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Abstract

In the context of two-dimensional rational conformal �eld theories we consider

topological junctions of topological defect lines with boundary conditions. We

refer to such junctions as open topological defects. For a relevant boundary

operator on a conformal boundary condition we consider a commutation rela-

tion with an open defect obtained by passing the junction point through the

boundary operator. We show that when there is an open defect that commutes

or anti-commutes with the boundary operator there are interesting implications

for the boundary RG �ows triggered by this operator. The end points of the

�ow must satisfy certain constraints which, in essence, require the end points

to admit junctions with the same open defects. Furthermore, the open defects in

the infrared must generate a subring under fusion that is isomorphic to the anal-

ogous subring of the original boundary condition.We illustrate these constraints

by a number of explicit examples in Virasoro minimal models.

Keywords: renormalisation group �ows, topological defect lines, boundary

conformal �eld theories

(Some �gures may appear in colour only in the online journal)

1. Introduction

In this paper we consider Euclidean two-dimensional quantum �eld theories on a half-plane

which are described by a unitary conformal �eld theory (CFT) in the bulk, and on the boundary

by a perturbed conformal boundary condition. We will assume that the CFT at hand is rational

and thus possesses some non-trivial topological defect lines. Such defects were �rst considered
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in [1] and then more extensively in the context of general rational CFTs in [2]. They describe

symmetries and dualities of the critical system described by the given CFT [2, 3]. Topologi-

cal defect lines can be moved around and, if they do not pass through any other observables

any correlation function is independent of their position. When they pass through a local bulk

operator, generically we obtain a collection of defect segments attached to the main defect and

ending on a disorder �eld located at the insertion. In certain special situations the additional

defect segments may be absent and passing the defect through results in an operator with the

same Virasoro representation labels but multiplied by some factor. In the simplest situation the

original insertion remains intact and we can say that the defect commutes with this bulk inser-

tion. As shown in [4], if we have some defects that commute with a bulk relevant operator then

there are interesting consequences for the bulk renormalisation group (RG) �ows triggered

by this operator. The fusion algebra of such commuting defects between themselves must be

robust under the fusion and this places constraints on the end points of the �ows (triggered by

the same operator with positive or negative coupling) particularly when the �ows are massive

and the end points may be described by non-trivial topological theories.

For a CFT on a half plane with a conformal boundary condition, if there is a non-trivial

boundary relevant operator, we can perturb the boundary condition by this operator triggering

a boundary RG �ow. Unlike bulk �ows boundary RG �ows always end up in a non-trivial

conformal boundary condition that at least has the Virasoro identity tower in the boundary

spectrum. In the presence of topological defect lines in the bulk CFT we can fuse them with

any conformal boundary condition to obtain a new conformal boundary condition which may

in general be a superposition of elementary boundary conditions.Based on this construction, an

interesting interplay between boundary RG �ows and topological defect lines was discussed in

[5]. The following general theorem was proved in that paper: given a boundary RG �ow from

a maximally symmetric conformal boundary condition with label a that ends in a maximally

symmetric conformal boundary condition with label b, for any topological defect d there is an

RG �ow from d× a to d× b where the cross stands for fusion. By maximally symmetric we

mean here a boundary condition preserving the complete chiral algebra of our rational CFT.We

will refer to this result as Graham–Watts theorem in the rest of the paper. The perturbing �eld

for the new �owmust have the same Virasoro representation properties (and scaling dimension

in particular) as the perturbing �eld in the original �ow. As the new starting point may be a

direct sum of elimentary boundary conditions there may be many such �elds. The precise

form of the perturbing �eld of the new �ow has been worked out in [5] for the case of a

being elementary and for the general situation it was worked out in [6]. For diagonal modular

invariants the action of a defect on boundary �elds can be also obtained from the action on

chiral defect �elds which was worked out in [7].

If we know the end-point for a particular boundary �ow, using Graham–Watts theorem we

can �nd the end-points for other �ows obtained via fusion. Thus, in [5], using the results of [8],

an extension of perturbative �ows triggered by boundary ψ1,3 �elds in minimal models [9] to

all Cardy boundary conditions was obtained. It is interesting to note that the g-factors change

under fusion according to

∑

i∈d×a
gi = ga

(

gd

g1

)

(1.1)

where g1 is the g-factor associated with the Cardy boundary condition that has only the identity

tower in its spectrum. It is not hard to show that in unitary rational CFTs g1 is the smallest

possible g-factor (see e.g. [10]). Thus, (1.1) implies that fusion with non-trivial topologi-

cal defect always increases the g-factor. A useful strategy in applying the Graham–Watts
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theorem may then be to start with a UV boundary condition with a small value of the g-

factor, use the g-theorem [11, 12] and symmetries to constrain the end point as much as

possible then use fusion to obtain possible end points for �ows that start with larger values

of g.

In this paper we look at a different usage of topological defects for constraining boundary

�ows that not merely relates two different �ows but directly constrains the possible end points

for a given �ow. We consider topological junctions of topological defects with a conformal

boundary condition. This means that not only the part of the defect line that extends into the

bulk but the junction point as well can be moved along the boundary, not changing any corre-

lation functions as long as no boundary insertions are encountered. Such junctions and their

properties were considered at length in [6] and we will use the results of that paper extensively.

Following [6] we call a topological defect attached to a conformal boundary via a topological

junction an open topological defect. When we move such a defect along the boundary with an

insertion of a boundary operator present, passing the open defect through the insertion typically

results in a con�guration with the original insertion replaced by several boundary condition

changing �elds and new boundary conditions between the insertions and the open defects. But

sometimes, for certain defects and boundary �elds, no additional �elds or boundary conditions

arise, the open defect just passes through. In the operator language the defect and the bound-

ary operator commute. In such cases, which are similar to the bulk case considered in [4], we

can argue that the end point of the boundary �ow must admit a topological junction with the

same defect. Moreover, the ring obtained by fusion of such open defects between themselves

must be isomorphic to some subring in the infrared boundary condition. This potentially can

lead to additional constraints on the end points of RG �ows as in the boundary case the fusion

ring for open defects in general depends on the boundary condition [6]. Even if the bulk labels

are the same the fusion rules may be different. We illustrate this on an explicit example in

section 4.3.

Another interesting case is when an open defect just multiplies the operator by minus one

when passing through it, or in otherwordswhen the open defect anti-commuteswith the bound-

ary operator. This situation demands that there must be a topological junction with the same

defect and the two boundary conditions describing the infrared end points for the two signs of

the perturbation. The fusion rules again must be robust (up to isomorphism) and persist into

the infrared �xed points. If both commuting and anti-commuting open defects are present they

form a Z2-graded subring under fusion.

The main goal of this paper is to point to the existence of such constraints on boundary

RG �ows, to explain how to look for commuting and anti-commuting open defects and to

illustrate the resulting constraints on concrete examples. To this end we choose to restrict

our constructions to Virasoro minimal models with diagonal modular invariant. Moreover,

our main examples of boundary �ows will be the �ows triggered by boundary ψ1,3 opera-

tors. These �ows are integrable and the end points of the �ows are known. This allows us

to check that the constraints we derive from open defects are satis�ed. In addition we con-

sider two �ows: one triggered by a boundary ψ2,1 operator in the tetracritical Ising model

and another triggered by a ψ1,2 operator in the pentacritical Ising model. These �ows are

believed to be integrable but, to the best of our knowledge, have not been investigated

before. We derive a number of analytic constraints on the possible end points in these

�ows.

