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ABSTRACT 22 

Partition coefficients of light elements between the solid and liquid iron phases are crucial for 23 

uncovering the state and dynamics of the Earth’s core. As one of the major light element candidates, 24 

sulfur has attracted extensive interests for measuring its partitioning and phase behaviors over the last 25 

several decades, but the relevant experimental data under Earth’s core conditions are still scarce. In 26 

this study, using a toolkit consisting of electronic structure theory, high-accuracy machine learning 27 

potentials and rigorous free energy calculations, we establish an efficient and extendible framework 28 

for predicting complex phase behaviors of iron alloys under extreme conditions. As a first application 29 

of this framework, we predict the partition coefficients of sulfur over wide range of temperatures and 30 

pressures (from 4000 K, 150 GPa to 6000 K, 330 GPa), which are demonstrated to be in good 31 

agreement with previous experiments and ab initio simulations. After a continuous increase below 32 

~250 GPa, the partition coefficient is found to be around 0.750.07 at higher pressures and are 33 

essentially temperature-independent. Given these predictions, the partitioning of sulfur is confirmed 34 

to be insufficient to account for the observed density jump across the Earth’s inner core boundary and 35 

its roles on the geodynamics of the Earth’s core should be minor. 36 

 37 
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1. Introduction 43 

The Earth’s core is constituted of some light elements in addition to the major components of iron 44 

and nickel (Allegre et al., 1995; Birch, 1964; Mcdonough and Sun, 1995). The prime candidates for 45 

these light elements include sulfur, oxygen, silicon, carbon, and hydrogen (Hirose et al., 2013; Li and 46 

Fei, 2007; Poirier, 1994). It is recognized that they redistribute across the Earth’s inner core boundary 47 

(ICB), with more in the outer core (~5-10 wt%) and less in the inner core (~2-3 wt%). The difference 48 

in light element contents between the outer and inner core helps explaining the density jump across 49 

the ICB (Cao and Romanowicz, 2004; Masters and Gubbins, 2003), anchoring the temperature profile 50 

in the whole Earth’s core (Morard et al., 2014) and inducing compositional stratification in the inner 51 

core (Alboussiere et al., 2010). More importantly, compositional buoyancy created by the 52 

redistribution of light elements turns out to be the principal energy source for powering the geodynamo 53 

in the outer core (Stacey and Stacey, 1999) and may be critical for driving the convection in the inner 54 

core (Gubbins et al., 2013). 55 

The distributions of light elements across ICB are largely controlled by their partition coefficients 56 

between the coexisting liquid and solid phases. With several decades’ efforts of high-pressure 57 

experiments, current knowledge of the partitioning or more broadly phase behaviors of iron alloys has 58 

been significantly extended but is still far from adequate (Morard et al., 2014). For sulfur, the focus of 59 

this study, the eutectic melting phase relations have been determined by a number of experiments 60 

(Chen et al., 2008; Chudinovskikh and Boehler, 2007; Kamada et al., 2012; Kamada et al., 2010; Li et 61 

al., 2001; Morard et al., 2014; Morard et al., 2008; Mori et al., 2017; Stewart et al., 2007; Terasaki et 62 

al., 2011; Yokoo et al., 2019). Most of these experiments are done at pressures lower than 60 GPa and 63 

the data under the real core pressures (>140 GPa) are scarce. Although the highest-pressure record in 64 
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these experiments has reached 254 GPa (Mori et al., 2017), it is still some distance away from true 65 

ICB condition (330 GPa). With these experimental constraints, people find a general trend of 66 

decreasing sulfur contents in the eutectic liquids and increasing solubility of sulfur in the solid 67 

solutions at higher pressures, which means an increasing tendency for the partition coefficients of 68 

sulfur (Kamada et al., 2012; Morard et al., 2014; Yokoo et al., 2019). 69 

Complementary to high-pressure experiments, first principles simulations (mostly based on 70 

Density Functional Theory (DFT)) provide an alternative route to unravel the partitioning and phase 71 

behaviors of iron alloys under extreme conditions. While early DFT simulations have already predicted 72 

the partition coefficient of sulfur under ICB conditions (Alfe et al., 2002a, 2003, 2007), further work 73 

is needed to establish consistency with the experimentally measured values due to the gap in the T-P 74 

regime accessible to the experiments and first principles simulations. The reason for the lack of 75 

extensive first principles simulations for the binary or more complex iron alloying systems is the 76 

extremely high computational cost of such simulations, typically taking many orders of magnitude 77 

more than corresponding simulations employing empirical atomistic potentials, which however are 78 

generally not accurate enough to give meaningful predictions at extreme conditions.  79 

In this study, we are taking a different approach and use a new generation of surrogate models in 80 

place of DFT, interatomic potentials made using machine learning techniques (Rupp, 2015). The basic 81 

idea of this approach is to get a relatively small amount of DFT data (total energies, forces and stresses 82 

from a short MD trajectory) and construct nonparametric potentials that approximate the true ab initio 83 

Born-Oppenheimer potential energy surface very closely and then carry out the extensive sampling 84 

using the potentials. With newly constructed highly accurate potentials for the Fe-S binary system, 85 

combining with rigorous free energy calculations, our efforts in this study not only extend the partition 86 
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coefficients of sulfur to the overlapping T-P regime of experiments and simulations but also provide a 87 

general and extendible framework for effectively predicting the phase behaviors of multi-component 88 

iron alloying systems at extreme conditions. 89 

 90 

2. Methods 91 

2.1. Machine learning potentials 92 

We use the Gaussian Approximation Potential (GAP) (Bartok et al., 2010), essentially a kernel 93 

ridge regression method (Kung, 2014). This is just one of a class of recently popularized machine 94 

learning methods for creating nonparametric interatomic potentials, which has been shown to be very 95 

successful in tackling difficult materials modelling problems, ranging from investigating the structure 96 

of amorphous materials (carbon (Deringer et al., 2017, 2019), silicon (Bartók et al., 2018)), the 97 

mechanics of metals (tungsten (Szlachta et al., 2014), iron (Dragoni et al., 2018)) to molecular liquids 98 

such (water (Bartók et al., 2013a), methane (Veit et al., 2019). There are many alternatives, using other 99 

regression frameworks, such as artificial neural networks (Behler and Parrinello, 2007) and even linear 100 

regression (Shapeev, 2017; Drautz, 2019). All these methods are improvable, since using more input 101 

data typically leads to more accurate potentials, due to the nonparametric nature of the functional forms. 102 

