
            

PAPER • OPEN ACCESS

Extending qubit coherence by adaptive quantum environment learning
To cite this article: Eleanor Scerri et al 2020 New J. Phys. 22 035002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 95.149.237.81 on 08/05/2020 at 23:33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/322484939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1367-2630/ab7bf3


New J. Phys. 22 (2020) 035002 https://doi.org/10.1088/1367-2630/ab7bf3

PAPER

Extending qubit coherence by adaptive quantum environment
learning

Eleanor Scerri1 , ErikMGauger andCristian Bonato
SUPA, Institute of Photonics andQuantum Sciences, Heriot-Watt University, David Brewster Building, Edinburgh, EH14 4AS,United
Kingdom
1 Author towhomany correspondence should be addressed.

E-mail: ds135@hw.ac.uk and c.bonato@hw.ac.uk

Keywords:machine learning, Bayesian inference, adaptive learning, environment learning, coherence time, nv centre, quantum sensing

Supplementarymaterial for this article is available online

Abstract
Decoherence, resulting fromunwanted interaction between a qubit and its environment, poses a
serious challenge towards the development of quantum technologies. Recently, researchers have
started analysing how real-timeHamiltonian learning approaches, based on estimating the qubit state
faster than the environmental fluctuations, can be used to counteract decoherence. In this work, we
investigate how the back-action of the quantummeasurements used in the learning process can be
harnessed to extend qubit coherence.We propose an adaptive protocol that, by learning the qubit
environment, narrows down the distribution of possible environment states.While the outcomes of
quantummeasurements are random,we show that real-time adaptation ofmeasurement settings
(based on previous outcomes) allows a deterministic decrease of thewidth of the bath distribution,
and hence an increase of the qubit coherence.Wenumerically simulate the performance of the
protocol for the electronic spin of a nitrogen-vacancy centre in diamond subject to a dilute bath of 13C
nuclear spin,finding a considerable improvement over the performance of non-adaptive strategies.

1. Introduction

Individual spins are an established platform for developing solid-state quantum technologies for improved
metrology [1–11], communication [12, 13] and information processing [14–17]. All quantum applications rely
on the capability to preserve the coherence of quantum states. Due to the solid-state environment, coherence is
only preserved on a finite timescale dictated by fluctuations originating fromneighbouring impurities and spins.
While coherence could be extended byminimising the concentration of impurities [18, 19], improvingmaterial
quality is typically not straightforward and requires a considerable investment. Another possibility is to use
quantum error correctionmethods [20–23] to preserve the quantum state of the system.However, this adds a
significant overhead in terms of additional qubits required.

For these reasons, themost widely adopted currentmitigation strategy builds on pulse sequences such as
dynamical decoupling [24–26], which can efficiently isolate the qubit from its environment at specific times
during its evolution. This strategy, however, poses problemswhen the qubit is required on-demand and not at
pre-determined intervals.

An alternative option is to initialise the quantum systems in the bath in awell-defined state. For nuclear
spins, this is typically done by dynamically transferring polarisation from the easilymanipulated electron spin to
the nuclear environment [27–31]. The standard dynamic nuclear polarisation (DNP) techniques, however,
suffer from anumber of drawbacks. The long relaxation times of electron spins at low temperatures required for
DNP severely limit the number of nuclear spins that are polarised during each polarisation cycle [30].
Furthermore, someDNPprocesses requirematching the electron andnuclear transition frequencies, which is
not a trivial task in the presence of spectralfluctuations. Optical DNPpartiallymitigates these issues by optically
pumping the electrons (albeit still requiring energymatching for polarisation transfer) [30–32]. However, this
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technique is limited by the short photo-excited triplet state lifetime, requiring fast polarisation transfer orweakly
coupled nuclear spins [32]. Amore sophisticated alternative is to use dynamical decoupling sequences to target
individual nuclear spins one by one, initialising them in awell defined state [21, 23, 33]. In addition to improving
the coherence of the electron spin, these techniques also enable full coherent control of the individual nuclear
spins.Whilst thismethod certainly shows great promise formulti-qubit coherent control, it only works for
dilute environments and it requires a time-consuming full pre-characterisation of the spin-bath.