The main body of the paper is organised as follows. In section 2 we discuss generalities

about topological defects and their junctions with boundary conditions. We �x our normalisa-

tion conventions and derive a commutation relation for an open defect and a boundary operator.

In section 3 we discuss the constraints on RG �ows arising from open defects commuting or
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anti-commutingwith the perturbing operator. In section 4 we work out explicit examples in the

tetracritical and the pentacritical Ising models. In section 5 we discuss some speci�cs for �ows

triggered by boundary condition changing operators. For such �ows theremay be special linear

combinations of different open defects (with the same Virasoro labels) that commute with the

perturbing �eld. We give some explicit examples of this. Section 6 contains some concluding

remarks. The appendix A contains some useful relations between the diagonal minimal model

fusion matrices.

2. Open topological defects

Throughout the paper, except for section 3, we restrict ourselves to the case of unitary Virasoro

minimal models with diagonal modular invariant. For the minimal models both topological

defects [1] and the elementary conformal boundary conditions [13] are labelled by the same

pairs of integers from the Kac table as the chiral operators. In this section we will just use the

letters: a, b, c, . . . for such labels. Boundary �elds linking a boundary condition a on the left

with a boundary condition b on the right are built on Virasoro representations i ∈ a× b. We

denote such �elds as ψ[a,b]
i . On the diagrams below we will omit the upper indices of boundary

operators as those can be read off from the boundaries.

Three elementary topological defects labelled by a, b, c can be joined together if that is

permitted by the fusion, that is if a ∈ b× c. Defect networks can be simpli�ed via a sequence

of elementary moves. The latter equates two networks as depicted on �gure 1. This was shown

in [14] using the topological �eld theory approach of [2].

As emphasised in [6] one does not have to choose the F-matrices appearing on �gure 1 to be

the same as the conformal block F-matrices. The latter are �xed if we canonically normalise

the conformal blocks. To do concrete calculations we are going to use the conformal block

F-matrices calculated in [15, 16], so we are going to assume that the defect junctions are nor-

malised in such a way that the defect F-marices are those of the conformal blocks. We also

assume that the identity defect can be attached at any point and can be moved freely without

changing anything.

We are further interested in topological defects that can end topologically on a given con-

formal boundary condition. This means that the ending should behave as a local operator of

dimension zero. It is not hard to see that for an elementary boundary condition with a label a

and an elementary defect with label d the junction is topological if the fusion d× a contains

a. To see this we can deform the defect keeping the junction pinned down so that the defect

fuses with the boundary on one side of the junction. The junction then looks like a boundary

condition-changing operator between a and d× a. There is a dimension zero such operator

if d× a contains a. Equivalently a× a should contain d and therefore the set of admissible

defect labels d is the same as the set labelling boundary operators. This observation gener-

alises to junctions which have two different elementary boundary conditions on either side of

the junction: a and b. The junction is topological if there is a fusion vertex linking a, b and d.

Such a junction is depicted on �gure 2.

Each junction of an elementary defect and an elementary boundary comes with a choice

of coupling that can be thought of as a choice of normalisation of the corresponding junction

�eld. We are going to choose the normalisation for the open defects and the boundary �elds as

described in [6]. The conventions of [6] include additional factors for the junctions of defects

with boundaries which arise from taking a defect stretched parallel to the boundary and par-

tially fusing its right or left half with the boundary. To distinguish between the two types of

fusion it will be convenient to orient our defects assuming that the defect outgoing from the

boundarywas fused on the left and the defect coming into the boundarywas fused on the right.
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Figure 1. Elementary move in a defect network.

Figure 2. A defect junction with a conformal boundary.

Figure 3. Normalisation factors for oriented defect junctions.

The orientationwill be marked by arrows on the diagrams. Furthermore, to signify the presence

of these additional factors we will add a bullet on the junction when depicting it. The factors

themselves are presented on �gure 3.

We will denote a closed elementary defect located in the bulk as Da while the open defect

corresponding to the left hand side of the �rst diagram on �gure 3 will be denoted asD[a,b]
d and,

for brevity, we will write D[a]
d instead of D[a,a]

d . We will write D[a]
d (t) to denote an insertion of

such a defect ending at point t on the boundary inside correlation functions of boundary oper-

ators. Also we will denote as D[a]
d the corresponding operator acting on the radial quantisation

states on a half plane with the boundary condition a.

With the factors given on �gure 3 two simple relations hold. Firstly, a defect arc attached to

the boundary with no insertions can be shrunk leaving no additional factors. This is illustrated

on �gure 4.

Secondly, when we partially fuse a portion of a defect with the boundary we obtain a

sum over elementary boundary conditions appearing in the fusion and two junctions with the

boundary. This is illustrated on the following diagram (�gure 5).
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Figure 4. Shrinking an open defect bubble.

Figure 5. Partial fusion of defect with a boundary.

Figure 6. Trading a boundary �eld for a defect ending �eld.

Manipulations with junctions of defects with a boundary can be lifted to junctions between

topological defects by representing the boundary conditionswith label a as fusions betweenDa
and the identity boundary condition. A boundary operator with Virasoro label i can be traded

for the defect labelled by i ending with a defect ending �eld located on the identity boundary

condition. This is shown on �gure 6.

The general expression for coef�cients αabi has been calculated in [6] (see equation (B.7)

of that paper). Once the F-matrices appearing in defect junctions have been �xed, these coef-

�cients can be explicitly calculated. In this paper we use the conformal block F-matrices so in

principle αabi are �xed but at no point in our calculations we need to use their explicit form.

Using �gure 6 we calculate, following [6], the action of an open defect on boundary operators.

The latter is obtained by surrounding a boundary operator by the defect arc and shrinking the

arc onto the operator. This can be calculated by a sequence of moves shown on �gure 7 where

we consider the most general boundary condition changing operator.

The �nal factors Xa
′a′′
i,aã that appear on �gure 7 are

Xa
′a′′
i,aã = Fa′′a

[

d a′

ã i

]

√

√

√

√

√

√

√

F1ã

[

d a′′

d a′′

]

F1a

[

d a′

d a′

]

(

αa
′a′′
i

αaãi

)

. (2.1)

An alternative derivation of this result can be done using the three-dimensional topological

quantum �eld theory representation developed in [17, 18].
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Figure 7. Action of an open defect on a boundary �eld.

Using �gure 7 we can derive a commutation relation between an open defect and an inser-

tion of a boundary operator ψi. To that end we need to pass the defect junction through ψi
from left to right. This can be done by creating an arc around the insertion of ψi, partially
fusing a portion of the defect to the right of the insertion and �nally shrinking the arc onto the

boundary �eld. This is depicted on �gure 8.

