculature and not due to

mobilization from the BM.11 Thus when Devi et al. imaged GFP+

neutrophils that had been isolated from the BM of LysM-GFP+ mice

and adoptively transferred into WT recipients they observed neu-

trophil mobilization from the lung and not the BM.11 Furthermore,

they observed a transient (2–4 h) increase in neutrophil numbers in

blood sampled from the carotid artery versus the vena cava following

plerixafor treatment both in primates and mice, again consistent

with mobilization of neutrophils from the lung.11 These findings

were subsequently challenged in a study by Liu et al., who quan-

tified the numbers of endogenous neutrophils in tissues by flow

cytometry.12 They reported an increase in neutrophil numbers in

the lung, spleen, and blood accompanied by a decrease in the BM

following plerixafor treatment.12 In addition, they reported that

imaging of frozen sections of lung, post-plerixafor treatment, showed

no evidence of neutrophil de-margination. Recent technological

advances in intravital microscopy (IVM) now allow us to directly

image endogenous neutrophil dynamics in the lung, spleen, and BM,

thus providing the opportunity to characterize neutrophil migratory

behavior within their anatomical location prior and subsequent to

plerixafor administration.

Neutrophils in the pulmonary circulation play an important role in

intravascular host defense.13 Entrapment of systemically primed neu-

trophils within the lung microvasculature also facilitates de-priming,

with these cells subsequently able to re-circulate.14,15 In human stud-

ies, we have shown that radiolabeled neutrophils primed ex vivo with

GM-CSF accumulate in the lung microvasculature, with 97% being

retained in the lungs at first pass, versus<5%ofun-primedneutrophils.

It is not known, however, whether the retention of primed neutrophils

or their subsequent time-dependent de-priming in the lungs is affected

by plerixafor. Similarly, a proportion of murine neutrophils present at

a site of experimental liver injury have been reported to re-enter the

systemic circulation and subsequently lodge in the pulmonary vascu-

lature, where they up-regulate CXCR4 before trafficking back to the

BM for final clearance.16 In this context plerixafor impaired trafficking

of neutrophils from the lung to the BM, suggesting that this process is

alsomediated by CXCR4.16

Recently it was shown that chronic administration of plerixafor

is a feasible strategy for long-term treatment of WHIM patients,

reducing infection frequency and wart burden associated with the

disease.17 Chronic treatment with plerixafor is also being considered

for additional clinical applications including pulmonary fibrosis, pan-

creatic cancer (Camplex-1 trial), and leukemia, where the mechanism

of action appears independent of the effect of plerixafor on neutrophil

Key points

• Using confocal intravital microscopy (IVM), neutrophils

are observed to exit directly from thebonemarrow follow-

ing plerixafor treatment

• Plerixafor treatment does not result in demargination of

neutrophils from themicro-vessels of the lung

• IVM shows a substantial increase in the number of splenic

neutrophils after plerixafor treatment

• In human volunteers, plerixafor did not affect GM-CSF-

primed neutrophil entrapment or release in the lungs

dynamics.18–20 However if plerixafor affects neutrophil dynamics in

the lung, it has the potential to compromise lung host defense and this

mayhaveadetrimental impacton thesepatients especially if otherwise

immunocompromised.

For this reason, in this study we used IVM of BM, lung, and spleen

and precision cut lung slices (PCLS) to interrogate the effect of pler-

ixafor on the dynamics of endogenous neutrophils in the mouse, and

gamma scintigraphy (SPECT/CT) of radiolabeled neutrophils to inves-

tigatewhether plerixafor impacts the trafficking of primed neutrophils

in the lungs of humans. Our studies reveal that plerixafor has no effect

on neutrophil dynamics in this organ, including neutrophil number and

cell velocity in the lung, suggesting that it will not impact directly on

lung host defense in patients.