The techniquesdiscussed above rely onmanipulating the central spin and/or its nuclear environment, but
alternatively onemay track andcompensate environmentalfluctuations throughHamiltonian learning.Recent
significant advances in computational power andhigh-speedprogrammable electronicshavemade real-time learning
algorithmsexperimentally viable [34–37]. For example, bymeasuring thequbit faster than thefluctuations responsible
fordecoherence, one canadaptively compensate anydetuning andmaintain coherence [38]. This ideahasbeen
experimentally implemented to increase the coherence timeT2* time for a spin in aquantumdot [39], fromthe
nanosecond to themicrosecond timescale. For a single electronic spin in aGaAsquantumdot, interactionwith the
nuclear spin environment canbe treated as a semi-classical time-varyingmagneticfield, due to the size of the spinbath.

Inmaterials such as diamond, silicon or silicon carbide, the concentration of nuclear spins ismuch smaller
than inGaAs, and a central spin only interacts with a dilute environment of a fewnuclear spins. In this case, the
semi-classical approximation is no longer viable and the full quantumdynamics of individual nuclear spins
comes into play. Recent work has shown that by applying controlled pulse sequences to an electronic spin in
diamond (1.1% 13C concentration), a dozen individual nuclear spins can be detected [11, 40–42] and coherently
controlled [43, 44], opening theway to exploit the quantumproperties of the bath. In this work, we theoretically
investigate how coherence can be extended by a sequence of quantummeasurements on a diluted spin bath. In
this regime, quantummeasurement back-action plays a significant role: after eachmeasurement, the quantum
state of the environment is projected, and the distribution of possible values for themagnetic field created by the
spin bath is narrowed, consequently extending theT2* coherence time [36, 45, 46]. In other words, by learning
the combined hyperfine coupling between the electron spin and the surrounding nuclei, one can infer the
probability of the nuclear spin bath to be in a particular joint state. Thus, with everymeasurement performed on
the central spin, additional information about its environment is gained. The learning process narrows down
this probability distribution, thus reducing the fluctuations on the electron spin, leading to a longer coherence
time.Wewill show that real-time adaptation of themeasurement parameters, based on previousmeasurement
outcomes, allows us to deterministically reduce themagnetic distribution to a narrowuni-modal distribution.
In contrast to dynamical decoupling sequences, the improved coherence ismaintained until the intrinsic
quantum evolution due to inter-bath coupling broadens the set of possible coupling strengths.

In thisworkwe apply our adaptive techniqueonNVcentres, althoughweemphasise that our schemecanbe
applied to various otherphysical systems, includingother types of spins [39, 47–49], superconductingqubits [50, 51]
and trapped ions [52].Our analysis startswith adiscussionof themodel employed tonumerically simulate the central
spin and thenuclear environment in section2andan introduction to the standard (non-adaptive)Ramsey
measurement sequence in section3.We then introduce anadaptive learningprotocol basedonBayesian estimation in
section4, aswell as assessing its ability tonarrowspinbathdistributions. Finally, in section5,we study theprotocol’s
repeatability by simulatingmultiple intermittentnarrowing sequences interleavedwith freeprecessionperiods.

2.Model

As stated in the introduction, while the techniques studied here can be applied formore general systemswith
dilute environments, we focus on the electronic spin of a negatively charged nitrogen-vacancy (NV−) centre in
diamond that is coupled to a bath of 13C nuclear spins (figure 1). NV− defects in diamond host an S=1
electronic spin that can be optically initialised and read-out. For simplicity, we assume the experiments are
carried out at cryogenic temperatures, where fast initialisation and single-shot read-out of the electronic spin
can be performedwith highfidelity [41].We also assume that the concentration of electronic impurities
(substitutional nitrogen) is sufficiently low that themain cause of decoherence is due to the hyperfine interaction
with the surrounding 13C nuclear spins. The natural abundance of this isotope in diamond is∼1.1% (but can be
as low as∼0.01% for isotropicallymodified diamond samples).

Following [53, 54], theHamiltonian of our system can bewritten as:

( )= + + -H H H H , 1cs b cs b
int

whereHcs,Hb and -Hcs b
int are the central spin (in our case theNV− electron spin) and spin bathHamiltonians,

and the interactionHamiltonian of the defect and bath, respectively. In the presence of an externalmagnetic
fieldB=(Bx,By,Bz), the individualHamiltonian components can bewritten as

· ( )g= +H DS B S; 2cs z e
2
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whereD is the electron spin zero-field splitting, γe and γN are the electron and nuclear gyromagnetic ratios,
respectively, S=(Sx, Sy, Sz) and In=(In,x, In,y, In,z) are the spin operator vectors for the electron and nth nuclear
spin, respectively. Furthermore, n is the hyperfine tensor of the nth spin, while nm is the coupling tensor
between nuclei n andm. Assuming the externalfield andNV− centre axis are aligned along the z-axis, we denote
the Zeeman split states by {∣ }m mñ = -; 1, 0, 1 .Moving to a rotating framewith respect to the electron
m = «0 1 transition, we obtain theHamiltonian