For the particular case of a boundary operator on an elementary boundary we have

a = a′ = a′′ and the factors in the commutation relations become

Xaai,aã = Faã

[

d a

a i

]

√

√

√

√

√

√

√

F1a

[

d a

d a

]

F1ã

[

d a

d a

]

(

αaai
αaãi

)

. (2.2)

We see from this expression that the defect commutes with ψi if

Faã

[

d a

a i

]

= δaã (2.3)

and it anti-commutes if

Faã

[

d a

a i

]

= −δaã. (2.4)

We can also conclude from the orthogonality relation (A.6) that these are the only interesting

situations for RG �ows originating from an elementary boundary condition, there cannot be a

commutation up to a non-trivial rescaling ofψi. The latter however are possible when boundary
condition changing �elds are involved (see section 5).

7
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Figure 8. Commutator of open defect with a boundary operator.

Figure 9. Fusion of two open defects.

Two arcs of open defects surrounding a boundary operator can be fused into a combination

of open defects according to �gure 9.

The coef�cients on the right hand side of �gure 9 were worked out in [6]. They are given

by the following combinations of the fusion matrices

U
{aa′a′′}[e]
dc = Fa′e

[

d c

a′′ a

]

√

√

√

√

√

√

√

F1a′′

[

d a′

d a′

]

F1a′

[

c a

c a

]

F1e

[

d c

d c

]

F1a′′

[

e a

e a

] . (2.5)

The open defects ending on a �xed elementary conformal boundary condition a are closed

under fusion. Curiously, as noted in [6], the corresponding fusion algebra is not given by the

usual bulk fusion rule but depends on the boundarya. In our notationwe canwrite the deformed

fusion product as

D[a]
c D[a]

d =
∑

e∈c×d
N[a] e
cd D[a]

e (2.6)

where the coef�cients N[a] e
cd can be obtained from �gure 9 and formula (2.5) by specialising to

the case a = a′ = a′′ = b = b′ = b′′. The corresponding expression can be recast into1.

N
[a] e
cd = Fda

[

e a

c a

]

Fca

[

e a

d a

] F1e

[

c d

c d

]

F1a

[

e a

e a

] . (2.7)

1This expression is slightly more compact than the one following from (2.5) but is equivalent to it by virtue of F-

matrices’ identities as we show in the appendix A.
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This expression is valid when the defect labelled by e can end topologically on the conformal

boundary labelled by a. It may happen that e appears in the bulk fusion c× d but the defect

labelled by e cannot end on a topologically. In this case N[a] e
cd vanishes. In general the coef�-

cientsN[a] e
cd are non-negative and symmetric under the interchange of c and d. The associativity

of the open defect fusion was proven in [6]. Among other general properties of (2.6) and (2.7)

we note the following identities

N
[a] d
1d = 1, N

[a]1
dd = F11

[

d d

d d

]

=
S11
Sd1

,
∑

e∈c×d
N

[a] e
cd = 1 (2.8)

where Sij is the modular S-matrix.

3. Constraints on boundary RG flows

Suppose now that we take an elementary conformal boundary condition labelled by a and

perturb it by a relevant operator ψ(t) with a coupling λ. Let ψi stand for a complete basis of

local boundaryoperators in theUV theory.A renormalised boundary correlator in the perturbed

theory can be written as

〈[ψik ](xk) · · · [ψi1](x1)〉λ = Z−1
〈

e
−λ

∞∫

−∞
ψ(t) dt−Sct

[ψik ](xk) · · · [ψi1](x1)
〉

(3.1)

where Sct stands for the counterterms action, [ψi] denote renormalised boundary operators, λ
is the renormalised coupling constant and Z is the normalisation factor:

Z =

〈

e
−λ

∞∫

−∞
ψ(t) dt−Sc

〉

. (3.2)

More explicitly we have

Sct =

∫

dt
∑

i

Miψi(t), [ψi](x) = ψi(x)+
∑

j

M
j
iψ j(x) (3.3)

whereψi stand for the (bare) operators at the UV �xed point and the termswithMi andM
j
i stand

for the coef�cients of counterterms renormalising the action and the local operators respec-

tively. For brevity we are not explicitly writing the dependence on a regulator but assume that

the regulator is point splitting and the minimal subtraction scheme is employed.

Consider a correlation function at the UV �xed point in the presence of an open topological

defect D[a]
d . It can be expressed in terms of correlators of local operators by sliding the defect

to in�nity along the boundary. Pulling the defect to the right and using the moves depicted on

�gure 8 we obtain

〈ψik (xk) · · ·ψip+1
(xp+1)D[a]

d (s)ψip(xp) · · ·ψi1 (x1)〉

= 〈(D̂dψik )(xk) · · · (D̂dψip+1
)(xp+1)ψip · · ·ψi1(x1)〉 (3.4)

where xk > · · · > xp+1 > s > xp > · · · > x1,

9
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(D̂dψip+1
)(xp+1) =

∑

ã∈d×a

∑

j

X
j,aa
ip+1,aã

ψ[a,̃a]
j (xp+1),

(D̂dψil)(xl) =
∑

a′,a′′∈d×a

∑

j

X
j,aa

il ,a
′a′′ψ

[a′,a′′]
j (xl), l = p+ 1, . . . , k (3.5)

and the boundary condition ã is assumed to appear between products of consecutive operators,

like ψ[a′ ,̃a]
j (xq+1)ψ

[ã,a′′]
l (xq), where the neighbouring boundary conditions match, while we get

zero when they do not match. The coef�cients X
j,aa

l,a′a′′ represent the shrinking bubble of the

defectD[a]
d surrounding the operatorψ[a,a]

l with j labelling possible degeneracies of theVirasoro

representation. For CFTs with minimal models type fusion2 we have X
j,aa

l,a′a′′ = δ jlX
aa
l,a′a′′ where

Xaa
l,a′a′′ are given in (2.1).

Suppose now an open defectD[a]
d commutes with ψ. We note that D[a]

d also commutes with

the operators that appear in the counterterms action Sct. This follows from the fact that the

counterterms are put in to subtract the divergences arising when several perturbing operators

ψ collide. Such collisions can be represented by an operator product expansion of a group of

operators:

ψ(tn)ψ(tn−1) · · ·ψ(t1) =
∑

i

Ci(t1, t2, . . . , tn)ψi(t1) (3.6)

where Ci(t1, t2, . . . , tn) are some functions. Since D[a]
d commutes with each operator ψ(ti) on

the left-hand side, it commutes with each operator ψi(t1) on the right-hand side and thus with
all operators appearing in Sct. This means that an insertion of D[a]

d into a perturbed correlation

function (3.1) with the junction located at a point s can be moved freely inside the perturbed

correlation functions as long as it does not pass through insertions of additional boundary

operators, that is the correlation function

Z−1
〈

e
−λ

∞∫

−∞
ψ(t) dt−Sct

[ψik ](xk) · · ·D[a]
d (s) · · · [ψi1](x1)

