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ABSTRACT

We present a novel approach to image vertical structures using multiply scattered waves.

This method require only a smooth seismic velocity model and data recorded at the surface.

Previous methods to image near-vertical interfaces or faults using migration methods all

require prior information about small-scale details in the seismic velocity model in order to

infer the locations of multiple-scattering wave interactions. We use waves that have their

last scattering interaction with near-vertical interfaces, while their other scattering points

may be anywhere in the Earth, including at the free surface. Our algorithm then images the

final scattering point using a time-reversed mirror-style imaging condition, so we refer to the

method as Time-Reversed Mirror imaging (TRMi). Artifacts in the images produced have

clear causes and can be filtered out by stacking over shots and including contributions from

multiples. Our numerical examples demonstrate the successful application of the method

for staircase structures and a section of the Marmousi model. They also reveal a new way

to diagnose errors in the smooth or reference velocity model used. In addition, our method

can be used to image point scatterers in active seismic surveys, or for event location in

passive surveys.

INTRODUCTION

Traditional wavefield imaging methods such as Kirchhoff migration (Wiggins, 1984), reverse

time migration (Baysal et al., 1983; McMechan, 1989; Whitmore, 1983), and downward

continuation algorithms (Claerbout, 1985) assume the first-order Born approximation �that

each wave is scattered no more than once (like event i in Figure 1(a)). They all require

knowledge of a smooth model of the medium’s velocity (a macro-velocity model) within

which the unknown scatterers are assumed to be embedded. Since only singly scattered

recorded waves or events (often called primaries) contribute correctly to images within such

algorithms, it is unlikely that near-vertical structures can be imaged unless very long offset

data are available. This is because any wave from the source that reflects off near-vertical

structures will generally be propagating downwards after reflection, making it difficult to

record at the surface (event ii in Figure 1(a)). Given a sufficient velocity gradient with
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depth, it is possible that such waves eventually bend back to the surface (at which point

they are referred to as diving waves, e.g., Figure 1(b)). While it is true that diving waves

can be used to image vertical structures under the Born approximation (Xu and Jin, 2006),

sufficiently long offsets are often not available to record such waves, and a very good macro-

velocity model is required to correctly position reflectors due to the length of the curved

wave path that must be predicted correctly by that model. Such an accurate model is

often unavailable. If a Vertical Seismic Profile (VSP) has recorded the reflections from the

vertical interface then we can use those recordings to image the structure using reverse-

time migration (RTM) or interferometric imaging (Hornby and Yu, 2007), but of course

VSP measurements are only available near boreholes.

[Figure 1 about here.]

If prior information is available about abrupt interfaces in the velocity model, we can

predict waves that are up-coming from the subsurface interface at which they reflect or scat-

ter. These upcoming waves may then reflect a second time from vertical interfaces (called

duplex or doubly-scattered waves) before being recorded (Figure 1(c)). Marmalyevskyy

et al. (2005) and Jin et al. (2006) show that we can then use these waves to image the ver-

tical interfaces using RTM. Malcolm et al. (2009) followed a similar approach to Jin et al.

(2006) but inverted for the abrupt interfaces in the velocity model starting from a smooth

version of the velocity prior to imaging. These doubly-scattered waves are also called pris-

matic waves and have been used extensively to image salt flanks and narrow mini-basin

areas (predominantly vertical interfaces) once we have the prior location of at least one

reflecting interface (Farmer et al., 2006; Zhang and Sun, 2009; Cavalca and Lailly, 2005;

Liu et al., 2011; Li et al., 2011). However, obtaining a smooth version of the velocity model

is a far simpler task than obtaining accurate estimates of abrupt, reflecting interfaces in the

model (Noble et al., 1991; Symes and Carazzone, 1991; Chavent and Jacewitz, 1995; Sava

and Biondi, 2004). Hence, a more direct method to produce images from up-going waves

without such prior information is desirable.