The theoretical details of the GAP model can be found elsewhere (Bartók et al., 2013b; Ceriotti et 103 

al., 2018), we only give a high-level description of the key formula here. Assuming the Born-104 

Oppenheimer potential energy surface of a set of atoms is a smooth function of the atomic coordinates, 105 

we write the total energy as a sum of atomic contributions 106 

𝐸 = ∑ (𝒒𝑖)𝑖     (1) 107 

where the short-ranged local atomic energy  is assumed to depend explicitly on the positions of the 108 
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atoms within a sphere of radius rcut centered on atom i and qi is a vector representing its local atomic 109 

environment. In the GAP framework, Gaussian process regression is used to model , 110 

(𝒒) = ∑ 𝑠𝐾(𝒒𝑠, 𝒒)𝑠 𝐤(𝒒)T   (2) 111 

Given two atoms i and j, the kernel function 𝐾(𝒒𝑖 , 𝒒𝑗) is the expected covariance of the respective 112 

local atomic energies (𝒒𝑖) and (𝒒𝑗), and can be interpreted as a measure of similarity of the two 113 

local atomic environments. We choose the Smooth Overlap of Atomic Positions (SOAP) kernel 114 

(Bartók et al., 2013b), 115 

𝐾(𝒒𝑖 , 𝒒𝑗) = 𝑤
2 |𝒒𝑖̂𝒒𝑗̂|   (3) 116 

where the descriptor 𝒒𝑖̂ is the rotational power spectrum of the atomic neighbor density, which is a 117 

smooth and regular function, invariant to rotation and permutation of like atoms. The key advantage 118 

of the SOAP representation is that there are very few empirical parameters needed, basically the cutoff 119 

distance, the Gaussian smearing of atomic positions (essentially band-limiting the spherical Fourier 120 

transform of the neighbor density), and small integer power  to which the linear SOAP kernel is raised 121 

to, controlling the body order of the resulting force field, such that higher exponents result in higher 122 

order many-body terms. All the hyper-parameters, including those inherent in the definition of the 123 

rotational power spectrum are listed in Table 1. 124 

 125 

2.2. Thermodynamics for predicting the partition coefficient 126 

For the Fe-S binary systems, the partition coefficient of sulfur and the other melting properties are 127 

determined by the following chemical equilibrium between the liquid and solid phase: 128 


S

liq
(𝑇, 𝑃, 𝑐S

liq
) = 

S
sol(𝑇, 𝑃, 𝑐S

sol)      (4) 129 


Fe

liq
(𝑇, 𝑃, 𝑐S

liq
) = 

Fe
sol(𝑇, 𝑃, 𝑐S

sol)     (5) 130 
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where 
S
 and 

Fe
 are the chemical potential of sulfur and iron respectively, the superscripts liq and 131 

sol denote liquid and solid phase respectively and cS is the mole fraction of sulfur in the solution. 132 

Since the chemical potential 
S
 diverges logarithmically in the low-concentration limit (𝑐S0), 133 

at each temperature and pressure it is useful to express 
S
 as (Alfe et al., 2002a) 134 


S

= 𝑘𝐵𝑇𝑙𝑛𝑐S + 
S

̅̅ ̅(𝑐S)  (6) 135 

where 
S

̅̅ ̅(𝑐S) is well behaved for all concentrations. While many models have been proposed for 136 


S

̅̅ ̅(𝑐S) (or its equivalences), such as various symmetric/asymmetric regular solution models (White, 137 

2013) or those proposed by Ma (2001), the following expansion for 
S

̅̅ ̅(𝑐S) is simple but practically 138 

meaningful  139 


S

̅̅ ̅(𝑐S) = 
S
† + S𝑐S + 𝑂(𝑐S

2)  (7) 140 

In line with previous studies (Alfe et al., 2007; Gubbins et al., 2013; Labrosse, 2014), we neglect higher 141 

order terms (𝑂(𝑐S
2)) in this study. Therefore, only two parameters of 

S
† and S are involved in the 142 

calculations and we obtain the following equation for the chemical potential of sulfur 143 


S

= 𝑘𝐵𝑇𝑙𝑛𝑐S + 
S
† + S𝑐S  (8) 144 

According to the Gibbs-Duhem equation, we can straightforwardly get the chemical potential of 145 

iron 146 


Fe

= 
Fe
0 + (𝑘𝐵𝑇 + S)𝑙𝑛(1 − 𝑐S) + S𝑐S   (9) 147 

where 
Fe
0  is the chemical potential of pure iron at the same temperature and pressure, which is the 148 

Gibbs free energy per atom of pure iron.  149 

Then the Gibbs free energy (G) of the whole system can be expressed by 150 

𝐺 = 𝑁SS
+ 𝑁FeFe

= 𝑁[𝑐SS
+ (1 − 𝑐S)

Fe
] = 𝑁{[𝑐S𝑙𝑛𝑐S + (1 − 𝑐S) ln(1 − 𝑐S)]𝑘𝐵𝑇 + (1 −151 

𝑐S)
Fe
0 + 𝑐SS

† + [𝑐S + (1 − 𝑐S) ln(1 − 𝑐S)]S}      (10) 152 
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where NFe is the number of iron atoms, NS is that of sulfur atoms in the system and N= NFe+ NS. 153 

Now with the simulated free energies of both liquid and solid phases at several concentrations, we 154 

can regress the effective values of 
S
† and S with Eqn. (10) and the chemical potentials of sulfur 155 

and iron can be calculated thereafter with Eqns. (8) and (9). Finally, the partition coefficient of sulfur 156 

(DS) can be derived from the equilibrium compositions from Eqns. (4) and (5), i.e., 𝐷S = 𝑐S
sol/𝑐S

liq
. 157 

 158 

2.3. Free energy calculations 159 

In this study, we calculated the Helmholtz free energies (F) using thermodynamic integration, 160 

which rigorously relate the free energy (F1) of the target system with that of a reference system (F0) 161 

by 162 

𝐹1 = 𝐹0 + ∫
𝜕𝐹

𝜕
𝑑

1

0
   (11) 163 

where  is a coupling parameter relates the two systems and F is the free energy of the system with 164 

total energy U, which is a hybrid total energy potential with the property of being equal to the 165 

reference total energy U0 for =0 and the target total energy U1 for =1. If we choose U=(1)U0+U1, 166 

then the integrand in Eqn. (11) becomes the energy difference as a function of , 
𝜕𝐹

𝜕
=167 

〈𝑈1 − 𝑈0〉𝑈̅̅ ̅̅ (), where 〈 〉 means thermal average in the ensemble generated by U. 168 