2 METHODS

2.1 Mice

C57Bl/6J female mice between 6 and 8 weeks old were used in all the

experiments. Allmicewere housed in specific pathogen free conditions

at Imperial College London. All experiments were carried out in accor-

dance with the recommendations in the Guide for the Use of Labo-

ratory Animals of Imperial College London, with the ARRIVE (Animal

Research Reporting of In Vivo Experiments) guidelines. All animal pro-

cedures and care conformed strictly to theUKHomeOfficeGuidelines

under the Animals (Scientific Procedures) Act 1986, and the protocols

were approved by the Home Office of Great Britain. In vivo experi-

ments were performed under the authority of our UK Home Office

Project Licences that were reviewed by the Imperial College Animal

Welfare Ethical Review Board (AWERB). BM, lung, and spleen IVMs

of live mice were imaged under general, terminal anesthesia. BM IVM

anesthesia was maintained with isoflurane in medical O2 throughout

the procedure. Lung IVM and spleen IVM anesthesia was maintained

by alternating injections of either 50 mg/kg ketamine alone or in com-

bination with 0.125 mg/kg medetomidine at predefined time points.

O2 was supplied throughout the procedure.



PILLAY ET AL. 1177

2.2 Flow cytometry

Blood was collected in EDTA coated syringes by cardiac puncture

under terminal anesthesia. Red blood cell lysis was carried out and

samples were centrifuged at 450 × g for 5 min at 4˚C. Single cell

suspensions were stained with Live/Dead near-IR stain (Life Tech-

nologies) and Fc-Receptors block (using clone 93, BioLegend). Cell

suspensions were incubated with directly conjugated fluorescent Abs

for 30 min at 4˚C. The following Abs were used: Ly6G (clone 1A8),

CD45 (clone 30-F11), CD11b (clone M1/70), CD3e (clone 17 A2),

CD19 (clone 6D5), Ter119 (clone TER-119), CD62L (clone MEL-14),

and CXCR4 (clone 2B11). Acquisition was performed on BDFortessa

using FacsDiva software (BD Bioscience) with further analysis by

FlowJo software. Lung tissue was minced, digested with collagenase

D, 20 U/ml DNase I for 25 min at 37˚C, and filtered. To study lung

marginated neutrophils by FACS, CD45 was pre-injected 3 min before

sacrificing themice, to label intravascular leukocytes.

In someexperiments, lowdose anti-Ly6Gor IgG3µg/mousewere i.v.

injected before i.p. injection of plerixafor or PBS as control.

Sixty minutes following i.v. injection of Ly6G-PE blood, bone mar-

row, lungs, and spleen were harvested. Following tissue process-

ing leukocytes were stained with mAbs for CD11b–PerCP Cy5.5

and Ly6G-BV605 and then using flow cytometry, we determined the

percentage of Ly6G+ and CD11b+ cells that were Ly6G-PE+. Our

FACS graphs show that 99.2%, 99.7%, 99.1%, and 99.9% of BM,

blood, splenic, and marginated lung neutrophils were Ly6G-PE posi-

tive respectively (Supplementary Fig. 1A–D); indicating that >99% of

endogenous neutrophils are labeled by i.v. injection of Ly6G-PE, irre-

spective of the tissue examined.

2.3 CalvariumBM intravital microscopy

BM intravital microscopy (IVM) was performed using a Zeiss LSM 780

upstanding confocal microscope supplied with Argon (488 and 561

and 633 nm lasers) as described by Duarte et al.23 Neutrophils were

labeled with 2–4 µg/mouse of Ly6G (clone 1A8)-647, the vasculature

was labeled with CD31 (clone 390)-488, and Cy5-Dextran (Nanocs,

MA). Videos were recorded for 40 min and treatment was adminis-

tered by intraperitoneal (i.p.) injection during recording.

2.4 Lung IVM

This method was first described in21 with modifications.22 Imaging

was performed on an upright Leica SP5 confocal microscope using a

25 × 0.95nawater immersion objective.

2.5 Spleen IVM

This method is described in ref. 23 with modifications. Anesthetized

micewere placed in the right lateral decubitus position and a small sec-

tion of hair was removed from the left flank. A 5–8mm abdominal inci-

sion on the left flank above the spleen was used to expose the surface

of the spleen, which was mechanically stabilized with a gentle vacuum

using the coverslip vacuum chamber used for lung IVM.

Imaging was performed on an upright Leica SP5 confocal micro-

scope using a 25 × 0.95na water immersion objective. Images were

acquired in 3 z-slices 5 µm apart. In both lung and spleen IVMs,

neutrophils were labeled with 3 µg/mouse of Ly6G (clone 1A8)-PE,

the vasculature was labeled with CD31 (clone 390)-488, fluorescent

Abs were injected intravenous (i.v.) in a maximal volume of 50 µl

≈10–20min before imaging commences.