∣ ∣ ( )å m m= ñá Ä
m

m
=

H H ; 5
0

1

· · · ( )( ) ( )å åW= +m
m mH I I I , 6

n
n n

nm
n nm m

where ( ) g mW = +m B An N n [ ( )= A A AA , ,n n
zx

n
zy

n
zz nowdenoting the hyperfine vector] is the effective Larmor

vector for the nth nuclear spin, and the formof ( )mnm can be found in appendix A.We have alsomade the secular
approximation, allowing the discarding of the zero-field splitting term [54]. Given that in this workwe consider
amagnetic field along the z-axis, wemeasure the observable = å =A Az i

N
i
zz

1 , that is, the z component of the
hyperfinefield of the nuclear ensemble.

Full simulation of an ensemble ofN spins requires keeping track of 2N complex elements of the density
matrix, leading to an exponential scaling in computation timewithHilbert space dimension. For the case of a
dilute bath, ‘clustering’ approaches considerably reduce the computational time andmake the problem tractable
[53–56]. This stems from the idea that, due to the short-range nature ofmagnetic interaction, spin–spin
coupling is important onlywithin ‘clusters’ of spins which happen to be very close to each other, while
interaction between the clusters can be safely ignored. In our case, however, electron-nuclear interactions create
correlations between the central electron spin and the nuclear spins.When the electron spin ismeasured,

Figure 1.Weconsider a central electronic spin in a diluted nuclear spin bath (top). Our adaptive protocol chooses, in real-time, the
optimal sensing time and phase for each Ramsey experiment with the goal to narrow the bath hyperfine interaction to a uni-modal
distribution ofminimal width. The algorithmkeeps track of a classical probability distribution P(Az) to describe the bath, which is
updated after eachmeasurement by Bayes rule. P(Az) is used to estimate the optimal sensing time and phase.
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correlations are established between the clusters and their evolution cannot be considered as independent. As
described inmore detail in appendix B, thismakes the clustering approach not applicable to our problem, and a
full simulation of the densitymatrix evolution, for a limited number of nuclear spins, is required. In the
following, we restrict our analysis to a full quantum simulation of a bath consisting of up to 10 13C nuclear spins.

Given a bath ofN nuclear spins around the central electron spin, the probability distribution P(Az) for the
hyperfine interaction between the central spin and the bath can be computed as ( )P Az = { (∣ ∣ )rñáA ATr :i

z
i
z

0

} i1 2N . Here ρ0 is the initial spin bath densitymatrix, ∣ ñAj
z is the jth joint spin bath eigenstate, with

eigenvalue Aj
z andN is the number of nuclear spins in the environment.We assume the nuclear spin bath to be

initially in the thermal state r = - 2 N
N0 , which leads to a uniform P(Az). In this work, we take the ratio of the

inverse of the standard deviation of theAz (σz) to it is original value (σz,0), whichwe shall refer to as the
narrowing factor (N.F.) as ameasure of howT2* changes at each sequence, that is

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )s
s

= =
á ñ - á ñ
á ñ - á ñ

- -

-

A A

A A
N.F. . 7z

z

z z

z z,0

1 2 2 1 2

2
0 0

2 1 2

where the zero subscript denotes a quantity takenwith respect to the initial bath densitymatrix (that is, the
completelymixed state), and á ñAz and á ñAz

2 are the first and secondmoments of the distribution P(Az).
For simplicity, throughout thismanuscript,we consider the case of perfect initialisation and (single-shot)

readoutfidelity for the electronic spin. State-of-the-art experiments on theNVcentre in diamond at cryogenic
temperature have reached initialisationfidelities>99%and readoutfidelities>96% [57]. A discussionof how
adaptivemeasurements canbe achieved in the absence of single-shot qubit readout is presented elsewhere [58]. As
shownby previous experimental work [46], small imperfections in qubit readout donot degrade the performance
of adaptive protocols, as long as the number of repetitions is increased and the imperfections are correctly included
whenupdating the knowledge about the system throughBayes rule. Furthermore, for reasonswe explain in the
following,we ignore any effects related toNV ionisation and electron spinflips during readout (and their effect on
thenuclear spin bath), aswell as any changes in thehyperfine interactionwhenoptically exciting theNVelectronic
spin. Single-shot electron spin readout is achievedbyoptical excitation of spin-selective transitions at cryogenic
temperature [59]. Due to excited-statemixing, this can result in electron spinflips that induce decoherence of the
surroundingnuclear spins. This has been investigated indetails byReiserer et al [60], who found that,while nuclear
spin dephasing occurs after somehundred electron spin readouts, nuclear spin polarisation is stable for thousands
of readouts. In thiswork,we are only concerned about thepolarisation of the nuclear spins andnot their phases, so
we can safely neglect the effects of readout-induced electron spinflips on the nuclear spins.