 169 

2.3.1. Liquid phases 170 

For the liquids, we choose the ideal gas at the same temperature and composition as the reference 171 

system, i.e., 172 

𝐹0
𝑖𝑑𝑒𝑎𝑙 = −𝑘𝐵𝑇ln (

𝑉𝑁Fe+𝑁S

𝑁Fe!𝑁S!ɅFe
3𝑁Fe ɅS

3𝑁S
)   (12) 173 

where Ʌ=h/(2MkBT)1/2 (h is the Planck constant, kB is the Boltzmann constant, M is the atomic mass 174 
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of iron or sulfur and T is the temperature) is the thermal wavelength of iron or sulfur. Note that in 175 

standard statistical mechanics the Stirling approximation is usually written as lnN!  NlnN  N, but 176 

since we are dealing with small values of N, the natural logarithm of first-order Stirling’s series 177 

ln𝑁!  𝑁ln𝑁 − 𝑁 +
1

2
ln (2𝑁) was used instead in the calculation of Eqn. (12) to get more accurate 178 

free energy (Arfken, 1985). 179 

To integrate from ideal gas to the target system, since the energetic changes are large, especially 180 

near the end-points, we used the Gauss-Lobatto quadrature by the following variable transformation 181 

(𝑥) = (
𝑥+1

2
)

1

1−𝑘
   (13) 182 

with x spans from -1 to 1. Then the integral in Eqn. (11) becomes 183 

∫
𝜕𝐹

𝜕
𝑑

1

0
=

1

2(1−𝑘)
∫ 𝑈̅̅ ̅̅ ((𝑥))(𝑥)𝑘𝑑𝑥

1

−1


1

2(1−𝑘)
∑ 𝑥𝑖

𝑈̅̅ ̅̅ ((𝑥𝑖))(𝑥𝑖)
𝑘𝑛

𝑖=0      (14) 184 

k in Eqns. (13) and (14) is selected to be 0.8, which avoids the endpoint singularity since the 185 

𝑈̅̅ ̅̅ ((𝑥𝑖))(𝑥𝑖)
𝑘 can be safely set to be zero when =0 without loss of accuracy (Dorner et al., 2018). 186 

In Fig. A.1(a) of Appendix A, we show a typical transformed integrand as a function of the integration 187 

variable x. 188 

The weight functions 𝑥𝑖
 in Eqn. (14) can be calculated by 189 

𝑥𝑖
=

2

𝑛(𝑛−1)[𝑃𝑛−1(𝑥𝑖)]2   (15) 190 

where Pn are the Legendre polynomials. Practically we include 8 abscissas (n=8) in our calculations 191 

of Eqn. (14). 192 

 193 

2.3.2. Solid phases 194 

For the pure iron systems, we choose the harmonic hcp-lattices at the same temperature and 195 

composition as the reference systems, whose free energies can be calculated through lattice dynamics 196 
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and quasi-harmonic approximation theory (Alfè, 2009). From the harmonic system to the target system, 197 

since the energetic changes are small and vary smoothly with the integration variable (as shown in Fig. 198 

A.1(b) of Appendix A), we use the simpler three-point Gauss-Legendre quadrature by the following 199 

linear transformation 200 

(𝑥) =
𝑥+1

2
  (16) 201 

with x spans from -1 to 1. Then the integral in Eqn. (11) becomes 202 

∫
𝜕𝐹

𝜕
𝑑

1

0
=

1

2
∫ 𝑈̅̅ ̅̅ ((𝑥))𝑑𝑥

1

−1


1

2
∑ 𝑥𝑖

𝑈̅̅ ̅̅ ((𝑥𝑖))3
𝑖=1      (17) 203 

For a solid solution of Fe-S alloy under specific T-P condition, we swapped the sulfur atoms into 204 

irons and calculated the Helmholtz free energy change at the same volume through thermodynamic 205 

integration (Eqn. (11)). In this case, the energy barriers for interchanging the atoms at various lattice 206 

sites greatly hinder a full sampling of the phase space through simple molecular dynamic simulations 207 

and the results would inevitably depend on the initial configurations. To circumvent this problem and 208 

to avoid exhaustively sampling all the possible configurations with distinct sulfur orderings, which is 209 

infeasibe even considering the reducible symmetries, we used the more efficient hybrid Monte 210 

Carlo/molecular dynamics simulations (Widom et al., 2014). Since the swapping of species changes 211 

the identities and masses of the atoms, the variations of ideal lattice gas contributions to the free 212 

energies, which can be calculated through Eqn. (12), need to be counted in the free energy changes. 213 

 214 

3. Simulation details 215 

3.1. First principles simulations 216 

To train the GAP models, we carried out a number of density functional theory (DFT) simulations 217 

with VASP, with the projector-augmented-wave method (Kresse and Joubert, 1999). We use the PBE 218 
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form of Generalized Gradient Approximation (GGA) (Perdew et al., 1996) with valence electrons of 219 

16 (valence configuration 3s23p63d74s1) for iron, which has been demonstrated to closely resemble the 220 

all-electron potential and be important for obtaining accurate melting properties (Sun et al., 2018), and 221 

6 (3s23p4) for sulfur. 222 

Extensive molecular dynamics (MD) simulations have been deployed to sufficiently sample the 223 

T-P-X space spanning over 0-25 at. % sulfur concentrations, from 1000 K to 7000 K and from about 224 

50 GPa to 500 GPa for the solid phases, and from 4000 K to 10000 K and from about 100 GPa to 500 225 

GPa for the liquid phases. Overall 243 simulations have been carried out for the solid phases and 215 226 

simulations for the liquid phases. The solid solutions were initiated with hexagonal close-packed (hcp) 227 

structures with 96 atoms in the supercells (443 extension of the unit-cell). At high enough 228 

temperatures, the solids would always be melted and the final configurations of these runs were 229 

adopted to initialize liquid simulations. MD trajectories were propagated in the NVT ensemble with 230 

the Nosé thermostat for 3~6 ps. At each time step (1 fs interval), the electronic structure is calculated 231 

at the Brillouin zone center with an energy cutoff (ENCUT) of 500 eV and iteration convergence 232 

criterion (EDIFF) of 10-6 eV. 233 

From these sampled configurations, we extracted independent configurations every 100-150 steps 234 

and re-calculated their energies and forces with much higher precisions. The energy cutoff was 235 

increased to 800 eV and the Brillouin zone sampling grid of spacing (KSPACING) was set to be 0.3 236 