While imaging both lung and spleen, i.p. injections of plerixafor at

5 mg/kg (AMD3100, Sigma–Aldrich) in vehicle PBS were performed

and imaging continued non-stop until 90 min after treatment. At the

end of the imaging session, mice were humanely killed by anesthetic

overdose (Sodium-Pentobarbital) and blood was collected by cardiac

puncture and lung and spleenwere harvested.

2.6 Cell tracking

BM IVM 3D time-series in .czi format were saved as 16bit TIFF and

imported into NIS-Elements (Version 4.50, Nikon Instruments, UK).

Fileswere processedwithAdvancedDenoising and saved asMaximum

Intensity Projections. Neutrophils were tracked using the Spot Track-

ing plugin24 in Icy, an open-source platform for bioimage analysis.24

Tracks in the 200 frames sequence were checked manually to ensure

they were correct.25

Lung IVM and spleen IVM 3D time-series in .lif format were ana-

lyzed using Imaris software (Bitplane, Oxford Instruments). The video

was cropped in time to analyze60 framesbefore and30, 60, and90min

after AMD3100/PBS application. Neutrophil tracking was performed

automatically on Ly6G-positive cells transformed in spots. XYZ data

were exported and trackmean speedwas plotted.

2.7 Study participants

The human study was approved by the Cambridgeshire and Hert-

fordshire Research Ethics Committee (15/EE/0321) and the Adminis-

tration of Radioactive Substances Advisory Committee of the United

Kingdom (83/400/33731); all subjects gave written informed consent.

Healthy volunteers were excluded if there was a history of any

acute lower respiratory tract illnesswithin 4weeks of screening, a cur-

rent diagnosis of asthma, excluding childhood asthma, or an abnormal

spirometry result defined as a forced expiratory volume in 1 s (FEV1)

≤80%of predicted or a FEV1 to forced vital capacity (FVC) ratio≤70%.

2.8 Human neutrophil isolation and radiolabeling

Neutrophils were isolated from 80 ml of autologous venous blood

using discontinuous plasma-Percoll gradients and radiolabeled using

99mTc-hexamethylpropyleneamine oxime (GE Healthcare, Bucking-

hamshire, UK).26 Administered activities were 114–200 MBq. Neu-

trophils were stimulated ex vivo for 15 min with either 1 ng/ml or

100 ng/ml GM-CSF (Bio-Techne, Abingdon, UK) at 37◦C.

2.9 Administration of plerixafor or placebo

in human

Volunteers received either plerixafor or placebo, and neutrophils were

reinfused 60 min following plerixafor administration at the circulating
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pharmacological Tmax for the drug. Plerixafor was administered in the

clinically effective dose of 0.24 mg/kg (s.c.), which is used for mobi-

lization of hematopoietic stem cells, which resulted in the expected

marked leukocytosis at 3 h post-injection.1 Re-infusion of neutrophils

took place 60 min after plerixafor/placebo administration and was

undertaken while the patients were on the SPECT-CT to allow for

immediate imaging.

2.10 Planar and SPECT/CT imaging

Volunteers were positioned in a double-headed SPECT/CT camera (GE

Discovery 670, GE Healthcare), fitted with low-energy, parallel-hole

collimators, and interfaced to a computer. After bolus intravenous

injection of technetium-99 m-labeled neutrophils, the activities in the

chest and upper abdomen (liver and spleen) were recorded by dynamic

planar imaging with a frame time of 1 s for 2 min followed by 20 s for

38 min. At the later time-points, the frame times were 20 s for 10 min.

SPECT images were acquired over 24 min at 45 min and 24 h post re-

injection. A CT scan was performed at the end of the 45-min SPECT

acquisition for anatomical co-registration with SPECT. To generate the

organ time-activity curves, regions of interest (ROI) were drawn over

the right lung (anterior projection), the liver (anterior and posterior),

and spleen (anterior and posterior) using Xeleris software (Version 3.1,

GE Healthcare). Mean counts per pixel or voxel in these ROIs were

recorded and decay-corrected for physical decay of technetium-99m.