〉

(3.7)

is independent of s as long as it does not cross any of x1, . . . , xk. Moreover, passing through

any of [ψi j](x j) is given by exactly the same formulae (3.5) as in the UV theory (with the bare

operators ψi replaced by [ψi]). To show this we note that the renormalised operators [ψi j] are
given by the UV operators ψi j plus counterterms. The latter are taken to cancel divergencies

arising when some number of perturbing operators collide at the insertion point xj. Again, the

counterterm operators are contained in the operator product expansion of a group of operators

containing the operators ψ and the UV operator ψi j . Since D[a]
d commutes with all ψ’s it acts

on the counterterms in the same way as it acts on ψi j . This means that an insertion ofD[a]
d into

a perturbed theory correlator can be traded for a linear combination of renormalised local cor-

relation functions with coef�cients given by those of the UV theory. We should also note that

besides the linear combinations (3.5) moving the defect also results in replacing the bound-

ary condition a between the insertions by those arising in the fusion d× a of the defect with

the UV boundary condition. Due to the Graham–Watts theorem at the end of the �ow such

2 For other chiral algebras these coef�cients can be computed by a sequence of moves depicted in �gure 7 but

the answer will be different from (2.1). It would have to take into account possible degeneracies in Virasoro

representations, different fusion vertices and a charge conjugation matrix.

10
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segments have the conformal boundary condition given by the fusion of d with the infrared

BCFT.

To summarise, the above means that D[a]
d descends to a topological open defect in the per-

turbed theory and, consequently, at the infrared �xed point at the end of the �ow. This places a

constraint on the end point of the �ow—the end point must be given by a conformal boundary

condition that admits a topological junction with the defect labelled by d. Moreover, the action

ofD[a]
d on the boundary operators of the perturbed theory is independent of the coupling λ—it

is given by the action in the UV BCFT. Since all open defects that commute with ψi form a

closed algebra under fusion, generated by elementary defects D[a]
d , the same fusion rules will

be valid also in the deformed theory. Thus, in addition to admitting topological junctions with

defects labelled by the same d’s, the corresponding open defects at the end point of the RG

�ow must form a subring under fusion that is isomorphic to that of the UV boundary condi-

tion. Given that in general the fusion algebra depends on the boundary condition this may place

some additional constraints on the IR BCFT.

Consider next an open defectD[a]
d that anti-commuteswithψ. Let us place the corresponding

junction at a point s on the boundary and consider a perturbation with a coupling λ to the

left of s and with a coupling −λ to the right of s. A deformed correlation function in such a

con�guration can be written as

Z−1
〈

[ψik ]−λ(xk) · · · e
λ
∞∫

s
ψ(τ )dτ−S+ct D[a]

d (s) e
−λ

s∫

−∞
ψ(τ )dτ−S−ct · · · [ψi1]λ(x1)

〉

(3.8)

where xk > · · · > xp+1 > s > xp > · · · > x1, and

S−ct =

s
∫

−∞

Mi(λ)ψi(τ )dτ , S+ct =

∞
∫

s

Mi(−λ)ψi(τ )dτ , (3.9)

that is S− contains counterterms for the theory speci�ed by λ and integrated to the left of the

defect and S+ contains the counterterms for the theory with the coupling−λ integrated to the

right of the defect. Furthermore, in (3.8) we have

[ψi]λ(x) = ψi(x)+
∑

j

M
j
i (λ)ψ j(x), [ψi]−λ(x) = ψi(x)+

∑

j

M
j
i (−λ)ψ j(x)

(3.10)

so that the renormalised operators inserted to the left of the defect are de�ned with countert-

erm coef�cientsM
j
i (λ) corresponding to the coupling λ while those inserted to the right have

counterterms speci�ed by −λ.
Since D[a]

d anti-commutes with ψ it commutes with the counterterms that come from colli-

sions of even numbers of ψ’s and anti-commutes with those coming from collisions of an odd

number of ψ’s. This means that

D[a]
d (τ + ǫ)Mi(λ)ψi(τ ) = Mi(−λ)ψi(τ )D[a]

d (τ − ǫ), ǫ > 0. (3.11)

11
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Hence the correlation function in (3.8) is independent of s as long as s does not cross any of the

insertion points3 x1, . . . , xk. Moreover, for the same reasons as in the commuting case, when

D[a]
d is being passed from right to left through any of the insertions [ψi j](x j) it acts on them via

the UV theory coef�cients (3.5) and changes the counterterms to those of the theory with the

opposite coupling:

[ψi]−λ(τ )D[a]
d (τ − ǫ) = D[a]

d (τ + ǫ)
∑

a′,a′′∈d×a

∑

j

X
j,aa

il,a
′a′′[ψ

[a′,a′′]
j ]λ(τ ), ǫ > 0 (3.12)

and the boundary condition ã is assumed to appear between the insertion and the new position

of the defect. We �nally comment on the normalisation factor Z in (3.8). It can be taken as

in (3.2) to be given by the λ-deformed partition function however it is the same if we change

in (3.2) λ to −λ as we can insert D[a]
d at minus in�nity and move it through to plus in�nity

changing the sign of λ.
Taking λ to the infrared �xed point, it follows from the above that we get a topological

junction of the defect labelled by d and the two conformal boundary conditions that describe

the IR endpoints of the �ow in the positive and negative λ directions. Thus, for each anti-

commuting defect there must exist a topological junction between the two end-points of the

�ows in the positive and negative direction and the same bulk defect. If we take all open defects

ending on a that either commute or anti-commute with ψi they form a Z2-graded algebra with

respect to fusion. Since the action (3.12) is independent of λ the corresponding fusion subring

of the defects at and between the infrared �xed points must be isomorphic to the one at the UV

theory.

There is one other interesting constraint arising from the presence of an anti-commuting

defect: the g-factors of the two infrared �xed points must be the same. To explain why this is

the case recall that the boundary entropy of the perturbed boundary condition with the cou-

pling λ arises from the perturbed partition function on a disc (see e.g. [11] or [12]). With a

point splitting regulator the value of the disc partition function remains the same if we insert

into it an arc with two junctions of D[a]
d between a pair of neighbouring insertions of ψ. We

can then move one junction around the circle, anti-commuting with the insertions of ψ and

counterterms, until it reaches the other junction at which point the arc can be removed. This

implies that the disc partition function for the coupling λ is the same as the one with −λ
and hence the same goes for their boundary entropies and the g-factors in the infrared �xed

points.

It should be noted that all of the above constraints generalise in a straightforward manner to

the case when the UV boundary condition is a direct sum of elementary boundary conditions.

Before we �nish this section we would like to comment brie�y on the Hamiltonian descrip-

tion of the above situations. For simplicity we will not consider here the effects of possible

divergences in the Hamiltonian formalism. Consider an in�nite strip of width L with the

boundary condition a put on both ends. Let 0 6 σ 6 L be the coordinate across the strip and

−∞ < τ <∞ be the coordinate along the strip. For τ being Euclidean time the Hilbert space

can be decomposed into Virasoro irreducible representations Vi as

H[a,a]
=
⊕

i∈a×a
V i. (3.13)

3This implies in particular that the counterterms in S+ and S− are suf�cient to renormalise the theory with the defect

inserted in s. In particular no additional counterterms are needed to be inserted at s. Such additional counterterms

would be needed if no anti-commuting topological defect was inserted at s while perturbing with different couplings

to the left and to the right of s.