3.Non-adaptive Ramseymeasurements

Weconsider a sequence of Ramseymeasurements, i.e. interference experiments where the phase acquired by a
spin under amagnetic field for a time τ is detected as a population difference between the spin eigenstates. The
control parameters in a Ramsey experiment are the sensing time τ and the rotation anglef of the detection basis.

As discussed in section 2, the nuclear spin bath initially induces a broadmagneticfield distribution,
corresponding to all possible configurations of an ensembleofNnuclear spins (I=1/2, in our case). Due to the
interactionbetween the central spin and surroundingnuclear environment, the outcome fromeachRamsey
measurement provides partial informationon the projectionof the hyperfinefield along themagneticfield axis (in
our case, the z-axis). Throughmeasurement back-action, the uncertainty in the bath state is changedwith each
measurement, depending on themeasurement outcome.When the distribution is narrowed, as knowledge of the
spin bath state increases, theuncertainty in themagneticfield felt by the central spin diminishes, thus increasing the
T2* coherence time.An example of this is shown infigure 2,whereweplot the hyperfinedistribution acting on the
central electron spin after eachRamsey experimentwith t m= 1 s0 andf=0. In general, a sequence ofRamsey
experimentwithfixed τ=τ0 is not the optimalway tonarrow thedistribution. First, sincemeasurement outcomes
are random,onehasno control over thefinal hyperfinedistribution, and thus, thefinal state of the spin bath.This is
illustrated in the exampleoffigure 2: thefinal outcomeof the process is amulti-modal four-peakeddistribution
(figure 2(b))which corresponds to aT2* of few ms (figure 2(c)). Second, the sensitivity of Ramsey experiments is
maximalwhen t ~ T2*. Given thatT2* is changed after eachRamsey experiment throughmeasurement back-
action, this suggests that one should adapt τ for eachRamseymeasurement basedon the current estimate ofT2*.

4. Adaptive Bayesian protocol

In this section, we present an adaptive protocol that addresses the points evidenced above. Our protocol is based
onBayesian estimation, i.e. with eachmeasurement, we update the classical probability distribution that
represents our knowledge about the system and use it to extract the optimal parameters (τ andf) for the next
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sequence. This has two advantages: first, itmaintains operation in the regime ofmaximum sensitivity for all
steps in the protocol. Second, whilemeasurement outcomes are random, online adaptation allows to select the
best parameter settings to steer the distribution towards a narrowunimodal distribution .

Wenowbriefly describe the steps involved in the algorithmoutlined infigure 1. Our knowledge about the
bath is represented by a classical probability distribution ˆ ( ) Az , which approximates the true probability
distribution P(Az). At themth step, ˆ ( ) Az is updated using Bayes’ theorem:

ˆ ( ∣ ) ˆ ( ∣ ) ˆ ( ∣ ) ( )m m m m m¼ = ¼ -  A A A, , , , , 8z m z m m z1 1 1

whereμl is the Ramsey result of the lth estimation step (i.e. { }m Î 0, 1l ). The conditional probability ˆ ( ∣ )m Am z

is given by [36, 45]

ˆ ( ∣ ) ( )

ˆ ( ∣ ) ˆ ( ∣ ) ( )

( )m p t f

m m

= = + +

= = - =

t-

 

A A

A A

0
1

2

1

2
e cos 2

1 1 0 , 9

m z
T

z

m z m z

2
2*

where perfect readoutfidelities for the two possible outcomesμm=0, andμm=1 are assumed. The probability
distribution ˆ ( ) Az can be expressed in Fourier space as [36, 45, 46]:

ˆ ( ) ( )å= p t A p e . 10z
j

j
jAi2 z

Following previous work [45], we restrict possible sensing times to the series t t= 2k
k

0, where τ0 is theminimum
sensing time. Themth Bayesian update (equation (8)) can be computed in terms of the Fourier coefficients pj as
[36, 45]