Å-1, which is well converged as revealed by our benchmarks with finer spacing of 0.2 Å-1. The 237 

projection operators were evaluated in reciprocal space (LREAL=.FALSE.). As in the MD simulations, 238 

the influences of finite temperature on the electronic free energy were accounted through the Mermin 239 

functional (Mermin, 1965) with Fermi-Dirac smearing of electron occupancy (ISMEAR= 1) and an 240 
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electronic temperature equal to that of the ions.  241 

 242 

3.2. Training of GAP models 243 

The GAP models were trained through the QUIP code (Bartok et al., 2010) based on the high 244 

precision DFT simulation results. Since the potential energy surfaces sampled by these simulations are 245 

implicitly a function of the electronic temperature, at each temperature we obtained DFT energies that 246 

include electronic-entropy, the forces and stresses from over 1000 configurations and organized them 247 

into an extended xyz file for the GAP model training, as explained in Appendix B.  248 

We list the main hyper-parameters of trainings for the GAP models in Table 1. In these parameters, 249 

the zero points of the energy per atom (e0) of iron and sulfur find their contributions mostly from the 250 

electronic entropy and therefore are temperature-dependent. They were evaluated by single-step DFT 251 

calculations with only one atom in vacuum (without the effects of the periodic images). Finally, to 252 

keep models robust at very short interatomic distances, which may not be well sampled in the DFT-253 

MD simulations, we explicitly calculated the dimer potentials for pairs of Fe-Fe, Fe-S and S-S and 254 

used their repulsive part as baselines. Details for a typical GAP model training with the QUIP code can 255 

be found in Appendix B. 256 

 257 

3.3. Atomistic simulations with the GAP models 258 

With the derived GAP models, we carried out three types of atomistic simulations in this study: 259 

simple molecular dynamics simulations for pure iron and Fe-S liquids, hybrid Monte Carlo/molecular 260 

dynamics simulations for Fe-S solid solutions, and lattice dynamics simulations for pure solid iron to 261 

get the reference harmonic free energy. The energetics and forces in all these simulations were 262 
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calculated with the engine of VASP by invoking a custom-made interface to QUIP. External scripts 263 

were utilized to realize the construction of Metropolis Markov chain in Monte Carlo move and relevant 264 

lattice dynamics calculations. 265 

For simple molecular dynamics simulations, at each T and composition X, we carried out an NPT 266 

simulation to evaluate the volume and lattice parameters at specific pressure. Parrinello-Rahman 267 

dynamics with Langevin thermostat was adopted to control the pressure and temperature in the 268 

trajectory. For the liquid phases, the unit cells were constrained to be cubic throughout the simulations; 269 

while for the solid iron, the lattice parameters are constrained to be orthorhombic with b/a ratio fixed 270 

to that of the hcp-lattice. In both the liquid and solid phases, we generally used 180 atoms, which is 271 

demonstrated to be large enough to get converged equations of state and the free energy changes with 272 

respected to the referenced systems (Sun et al., 2018). By discarding the first 5 ps (5000 MD steps) as 273 

pre-equilibrium stage, we obtained the averaged lattice parameters from the last 20 ps (20000 MD 274 

steps) trajectories. Then we carried out an NVT simulation with these lattice parameters, confirming 275 

that the system was in a hydrostatic state with deviatoric stresses less than 0.5 GPa. 276 

For the solid solutions, at each temperature and composition, with sulfur atoms initially randomly 277 

substituted on the hcp-Fe lattice sites, we carried out the hybrid Monte Carlo/molecular dynamics 278 

simulations (Widom et al., 2014) in a sequence of every 20 MD steps followed by one attempted Monte 279 

Carlo (MC) species swap. With a duration of overall 20 ps MD steps and 1000 attempted species swaps, 280 

the simulation finds its convergence with well-sampled pressures/volumes and energies and this turns 281 

out to be important for the free energy calculations. 282 

Finally, lattice dynamics simulations were deployed with PHON through small displacement 283 

method (Alfè, 2009). Based on the final configurations of above-mentioned equilibrated molecular 284 
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dynamics simulations, with relaxations of the time-averaged ionic positions, the interatomic force 285 

constants were calculated by setting a displacement amplitude of 0.01 Å for each atom. A dense 286 

30×30×30 mesh was used for the q-point sampling in the first Brillouin zone to evaluate the vibrational 287 

density of state. For each structure of solid phase, we carefully confirmed that the phonon spectra are 288 

dynamically stable with no imaginary phonon frequencies, as demonstrated in Fig. A.2 of Appendix 289 

A. In the framework of quasi-harmonic approximation theory, the harmonic free energies at finite 290 

temperatures can be calculated. 291 

 292 

4. Results 293 

4.1. Benchmarks of the GAP models 294 

As the fundamental benchmarks of the derived GAP models in this study, we systematically 295 

compare their atomic forces, stresses and energies with those from DFT simulations. As shown in Fig. 296 

1(a), which includes 344928 data retrieved from both simulations at 6000 K, we find very good 297 

agreements between the GAP forces and DFT forces. The deviations of the atomic forces are generally 298 

within 2 eV/Å and the average error is around 0.2 eV/Å. The GAP model also reproduces the stress 299 

tensors very well, with averaged error of the normal components less than 0.8 GPa as illustrated in Fig. 300 

1(b). Furthermore, it is remarkable that the GAP energies agree excellently with those from DFT 301 

simulations, with most of the deviations in GAP energy within 10 meV/atom and the averaged energy 302 

error of 3.6 meV/atom as shown in Fig. 1(c). These accurate depictions of microscopic interactions 303 

and reproductions of the energies guarantee the almost identical samplings of the phase spaces with 304 

the GAP models as compared with those of the DFT simulations. 305 

To further demonstrate the accuracy of the GAP models for the free energies, we carried out a 306 
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benchmark simulation with the GAP model at 6000 K. The NVT simulation trajectory is propagated in 307 

a 4.6 cm3/mol cell with 88 iron atoms and 8 sulfur atoms (corresponding to about 237 GPa). We 308 

randomly picked out 20 independent configurations from the trajectory and carried out high precision 309 

DFT simulations (with parameters mentioned in the second part of Sec. 3.1). Since the energies are 310 

sufficiently close between GAP and DFT, through the one-step thermodynamic perturbation method, 311 