12
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Open defects that end topologically on both ends of the strip act on the states in H[a,a] by the

action of operatorD[a]
d described in the previous section. Consider next perturbing the boundary

condition a on one or both ends of the strip by a relevant operator ψ. For a perturbation on the
lower end the perturbed Hamiltonian acting onH[a,a] can be written as

Hλ =
π

L

[

LUV0 −
c

24
+ λLψ(0, 0)

]

(3.14)

where c is the central charge and LUV0 is the dilation operator acting onH[a,a]. If an open defect

D[a]
d commutes with ψ then for any λ

D[a]
d Hλ = HλD[a]

d (3.15)

and in particular at the IR �xed point D[a]
d should commute with L0 and thus D[a]

d gives a

symmetry of the infrared spectrum.

If D[a]
d anti-commutes with ψ then we have

D[a]
d Hλ = H−λD[a]

d . (3.16)

Taking λ to the �xed point (which is typically at in�nity) we obtain

D[a]
d LIR, 10 = LIR, 20 D[a]

d (3.17)

where LIR, 10 and LIR, 20 are the dilation operators for the IR endpoints corresponding to the

negative and positive λ respectively. Thus, D[a]
d intertwines the spectra of the two end-points.

4. Examples

4.1. Diagonal unitary minimal models

Here we remind the reader some basic facts about the unitary Virasoro minimal models with

diagonal modular invariant. Such models are labelled by an integer m and have the central

charge

cm = 1− 6

m(m+ 1)
. (4.1)

The primary �elds φr,s are labelled by two integers 1 6 r 6 m− 1, 1 6 s 6 m from the Kac

table with the identi�cation

φr,s ≡ φm−r,m+1−s. (4.2)

The same set of integers label the bulk defects Dr,s as well as the elementary conformal

boundary conditions which we will denote as (r, s).

The fusion rules are summarised in the following equation

φr,s × φr′ ,s′ =
∑

p,q

N (p,q)

(r,s),(r′ ,s′)φp,q, N (p,q)

(r,s),(r′ ,s′) = N
p

r,r′ (m)N
q

s,s′(m+ 1) (4.3)

where

N c
a,b(m) =















1 if |a− b|+ 1 6 c 6 min(a+ b− 1, 2m− a− b− 1)

and a+ b+ c is odd

0 otherwise

(4.4)
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The fusion ring contains two subrings generated by �elds of the form φ1,s and φr,1 respec-

tively. The two subrings intersect over a subring generated by the identity �eld and the operator

φ1,m ≡ φm−1,1. The bulk defects satisfy the same fusion rule. The defect

S ≡ D1,m ≡ Dm−1,1 (4.5)

describes the spin reversal symmetry. It satis�es the group property

S ◦ S = D1,1, (4.6)

fuses with the other defects according to

S ◦ Dr,s = Dr,m+1−s ≡ Dm−r,s (4.7)

and acts on Cardy boundary conditions as

S · (r, s) = (r,m+ 1− s) ≡ (m− r, s). (4.8)

The spin reversal invariant Cardy boundary conditions are of the form
(

m
2
, s
)

, s = 1, . . . , m
2
if

m is even and of the form
(

r, m+1
2

)

, r = 1, . . . , m−1
2

if m is odd. For such boundary conditions

we can introduce the S-charge for the boundary �elds that according to (2.2) is given by

Sψ[a,a]
i = Faa

[

(m− 1, 1) a

a i

]

ψ[a,a]
i = ±ψ[a,a]

i (4.9)

where the boundary label a is
(

m
2
, s
)

or
(

r, m+1
2

)

depending on the parity of m and i ∈
a× a. This charge is equal to ±1 due to the orthogonality relation (A.6) and the fusion rule

(m− 1, 1)× a = a.

If we are perturbing an S-invariant boundary condition by a charge 1 boundary�eld then, by
virtue of the Graham–Watts theorem, we expect each end point of the �ow to be S-invariant.
If we perturb by a charge −1 �eld then the end points of the �ow are interchanged by the

action of S. For example in the tricritical Ising model, that corresponds to m = 4, we have

two spin reversal invariant Cardy boundary conditions: (2, 2) and (2, 1). The latter boundary

condition is stable while the (2, 2) boundary condition, also known as the disordered boundary

condition, admits two relevant boundary �elds: ψ1,2 and ψ1,3. The �rst �eld has the S-charge
−1 while the second one has charge 1. The boundary RG �ows in the tricritical Ising model

that start from the elementary boundary conditions were described in [19]. Both ψ1,2 and ψ1,3

perturbations of the disordered boundary condition are integrable and their end points are given

on the following diagrams:

(2, 1)
ψ1,3←−−− (2, 2)

−ψ1,3−−−−→(1, 1)⊕ (3, 1),

(1, 1)
ψ1,2←−−− (2, 2)

−ψ1,2−−−−→(3, 1). (4.10)

It is straightforward to check that the endpoints satisfy the requirements for the action of S.
Below we will be particularly interested in boundary �ows triggered by perturbing the

boundary condition (r, s) by the boundary �eld ψ[rs,rs]
1,3 . For large values of m these �ows were

studied in [9] where the end points were identi�ed using the g-theorem. The end points in the

non-perturbative regimewere found in [5] with the help of Graham–Watts theorem,which was

put forward in that paper, and using the results of [8]. The general rule for the end points of the
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Table 1. Open defects on boundary conditions in tetracritical Ising model.

Defects commuting Defects anti-commuting

b.c. with ψ1,3 with ψ1,3

(1, 3) D[1,3]
1,1 S [1,3]

(3, 3) D[3,3]
1,1 , D[3,3]

3,1 S [3,3], D[3,3]
2,1

(2, 2) D[2,2]
1,1 , D[2,2]

3,1 None

(3, 2) D[3,2]
1,1 , D[3,2]

3,1 None

ψ1,3 �ows that start from elementary boundary conditions can be summarised in the following

two expressions

(r, s) −→
min(r,s,m−r,m−s)

⊕

i=1

(|r − s|+ 2i− 1, 1), (4.11)

(r, s) −→
min(r,s−1,m−r,m−s+1)

⊕

i=1

(|r − s+ 1|+ 2i− 1, 1) (4.12)

where one expression corresponds to a positive choice of the coupling and the other to the

negative choice. To the best of our knowledge it has not been �xed in general which answer

corresponds to which sign. The expressions (4.11) and (4.12) are interchanged under the action

of the �eld identi�cation (4.2).

Commutators of boundary �elds with open defects can be computed using the general

expression (2.1). The fusion matrices for the diagonal minimal models can be calculated

recursively following [15] (see also [16] for a closed expression).