( )( ) ( ) ( ˆ )= + t- - p p
1

2

1

4
e 11

j
m

j
m 1 m 2

2*

[ ] ( )( ) ( ) ( ) ( )´ +m p f m p f+
-
- - +

+
-p pe e , 12

j
m

j
mi

2
1 i

2
1

m m m m m m

wherefm is the angle of rotation of the detection basis. The current average hyperfine interaction Az
avg can be

quantified in terms of a single Fourier coefficient, as

Figure 2.Evolution of the probability distribution P(Az) for the nuclear bath hyperfine interaction for a sequence ofmeasurements on
the electron spin, for the same initial bath distributionwith a corresponding Ramsey signal (derived in appendix C) shown in (a). (b)
For a sequence of non-adaptive Ramsey experiments, the resulting distribution is random, and can bemulti-modal. (c)The coherence
time from the final Ramsey signal thus shows little improvement over the initial signal for the non-adaptive Ramsey scheme. (d)Our
adaptive protocol, on the other hand, selects the optimal parameters at each step, to deterministically narrow to a uni-modal
distribution. (e)Thus, the resulting Ramsey signal for the adaptive scheme shows a significant improvement in the coherence time.
The red curves on the left and right of (b) and (c) are schematics of the initial and final probability distributions for the twoRamsey
schemes, respectively. The red curve on the bottom shows the evolution of the narrowing factor for the adaptive scheme. Simulations
were performed for a bath of 7 nuclear spins (13C, I=1/2), under amagnetic fieldBz=250 mT.
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( ) ( )
pt pt

= á ñ =p t
-A p

1

2
arg e

1

2
arg , 13z

Aavg

0

i2

0
1

z 0

where the last equality is a direct result of the Fourier representation of ˆ ( ) Az .
We choose the optimal sensing time based on thewidth of the current probability distribution ˆ ( ) Az [46],

determined by its variance. For awell-defined, singlemode distribution, the variance is equivalent to theHolevo
variance VH,which can be described by a single pk coefficient [45]:

( ) ( ∣ ∣) ( )p= --
-V pA 2 1. 14zH 1

2

This is very important for practical implementations since it allows choosing optimal sensing timeswith fast (O(1)
complexity) operations.As described above,weheuristically choose the current sensing time to be as close as
possible to the current estimated coherence time,whichwedenote by  2*. Similar towhatwehave done for the
measured coherence time (see equation (7)), weuse the standard deviationof thedistribution inorder tomonitor
any changes to the estimated coherence time  2*. Using the standard deviation associatedwith theHolevo variance

( )s = V Az z
H

H
1 2, we then choose ameasurement time such that t t s= 2 1k

z0
H, giving the current k as:

⎢
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎥
⎦
⎥⎥ ( )s

pt
= +k Clog

2
, 15z

opt 2

H

0

where⌊·⌋denotes the closest smallest integer. The proportionality constantChere can be chosen tomaximise
the algorithmperformance for the given specific experimental settings [36].

We implementMk=G+kF repetitions for the kth Ramsey sequence [46, 61], where F andG are integers,
the latter being the number of repetitions of the shortestmeasurement sequence (k=0). For eachRamsey
experiment, the rotation of the detection basis can locally optimised byfinding theminimumof theHolevo
variance in Fourier space [36, 45]:

( ) ( )f q= = -p
1

2
arg . 16k opt 2k

Anoutcomeμi different than the previous outcomeμi−1 appears to often result in a bi-modal probability
distribution ˆ ( ) Az . Through extensive simulations, we found that a unimodal distribution can be retrieved by
including a conditional phase shift ofπ/2 infk, when the subsequent electron spinmeasurement result differs.
The algorithm is described in details in table 1. The improvement over the non-adaptive algorithm is evident in
figure 2, wherewe compare both algorithms on the same spin bath.While a sequence of non-adaptive Ramsey
measurements results in amulti-modal distributionwith aT2* of a few ms, our adaptive protocol
deterministically converges to a uni-modal distributionwith m~T 100 s2* .We note that, while this algorithm is
based on a series of exponential sensing times, there are other possible strategies, such as sequentialMonte Carlo
protocols recently introduced for quantum sensing [37]. By using re-sampling strategies, these protocolsmay
minimise the number of coefficients required in the Bayesian update, resulting in amore resource-efficient
performance. Infigure 3(a), we give an example of howour scheme narrows the state probability distribution of
bath of 7 spins over 20 Ramsey sequences, with repetition parametersG=3 and F=2. The appliedmagnetic
fieldwas set to 250mT,with the shortestmeasurement time t m= 1 s0 .