𝐹 = 𝑘B𝑇𝑙𝑛〈𝑒−𝑈/𝑘B𝑇〉, we estimated the free energy deviation to be only about 0.3 meV/atom (0.029 312 

kJ/mol). 313 

In Fig. 2, we show the benchmark of the GAP models for the microscopic structures. It is evident 314 

that the simulation with GAP models has perfectly sampled the local structures around different atoms 315 

as compared with those from the DFT simulation. Just as previous findings from first principles 316 

simulations (Alfe and Gillan, 1998; Alfe et al., 2003), we can easily observe the net S-S repulsions and 317 

Fe-S attractions in the solution. And almost all the structural features (positions of local maximums 318 

and minimums, and spreading of the peaks) of the Fe-S system have been reproduced in the GAP 319 

model simulation. Since the radial distribution functions are closely related with the free energy (Ben-320 

Naim, 2006), this benchmark again verifies the robustness of the GAP models in predicting the 321 

thermodynamic properties of Fe-S systems.   322 

 323 

4.2. Free energy and melting of pure iron 324 

To determine the melting points of pure iron, we firstly carried out some explorative simulations 325 

for its equation of states. As shown in Fig. 3(a), squeezing the liquid or expanding the solid inevitably 326 

find phase transitions when the pressure deviates far enough from the melting point (Pm with 327 

uncertainty in the figure, determined below). We carefully inspect the radial distribution functions, 328 
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mean square displacements and fluctuations of energies and pressures in the trajectories to verify the 329 

stabilities of the simulations within the simulation length scales. Based on these points we get the 330 

auxiliary Birch-Murnaghan equation of state for the liquid and solid respectively, which are shown in 331 

Fig. 3(a) with dashed curves and the numerical data can be found in Appendix C. It is apparent that 332 

the melted solids quickly establish new equilibrium within the duration of the simulation and their P-333 

V relations match the predictions of the liquid EOS quite well, while the solidifying liquids take much 334 

longer time to be fully crystalized and the averaged volumes/pressures are still slightly larger than the 335 

solid EOS predictions. These points give us rough estimates of the upper and lower limits of the 336 

melting pressure. In Fig. 3(a), we also include the curves provided by Komabayashi and Fei (2010) 337 

based on existing experimental data and find very good agreements with the simulated EOS. 338 

Based on the observations of these simulations, for each temperature we chose a point to calculate 339 

its free energy directly with the thermodynamic integration techniques. As listed in Table 2, we got the 340 

free energies of eight points, which were used as references for the profiles over the whole pressure 341 

range with the aid of the auxiliary equation of state mentioned above. Then through the crossover of 342 

these Gibbs free energy profiles of the liquid and solid phases we finally determined the melting points, 343 

as demonstrated in Fig. 3(b).  The uncertainty of melting pressure was estimated as the half of 344 

distance between the upper and lower bound of the crossover by counting the errors of free energies. 345 

Fig. 4 shows the calculated melting points of iron at four temperatures. By interpolating these 346 

points with simple second-order polynomial, we obtained the following equation for the simulated 347 

melting temperature (Tm) of pure iron (valid from about 110 GPa to 430 GPa) 348 

𝑇m = 2572 + 14.094𝑃 − 0.00891𝑃2  (18) 349 

From this equation and considering the error bars of the four points in Fig. 4, the melting temperature 350 
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at 330 GPa is estimated to be 6253170 K, comparing very well with 6170200 K as recently estimated 351 

by Sun et al. (2018) and 6350±300 K as predicted by Alfe et al. (2002c). In contrast, simulations by 352 

Belonoshko et al. (2000) and Laio et al. (2000) give significantly higher (7100 K) or lower (5400 K) 353 

melting temperature, respectively, at the inner core boundary. With careful evaluations of the free 354 

energy errors from the classical potentials used in their studies, it is possible to correct these results to 355 

be in much better accordance with the DFT simulations (Alfe et al., 2002b).  356 

Compared with the experiments, it is remarkable that our results almost perfectly agree with the 357 

measurements and extrapolations by Anzellini et al. (2013) over the entire pressure range. Shock wave 358 

measurements by Nguyen and Holmes (2004) and Brown and McQueen (1986) also fall into the same 359 

trend. On the other hand, diamond anvil measurements by Boehler (1993) and Sinmyo et al (2019) and 360 

shock wave measurements by Yoo et al. (1993) give much lower or higher melting temperatures by up 361 

to over 1000 K. The exact reasons for these remarkable observed differences in experiments are still 362 

under debate due to the extreme technical challenges (Aquilanti et al., 2015; Morard et al., 2018). 363 

 364 

4.3. Free energies of Fe-S alloys 365 

For the Fe-S alloys, we deployed simulations with 9-36 sulfur atoms in the 180-atom cells 366 

(corresponding to cS=0.05~0.20, which is within the stability regime of hcp-structured Fe-S solid 367 

solutions according to previous studies (Cote et al., 2008; Gavryushkin et al., 2016)) and for each 368 

concentration we calculated its free energies through the thermodynamic integration techniques at 369 

several T-P conditions (as listed in Table 3), based on which the free energies over the pressures can 370 

be derived through the auxiliary Birch-Murnaghan equation of states at various temperatures, as listed 371 

in Appendix C.  372 
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In Fig. 5, we show the simulated Gibbs free energies of Fe-S at 4000 K, 250 GPa and 6000 K, 330 373 

GPa. We include the free energies of solid solutions calculated from thermodynamic integrations based 374 

on simple MD simulations (open blue circles) to emphasize the importance of enhanced sampling. 375 

With quasi-random initial occupations of sulfur atoms on the hcp-lattice sites, these free energies agree 376 

with those from more sophisticated hybrid MC/MD samplings at low concentrations, but the deviations 377 

become more and more severe at high concentrations. The clues for explaining such errors can be 378 

found in Fig. 6, which illustratively compares the evolutions of thermodynamic properties and 379 

structures in the simulations at 4000 K, 4.3893 cm3/mol and cS=0.20. From Fig. 6(a), obviously the 380 

hybrid MC/MD sampling quickly finds a more stable state with total energy decreased by over 8.4 381 

kJ/mol within about 4000 steps (involving only 200 attempted MC swapping of the species). The major 382 

structural feature of this more stable state is the decreased number of nearest-neighbor S-S pairs (NNS-383 

S), as shown in the bottom plot of Fig. 6(a) and demonstrated in Fig. 6(b) by the radial distribution 384 

functions. NNS-S decreases from the initial quasi-random arrangement value (around 43 here for a 180-385 

atom cell with 36 sulfur atoms, i.e., NNS-S=0.5zNScS, where z=12 for the hcp-lattice) to less than half 386 

of the initial value (around 19 in Fig. 6), and the S-S coordination number decreases from 2.5 to 1.1. 387 

