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ABSTRACT

During the last decades, reweighted procedures have
shown high efficiency in computational imaging. They
aim to handle non-convex composite penalization func-
tions by iteratively solving multiple approximated sub-
problems. Although the asymptotic behaviour of these
methods has recently been investigated in several works,
they all necessitate the sub-problems to be solved accu-
rately, which can be sub-optimal in practice. In this work
we present a reweighted forward-backward algorithm
designed to handle non-convex composite functions.
Unlike existing convergence studies in the literature, the
weighting procedure is directly included within the itera-
tions, avoiding the need for solving any sub-problem. We
show that the obtained reweighted forward-backward
algorithm converges to a critical point of the initial ob-
jective function. We illustrate the good behaviour of
the proposed approach on a Fourier imaging example
borrowed to radio-astronomical imaging.

Index Terms— Non-convex optimization, forward-
backward algorithm, reweighted procedure, Fourier
imaging, astronomical imaging.

1. INTRODUCTION

In the context of inverse problems, a common and yet ef-
ficient approach to find an estimate x† of the unknown
object of interest x ∈ RN , is to define it as a minimizer
of a sum of two functions: the data-fidelity term F asso-
ciated with the statistical model, and the regularization
term R incorporating a priori information on x:

x† ∈ Argmin
x∈RN

{H(x) = F (x) +R(x)}. (1)

We focus on the case where F : RN → R is Lipschitz-
differentiable, and R : RN →]−∞,+∞] is a non-smooth
function that can be written as a sum of compositions
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of two functions. This type of composite function R
usually leads to reweighting procedures, widely used
in signal and image processing [1–5]. They consist in
promoting sparsity by mimicking the `0 pseudo-norm
without solving explicitly any non-convex problem. To
this aim, they successively solve penalized minimization
problems, changing each time the weights appearing
in the penalization function. As a well-known exam-
ple, we can mention the reweighted `1 minimization
approach [6], aiming to minimize a log-sum prior by
successively solving weighted-`1 sub-problems. The con-
vergence of reweighted methods have been investigated
during the last decades, e.g., in [7–16]. Although all
these works investigate the convergence of the over-
all methods under different technical assumptions, in
general they all rely on the same strategy, consisting in
iteratively minimizing approximations to the objective
function. The common main issue of these methods
is that they necessitate to iteratively solve accurately
multiple sub-problems, using iterative algorithms.

In this work, we directly incorporate the reweight-
ing process into a unique iterative algorithm, namely
the forward-backward algorithm [17–20], avoiding the
need for solving accurately sub-problems. More pre-
cisely, the proposed method, deduced from our previous
work [21], alternates at each iteration between a gradi-
ent step on F and a proximity step handling an approx-
imation to the penalization function R. The approxima-
tion of R can be updated at each iteration, or kept un-
changed for multiple successive iterations. The resulting
algorithm is ensured to converge to a critical point of
H. We will show empirically, through simulations on
a radio-astronomical imaging problem, that the flexibil-
ity of choosing the accuracy of solving the sub-problems
leads to both, more accurate results, and an accelera-
tion of the convergence of the overall reweighted proce-
dure, compared with traditional reweighted procedures
described in the above paragraphs.

The remainder of this work is organized as follows:
In Section 2 we present the optimization problem of in-
terest and the proposed algorithm. Simulation results
are given in Section 3. Finally, we conclude in Section 4.
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)ρ − ερ λpρ
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Table 1. Examples of the composite function R defined in (2). W ∈ RP×N , [·](p) selects the p-th component of its argument,
and ε > 0. The last column gives the weights used in Algorithm 1 to define function Lk as per (5).

2. PROPOSED APPROACH

2.1. Minimization problem

We consider problem (1) with

(∀x ∈ RN ) R(x) =

P∑
p=1

λpφp ◦ ψp(x), (2)

where, for every p ∈ {1, . . . , P}, λp > 0, ψp : RN →
[0,+∞] is proper, lower semi-continuous and Lipschitz
continuous on its domain, and φp : [0,+∞]→]−∞,+∞]
is a concave, strictly increasing and twice differentiable
function (C2) on the domain of ψp. Particular cases of
the function R are provided in Table 1.