Algorithm1.Adaptive bath narrowing protocol

k=0 (sensing time index, t t= 2k
k

0)

whileTRUEdo

calculate kopt - [equation (15)]

calculate θopt - [equation (16)]

μk=Ramsey (t t= 2opt
k

0,f=θopt)

ifm m¹ -k k 1then

q += p
opt 2

end if

Bayesian update (μ, t t= 2opt
k

0,f=θopt) -[equation (12)] [[36]]

endwhile
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Infigure 3(b), we plot the narrowing factor averaged over 100 different spin baths, simulated by randomly
placing 13C spins in the diamond lattice. Our results show that, on average, the narrowing factor can be
enhanced by at least a factor of 10. Infigure 4(a), we showhow the narrowing algorithm increases the coherence
time for a single spin bath for an appliedmagnetic field ofBz=250mT (t m= 1 s0 ,G=3 and F=2). Despite
the fact that the same bath is used for each realisation of the algorithm, the probabilistic nature of the Ramsey
experiment gives different optimal parameters (and thus, trajectories) for each realisation. Infigure 4(b), we
show the dependence of the narrowing factor on the applied externalmagnetic field. As expected, as the
magnetic field is increased, the spin bathfluctuations diminish as the hyperfine-field component parallel to the
field (in this case, the z-component) is enhanced and dominates over the other components.

Fromfigures 3(b) and4(b),wenotice that thenarrowing factor seems to saturate after a certainnumberof steps
(figure3(b)), or, alternatively as the appliedmagneticfield is increased (figure4(b)).Aswediscuss presently, this
saturation ismerely anumerical artefact of thediscretenatureof the simulatedbath’s probability distribution, from
whichweare extracting thenarrowing factor.More specifically, for abath comprisingNnuclear spins (I=1/2), the
joint hyperfine eigenvalueAz can take2

Nvalues.Consequently, theprobabilitydistributiondescribing thebath in the
simulations is a discrete distribution consistingof 2Npoints.Thismeans that, for a smallN, numerical issuesmay
emergewhen thedistribution isnarrowed significantly, up to thepointwhere thedistributiondiscretization is reached.
It can thereforebe expected that,when reaching thediscretization limit, the standarddeviationσzwould saturate. In
otherwords, due to thefinite size of thebath (N=7 inour simulations)weexpect thenarrowing toquickly reacha
regimewhereonly a fewconfigurationsof thebath are available, thus limiting the validityof the simulatedbath.

5. Spin bath refocussing

Once the spin bath distribution has been narrowed, experiments can be performedwith the extended coherence
timeT2*. This benefit would not, however, persist indefinitely since interactions between the nuclear spins
induce diffusion and thus a broadening ofP(Az) over a timescale of the echo timeT2.We consider the overall
narrowing factor formultiple narrowing sequences back-to-back in order to asses the repeatability of the

Figure 3. (a)Probability distributionP(Az) for a 7nuclear spinswith an appliedmagneticfieldBz=250mTbefore andafter 20Ramsey
sequences (withG=1 andF=0). The green curve is theBayesiandistribution,whereas thediscrete distribution inblack is the distribution
simulateddirectly fromtheHamiltoniandynamics (showing thediscretisation limited to27=128). The initial estimate is taken to be a
normal distributionofwidth t~ -

0
1. The conditional probabilities ( ∣ )mP Az forμ=0 andμ=1 are shown inmagenta and cyan,

respectively. (b)TheBayesiannarrowing scheme, showing thenarrowing factor for averagedover 100 trials increasingwith each additional
step. In the above simulations,we chose t m= 1 s0 ,G=3 andF=2.The light shaded region is the standarddeviation at each step.
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narrowing scheme. Remarkably, we find that it is indeed possible to refocus the spin bath evenwhen each of the
free precession periods last ten times as long as the precedingmeasurement sequence, as shown infigure 5,
wherewe also show the Ramsey signal at several steps of the narrowing sequence for a single realisation,
demonstrating the coherence time decay and subsequent revival to roughly 10 times its initial value. Due to to
the exponential scaling of theHilbert space, we restricted this simulation to a spin bath of 7 nuclear spins,
although the same results can be obtained for larger environments, as we show in appendixD2.