Recently, Marchenko-type algorithms were developed that estimate the Green’s func-
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tions from surface sources to any subsurface point that includes all primaries and multiple

reflections using only smooth velocity models (Rose, 2002; Broggini et al., 2012; Wapenaar

et al., 2014; Singh et al., 2014; da Costa Filho et al., 2014; Singh and Snieder, 2017). How-

ever, these methods fail to image vertical interfaces because Marchenko imaging is based

on the kinematic similarity of the up- and down-going Green’s function at the interface

(Lomas et al., 2018). At a vertical interface, the up- and down- going Green’s function

would not be similar as shown in Figure 1d, leading to failure of the Marchenko-imaging

method. Lomas et al. (2018) demonstrate that using modified Marchenko-type equations

and VSP recordings they can retrieve the Green’s functions between the vertical interfaces

and the surface; they then apply an interferometric imaging condition to image the vertical

interface with these Green’s functions. However, again, this can only be achieved in the

vicinity of a borehole.

Zuberi and Alkhalifah (2014) used a smooth velocity model to image vertical interfaces

using a technique called generalized internal multiple imaging (GIMI). GIMI uses successive

crosscorrelations with the surface recorded data and its back-propagated version to enhance

different orders of scattering, and then uses these crosscorrelations for imaging in an RTM-

type procedure. Although this scheme uses specific orders of internal multiples to construct

parts of the model that are not imaged by primaries, it also produces imaging artifacts.

We take a different approach to all of the studies above: we image the vertical structures

using all orders of multiply scattered waves (including free-surface multiples) with reduced

imaging artifacts, using only a smooth version of the velocity model, without the need

for a density model and without knowledge of the source time-function or wavelet. This is

achieved by applying a novel imaging condition to the full recorded wavefield. Time-reversed

modeling is the starting point of our imaging method (Fink, 1999) and is related to passive

source-location methods of Larmat et al. (2006), Artman et al. (2010), and Zhebel et al.

(2011). However, we cast these ideas in a RTM framework (using active sources), and use

them to image vertical interfaces. The ability to image such interfaces differentiates our

work from that of Shustak and Landa (2018) who used time reversal for scatterer detection

from active sources and event location for passive sources.
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We achieve this by time reversing the recorded data, backpropagating it to construct a

subsurface wavefield in the smooth reference model, and then passing this wavefield to an

imaging condition. Thus, the receivers (at the acquisition surface) act as a time-reversal

mirror (Fink, 1992, 2008), hence we refer to this imaging technique as Time-Reversed Mirror

imaging (TRMi).

The principle difference to RTM methods is that the source field is never simulated or

extrapolated into the subsurface. Key to the method is that the latter difference allows all

orders of scattering waves to contribute to the image, despite the smooth velocity model.

Below, we first introduce the imaging condition applied to the receiver wavefield, then

present numerical examples which include a structurally complex synthetic medium: the

Marmousi model. Finally, we discuss the elastic extension of our algorithm.

THEORY

With a smooth velocity model, Reverse-Time Migration (RTM) images the subsurface at

interfaces that can be interrogated using recorded singly scattered waves. This is achieved

by first predicting what the injected source wavefield must have looked like in the subsurface

after the source was fired, and what the recorded wavefield must have looked like in the

subsurface before it was recorded at receivers. The source wavefield is created by injecting

the known source wavelet into a computational wavefield propagator (in our case a finite-

difference solution to the wave equation) through the reference velocity model: predicts

where that source energy will have gone in the subsurface as a function of time, and we

denote this wavefield Us(x, t). The receiver-side wavefield is created by injecting the time-

reverse of the data recorded at the surface into a computational wavefield propagator at

the receiver locations; since the wave equation is the same whether the waves propagate

forwards or backwards in time, this propagated wavefield emulates the recorded wavefield

moving backwards in time into the subsurface, and we denote this wavefield Ur(x, t).

Intuitively then, the source wavefield is the wavefield in the background medium that

goes forward in time from the source time t0 to the maximum recording time T , while the

receiver wavefield takes the recorded data backward in time from T to t0. If we play both
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the source and receiver wavefields forwards from t0 to T , singly-scattered waves in both

the source and receiver wavefields will overlap each other at each interface, since the source

wavefield created the singly-scattered receiver wavefield at those locations. Therefore, in

the second step of RTM we applying an appropriate imaging condition which measures the

similarity of source and receiver wavefields at each point in the subsurface model. The most

common condition is the zero-lag crosscorrelation of wavefield Us(x, t) and Ur(x, t).