Blood was collected at intervals up to 6 h post-injection and whole

blood radioactivity measured in a gamma counter. The percentage

of radiolabeled cells in the circulation 45 min post injection was cal-

culated as follows: (Radioactivity in sample [kBq] / [injected activity

(kBq)/total blood volume (ml)]) × 100; blood volume was estimated

using height andweight.27

2.11 Statistical analysis

Statistical analysis was performed using GraphPad Prism 5 (GraphPad

Software, Inc). A P-value of less than 0.05 was considered significant:

P< 0.05 *, P< 0.01 **, P< 0.001 ***, NS, not significant. Statistical tests

used are as detailed in the figure legends.

3 RESULTS

3.1 IVM reveals direct mobilization of neutrophils

from the BMand increased velocity of neutrophils

after plerixafor treatment

In mice, circulating blood neutrophil numbers increased significantly

60 min after i.p. injection of plerixafor (Fig. 1A); this is accompanied

by a concomitant reduction in neutrophil numbers in the BM (Fig. 1B).

To directly test whether the blood neutrophilia was due to neutrophil

release from the BM, we undertook IVMof themouse calvarium, iden-

tifying BM vasculature by i.v. injection of Cy5-Dextran and endoge-

nous neutrophils by i.v. injection of low dose anti-Ly6G-PE mAb. The

use of low dose anti-Ly6G mAb (2–5 µg/mouse), as an imaging tool

for neutrophil dynamics, has been widely reported and several stud-

ies have shown that it does not compromise neutrophil dynamics such

as rolling, adhesion, and intravascular crawling in a number of tissues

including the lung.28,29 Although the same anti-Ly6G mAb is used to

cause neutrophil-depletion, the dose to achieve this effect is much

higher (100–500 µg/mouse).13,30,31 Moreover, a previous study has

compared the dynamics of LysM-GFP+ and fluorochrome-conjugated

Ly6G mAb neutrophils and results showed that Ly6G mAb did not

cause change in their migratory behavior or in their recruitment dur-

ing inflammation.32 The mean speed of Ly6G neutrophils within the

calvarium bonemarrow (BM) parenchymawas calculated (Fig. 1C) and

a significant increase in neutrophil speed was observed 20 min after

a single i.p. injection of plerixafor (Fig. 1D). Tracking individual neu-

trophils in the BM showed that ≈60% of neutrophils under homeosta-

sis have a speed ranging from 2 to 4 µm/min (Fig. 1E). Thirty minutes

after injection of plerixafor, the percentage of neutrophils migrating

at such speed significantly decreases, ≈40% with a concomitant sig-

nificant increase in the percentage of neutrophils with a higher speed

ranging from 4 to 6 µm/min, ≈30% (Fig. 1E). Moreover, the percent-

age of neutrophils with the lower speed ranging from 0 to 2 µm/min

did not change after plerixafor, ≈30% (Fig. 1E). These results suggest

that plerixafor causes an increase in the velocity of neutrophils that

already showed a migratory behavior without altering the less motile

cells. Analysis of IVM videos also revealed a decrease in the number

of neutrophils in the calvarium BM 30 min after plerixafor injection

(Fig. 1F and G) and an increase in neutrophils observed exiting from

theBMstroma into thevasculature (SupplementaryVideo1).Our find-

ings provide direct visual evidence consistent with those of Liu et al.

and Martin et al. supporting the ability of plerixafor to enhance the

mobilization of neutrophils from the BM compartment by increasing

cell velocity and egress from the BM compartment.