4.2. Tetracritical Ising model

The �rst example of a non-trivial open defect that is different from S and commutes with a

relevant operator on an elementary boundary condition appears in the tetracritical Ising model

that is the unitary minimal model with m = 5. This model has 10 primary �elds and thus the

same number of topological defects and elementary conformal boundary conditions. We focus

on the ψ1,3 boundary �eld where we know the end points of the �ows. All elementary bound-

ary conditions have a ψ1,3 boundary �eld except for the 4 boundary conditions of the form

(r, 1), 1 6 r 6 4. Table 1 shows the open defects that have a topological junction with a given

boundary condition and that commute or anti-commute with ψ1,3.

We note that (1, 3) and (3, 3) boundary conditions are stable under fusion with S and thus

are spin reversal symmetric while (2, 2) and (3, 2) form a doublet. The two boundary conditions

omitted from the table: (1, 2), (1, 4), have no non-trivial defects commuting or anti-commuting

with ψ1,3.

In view of the general discussion in section 3 for the ψ1,3 �ows that start from (3, 3), (2, 2)

or (3, 2) boundary condition the end points must admit a topological junction withD3,1. Exam-

ining the fusion rules we �nd that this implies that they must contain one of the following 5

elementary boundary conditions: (3, 1), (2, 1), (3, 3), (2, 2), (3, 2).

Moreover, for the �ows from (3, 3) and (1, 3) the end points are exchangeable by the fusion

with S. Also for the �ows from (3, 3) there is a topological junction between the two end

points and D2,1. These conditions become even more restrictive if we add constraints from the

g-theorem. The end points of the �ows given by (4.11) and (4.12) for the �ows at hand are
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(2, 1)←− (1, 3) −→ (3, 1) (4.13)

(4, 1)⊕ (2, 1)←− (3, 3) −→ (1, 1)⊕ (3, 1) (4.14)

(1, 1)⊕ (3, 1)←− (2, 2) −→ (2, 1) (4.15)

(4, 1)⊕ (2, 1)←− (3, 2) −→ (3, 1). (4.16)

We check that these �ows satisfy all of the constraints following from table 1.

It is interesting to calculate the boundary fusion rings formed by the defects in table 1. The

(2, 2), (3, 3) and (3, 2) boundary conditions have the open defect ring consisting of defects

commuting with ψ1,3 generated by D[a]
3,1 with a single relation given by

D[a]
3,1 ◦ D[a]

3,1 = fD[a]
1,1 + (1− f )D[a]

3,1, f =
1

2
(
√
5− 1). (4.17)

In fact (4.17) holds for any boundary condition a admitting a topological junction with D3,1.

This fact is a simple consequence of the bulk fusion rule and the general identities (2.8). Thus, if

the end point of a ψ1,3 �ow contains an elementary boundary condition admitting a topological

junction with D3,1 then it will satisfy the same composition rule (4.17) as in the UV boundary

condition.

The (3, 3) boundary condition has additional open defects that anti-commute with ψ1,3 that

satisfy the following relations under fusion

D[3,3]
2,1 ◦ D[3,3]

3,1 = f S [3,3] + (1− f )D[3,3]
2,1 , (4.18)

D[3,3]
2,1 ◦ D[3,3]

2,1 = fD[3,3]
1,1 + (1− f )D[3,3]

3,1 (4.19)

and S [3,3] fuses with the other open defects according to the bulk fusion rule.

The (3, 3) boundary condition also has a boundary ψ2,1 �eld which is relevant. To the best

of our knowledge these �ows have not been investigated before and the end points have not

been identi�ed. We �nd that this perturbation commutes with S [3,3] and anti-commutes with

D[3,3]
1,3 . The commutation with the spin reversal defect implies that each of the end points must

be invariant under the spin reversal. Together with the constraints from the g-theorem this gives

us two possible infrared end points: (1, 3) and (1, 1)⊕ (1, 5). The existence of a junction with

D1,3 gives us two possible pairs of �xed points: either they are both (1, 3) or one of them is

(1, 3) and the other is (1, 1)⊕ (1, 5). Interestingly the condition on the g-factors being the same

is satis�ed for the second pair due to the identity g1,3 = 2g1,1 = 2g1,5. Moreover, we calculate

the UV fusion of the anti-commuting defect to be given by

D[3,3]
1,3 ◦ D[3,3]

1,3 =
1

2
D[3,3]

1,1 +
1

2
S [3,3]. (4.20)

The same fusion rule must be satis�ed by theD1,3 defect between the two infrared �xed points.

It is straightforward to check thatD[1,3]
1,3 satis�es the same rule. For the second pair we �nd that

there is a unique combination

DIR
13 =

1√
2
(D13,11

1,3 +D13,15
1,3 ) (4.21)
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Table 2. Open defects on boundary conditions in pentacritical Ising model.

Defects commuting Defects anti-commuting

b.c. with ψ1,3 with ψ1,3

(3, 3) D[3,3]
1,1 , D[3,3]

3,1 , S [3,3] None

(2, 2) D[2,2]
1,1 , D[2,2]

3,1 None

(2, 3) D[2,3]
1,1 , D[2,3]

3,1 None

(3, 2) D[3,2]
1,1 , D[3,2]

3,1 , S [3,2] None

that satis�es4

DIR
13 ◦ DIR†

13 =
1

2
(D[1,3]

1,1 + S [1,3]),

DIR†
13 ◦ DIR

13 =
1

2
[(D[1,1]

1,1 +D[1,5]
1,1 )+ (S [11,15] + S [15,11])] (4.22)

whereDIR†
13 = (D11,13

1,3 +D15,13
1,3 )/

√
2 is the conjugate defect. Thus, all constraints from the com-

muting and anti-commuting open defects are satis�ed by each of the two pairs. We did check

numerically5, using the truncated boundary conformal space approach of [20], that for positive

λ the �ow at hand ends up at (1, 3) while for negative λ it �ows to (1, 1)⊕ (1, 5).

4.3. Pentacritical Ising model

Pentacritical Ising model corresponds to the minimal model with m = 6. This model has 15

primary states and the same number of topological defects and conformal boundary condi-

tions. Up to the action of the spin reversal generator we have 6 representatives of elementary

boundary conditions admitting a boundary ψ1,3 �eld: (1, 2), (1, 3), (2, 2), (3, 3), (2, 3), (3, 2).

The boundary conditions (3, 3) and (3, 2) are spin-reversal invariant. The elementary boundary

conditions that have non-trivial open defects commuting or anti commuting with ψ1,3 are tabu-

lated in table 2. We see that the end points of the �ows that start with the 4 boundary conditions

in table 2 (and their spin reverses) must admit a topological junction with D3,1. For the spin

reversal invariant boundary conditions: (3, 3), (3, 2), the end points must be also spin-reversal

invariant. Noting that the g-factors satisfy g3,3 > g3,2 > g3,1 we see that each end point of the

ψ1,3 �ows from (3, 2) is either degenerate or is given by the (3, 1) boundary condition that is

spin-reversal invariant.

The expressions (4.11) and (4.12) give the �ows

(1, 1)⊕ (3, 1)←− (2, 3) −→ (2, 1)⊕ (4, 1) (4.23)

(4, 1)⊕ (2, 1)←− (3, 3) −→ (1, 1)⊕ (3, 1)⊕ (5, 1) (4.24)

(1, 1)⊕ (3, 1)←− (2, 2) −→ (2, 1) (4.25)

(4, 1)⊕ (2, 1)←− (3, 2) −→ (3, 1). (4.26)

It is straightforward to check that these �ows satisfy the above constraints.