The key assumption in RTM is that these wavefields are most similar at the locations of

reflectors so that the zero-lag of the crosscorrelation should be maximum at such locations.

Since this would be true at consistent locations for every shot (assuming reflectors are static),

the zero-lag crosscorrelations are calculated everywhere across the image and summed over

all shots. This leads to the so-called RTM imaging condition (Claerbout, 1985):

R(x) =
∑
shots

T∑
t=t0

Us(x, t)Ur(x, t), (1)

where the zero-lag crosscorrelation is equivalent to a summation of the product of our two

wavefields for all recording times t, for t ∈ (t0, T ).

For multiply scattered waves, the path to the first scattering point from the source

in Us is correct, while in Ur only the path from the last scattering point to the receiver is

correct; all other paths (between remaining scattering points) in both fields are not correctly

predicted with the assumption of the smooth reference model. Consequently, if the first and

last scattering points are not identical (i.e, if the wave is not a primary), then Ur and Us will

not overlap at the scatterer so the zero-lag crosscorrelation (the image) will be relatively

small at this point and the scatterer will not be imaged. Unfortunately, this same energy

in Us and Ur may overlap at a different location (not corresponding to a scatterer) because

of the errors in their wave paths and this leads to imaging artifacts.

Vertical interfaces can usually only be interrogated by body waves that scatter a mini-

mum of twice in the subsurface. Figure 1(c) shows that in this case we can only reconstruct

the source wavefield by including the abrupt interface (solid line) in the reference model.

Therefore, RTM would not be able to create an image using these multiply scattered waves

in a smooth reference model.
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However, notice that in Figure 2(a) both the primary and duplex waves are coincident in

space and time at the vertical interface, and both events can be predicted at that point from

the recorded wavefield using only the smooth reference model. We use this notion to develop

our imaging algorithm: replacing the source wavefield with the receiver wavefield in equation

1, we re-trace the paths taken by primary and duplex waves in Figure 2(a): these waves

overlap only at the vertical interface. To highlight this overlap, we apply a 2D Laplacian

operator to the image. The Laplacian operator is a high-pass filter that is commonly used

in image processing (Pratt, 2013); when applied to our wavefields, it highlights the locations

of overlap of waves, which is at the vertical structure for the primary and duplex wave. The

key aspect of this argument is that it applies to wave paths with any order of scattering

that interact last with the vertical interface. As shown in Figure 2(b), time reversal will still

focus transmitted and scattering energy on the vertical interface for a free-surface multiple

(solid rays) or an internal multiple (dashed rays).

If we only replace Us with Ur in equation 1, without the Laplacian operator, we obtain

images that are masked by low-wavenumber artifacts (see below). These are similar to

the low-wavenumber artifacts observed in RTM when reflective interfaces are included in

the reference model (Guitton et al., 2006; Zhang and Sun, 2009), which are typically also

removed by applying the Laplacian operator. The Laplacian highlights areas of the image

that vary more rapidly in lateral or vertical directions that do surrounding areas.

For a single shot, waves frequently overlap each other by chance when they are not

necessarily at an interface, which also contributes to the image. Fortunately most of the

overlapping events that are not along interfaces are not coherent from shot to shot, while the

scattered and primary waves shown Figure 2(a) are coherent between shots. Consequently,

summing over all shots reduces these non-coherent artifacts while enhancing true reflectors.

Our final imaging condition becomes:

I(x) = ∇x
2

∑
shots

∑
T

Ur(x, t)Ur(x, t), (2)

where ∇x
2 is the 2D Laplacian operator for 2D imaging and the 3D Laplacian operator

for 3D imaging. For simplicity we refer to this method as Time-Reversed Mirror imaging

(TRMi). In principle, the summation over time for TRMi is for t ∈ [t0, T ] where t0 is −∞
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and T is the maximum recording time. For practical purposes, t0 can be a few seconds

before the source time, and such details are explained in our numerical examples section.