3.2 Spleen is not a source of blood neutrophilia

following plerixafor treatment

The spleen is an alternative site of significant neutrophil

margination.33,34 Mobilization of neutrophils from the spleen might

therefore also contribute to the increase in circulating neutrophil

numbers seen after plerixafor treatment.33,34 However, when quanti-

fying cell numbers by flow cytometry, we noted a significant increase

in the absolute number of splenic neutrophils 60 min after plerixafor

administration (Fig. 2A); this is in agreement with previous reports.12

Moreover, analysis of neutrophil dynamics using spleen IVM showed

that as early as 30 min after plerixafor injection there was an increase

in the number of splenic neutrophils and that this increase was main-

tained up to 90 min after treatment (Fig. 2B and C; Supplementary

Video 2). Tracking individual neutrophils in the spleen showed that

<40% of neutrophils under homeostasis have a speed ranging from

0 to 1 µm/min while >40% of neutrophils have a speed ranging from

1 to 2 µm/min and 20% from 2 to 3 µm/min (Fig. 2D). Sixty minutes

after injection of plerixafor, the percentage of less motile neutrophils

decrease significantly with a concomitant increase in the percentage

of cells with a greater migratory speed (Fig. 2D).
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F IGURE 1 Plerixafor treatment causes neutrophil mobilization and blood neutrophilia. (A) FACS analysis of total number of circulating neu-
trophils 60min after i.p. injection of PBS or plerixafor (N= 7). (B) FACS analysis of neutrophils/femur 60min after i.p. injection of PBS or plerixafor
(N = 7). (C) Mean of instantaneous speed of all neutrophils per frame representative of 3 experiments. BM-IVM was imaged for a total of 40 min,
10min after start, plerixafor was i.p. injected, and BM-IVMwas further recorded for 30min. (D)Mean speed of each neutrophil tracked before and
after i.p. plerixafor were compared. (E) Tracking quantification of neutrophil cell velocity before and after plerixafor treatment, representative of 3
experiments. (F) Panel showing the tracking region at different time points during the experiment. Vasculature (white) and neutrophils (yellow) are
shown with their respective tracking tails. Panel shows the disappearance of neutrophils marked with white asterisks (*) from the imaged region.
(G) Quantification of number of neutrophils tracked over a period of 40min. Data were analyzed by unpaired t-test. **P< 0.01; NS, not significant

We also analyzed the phenotype of neutrophils mobilized from

the BM to the blood, those remaining in the BM and in the spleen

after plerixafor treatment. The MFI levels of CD11b, CD62L, CXCR4,

CXCR2, and ICAM-1 on neutrophils did not change significantly

after plerixafor treatment (Supplementary Fig. 1E–G). Specifically,

plerixafor treatment did not increase the expression level of CD11b

and decrease expression on CD62L suggesting that circulating

neutrophils did not get activated by this drug (Supplementary Fig. 1E).

These results suggest that plerixafor treatment causes an increase

in the velocity of splenic neutrophils but not neutrophil activation.

Of note, CXCR4 levels were significantly higher on neutrophils

remaining in the BM 60 min after plerixafor administration (Sup-

plementary Fig. 1F) suggesting that plerixafor does not mobilize

these senescent neutrophils. These data suggest that plerixafor did

not cause activation of mobilized neutrophils nor change in their

phenotype. Together, these data suggest that the spleen functions
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F IGURE 2 Number of resident neutrophils increaseswithin the spleen after plerixafor treatment. (A) FACS analysis of total number of splenic
neutrophils 60 min after i.p. injection of PBS or plerixafor (N = 7). Data were analyzed using unpaired t-test. (B) Neutrophil number over the time-
course of spleen IVMwere quantified and compared between i.p. plerixafor versus i.p. PBS. Data are presented as mean ± SEM (N = 3). Data were
analysed using 2way ANOVA, Sidak’s multiple comparison test. (C) Representative images of (N = 3) C57Bl/6J mouse spleen IVM time course of
before, 30 min, 60 min and 90 min after plerixafor treatment. The vasculature and neutrophils were labelled by i.v. injection of CD31 mAb (white)
and Ly6GmAb (red). Plerixaforwas injected i.p. during imaging. Someof the neutrophils reaching the spleen are highlightedwithin thewhite circles.
(D) Tracking quantification of neutrophil cell velocity before and 30 min and 60 min after plerixafor treatment, representative of 3 experiments.
Data were analyzed using 2-way ANOVA, Tukey’s multiple comparison test. *P< 0.05; **P< 0.01; ***P< 0.001; NS, not significant

as a “sink” when neutrophil numbers in the blood are elevated, and

that the size of splenic marginated pool in this setting simply reflects

circulating neutrophil numbers. These data are consistent with the

blood neutrophilia seen in response to plerixafor administration in

splenectomisedmice.12

3.3 Plerixafor does not cause neutrophil

de-margination from the pulmonary vasculature

Devi et al. proposed that s.c. injection of plerixafor in mice and

primates caused neutrophil de-margination from the pulmonary

vasculature.11 If this is the case, this may impair lung host defense

in patients treated with plerixafor. To address this issue directly,

endogenous marginated neutrophils were labeled by i.v. injection of

low dose anti-Ly6G-PE mAb and the lung imaged by IVM for 90 min

following administration of plerixafor or PBS, or using precision cut

lung slices (PCLS). When the numbers of marginated neutrophils

were quantified under homeostatic conditions, these two alternative

imaging strategies gave comparable numbers (Fig. 3A).