2.2. Proposed method

To solve problem (1)-(2), we develop an approximated
FB algorithm. Traditional FB algorithm [22, 23] would
alternate, at each iteration k ∈ N, between a gradi-
ent step on the Lipschitz-differentiable function F and
a proximity step on R. Specifically, given the current
iterate xk, the next iterate is defined as

xk+1 ∈ proxγkR
(
xk − γk∇F (xk)

)
, (3)

where γk > 0 and proxγkR is the proximity operator of
γkR. For every x̃ ∈ RN , the proximity operator of R at
x̃ is defined to be the set of minimizers of R+ 1

2‖ · −x̃‖
2

[24]. Due to the specific composite form of R, this stan-
dard FB approach might not be optimal, and alternative
methods are to be investigated.

On the same flavour as reweighting methods, we pro-
pose to approximate R by a majorant function. We ob-
serve that, for a given iterate xk and for every x ∈ RN ,{
qp(x,xk)=λpφp◦ψp(xk)+λp,k

(
ψp(x)−ψp(xk)

)
λp,k = λpφ̇p ◦ ψp(xk),

(4)

where φ̇p denotes the first derivative of φp, is a majo-
rant function of λpφp ◦ ψp at xk (as it is the tangent

Algorithm 1 Reweighted forward-backward algorithm
Initialization: Let x0 ∈ domR. Let, for every k ∈ N, Ik ∈
N∗, and (γk,i)06i6Ik−1 ∈]0,+∞[Ik .
Iterations:
For k = 0, 1, . . .

x̃k,0 = xk,
for i = 0, . . . , Ik − 1⌊

x̃k,i+1 = proxγk,iLk

(
x̃k,i − γk,i∇F (x̃k,i)

)
,

xk+1 = x̃k,Ik .

function of the concave differentiable function λpφp at
ψp(xk)). We can deduce from (4) a majorant function
of R at xk, given for every x ∈ RN by Q(x,xk) =∑P
p=1 qp(x,xk), and we replace the proximity operator

of R in (3) by the proximity operator of Q(·,xk). Notic-
ing that proxQ(·,xk)

= proxLk
where

(∀x ∈ RN ) Lk(x) =

P∑
p=1

λp,kψp(x), (5)

we propose to solve problem (1)-(2) using Algorithm 1.
In Algorithm 1, we can notice that the approxima-

tion of R is kept fixed for Ik ∈ N∗ FB iterations. On
the one hand, when Ik = 1, the approximation Lk is up-
dated for each proximity step. On the other hand, in the
limit case when Ik →∞, the inner-loop is it-self a FB al-
gorithm minimizing F +Lk, where k is fixed. According
to [22,23], under technical assumptions, these iterations
converge to a critical point of F +Lk. Thus, in this limit
case, Algorithm 1 is very similar to the reweighted meth-
ods proposed in [13–16], where each sub-problem must
be solved accurately.

2.3. Convergence results

The convergence of proposed approximated forward-
backward algorithm is guaranteed by the following re-
sult, deduced from [21, Thm. 4.11].

Theorem 2.1 We consider problem (1)-(2), where F is
a Lipschitz-differentiable function with Lipschitz constant



µ > 0, and R is defined in Section 2.1. Let (xk)k∈N be a
sequence generated by Algorithm 1. Assume that

(i) H is a coercive function, i.e. lim
‖x‖→+∞

H(x) = +∞.

(ii) The function H is semi-algebraic1.

(iii) There exists (γ, γ) ∈]0,+∞[2 such that, for every k ∈
N, and i ∈ {0, . . . , Ik − 1}, γ 6 γk,i 6 µ−1(1− γ).

(iv) There exists I ∈ N∗ such that, for every k ∈ N, 0 <
Ik 6 I < +∞.