Note that the receiver wavefield Ur used in TRMi is the same as the receiver wavefield

used in RTM imaging. Thus no additional modeling is required in order to apply the new

method. Nevertheless, the imaging condition in equation 2 is quite different from RTM in

equation 1. First, equation 2 does not involve the source field Us at all. Since both fields Ur

on the right of equation 2 are identical, the operation within the summation is a zero-time

autocorrelation. This leads to substantially different images as we show below. Since RTM

tends to image horizontal structures and TRMi tends to image vertical structures, we also

create a final image that is the sum of the two: Image = RTM + TRMi. This will be shown

for each of the examples that follow.

[Figure 2 about here.]

NUMERICAL EXAMPLES

We test our imaging condition by applying it to models that include vertical interfaces

and faults, in both step models and modified versions of the Marmousi model (Versteeg,

1994). Note that we removed the direct arrivals from the recorded data before using them

for TRMi, as these arrivals do not scatter and hence do not conform to the assumption of

our imaging condition. In all numerical examples the sources and receivers are at the top

surface of the model.

Step Model

To introduce various properties of TRMi: we use a simple synthetic step-model that includes

a single vertical interface as shown in Figure 2(a). The model has a transparent acquisition

surface to simplify wavefields by removing free-surface multiples (we discuss free-surface

multiples below), and the step structure is created by density contrasts with a constant

seismic velocity of 2 km/s across the model so that rays are straight between reflection
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points. This merely enables a more straightforward interpretation of wavefields, and we

show below that constant velocity is not required by the method.

In the step model examples, there are 501 sources and receivers at the surface with

a spacing of 4 m, starting at -1.0 km. Our recorded data consist of primaries (from the

horizontal interfaces), diffractions (from the top and bottom of the step at 0 km laterally),

and duplex waves (waves that scatter twice in the subsurface, once from the horizontal

interface at 0.9 km and once from the vertical interface).

The associated Reverse Time Migration (RTM) image of this step model is shown in

Figure 3 and was constructed using equation 1 and a reference model that is constant in

both density and velocity (i.e., no details of the true subsurface model are included in the

reference model). RTM clearly images horizontal interfaces but not the vertical interface.

The vertical interface is missing because only duplex waves (scattered twice) reflect from the

vertical part of the model (Figure 1 (c)), so standard migration without interfaces included

in the reference model can not correctly position energy from multiply scattered waves.

[Figure 3 about here.]

The corresponding TRMi of the step model constructed using equation 2 and only one shot is

shown in Figure 4(a). Figure 4(a) images the vertical interface because equation 2 images the

points of overlap between the primary reflections from the right-hand horizontal interface

(transmitted through the vertical interface) and the duplex waves that are additionally

reflected at the vertical interface (illustrated in Figure 2(a)).

[Figure 4 about here.]

This image also includes some artifacts not related to the vertical interface. To understand

these artifacts we first look at the time evolution of TRMi for a single shot to the right of the

vertical interface at x=1 km. The imaging condition for each of the time-evolving snapshots

can be written as I(x, t0) = ∇2
∑T

t0
Ur(x, t)Ur(x, t), where we now vary the minimum time

step t0 that is considered in the image. In other words, for each of these time-evolving

image snapshots (shown in the right panels of Figure 5), the maximum recording time T in
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equation 2 is fixed at 3.0 seconds and the time integral is performed over [t0, T ] for different

values of t0 (staring at 1.2 seconds and decreasing in intervals of 0.12 seconds).

[Figure 5 about here.]

The temporal evolution of the image in Figure 5 allows us to identify which waves overlap

in the receiver wavefield (left panels of Figure 5) thus contributing to the image for one

shot. By stacking over all shots that include the waves reflecting from the vertical interface

(duplex waves), only the coherent parts of the image across all shots survive. These coherent

parts of the image (labeled V in Figure 5) derive from the interaction of the duplex wave

(labeled D in Figure 5) and the primary (labeled P in Figure 5) at the vertical interface,

while the incoherent parts vanish through stacking, as shown in Figure 4(b). The incoherent

parts, (labeled a′ and b′ in Figure 5) occur for single shots and are caused by overlapping

events that are not at an interface.