4 In checking these relations it is important to allow a′ and b′ on �gure 9 each to take the values (1, 1) and (1, 5)

independently of each other.
5The author found an analytic argument based on RG interfaces that excludes the possibility that both end points are

(1, 3), but this is outside the scope of the present paper and will be reported elsewhere.
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It is interesting to take a look at the fusion rings of the open defects in table 2. Noting that

the bulk fusion rule

(3, 1)× (3, 1) = (1, 1)+ (3, 1)+ (5, 1) (4.27)

contains 3 terms, the boundary fusion rule (2.6) now has room for different deformations.

Indeed, we �nd

D[a]
3,1 ◦ D[a]

3,1 =
1

2
D[a]

1,1 +
1

2
D[a]

3,1 (4.28)

for a = (2, 2), (4, 4), (4, 6), (2, 6) and

D[b]
3,1 ◦ D[b]

3,1 =
1

2
D[b]

1,1 +
1

2
S [b] (4.29)

for b = (3, 3), (3, 2), (3, 1). The S [b] generator fuses according to the bulk fusion rule. It is

interesting to note that the boundary fusion rule (4.29) means that D[b]
3,1 is an open dual-

ity defect in the sense of [2, 3], that is its fusion with itself contains only group-like open

defects.

We also have a boundary �eld ψ1,2 present on the boundary condition (3, 3). The corre-

sponding boundary �ows are believed to be integrable but, as in the case of ψ2,1 perturbation

in the tetracritical model, have not been investigated before. We �nd thatD[3,3]
3,1 anti-commutes

and S [3,3] commutes with ψ1,2 that makes this case quite similar to the case of ψ2,1 perturbation

considered at the end of the previous section. It is instructive to see how all of the consequences

considered in section 3 can be combined with the constraints from the g-theorem to restrict the

choices of the infrared �xed points. We can �rst list all spin reversal invariant boundary condi-

tions with a g-factor lower than that of the UV value. This gives us two singlets: (3, 2), (3, 1);

four doublets: A = (3, 1)⊕ (3, 1), B = (1, 1)⊕ (5, 1), C = (5, 5)⊕ (1, 5), D = (4, 6)⊕ (2, 6);

one triplet: (1, 1)⊕ (5, 1)⊕ (3, 1); and one quadruplet: (1, 1)⊕ (1, 1)⊕ (5, 1)⊕ (5, 1). The

condition that the g-factors of both IR end points must be equal implies that either both end

points are the same (and belong to the above list), or form one of the following 3 pairs:

(3, 1) and (1, 1)⊕ (5, 1), (3, 1)⊕ (3, 1) and (1, 1)⊕ (5, 1)⊕ (3, 1)

(3, 1)⊕ (3, 1) and (1, 1)⊕ (1, 1)⊕ (5, 1)⊕ (5, 1)

that are permitted because of the identity: g3,1 = 2g1,1 = 2g5,1. Adding the condition that there

must be a topological junction with D3,1 possible between the two end points discards two

pairs with equal boundary conditions: B, B and C, C. Finally, requiring that the junction with

D3,1 should satisfy the fusion product given in (4.28) we can discard one more pair:D, D. This

follows from checking that no combination of 3 available junctions: D[4,6]
3,1 , D[2,6]

3,1 , D[46,26]
3,1 can

be chosen to satisfy (4.28). All of these constraints leave us in the end with 7 distinct pairs

of possible infrared �xed points. Thus, in this example we see that each of the constraints we

derived in section 3 reduces the number of possibilities. We �nish this example by reporting

that truncated conformal space approach numerics gives the spectra that match with the (3, 1)

boundary condition for large positive λ and that of (1, 1)⊕ (5, 1) boundary condition for large

negative λ.

5. Flows from direct sums of boundary conditions

So far we have discussed the implication of open defects commuting with the perturbation

for the �ows originating from an elementary boundary condition. This can be generalised
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Figure 10. Fusion of a closed defect with a junction on the left.

to �ows from direct sums of elementary boundary conditions triggered by boundary con-

dition changing operators. Examples of such �ows, including those triggered by ψ1,3 oper-

ators, were studied in [21]. The commutator with an open defect has been calculated on

�gure 8.

A new feature of direct sum boundary conditions is that the perturbing �eld can be a linear

combination of several components and a commuting (or anti-commuting) open defect can be

a particular linear combination of defects with the same Virasoro label but linking different

sets of elementary boundary conditions. One way to generate such linear combinations is by

starting with a commuting open defect on an elementary boundary condition and fuse it with a

closed defect. SupposeD[a]
d commutes withψ[a,a]

i . We can fuse the junctionwith a closed string

defectDs on either side of the junction. Such a fusion done on the left is illustrated on �gure 10.
where the coef�cients Y

L; i, j
a,s,d are easily computed using the results of [6] (see �gure 8 of [6] in

particular). As the �nal con�guration on �gure 10 is only an intermediate result, we omit the

explicit expression for Y
L; i, j
a,s,d . At this stage it is important for us to note that, as a consequence

of the commutation of D[a]
d with ψ[a,a]

i , the open defect combination

DL
j ≡

∑

i∈s×a
Y
L; i, j
a,s,dD[i,a]

j (5.1)

satis�es

DL
jψ

[a,a]
i = Ds(ψ[a,a]

i )DL
j (5.2)

where

Ds(ψ[a,a]
i ) =

∑

n,m∈s×a
Xaai,nmψ

[n,m]
i (5.3)

is the action on the boundary �eld ψ[a,a]
i of the fusion of Ds with the boundary a. Note that

(5.2) is true for any �xed label j. Now, picking a con�guration given by (5.1) with a �xed label

j we can further fuse it with the closed defectDs on the right side of the junctions. Using steps
similar to those on �gure 10 we arrive at the following open defect combinations

D j,LR
l =

∑

n,m∈s×a
Zasdj(nml)D[n,m]

l (5.4)
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that, due to the associativity of the fusion operations, commute with the fused boundary

�eld (5.3) for each choice of the label l ∈ s× s× d and j ∈ s× d. The coef�cients Zasdj(nml) are
calculated using the results of [6]:

Zasdj(nml) = Fa j

[

a n

d s

]

Fal

[

m n

s j

]

√

√

√

√

√

√

√

F1n

[

s a

s a

]

F1 m

[

s a

s a

]

F1n

[

l m

l m

] N asd
jl (5.5)

where

N asd
jl =

√

√

√

√

√

√

√

F1a

[

d a

d a

]

F1 j

[

s d

s d

]

F1l

[

s j

s j

] (5.6)

is an overall normalisation factor. Similarly, we can do the above fusion in the reversed order,

that is �rst fusing with a closed defect on the right, singling out an elementary component

labelled by j, then fusing it on the left and singling out open defects labelled by l. The resulting

open defects are given by a combination

D j,RL
l =

∑

n,m

Z̃
j(nml)
asd D[n,m]

l (5.7)

where

Z̃
j(nml)
asd = Z

j(mnl)
asd

√

√

√

√

√

√

√

F1n

[

l m

l m

]

F1m

[

l n

l n

] . (5.8)

These open defects also commute with the fused boundary �eld Ds(ψ[a,a]
i ).