Since the interactions among nearest-neighbored S-S pairs dominate the energetic change of the Fe-S 388 

solution as compared with pure iron (Alfe et al., 2002a), the net repulsions of S-S interactions here 389 

sampled by the hybrid Monte Carlo/molecular dynamics simulations effectively push the systems to 390 

lower energy states. As shown in the middle plot of Fig. 6(a), the accommodations of sulfur atoms in 391 

the more appropriate sites result in a smaller pressure by over 4.2 GPa, which would further contribute 392 

to the decreasing of free energy. For the readers’ reference, the converged configurations of Fe-S solid 393 

solutions through hybrid Monte Carlo/molecular dynamics simulations at various conditions can be 394 
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found in Appendix C. 395 

 396 

4.4. Partitioning of sulfur  397 

From the data points in Fig. 5, we obtained the free energy profiles over the composition range by 398 

linear least-square regressions with Eqn. (10). The partitioning of sulfur in the coexisting liquid and 399 

solid iron phases can be firstly inferred from the variations of the two regressed parameters over 400 

temperatures and pressures. As listed in Table 4, the difference of 
S
†,sol − 

S

†,liq
 is positive. It is almost 401 

invariant to pressure but shows clear temperature dependence: it is about 65 kJ/mol at 4000 K, around 402 

21 kJ/mol at 5000 K and 13 kJ/mol at 6000 K. These observations demonstrate that sulfur would 403 

generally prefer the liquid iron phase, as expected, but this tendency would be decreased at higher 404 

temperatures. On the other hand, the difference of S
sol − S

liq
 keeps increasing from -192 kJ/mol at 405 

4000 K and 150 GPa to 135 kJ/mol at 6000 K and 330 GPa. This opposite trend would greatly balance 406 

the partitioning of sulfur between the two phases. 407 

By solving Eqns. (4-5), we quantitatively calculated the partition coefficients of sulfur 408 

(𝐷S = 𝑐S
sol/𝑐S

liq
), as shown in Fig. 7. At 250 GPa and 330 GPa, similar values of DS are predicted over 409 

temperature change of 1000 K, which reveals the minor temperature dependence of DS and this is in 410 

accordance with the experimental findings (Kamada et al., 2010; Yokoo et al., 2019). For pressures 411 

lower than 250 GPa, we find remarkable pressure dependence of DS: its value decreases by over 40% 412 

from 250 GPa to 150 GPa. The simulated data of DS in this study perfectly match the available 413 

experimental measurements and their trends up to 254 GPa (Kamada et al., 2012; Kamada et al., 2010; 414 

Li et al., 2001; Mori et al., 2017; Stewart et al., 2007; Yokoo et al., 2019). From 250 GPa to higher 415 

pressures, it is notable that DS becomes almost pressure independent with an averaged value of 416 
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0.75±0.07. This is in good agreement with the early prediction by Alfe et al. (2002a) through DFT 417 

simulations. The simple MD simulations with random solid solutions turn out to significantly 418 

underestimate DS (~0.53±0.04 as illustrated in Fig. 7), which again emphasizes the importance of 419 

sufficient sampling with the hybrid Monte Carlo/molecular dynamics simulations. 420 

 421 

5. Implications 422 

According to our simulations in this study, the melting of pure iron at Earth’s current inner core 423 

boundary pressure (330 GPa) results in a density jump (solliq) of 0.24 g/cm3, which amounts to 424 

1.8% of sol (i.e., /sol1.8%) and compares very well with those predicted by previous simulations 425 

(as listed in the Table II of Sun et al. (2018)). This density jump is far smaller than the seismologically 426 

observed value of 0.6 g/cm3 (Dziewonski and Anderson, 1981) or 0.8±0.2 g/cm3 (Masters and Gubbins, 427 

2003). Assuming Fe-S binary model for the Earth’s core and the temperature around 6000 K, we would 428 

need around 20% sulfur (𝑐S
liq
0.20) to match the outer core density (sol=12.166 g/cm3, according to 429 

Dziewonski and Anderson (1981)) at ICB. With smaller amount of sulfur coexisting in the inner core, 430 

𝑐S
sol = 𝐷S𝑐S

liq
= 0.15, the density jump  increases to 0.39 g/cm3. So the partitioning with sulfur 431 

alone is insufficient to account for the observed density jump across the Earth’s inner core boundary 432 

and the Earth’s core composition should be more complex than the simple Fe-S binary, which supports 433 

the findings of previous studies (Alfe et al., 2002a, 2003, 2007). 434 

Although the exact core compositions are still elusive, geochemical studies often place around 2 435 

wt% sulfur in the Earth’s core (Allegre et al., 1995; McDonough, 2003; Wood et al., 2006). With this 436 

amount of sulfur, according to the comprehensive explorations by Badro et al (2014), the outer core 437 

would additionally need about 2.6 wt% oxygen and 1.8 wt% silicon to best fit the densities and seismic 438 
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velocities at ICB and CMB (core mantle boundary). This leads to an outer core composition with 439 

𝑐O
liq

= 0.083, 𝑐Si
liq

= 0.033 and 𝑐S
liq

= 0.032. Since DSi1, DO<0.01 (calculated from the parameters 440 

provided by Alfe et al (2002a)) and DS =0.75, we would estimate the coexisting inner core composition 441 

with about 1.7 wt% silicon and 1.4 wt% sulfur (i.e., 𝑐O
sol 0 , 𝑐Si

sol 𝑐Si
liq

= 0.033  and 𝑐S
sol =442 

𝐷S𝑐S
liq

= 0.024). Now with the solid solution model provided by Li et al (2018), the obtained inner 443 

core density would agree well with the PREM model by Dziewonski and Anderson (1981) with a 444 

relative error of 0.5% and the density jump would be around 0.66 g/cm3. Note that we have not included 445 

hydrogen and carbon here since the properties of their alloys with iron are much more unclear, although 446 

they may be potentially important for explaining the seismic observations under certain circumstances 447 

(Li et al., 2018; Li et al., 2019; Mashino et al., 2019; Umemoto and Hirose, 2020). 448 

If the above core composition is plausibly in accord with geochemical and geophysical constraints, 449 

then the roles of sulfur on the geodynamics of Earth’s core should be minor. This may be inferred from 450 

its contribution to the density jump (0.66 g/cm3 as mentioned above), which is important for evaluating 451 

the gravitational energy to drive the geodynamo (Stacey and Stacey, 1999; Gubbins et al., 2004). By 452 