Event a in Figure 5 is an edge artifact that is generated while reconstructing the receiver

wavefield. These artifacts are a result of receivers at the ends of the recording array creating

secondary waves when injected in our propagator. With an infinitely long array, these waves

would destructively cancel with those from the next receiver; hence they are purely a result

of using an array of finite aperture, and they are minimized by tapering the amplitudes of

the injected data towards either end of the array. Alternatively, we could have implemented

the boundaries of our propagator better as explained in Clapp (2009). For this particular

shot, event a overlaps with the primary to create a′ in the image (right panel of Figure 5).

Event b is the diffraction from the top of the step structure; it overlaps with the primary

to form b′ in the TRMi image.

We then follow equation 2 and stack similar images over all shots that include the duplex

wave. The artifacts are reduced by destructive interference since they are not coherent

between shots, as shown in Figure 4(b). Finally, a full image of the subsurface can be

constructed by adding the RTM image to the TRMi as illustrated in Figure 6, showing that

the step structure can be imaged using only a homogeneous reference model.

Shots that do not include the duplex wave (to the left of the step structure) will not
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contribute to imaging the vertical interface as shown in Figure 4(c) for a shot at x=-1

km. This image includes an artifact caused by focusing of the primary wave from the top

interface at a depth around 0.8 km. This is twice the actual depth of the interface, or more

specifically, it is the depth at the mirror position of the surface source reflected through

the subsurface interface. Since the focusing of the primary is not spatially coherent across

different shots, this focusing artifact destructively sums in the final TRMi image over all

shots as shown in Figure 4(d). Figure 4(c) also includes contributions from the diffraction

focusing at the top and base of the vertical structure (at the correct spatial positions at 0.4

km and 0.8 km depth) and an imaging artifact at shallow depths similar to a′ in Figure 5.

Even though stacking over shots removes the primary focusing artifacts, artifacts above 0.4

km depth remain in Figure 4(d).

Not including the Laplacian operator as part of the imaging condition in equation 2

results in an image that is masked by low-wavenumber artifacts (see Figure 7) as explained

in the Theory section. In this case, the image of the vertical interface is almost completely

obscured by these artifacts. Therefore the Laplacian removes these low-wavenumber arti-

facts and consequently highlights the overlap between the duplex and the primary wave at

the vertical interface.

[Figure 6 about here.]

[Figure 7 about here.]

Step Model with free surface

We note that the duplex wave (D) and the primary (P) in Figure 5 overlap exactly on the

vertical part of the step as shown in Figure 2(a) and hence construct the image in Figure

4(a). These waves are both a result of a singly scattered event that propagates from the

source (star) to the vertical structure via a reflection, illustrated by the solid line in Figure

2(a). As shown in Figure 2(b), this solid line does not need to be singly scattered: it can

be any wave, primary or multiple, that meets the interface to create both transmitted and
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additionally scattered events: both such events will always be correctly migrated back to

the vertical structure using the reference velocity model and the TRMi imaging condition.

In a second example, we therefore add a structure that generates multiples. The second

model resembles Figure 2(a) except that a free surface is added at 0 km depth. We apply

our imaging algorithm in equation 2 to synthetic data from this model including all shots at

the surface, yielding the image in Figure 8(a). By including the multiples, more information

contributes to the image of the vertical structure and hence we obtain a better image than

that created without the multiples in Figure 4(b). Specifically, we obtain fewer artifacts

above the vertical structure, so above 0.4 km depth. We also observe a better final image

given by RTM + TRMi (with the multiples included in the TRMi) as shown in Figure 8(b)

compared to the final image without multiples in Figure 6.

Note that the image at the top of the step (depth 0.4 km) is not an artifact: it is formed

by the diffracted waves from the top of the step focusing at their correct location. The same

effect occurs at the diffracting corner at the base of the step, at 0.8 km depth, but this is

not as obvious due to the relatively low amplitude of this energy compared to the reflected

waves. Therefore, we not only image the vertical parts of the model at the correct position

using multiply reflected waves (if the reference velocity model is kinematically accurate)

but also diffractors are imaged at their correct positions.

[Figure 8 about here.]

Two-step staircase model with additional interfaces

We then increased the number of interfaces and steps in our model as shown in Figure 9.