We illustrate the constructions (5.3), (5.4), (5.7) on a couple of explicit examples. Consider

the Cardy boundary condition (2, 2) in the tetracritical Ising model. The open defect D[2,2]
31

commutes with ψ[22,22]
13 . Fusing the boundarywith a closed defectD1,2 we obtain the direct sum

(2, 1)⊕ (2, 3). Up to an overall factor the boundary �eld ψ[22,22]
13 is mapped to the combination

Ψ ≡ ψ̃[23,23]
13 − 2(ψ̃[23,21]

13 + ψ̃[21,23]
13 ) (5.9)

where we use the notation

ψ̃[a,b]
i =

1

αabi
ψ[a,b]
i (5.10)

and the boundary �elds ψ[a,b]
i are normalised as in [6]. Since (1, 2)× (3, 1) = (3, 2) we have

only one value j = (3, 2) in (5.4), (5.7). Using (5.4) we �nd the open defects combinations

D[23,23]
3,3 −D[23,21]

3,3 −
√
2D[21,23]

3,3 , (5.11)

D[23,23]
3,1 −D[21,21]

3,1 (5.12)
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each of which commutes with (5.9) as can be checked directly. Using (5.7) gives the same

combinations. These combinations are �xed by the commutation condition up to an overall

factor.

Our second example starts with the same triple: a = (2, 2), d = (3, 1), ψ[22,22]
13 , but this time

we fuse it with D2,1. This gives the direct sum of boundary conditions: (1, 2)⊕ (3, 2) with a

boundary �eld

Ψ
′ ≡ 7ψ̃[32,32]

1,3 − 9ψ̃[12,12]
1,3 . (5.13)

(Again for brevity we dropped the overall normalisation factor.) We now have two choices

for j in (5.4), (5.7): j ∈ {(2, 1), (4, 1)}. This gives us 4 particular linear combinations of the

following three elementary open defects:

D[32,32]
3,1 , D[32,12]

3,1 , D[12,32]
3,1 . (5.14)

The coef�cients of these linear combinations are quite ugly so we do not present them here, but

we checked that they span the linear subspace generated by the elementary open defects listed

in (5.14). Indeed, a separate calculation shows that each of the defects in (5.14) commutes

with Ψ′.

6. Concluding remarks

Our considerations in section 3 did not depend on any particular choice of a rational CFT. Given

an open topological defect on a conformal boundary that either commutes or anti-commutes

with a relevant boundary perturbation all the consequences for RG �ows derived in that section

would apply. By working out a number of explicit examples in the minimal models we showed

that all of these constraints can be used to restrict the possible infrared �xed points in RG �ows,

in particular in situations in which no other analytic arguments are known that would give the

same restrictions.

It would be interesting to generalise the calculations done in [6] to a more general chiral

algebra and to �nd other examples of applications of our general results to boundary RG �ows

in other models. More systematically, one can try to obtain some general results towards clas-

sifying all possible pairs—a relevant boundary operator plus a commuting or anti-commuting

open topological defect, in given RCFTs or classes of RCFTs. Certainly such situations, when

such a pair exists, are special. As we discussed in section 3, boundary operators in such pairs

generate a subalgebra under OPE. In the bulk CFT perturbations with this property the Hamil-

tonian is block diagonal that signals the presence of additional conserved charges. Moreover,

like theΦ1,3,Φ1,2 andΦ2,1 bulk perturbations of minimal models (see [22]), such perturbations

are known to give integrable models. The integrability aspect of boundary perturbations is still

comparatively less studied, particularly for theψ1,2 andψ2,1 perturbations. It would be interest-

ing to investigate possible connections between the presence of commuting or anti-commuting

defects and integrability, perhaps one could try to exploit the link between defects and integra-

bility established for bulk perturbations in [14]. We hope to address these questions in future

work.
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Appendix A. Some identities for the minimal model fusion matrices

Fpq

[

a b

c d

]

= Fpq

[

c d

a b

]

= Fpq

[

b a

d c

]

(A.1)

F11

[

a a

a a

]

=
S11

S1a
(A.2)

where Sab stand for the elements of the modular S-matrix.

F1a

[

b c

b c

]

Fa1

[

b b

c c

]

=
S11S1a

S1bS1c
(A.3)

Fa1

[

b b

c c

]

=
S1a

S1c
Fc1

[

a a

b b

]

(A.4)

Fe1

[

a a

d d

]

F fa

[

b c

e d

]

= F f 1

[

c c

d d

]

Fec

[

a b

d f

]

(A.5)

∑

s

Fps

[

b c

a d

]

Fsr

[

c d

b a

]

= δpr (A.6)

We next showhowone can use the above identities to establish the equivalence of the expres-

sion for the coef�cients N[a] e
cd that follows from (2.5) and the expression presented in formula

(2.7). Formula (2.5) gives

N
[a] e
cd =

F1a

[

d a

d a

]

F1a

[

c a

c a

]

F1a

[

e a

e a

]

F1e

[

d c

d c

]F2
ae

[

d c

a a

]

. (A.7)

To show that this equals the expression in (2.7) we �rst use the identities

Fae

[

d c

a a

]

=

Fda

[

e a

c a

]

Fa1

[

a a

c c

]

Fd1

[

e e

c c

] , (A.8)

Fae

[

d c

a a

]

=

Fca

[

e a

d a

]

Fa1

[

a a

d d

]

Fc1

[

e e

d d

] (A.9)

that are particular instances of (A.5). Substituting each of these identities into (A.7) we obtain

N
[a] e
cd =

Fda

[

e a

c a

]

Fca

[

e a

d a

]

F1a

[

e a

e a

] Ñ
[a] e
cd (A.10)
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where

Ñ[a]e
cd =

F1a

[

d a

d a

]

Fa1

[

a a

d d

]

F1a

[

c a

c a

]

Fa1

[

a a

c c

]

F1e

[

d c

d c

]

Fd1

[

e e

c c

]

Fc1

[

e e

d d

] (A.11)

Using (A.3) in the numerator of (A.11) we rewrite the last expression as

Ñ[a] e
cd =

S211

S1dS1cF1e

[

d c

d c

]

Fd1

[

e e

c c

]

Fc1

[

e e

d d

] (A.12)

Finally we use the two identities

Fd1

[

e e

c c

]

=
S11

S1cF1e

[

d c

d c

] , Fc1

[

e e

d d

]

=
S11

S1dF1e

[

d c

d c

] (A.13)

that follow from a combination of (A.3) and (A.4). Substituting (A.13) into (A.12) we obtain

Ñ
[a] e
cd = F1e

[

d c

d c

]

(A.14)

that being combined with (A.10) gives (2.7).

Alternatively, formula (2.7) can be obtained independently by using a sequence of moves

on the topological defects involved, different from the ones used in [6].
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