Analysis of marginated neutrophil behavior by IVM showed the

ability of these cells to tether, crawl, and adhere to the microvascula-

ture of the lung (Supplementary Video 3) as reported previously.13,21
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F IGURE 3 Lung marginated neutrophils are
insensitive to plerixafor treatment. (A) Number
of neutrophils were counted in lung-IVM or PCLS
of homeostatic mice and expressed as mean per
field of view, N = 3 for the IVM and N = 5 for the
PCLS. Data were analyzed using unpaired t-test.
(B) Neutrophil numbers over the time-course of
lung IVMwere quantified and compared between
i.p. plerixafor versus i.p. PBS as control. Data
are presented as mean ± SEM. Lung IVM exper-
iment is N = 3, and data were analyzed using 2-
wayANOVA, Sidak’smultiple comparison test. (C)
Representative images of C57Bl/6J mouse lung
IVM time course of before and 30, 60, and 90min
after plerixafor (AMD3100). The vasculature and
neutrophils were labelled by i.v. injection of CD31
mAb (green) and Ly6G mAb (red). Plerixafor was
injected i.p. during imaging. (D) Tracking quantifi-
cation of neutrophil cell velocity before and 30
and 60 min after plerixafor treatment, represen-
tative of 3 experiments. Datawere analyzed using
2-way ANOVA, Tukey’s multiple comparison test.
(E) Number of neutrophils were counted in PCLS
of PBS or plerixafor treated mice (N = 4). Data
were analyzed using unpaired t-test. *P < 0.05;
NS, not significant

Critically, data analysis of lung-IVM and PCLS revealed no significant

change in the number of intravascular marginated neutrophils up

to 90 min following i.p. administration of plerixafor (Fig. 3B and C).

Furthermore, plerixafor did not influence the velocity of lung intravas-

cular marginated neutrophils, suggesting that CXCR4 signaling is

not involved in homeostatic neutrophil migration within the murine

lung (Fig. 3D). By IVM, an increase in circulating neutrophils flowing

within and not getting in contact with the lung microvasculature was

apparent 20 min following plerixafor treatment consistent with the

blood neutrophilia (Supplementary Video 3). PCLS allowed us to image
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neutrophils located deeper in the lung, but this again showed that

marginated neutrophil numbers were not significantly affected by

plerixafor treatment (Fig. 3E). Thus, direct imaging of endogenous

marginated neutrophils in the pulmonary vasculature of the mouse

indicates that contrary to Devi et al., plerixafor does not cause the

de-margination of neutrophils from the lungmicrovessels nor a change

in migratory behavior. However, it is beyond the technical capacity

of our current IVM system to phenotypically correlate migratory

behaviors. This is an area that clearly warrants further investigation

given the current interest in neutrophil subsets.35,36

3.4 Low dose anti-Ly6GmAb does not interferewith

neutrophil redistribution after plerixafor treatment

In amodel of arthritis, Cunin et al. have shown that Ly6G ligation has no

effect on the integrin-independent migration of neutrophils but atten-

uates integrin-dependent migration.37 To test whether Ly6G ligation

has any impact on neutrophil redistribution following plerixafor treat-

ment in our system, we i.v. injected low dose (3 µg/mouse) anti-Ly6G

mAb or IgG2A mAb as a control prior to plerixafor administration.

Our data show that the low dose of anti-Ly6G mAb has no effect on

neutrophil mobilization from the BM and the increase in circulating

and splenic neutrophils after plerixafor treatment (Supplementary Fig.

1H–J). These data suggest that low dose anti-Ly6G mAb, used in this

study, does not interferewith neutrophil redistribution after plerixafor

treatment. More studies are needed to directly prove whether inte-

grins are involved in this response.