This ensures that there are more overlapping events at locations that do not correspond

to interfaces. The corresponding full subsurface image (i.e., the addition of the RTM and

TRMi) is shown in Figure 10, successfully displaying the vertical structures although the

amplitude of the smaller, right-hand vertical structure is significantly reduced. We note that

this smaller step is rather a stringent test of the imaging method since the length of the

vertical reflector is 0.09 km which is of the same order as the dominant wavelength of 0.08
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km. Therefore the reflection from the vertical interface will interfere with the diffraction

from the top and bottom corners of the step across its entire length.

This image has minimal artifacts which includes remnants of the free-surface multiple

artifacts at depth below each vertical interface. For example, one such artifact remains

immediately above and below each step. This is because the duplex and the primary

can still overlap at these locations, although their amplitudes are significantly diminished

compared to the image along the true vertical structure. Therefore, a shortcoming of TRMi

can be that it is difficult to delineate exactly where the boundaries of each vertical interface

end.

We modified the model in Figure 9 to include a free surface, with the associated full

image given in Figure 11. The additional contributions from the multiples to the image

constrain the boundaries of the vertical step better in Figure 11 compared to the case

without using free-surface multiples in Figure 10. In this case, even the smaller vertical

step is reasonably well imaged.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

Marmousi Model

As a more complex test, we compressed a section of the Marmousi model (Versteeg, 1994)

by a factor of 4 laterally to create a model with more steeply dipping interfaces, and

included a free surface (Figure 12); we call the resulting model the squeezed Marmousi

model. The acquisition surface is placed 12 m below the free surface and populated with

601 receivers. We model the recorded pressure data using a finite-difference solution to the

wave equation (our wavefield propagator), initially with the interfaces defined by density

contrasts with a constant velocity of 2 km/s throughout the model. Although, we use
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pressure recordings to perform TRMi, we can alternatively use velocity or displacement

recordings with similar results. We removed the direct wave from the recordings and used

the remaining data to construct the receiver wavefield. This wavefield is constructed using

our propagator with a smooth (constant) velocity model (this is our reference model: no

details of reflectors in the true model are included). The result of TRMi is shown in Figure

13(b) while the corresponding RTM is shown in Figure 13(a). The major steeply dipping

faults in the squeezed Marmousi model (indicated by guidelines consisting of red dots) are

better imaged by TRMi. These are imaged because the waves reflecting from these faults

have higher amplitudes compared to other near-vertical features in the Marmousi model, as

they are the locations of the largest acoustic impedance contrasts in the model (from blue

to red in Figure 12). The final RTM + TRMi image of the Marmousi model in Figure 12 is

shown in Figure 13(c). This is clearly better than either of the images from RTM or TRMi

individually.

We modified the model by creating interfaces in the velocity field instead of density,

now keeping the density constant at 2 kg/m3. Wave paths then bend and the recorded

data includes diving waves and refractions. The corresponding TRMi using a smoothed

reference velocity model, is shown in Figure 14(b) showing that the major faults are still

imaged. Interestingly, we also image a high-impedance interface that is closer to horizontal,

shown in yellow on Figure 14(b); this is because of the overlapping of the diving wave

transmitted through this interface and its reflected primary (a schematic of these wave

paths are shown Figure 15). There are more artifacts in the TRMi in this case due to the

overlapping of the diving wave with other events in the time-reversed wavefield. At the

edges of the acquisition, the TRMi is not reliable as we taper the edges of the recorded

data.

The corresponding RTM and final image are shown in Figures 14(a) and 14(c), respec-

tively. The RTM image in Figure 14(a) images the steeply dipping faults better than the

RTM image in Figure 13(a) because of the presence of diving waves, but it still fails to

image some of the high-impedance faults. The TRMi image in Figure 14(b) is nevertheless

able to image them.
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[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

DISCUSSION

Our numerical examples demonstrate that TRMi has the potential to image vertical inter-

faces if we have recorded both waves that transmit through each point on the interface,

and the corresponding duplex or higher-order scattered waves which reflect from the same

point on the interface then transmit directly to the receiver array. In the case where one

of these waves is not recorded due to receiver coverage or to the nature of the subsurface,

the imaging condition fails. In addition our method does not require any knowledge of the

source wavelet as we only use the recorded data at the surface and a reference velocity

model as inputs.