“turning on” the partitioning coefficients stepwise (i.e., we inspect the differences by switching the DO 453 

and DS from 1.0 to the expected values), the exclusion of oxygen in the inner core and partitioning of 454 

sulfur would account for about 0.44 g/cm3 and 0.04 g/cm3 respectively, in addition to 0.18 g/cm3 from 455 

the assumed congruent freezing (i.e., the solid is assumed to be in the same composition with the 456 

coexisting liquid). It seems that the 6% contribution here from sulfur cannot be entirely neglected, but 457 

this is likely to be an upper bound, since sulfur is recently found to be less siderophile in the Earth’s 458 

core (Suer et al., 2017). 459 

Finally, the almost invariant partition coefficient from 250 GPa to higher pressures is interesting. 460 
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It would imply a constant partitioning of sulfur since the advent of the solid inner core to the time when 461 

its radius expands to at least 1000 km larger as compared with the present size. This would support a 462 

stable stratification of sulfur in the Earth’s inner core, since more sulfur precipitates in the inner core 463 

as the outer core sulfur concentration increases over time (Cottaar and Buffett, 2012; Deguen and 464 

Cardin, 2011). By contrast, without counting the T-P dependence of the relevant parameters in the 465 

equations of chemical potentials (as listed in Table 4 and analyzed in the previous section), recent 466 

numerical simulations propose continuously decreasing partition coefficient with time and find its 467 

destabilizing buoyancy effects on the stratification of the Earth’s inner core (Gubbins et al., 2013; 468 

Labrosse, 2014; Lythgoe et al., 2015). Our results in this study show that these simulations may need 469 

to be re-evaluated at least for sulfur based on our results.  470 

 471 

6. Concluding remarks 472 

In this study, we derive new generation nonparametric interaction potentials for Fe-S systems 473 

applicable under Earth’s core conditions. Based on machine learning techniques, these Gaussian 474 

Approximation Potentials are shown to reproduce the first principles simulation results with 475 

unprecedented accuracies, including the interatomic forces, local structures and, most importantly, the 476 

free energies that fundamentally govern all thermodynamic properties. With a similar approach, we 477 

will be able to derive accurate potentials for more complex systems (e.g., multicomponent systems 478 

including elements of Ni, O, S, Si, C, H), which are very difficult to investigate solely with first 479 

principles techniques due to the increase in the size of the phase space. 480 

The substantial initial efforts of training the machine learning potentials provide a return in the 481 

remarkable efficiency in sampling the phase spaces of iron and its alloys under various temperature 482 
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and pressure conditions. It is then possible for us to simulate free energies and predict phase behaviors 483 

with fundamentally rigorous thermodynamic integration method within affordable computational cost. 484 

In fact, to thoroughly sample the phase space around the liquidus and solidus of Fe-S solutions, we 485 

have carried out over 500 independent atomistic simulations in this study, each with 180 atoms and at 486 

least 20000 steps. The current implementation of the GAP models takes about 12 CPU seconds for 487 

each step in each run. With parallel acceleration of 24 CPU cores for each run, we have managed to 488 

accomplish the simulations within two months. As a comparison, the direct high precision DFT 489 

simulations are about three orders of magnitudes slower than the GAP simulations. 490 

As a first application of the framework mentioned above, we focus in this paper on the partition 491 

coefficients of sulfur between the solid and liquid iron under Earth’s core conditions. While the results 492 

at ICB are in good agreements with early DFT simulations, we obtained the melting and partitioning 493 

behaviors over the entire relevant T-P regime of the Earth’s core. In particular, the invariance of 494 

partition coefficients from 250 GPa to higher pressures found in this study provides new constraint on 495 

the compositions and dynamics of Earth’s inner and outer core. 496 

Finally, since the phase behaviors of iron alloys are comprehensively complex, it should be noted 497 

that much more endeavors are needed beyond our current efforts of predicting sulfur partitioning in 498 

Fe-S binary systems under core conditions. The interplays of different impurities, the possible 499 

stabilization of face-cubic-centered (fcc) or even body-cubic-centered (bcc) structures, the 500 

immiscibility of liquid iron-alloying systems, the heterogeneities of the Earth’s inner core, etc., can all 501 

be important to estimate the roles of light elements in real Earth’s core. Interests in these issues would 502 

imply quickly growing demands of computations over broader phase spaces. The high accuracy and 503 

efficiency gained by the framework proposed in this study would benefit providing new constraints 504 
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over all these issues.  505 

 506 

Supplementary materials 507 

Supplementary materials associated with this article can be found in: Appendix A that includes 508 

several supporting figures for the main text; Appendix B that has the details for a GAP model training 509 

with the QUIP code; Appendix C that includes the complementary research data and goes to the 510 

Electronic Annex. 511 

 512 

Research data for this article 513 

Most data used in this article are given in Tables 2-4, complementary research data are included 514 

in the Electronic Annex. 515 
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 699 

Table 1. Hyper-parameters for training the GAP models 700 

GAP software version 1527075646 

Atomic environment kernel SOAP 

rcut 5.0 Å 

r 1.0 Å 

energy default 0.002 eV/atom 

force default 0.05 eV/Å 

virial default 0.05 eV/atom 

w 1.0 eV 

atom 0.5 Å 

 2 

nmax 8 

lmax 8 

Representative environments 4000 

Sparse method CUR 

e0 (eV) 

4000 K Fe:-2.70299745:S:-1.33262117 

5000 K Fe:-3.36146432:S:-1.66173158 

6000 K Fe:-4.02404024:S:-1.99085328 

7000 K Fe:-4.69558982:S:-2.32005321 

 701 

 702 

 703 

Table 2. Simulated Helmoholtz free energies (F) of pure iron 704 

T (K) 
P 

(GPa) 

Liquid Solid 

V (cm3/mol) F (kJ/mol) V (cm3/mol) F (kJ/mol) 

4000 100 5.4277 -1040.49±1.16 5.2783 -1024.35±0.46 

5000 190 4.8171 -1061.59±1.25 4.7146 -1041.26±0.48 

6000 330 4.2473 -1024.00±1.27 4.1721 -1001.65±0.59 

7000 400 4.0714 -1069.38±1.29 4.0072 -1041.69±0.94 

 705 

  706 
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 707 

Table 3. Simulated Helmoholtz free energies (F) of Fe-S alloys 708 

T (K) Phase cS V (cm3/mol) P (GPa) F (kJ/mol) 