Then, the sequence (xk)k∈N converges to critical point x†

of Problem (1)-(2). Moreover, (H(xk))k∈N monotonically
converges to H(x†).

2.4. Additional remarks

Preconditioned version. As highlighted in [17], and
similarly to many first-order minimization methods, the
FB algorithm may converge slowly in practice. To over-
come this issue, in [21] we have developed a precon-
ditioned version of Algorithm 1, based on a Majorize-
Minimize approach. This technique has shown to accel-
erate drastically the convergence of the iterates [23,25].
Inexact proximity operator. Although the proximity
operator computation is simplified by the use of Lk
instead of R, some sophisticated choices of functions
(ψp)16p6P may necessitate the use of sub-iterations. In
this case, Theorem 2.1 still holds [21].

3. APPLICATION TO ASTRONOMICAL IMAGING

3.1. Fourier imaging

Computational imaging often involves to solve an in-
verse problem, where the objective is to find an estimate
x† ∈ RN of an original unknown image x ∈ RN from
a degraded and/or incomplete observation of this im-
age. For Fourier imaging, the observations y ∈ CM cor-
respond to under-sampled Fourier measurements of the
form y = Φx + b, where Φ ∈ CM×N models the under-
sampled Fourier operator, and b ∈ CM is a realization of
a random variable. More precisely, Φ is the multiplica-
tion of three operators Φ = GFZ, where Z ∈ RK×N is a
zero-padding and scaling operator, F ∈ CK×K is the 2D
Fourier transform, and G ∈ CM×K is an interpolation
matrix. Each row of G contains compact support kernels
modelling the non-uniform Fourier transform, centred at
the selected frequency.

1Semi-algebraicity is a property satisfied by a wide class of func-
tions, which means that their graph is a finite union of sets defined by
a finite number of polynomial inequalities. In particular, it is satisfied
for the examples provided in Table 1, for standard numerical imple-
mentations of the log function.

(a)

(b) (c)

(d) (e)

Fig. 1. (a) Original image x of Cygnus A of size N = 256 ×
512 in log scale. (b), (c) and (d) Zoom on x† obtained with
Algorithm 1 with I = 1, I = 20 and I = 90, respectively.
(e) Zoom on x† obtained with a FB algorithm applied to the
log-sum penalty function.

3.2. Application to radio-astronomical imaging

In the remainder of this work we will focus on the ap-
plication of Fourier imaging in radio astronomy [26].
In this context we assume that b is a realization of
an i.i.d. complex-valued random Gaussian variable
with standard deviation σ. In addition, during the last
decade, reweighted `1 methods have shown to outper-
form state-of-the-art approaches in terms of quality for
radio-astronomical imaging [27–29]. The reweighted
`1 approach consists in minimising a log-sum penalty
term. Therefore, we define the estimate x† of x to be
a minimizer of H = F + R with, for every x ∈ RN ,

F (x) =
1

2
‖Φx− y‖2, and

R(x) = λ

C∑
c=1

log
(
|[Wx](c)|+ ε

)
+ ι[0,+∞[N (x), (6)

where λ > 0, ε > 0, and W ∈ RC×N models a spar-
sity basis (i.e. wavelet transform). Moreover, in (6),
ι[0,+∞[N denotes the indicator function of [0,+∞[N ,
which is equal to 0 if its argument belongs to [0,+∞[N ,
and to +∞ otherwise. As proposed in [28], we choose
to promote average sparsity by defining W to be the
concatenation of nine sparsity bases: the first eight



Fig. 2. Simulation results obtained with the proposed
method, considering multiple choices for Ik ≡ I ∈ {1, . . . , 90}.
The continuous lines show the average values and the shad-
owed areas give the associated standard deviations.

Daubechies wavelet transforms and the Dirac basis.
This approach is called “Sparsity Averaging Reweighting
Analysis”(SARA).