Duplex waves have two scattering points, the last of which must be on the vertical

structure to be imaged. Consequently these waves have lower amplitudes (O(r2)) compared

to primary events (O(r)), where r is a typical reflection coefficient. Notice that formally

the transmitted wave that has interacted with the vertical interface is also a duplex wave

since it was forward-scattered by the interface. It therefore has amplitude O(r(1− r)). Our

proposed TRMi method multiplies Ur with itself (equation 2), so the resulting amplitude of

the duplex wave contributions to the image will be O(r3(1−r)). They are therefore expected

to have lower amplitudes than those contributing to the RTM, since RTM correlates the

source wavefield (O(1)) with the primaries O(r). For these reasons we might boost the

amplitudes at later times in the recorded data prior to imaging to help to increase the

magnitude of the contributions from the duplex waves, noting that inevitably gaining the

amplitudes at later times can introduce or increase noise in the recorded data. As an

alternative, Meles and Curtis (2014) and Löer et al. (2015) developed algorithms that in
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principle are capable of identifying specific orders of diffracted wavefields, and a related

method for reflected waves was developed by Meles et al. (2014) and da Costa Filho et al.

(2017). Hence, it may be possible in future to identify the multiply scattered waves that

correspond to each primary in seismic data, and increase the amplitudes of these waves

without boosting the surrounding noise.

TRMi also creates artifacts implicitly: waves that overlap away from any interface can

add spurious energy to the image. Since these waves are not coherent from shot to shot

while waves that overlap along true interfaces are coherent, stacking over shots suppresses

the spurious energy in TRMi but preserves coherent energy at true interfaces. Another

artifact is the focusing of single-shot primaries from horizontal layers in the subsurface (at

twice the depth of such interfaces if the velocity structure is constant). Again, when we

stack over shots these artifacts disappear. In our examples, we also extended the time axis

to times before zero. This ensures that waves do not abruptly end in the receiver wavefield

at zero time, as this can contribute to the TRMi when we apply the Laplacian operator.

Our method fails to recover the true amplitudes of the subsurface reflectivity, unlike

Marchenko imaging algorithms (Wapenaar et al., 2014; Slob et al., 2014; Singh et al.,

2015, 2016; Singh and Snieder, 2017), but benefits from imaging vertical interfaces which

Marchenko methods fail to do. In theory, Marchenko imaging retrieves the true reflection

coefficient by deconvolving the up- and down-going Green’s function at every point, whereas

in TRMi we do not relate the reflection coefficient to the fields used for imaging. Indeed,

since our method has no direct amplitude relationship with methods like Marchenko or

RTM it is unclear how to combine the images to get a full image of the subsurface with

both horizontal and vertical structures of comparable amplitudes. da Costa Filho and Curtis

(2016) have shown how to combine images from different imaging methods (in their example

Marchenko imaging and RTM) to obtain a new image with reduced artifacts. However, in

the case considered here we cannot apply that method as it is designed to highlight the

similarity between images; in our case, the images from RTM and TRMi may not contain

similar structures, and in the extreme end-member case when the images are entirely dif-

ferent from each other, the method of da Costa Filho and Curtis (2016) would give a zero
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image.

Interestingly, if incorrect kinematics are caused by errors in the migration reference

model, there is a discrepancy between the effects on TRMi images and those obtained by

other methods. For instance, when the velocity used for migration is too slow, the duplex

wave and the transmitted wave both take longer to reach their point of overlap during

redatuming, which results in the imaged vertical structures being located deeper than their

true position. By contrast, for a slow reference model, RTM places the horizontal reflectors

at shallower positions than their true locations, as the source wavefield and the receiver

wavefield overlap at earlier times. This discrepancy in the position of vertical reflectors

from our method and horizontal reflectors from RTM is shown in Figure 16 for the step

model in Figure 2(a). Images such as Figure 16 may provide a diagnostic to verify whether

the reference model used for migration is accurate: it would be possible in this case to vary

the velocity until vertical and horizontal interfaces fit together. How to use such an image

to update the velocity automatically remains unclear at this point. In addition, Lellouch

and Landa (2018) have shown that we can use the degree of focusing of point diffractors

from the time-reversal and back propagation of the recorded field to invert for the velocity

field. Since our method also relies on both time-reversal and back propagation, Lellouch

and Landa (2018) may be another starting point to investigate how to invert for the velocity

model.