3.5 Plerixafor does not perturb pulmonary

sequestration of primed neutrophils in humans

Undertaking similar experiments in a human setting is essential, how-

ever obviously more challenging. Neutrophil priming, occurring either

systemically or ex vivo under experimental conditions results in neu-

trophil retention in the lungs.38 This process is transient and pro-

posed to be driven by priming/activation-related changes in neutrophil

shape and deformability.14,15 Hence, to investigate whether plerixafor

administration interfered with either the initial entrapment of primed

neutrophils within the pulmonary circulation, or the subsequent de-

priming and release events, we examined the effect of plerixafor on

the pulmonary sequestration of autologous radiolabeled neutrophils

that had been primed ex vivo with GM-CSF (1 or 100 ng/ml).14 Neu-

trophils from healthy volunteers were isolated, dual radio-labeled, and

re-infused (Fig. 4). Immediate dynamic planar gamma scintigraphy was

undertaken to monitor early neutrophil bio-distribution, with lung,

spleen, and liver time-activity curves generated. Volunteers received

either plerixafor (0.24 mg/kg s.c.) or placebo (double-blinded) and

autologous radiolabeled neutrophils were injected as a single bolus

at the Tmax (60 min) following plerixafor administration. Plerixafor

resulted in the expectedmarked leucocytosis in all subjects at 3 h post-

injection. Specifically, neutrophils increased from 4.3 × 109/L ± 0.7

(mean ± SEM) before injection of plerixafor to 9.9 × 109/L ± 1.1 (mean

± SEM), 180 min after injection. Robust and immediate sequestration

of radiolabeled neutrophils was seen in the lungs of both groups, with

63.5± 4.3% versus 65.6± 3.5% (plerixafor vs. placebo; mean± SEM) of

the peak pulmonary signal still present at 40 min (Fig. 4A–C). No dif-

ference in the neutrophil signal could be distinguished when quanti-

fying transaxial 45 min SPECT/CT of spleen and liver (Fig. 4B and C)

in either saline or plerixafor-dosed subjects. The proportion of cells

remaining within the left and right lung compared with peak levels

of 99mTc-neutrophils, again showed no difference between plerixafor

and saline treated subjects (Fig. 4D). In addition, the percentage recov-

ery of the injected radiolabeled neutrophils from the peripheral blood

at 40 min was identical 6.9 ± 3.7% versus 6.1 ± 1.9% (plerixafor vs.

placebo;mean± SEM; Fig. 4E). Taken together thesedata showthat pul-

monary sequestration of primed neutrophils in humans is not affected

by plerixafor administration.

4 DISCUSSION

The CXCR4 antagonist, plerixafor, is used clinically as a single dose to

mobilize stem cells for bone marrow transplants. Recently, plerixafor

has been trialed in WHIM patients,17 where it has been shown that

chronic administration reverses the blood neutropenia and reduces

the high rate of infections in these patients. Preclinical studies in

mice also indicate that chronic administration of plerixafor reduces

lung fibrosis.39

It is important to note that unlike other CXCR4 antagonists, pler-

ixafor binds to the transmembrane region of CXCR440 and when the

mechanism of action of plerixafor has been investigated it has been

shown, unexpectedly, to reverse the gradient of CXCL12 across the

bone marrow endothelium.5,41 Moreover, neutralizing CXCL12 was

shown to inhibit plerixaformobilization of bothmurine leukocytes and

HSPCs.5,41 Thus plerixafor does not appear to beworking as a classical

competitive antagonist.

The lung has a marginated pool of neutrophils present under

homeostatic conditions that have recently been proposed to function

as an important site of intravascular immunity in mice, for example,

playing an essential role in bacterial surveillance in the lung.13,42

Additionally, it has also been proposed that the lung constitutes a

unique niche where neutrophil de-priming takes place under inflam-

matory conditions.14 The evidence presented by Devi et al. indicate

that plerixafor stimulates the demargination of neutrophils from the

lung microvasculature, raising concerns that host lung immunity may

be compromised in patients administered plerixafor chronically,11

for example for the treatments of WHIM syndrome or lung fibrosis.

In the study, by Devi et al. de-margination of neutrophils from the

lung was shown by IVM in mouse lungs, imaging GFP+ neutrophils

that had been isolated from the BM of LysM-GFP+ mice and then

adoptively transferred into WT recipients and by measuring the dif-

ference in neutrophil numbers in the blood collected from the carotid

artery and the vena cava of mice and nonhuman primates following

plerixafor treatment.