To minimize H, we propose to use Algorithm 1. To
this end, we need to define, for every k ∈ N, functions
Lk as per equation (5), i.e., for every x ∈ RN ,

Lk(x) = ‖ΛkWx‖1 + ι[0,+∞[N (x), (7)

where Λk = Diag
(
(λc,k)16c6C

)
∈ RC×C is the di-

agonal weighting matrix whose diagonal coefficients
(λc,k)16c6C are given in the first row of Table 1. Al-
though the proximity operator of Lk does not have a
closed form solution, it can be computed efficiently us-
ing, e.g. a dual FB algorithm [30].

Simulations have been performed on MATLAB. The
objective is to show the advantages of the proposed
method, mainly of not solving accurately each sub-
problem, compared to state-of-the-art methods holding
convergence guarantees. Algorithm 1 is considered to
have converged when the relative changes between con-
secutive iterates is smaller than 10−4, or when the rela-
tive changes of the objective value is smaller than 10−3.

We consider an image of Cygnus A of size N =
256 × 512, given in Fig. 1(a). The observations con-
sist of M = N/2 measurements selected randomly
through Gaussian sampling with zero mean and vari-
ance 0.25 of the maximum frequency, creating a con-
centration of data in the centre of the Fourier plane,
for low frequencies. The noise level is fixed with iSNR
= 20 log10

(
‖Φx‖/(σM)

)
= 20 dB. The reconstructions

are repeated 20 times, changing both the sampling dis-
tribution and the noise realization. We run our method
fixing the number of iterations for the inner-loop Ik
throughout the iterations k ∈ N, and considering differ-

ent values for Ik ≡ I ∈ {1, . . . , 90}.
Results are reported in Fig. 2. Top-left image shows

the SNR = 20 log10

(
‖x‖/‖x− x†‖

)
(in dB) of the image

reconstructed by Algorithm 1 for the different values of I
(blue curve). The reconstruction quality decreases when
I increases. Top-right image shows the value of the ob-
jective function H evaluated at the point estimate x†,
as a function of I. The best minimum value is obtained
when I = 1, and H(x†) increases with I. The second
row shows computation performance of the method: the
bottom-left image shows the total number of iterations
needed to reach convergence versus I, and the bottom-
right image shows the reconstruction time in sec. as a
function of I. We can notice that the optimal value it
terms of computation time is I = 20. This value appears
to be the best compromise in this example as it does not
affect the reconstruction quality. For visual comparison
a zoom on the reconstructed images obtained with the
proposed method for I = 1, I = 20 and I = 90, are
provided in Fig. 1(b), (c), and (d), respectively.

For the sake of completeness, we also implemented a
basic FB algorithm [22], where the proximity operator of
R is computed with a dual FB algorithm, using the imple-
mentation of the proximity operator of the log-sum func-
tion provided in http://proximity-operator.net
(note that the convergence guarantees of the dual FB do
not hold due to the non-convexity of the log-sum func-
tion). The obtained results have similar quality as the
proposed approach when I 6 20 (SNR = 30 dB and
H(x†) = −380), however it requires a much higher num-
ber of iterations to converge (average of 2000 iterations)
with an average of 30 minutes. However for I > 20,
this method provides better reconstruction results than
Algorithm 1 (with a much higher computational cost),
and thus to state-of-the-art reweighted methods when
the sub-problems must be solved accurately. Fig. 1(e)
shows a zoom on the images obtained with this method.

4. CONCLUSION

In this work we have presented a FB algorithm de-
signed to minimize composite functions, through a novel
reweighted procedure. The proposed reweighted FB al-
gorithm incorporates the computation of the weights di-
rectly in the iterations. Unlike state-of-the-art reweighted
methods, it does not necessitate to solve accurately mul-
tiple minimization sub-problems. Our algorithm benefits
from convergence guarantees very similar to the basic
FB algorithm in a non-convex context. Simulations on
a radio-astronomical imaging problem have been per-
formed. Results highlight the advantage of re-computing
the weights without waiting for the convergence of the
sub-problems (unlike state-of-the-art approaches) both
in terms of reconstruction quality and computation time.

http://proximity-operator.net
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