4000 Liquid 

0.05 5.4239 100.07±0.15 -1028.15±0.81 

0.10 5.4245 100.12±0.14 -1012.87±0.77 

0.15 5.4330 99.64±0.30 -996.13±1.11 

0.20 5.4462 99.80±0.24 -978.22±0.84 

4000 Solid 

0.05 4.3603 249.61±0.05 -858.26±0.42 

0.10 4.3896 241.92±0.06 -847.21±0.42 

0.15 4.3819 243.42±0.11 -826.18±0.50 

0.20 4.3893 243.87±0.16 -804.96±0.47 

5000 Liquid 

0.05 4.8086 189.94±0.20 -1047.60±0.92 

0.10 4.7990 190.30±0.17 -1030.67±1.04 

0.15 4.7968 190.14±0.14 -1012.67±1.10 

0.20 4.7955 189.88±0.20 -992.56±0.95 

5000 Solid 

0.05 4.1225 329.36±0.05  -878.78±0.30 

0.10 4.1131 330.06±0.07  -859.37±0.31 

0.15 4.1139 328.59±0.12  -840.38±0.49 

0.20 4.1153 327.80±0.09 -820.03±0.42 

6000 Liquid 

0.05 4.2395 329.51±0.20 -1010.93±1.67 

0.10 4.2268 330.44±0.37 -992.56±1.03 

0.15 4.2195 330.32±0.17 -973.51±1.21 

0.20 4.2134 329.73±0.19 -951.78±1.26 

6000 Solid 

0.05 4.1636 329.27±0.10 -987.78±0.54 

0.10 4.1807 322.99±0.10 -977.19±0.43 

0.15 4.1692 325.74±0.20 -954.92±0.47 

 709 

Table 4. Parameters for chemical potential and free energy at various T-P conditions (Eqns. (8-10)) 710 

T 

(K) 

P 

(GPa) 

Liquid Solid 


Fe
0  (kJ/mol) 

S
† (kJ/mol) S (kJ/mol) 

Fe
0  (kJ/mol) 

S
† (kJ/mol) S (kJ/mol) 

4000 150 -237.94±1.16 116.43±1.11 463.67±12.04 -243.08±0.46 182.49±7.23 271.38±92.00 

4000 200 3.66±1.16 349.75±1.97 496.38±21.30 -6.50±0.46 415.01±5.81 317.29±73.86 

4000 250 231.91±1.16 566.66±2.19 525.74±23.73 217.31±0.46 629.14±7.19 405.41±91.53 

5000 250 132.88±1.25 518.53±6.73 322.69±72.17 128.11±0.48 542.03±2.73 365.32±31.77 

5000 300 353.11±1.25 726.27±6.97 361.62±74.72 344.14±0.48 746.94±2.80 442.20±32.65 

5000 330 480.79±1.25 844.73±6.68 393.97±71.60 469.52±0.48 865.41±2.84 478.25±33.07 

6000 330 377.61±1.27 766.37±5.51 375.25±61.15 375.48±0.50 779.01±6.12 510.14±88.08 

711 
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Figure Captions 712 

Figure 1. Comparisons of atomic forces (a), stresses (b) and energies (c) between DFT and the GAP 713 

model at 6000 K. 1178 energies, 3534 normal stress components and 344928 forces are 714 

included in these comparisons. The red dashed lines are guides for perfect matches. In the 715 

inset plots, we show the cumulative probability distribution of force component errors and 716 

energy errors (relative to reference DFT calculations). 717 

Figure 2. Comparisons of the radial distribution functions of a Fe-S liquid (6000 K, 237 GPa and 718 

cS=0.21) from the DFT simulation (full lines) and that with the GAP models (broken lines). 719 

Figure 3. Equation of state (a) and free energy profiles (b) of pure iron at 5000 K. In (a), the filled 720 

symbols are simulation results with GAP models without phase transition over the whole 721 

trajectories, while the open symbols are the statistical averages after the phase changes. The 722 

dashed lines are Birch-Murnaghan equations regressed from the filled symbols. The solid 723 

lines are those provided by Komabayashi and Fei (2010) based on experimental data. In the 724 

upper plot of (b), the line is the Gibbs free energy change (G=Gsolid-Gliquid) and light-blue 725 

shadow marks the uncertainty. 726 

Figure 4. Melting of iron from different approaches. Symbols and lines in blue are the experimental 727 

data, whole those in black are the previous simulation results. The red squares are the 728 

melting points from this study with GAP models. 729 

Figure 5. Gibbs free energies of Fe-S solutions under 4000 K, 250 GPa (a) and 6000 K, 330 GPa (b). 730 

The filled black and red symbols are the free energies for liquids and solids, respectively. 731 

The lines are regressions with Eqn. (10) based on these data (relevant parameters are listed 732 

in Table 4). Open blue circles are the results for solid solutions through simple molecular 733 



35 
 

 
 

dynamics samplings, as compared with the filled red circles through hybrid Monte 734 

Carlo/molecular dynamics samplings (see the text). The uncertainties of the free energies 735 

are generally smaller than the sizes of the symbols. 736 

Figure 6. Effects of Monte Carlo swapping on the samplings of thermodynamic properties and 737 

structures of the Fe-S solid solution. In (a), we show the propagations of total energy (U), 738 

pressure (P) and number of nearest-neighbored S-S pairs (NNS-S) during the trajectories of 739 

the two simulations (one with simple MD, in green; the other with hybrid Monte Carlo and 740 

MD, or MD+MC, in black) at 4000 K, 4.3893 cm3/mol, cS=0.20. The broken lines are 741 

equilibrium averaged values (i.e., discarding the first 5000 fs as pre-equilibrium stage) from 742 

both simulations (MD, in blue; MD+MC, in red) for better guides of the fluctuations. In (b), 743 

we compare the radial distribution functions of different pairs from the two simulations. 744 

Figure 7. Partition coefficients of sulfur between solid and liquid iron. Filled symbols are those from 745 

this study at different temperatures and pressures. The additional red crossed circle at 6000 746 

K and 330 GPa is the result from simple MD simulations with random solid solutions. Open 747 

symbols are data from previous experiments (Kamada et al., 2012; Kamada et al., 2010; Li 748 

et al., 2001; Mori et al., 2017; Stewart et al., 2007; Yokoo et al., 2019) and simulations (Alfe 749 

et al., 2002a). Note that all the experimental data have been carefully converted to the ratio 750 

of mole faction to be consistent with simulation results. 751 
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Figure 3 774 
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Figure 4 779 
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Figure 5 785 
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Figure 7 796 
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