In contrast in this study, IVM of the bone marrow, lung, and spleen

of mice was carried out imaging endogenous neutrophils labeled by i.v.
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F IGURE 4 The CXCR4 inhibitor plerixafor does not affect the retention or release of GM-CSF primed neutrophils in the human lung. (A)
Anterior 0–5 min reframed image of the dynamic planar gamma scintigraphy (representative of N = 8), brighter color signifies a more intense
signal. This illustrates the almost complete immediate retention of GM-radiolabeled neutrophils within the lung regions of interest seen following
the injection of ex vivo GM-CSF primed neutrophils. For comparison, the anterior 24 h planar image shows labeled neutrophils present in the liver
and spleen. (B) No difference can be distinguished when viewing transaxial 45 min SPECT/CT in either saline or plerixafor treated subjects. (C)
Representative organ time-activity graphs post-injection of primed radiolabeled neutrophils in subjects treated with either saline or plerixafor. All
data are corrected for radioisotope decay and cross-talk. No difference in the distribution of 99mTc-neutrophils is detected between spleen, liver,
and lung (left or right) in either group. (D) Ratio of cells remaining within the left (closed symbols) and right (open symbols) lung compared with
peak levels 99mTc-neutrophils, each individual subject is represented by a different symbol with mean and standard error displayed. No difference
was seen between the plerixafor (N = 4) and saline (N = 4) treated subjects, or between neutrophils pretreated ex vivo with a high (100 ng/ml,
N = 2) or low (1 ng/ml, N = 2) concentration of GM-CSF. (E) Percentage of injected radio-labeled cells remaining within the circulation at 45 min
post-injection in both saline (N= 4) and plerixafor (N= 4) treated subjects. NS, not significant
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injection of a specific fluorescently labeled mAb. Our BM IVM study

shows that plerixafor enhances neutrophil motility within the bone

marrow environment and increased numbers of neutrophils that can

be seenexiting theBMcompartment. In contrast, our data showclearly

that plerixafor does not alter lung marginated neutrophil migratory

behavior and does not cause de-margination of neutrophils from the

lung microvasculature. Thus the data presented here are consistent

with our previous work and that of Liu et al., indicating that plerixafor

stimulates neutrophil mobilization from theBM into the blood, with no

evidence for de-margination of lung neutrophils,3,12 These results are

at oddswith those reportedbyDevi et al. possibly due to thedifference

in experimental approaches.11

Liu reported that plerixafor increased neutrophil numbers in the

spleen and they also showed that plerixafor could increase circulating

neutrophil numbers in splenectomizedmice, indicating that the spleen

was not a source of mobilized neutrophils. Our data are consistent

with these finding in which IVM of the spleen revealed that plerixafor

caused a significant increase in splenic neutrophil velocity, while flow

cytometry showed an increase neutrophil numbers in the spleen, sug-

gesting that the spleenmay function as a pool for excessive numbers of

neutrophils in the blood.

Critically, although it is not possible to recapitulate this exact

approach in humans, we have been able to address whether plerix-

afor affects neutrophil de-priming in human lungs, using nuclear imag-

ing techniques to follow the trafficking of GM-CSF primed neutrophils

through the lungs. Our data show that plerixafor does not impact the

kinetics of retention or release of primed neutrophils in humans.

This is the first in vivo imaging study to comprehensively assess the

effect of plerixafor on neutrophil kinetics in humans and mice. Our

IVM data in mice show that plerixafor increases neutrophil motility

and mobilization them from the bone marrow, and causes neutrophil

accumulation in the spleen, while have no effect on numbers or migra-

tory behavior of marginated intravascular neutrophils in the lung. Fur-

ther in the human lung plerixafor did not affect the accumulation and

release of GM-CSF-primed neutrophils. This study therefore adds to

our knowledge of how plerixafor redistributes neutrophils from the

BM into the bloodwith the resulting pooling of excess numbers of neu-

trophils in the spleen. Importantly while we observed an increase in

the number of circulating neutrophils therewas no evidence that these

leukocytes were activated or primed and no evidence that plerixafor

stimulates neutrophil de-margination in the lung.

In conclusion, our results suggest that it is unlikely that plerixafor

will compromise respiratory host defense, however further experi-

ments assessing the impact of chronic plerixafor treatment in mod-

els of respiratory disease are required to further determine the safety

of this drug in the context of its clinical use in WHIM patients17 and

patients with cancer or lung fibrosis.19
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