6. Conclusion

In this paper, we have investigated a Bayesian adaptive approach to environment state learning. In recent work,
such an approach has been shown to reach the quantum limit of parameter estimation [45].We have applied a
modified version of this algorithm to gain information about the dilute nuclear environment of a solid state
nanostructure (an example of whichwould be anNV− centre), in the presence of a known, externalmagnetic
field.We have shown that, in turn, this information reduces themagnetic fieldfluctuations felt by the central
spin, as the state of the surrounding nuclear ensemble is partially projected and steered towards a random, but
particular, state.Whilst focussing on the specific environment ofNV− centres, these results can be
straightforwardly extended to other systems having sparse nuclear spin environments.

Several interesting applications of this technique canbe investigated in the near future. An exciting extensionof
thenarrowing schemewould be to engineer exotic spinbath states. The full control over themeasurement times and
readout anglemeans that it is possible, in principle, to ‘guide’ the spinbath into any state by choosing, instead of
optimising, themeasurement time andphase. Thus, byutilising this partial projectionof the spin bath distribution,
one can realise interestingmany-body stateswhichmay show, for example, different entanglement properties and
other interesting features. Althoughwe applied the adaptive learningprotocol to systemswithdilute environments,
our technique can also be used to enhance the coherence of solid-state platformswith larger environments (although
thiswouldnecessitate a semi-classical treatment of thenuclear spinbath for simulations [39]). Furthermore, our
scheme is currently solelymeasurement-based,with eachmeasurement increasing our knowledgeof the
environment, thus enhancing the central spin’s coherence. Futurework could include the addition of decoupling
sequences to our adaptive protocol, improving on standard ‘off-the-shelf’decoupling sequences.

Figure 4. (a)Averagednarrowing factor (solid red) for an electron spin in a 7 spinnuclear environmentwith amagnetic ofBz=250mT
and shortestmeasurement time t m= 1 s0 ,G=3 andF=2. In this case, the same spin environmentwas used for each realisation inorder
to show thedifferent trajectories, determinedbydifferent randomprobabilisticmeasurement outcomes, are possible evenwhen the central
spin is surroundedby the samenuclear environment. 10 randomly selected trajectories (solid colours) fromthe 500 realisations are shown,
aswell as the standarddeviation for each stepof the narrowing algorithm (dashed red). (b)Magneticfielddependenceof thefinal narrowing
factor. For eachmagneticfield value, 100 randombaths of 7nuclear spinswere generated (with t m= 1 s0 ,G=3 andF=2), averaging
over thefinal narrowing factors. The saturationnearBz=250mToccurs primarily due to thefinite discretisationof the simulatedbath
distribution, as discussed in themain text.Highernarrowing factors canbe expected experimentally.

2
In an experiment, this constraint would be lifted aswewould only need to calculate the probability distribution based on experimental

results, without the need simulate the computationally expensive spin environment.
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AppendixA. Secular approximation correction

In section2,weperformed the secular approximation for highfields,which allowedus to arrive at the simple formof
theHamiltonian, given by equation (5). In order to obtain equation (5), however, the components of the hyperfine
fields from13Corthogonal to theNVaxis have to be accounted for perturbatively, as these termsmay lead to
quantitative changes in the dynamics of the spin bath evolution [53, 62]. Following [53, 62], with themagneticfield
parallel to the z-axis, we get an effective nuclear-nuclear spin coupling for thenthRamsey experiment givenby

( )( )d= + m   , A.1ij ij ij
eff n

where ( )mij
n is the correction to the interaction termbetween the ith and jth nuclear spins, and is given by

( ) · ( )( )d
g g
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d d= -
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m D

g g
2 3
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N e

n
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j

2
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where gi is the correction term to the ith spin g-tensor, which captures the effects of the additional hyperfine
transverse terms:
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Appendix B. Invalidity of cluster algorithm

As discussed in section 2, the cluster approximation for a diluted bath cannot be used in the case of correlated
measurements. Indeed, consider the densitymatrix after the nth Ramsey experiment, rn

full, which is obtained by

Figure 5.After the bath distribution has been narrowed, it will broaden again over a timescale of the echo timeT2 due to inter-nuclear
coupling. This effect can bemitigated by intermittent spin bath refocusing. In this example (G=1, F=0, t m= 1 s0 ) the bath is
narrowed for about 1ms, increasing T2* from10 to m123 s (as shown by the Ramsey signals in the insets). The bath is then let freely
evolve for 8 ms, duringwhich experiments can be performed on the electron spin exploiting the extended coherence. After 8ms, T2* is
reduced to about m67 s. A second narrowing sequence (with the same adaptive algorithm and initial sensing time τ0) can be then
performed, for a few hundredmicroseconds, which brings T2* to m>140 s. Thewhole sequence of narrowing steps and experiments
can be repeated indefinitely, whilemaintaining long coherence. In the example, we cap themaximumnarrowing factor to avoid
reaching the discretisation of the probability distribution for a system of 7 nuclear spins.
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propagating the densitymatrix after the (n−1)th step:

( )†r r= m m-  , B.1n n
full

1
full

n n

where ⨂ ( ) ⨂( ) ( )= + -m
m
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= U U1k
N k
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N k

1 0
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1 1n
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is the time evolution operator of the spin bath given aμn=0, 1 Ramsey experiment result. The cluster
approximation assumes that the nuclear environment can be classified into smaller clusters of spins such that the
densitymatrix r -n 1

full can be broken down into a product of smaller densitymatrices ⨂ ( )r= -j
N

n
j

1 1
c , whereNc is the

number of clusters and each ( )r -n
j

1 is the densitymatrix for a cluster of spins. Furthermore, the time evolution

operator can also be clustered as ⨂ ( ) ⨂( ) ( )= + -m
m

=
+

= U U1j
N j

j
N j

1 0
1

1 1n
c n c , where ( )

mU j
n
nowdescribes the time

evolution of the jth cluster. Then, the full densitymatrix in equation (B.1) can be expanded as
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since intercluster nuclear-nuclear interactions are negligible and can thus be ignored as long as a reasonable
number of clustersNc is taken [53].We have taken themeasurement outcome to beμn=1, without loss of
generality. From the above, we cannot obtain each individual cluster densitymatrix sincewe cannot factor the
above as a single Kronecker product over clusters. If the cluster approximation holds, thenwe should be able to
obtain the same full densitymatrix by propagating each individual cluster densitymatrix separately, and then
taking theKronecker product, that is

⨂ ( )( )r r=
=

- ; B.5n
j

N

n
jclus

1
1

c

( )( ) ( ) ( ) ( ) †r r= m m- -  , B.6n
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1 1n n

where ⨂ ( ) ⨂( ) ( ) ( )= + -m
m

=
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= U U1j
k
N k

k
N k

1 0
1

1 1n

j n j , withNj being the number of spins in the jth cluster. rn
clus can

then bewritten down as

⨂( ( )( ) ( ) ( ) † ( ) ( ) ( ) †r r r= +- -U U U U B.7n
k

k
n
k k k

n
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) ( )( ) ( ) ( ) † ( ) ( ) ( ) †r r+ +- -U U U U , B.8k
n
k k k

n
k k
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thus giving a different (and incorrect) expression for the densitymatrix of the spin bath at step n
since r r¹clus full.

AppendixC. Ramsey signal

Startingwith the standard Ramsey sequence ( ) ( )( )t- -p pR U Rx x2 2
, withRx(θ) andU(τ) denoting a θ-

rotation about the x axis and a free precession for a time τ respectively, the Ramsey signal can be calculated as

( ) { ∣ ( )∣ }
( ) ( )[ ] ( ) ( )†

t r t
r t t r r t

= á ñ

= Ä

s

U U

Tr 0 0 ,

, C.1

bath

Ram e bath Ram

where ( ) ( )( ) ( )t t= p pU R U Rx xRam 2 2
, and ρe and ρbath are the electron and bath densitymatrices, respectively.

By simplifying equation (C.1), we finally obtain

( ) [ { ( ) ( )}] [ ( )] ( )†t t r t t= - = -s U U S
1

2
1 Tr

1

2
1 , C.2R0 bath 1

where ( ) ⨂ ( ){ }
( )t t=m mÎ =U Uk

N k
0,1 1 defined in appendix B, andwe refer to the time-varying component

( ) { ( ) ( )}†t t r t=S U UTrR 0 bath 1 as the Ramsey signal shown infigures 2 and 5 in themain text. For the latter, the
coherence timeT2* is extracted by fitting the envelope of the signal with [ ( ) ]t- Texp 2

2* , with any small
deviations from the signal stemming from the subsequent revivals of the signal.
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AppendixD. 10 spin bath results

Due to the exponential scaling of the spin bath densitymatrix, we have restricted ourselves for baths of 7 spins in
themain text. However, we are also able to obtain similar results for larger numbers of spins, as we show in
figureD1, wherewe compare the narrowing factor for the ‘interrupted’ sequence with the factor obtained by
continuously applying the narrowing sequence, with the gap denoting the period duringwhich the experimenter
maymake use of the electron spin.
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