[Figure 16 about here.]

Although, we do no investigate the elastic extension of the method in detail, we briefly

discuss it for completeness. If the elastic recording is separated into P- and S-waves, we

can apply our algorithm to each of these datasets (the separated P-waves or the separated

S-waves) individually to image the vertical interfaces since these will also conform to similar

ray geometrics to those of Figure 2(a). In addition, we can potentially crosscorrelate the

P- and S-wavefields with each other to image all interfaces as both P- and S-waves meet

at any interface that caused P-to-S or S-to-P conversions, regardless of the dip of each

interface. This approach of using both the P- and S-wave for imaging is similar to the
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work of Van Manen (2006, Chapter 4) and Galetti and Curtis (2012), as effectively the

crosscorrelation is one form of a so-called receiver function. Removing the focusing artifacts

as discussed in the previous paragraph will no longer be trivial, as useful contributions to the

image then occur for all dips. Nevertheless, if our objective is to identify vertical interfaces,

we might still filter out the non-vertical interfaces in the image even though some of these

non-vertical interfaces in the image may not be artifacts.

To apply the methods developed herein to real data, we have to make an acoustic

approximation. There will be no need to invert for the source time-function but we still

need a reference velocity model. There is also no need for additional wavefield extrapolations

if RTM is also applied (as is standard in many applications). The method therefore offers

a relatively cheap addition to standard imaging methods.

CONCLUSION

We show that near-vertical structures can be imaged using multiply scattered waves using

Time-Reversed Mirror imaging (TRMi). The waves that contribute have their last scat-

tering point on the vertical structure, while their other scattering point or points can be

anywhere in the medium. TRMi is complimentary to reverse-time migration: when used

simultaneously, it can also be used to indicate errors in the migration velocity model and

can be applied at relatively low additional computational cost. Significantly, our proposed

method only requires a smooth reference model to image the near-vertical structures using

multiply-scattered waves. In fact, the more multiple scattering from the vertical structures

in our recorded data, the better the chance to image these structures, as we show in our

numerical staircase examples and in the Marmousi model. Our algorithm has the additional

advantage of correctly imaging diffraction locations, and interfaces which have overlapping

diving waves and primaries, as occurs in our test using the Marmousi model.
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LIST OF FIGURES

1 Schematic cartoon of different types of imaging methods with their associated refer-
ence model. We separate the various wave types and methods into 5 categories: i. primaries
used in reverse-time migration (RTM) with a smooth reference model. ii. Down-going wave
that cannot be extrapolated from the surface using a constant-velocity model. iii. Reflected
diving waves that can be extrapolated and hence used for RTM if velocity increases correctly
with depth in the smooth model. iv. Including abrupt interfaces in the reference model
(solid horizontal line) can allow us to predict up-going waves from the source, which can
then be used to image vertical structures. v. The up- and down-going Green’s functions
(dotted and solid arrows, respectively) at a point(circle) on the vertical interface are kine-
matically different, hence it is not possible to image the vertical structure at the interface
using Marchenko imaging methods. In panels other than lower-right, solid rays would be
predicted from the source side within RTM, while dashed rays would be predicted from the
receiver side.

2 a) Step model and schematic of primary (left-going) and duplex (right-going) waves
that we use for imaging vertical structures. The star represents a source, the solid line is
the source ray path before reflecting from the vertical structure, dashed lines represent the
transmitted (primary) and reflected wave (duplex) after the source ray meets the vertical
structure. The rays through the step are straight because the contrast is only in the density,
(our imaging scheme also works for variable velocity profiles). b) Similarly for the case of
multiply scattered waves, but with solid lines for rays produced by free-surface multiples,
and dashed lines for rays produced by an internal multiply scattered wave.

3 Reverse-time migration image of the step model in Figure 2(a).
4 TRMi of the step model in Figure 2(a). a) TRMi for a single shot at x=1 km. The

recorded data that is used for this image does not have free-surface multiples. b) TRMi
constructed by stacking the images of all shots to the right of the vertical interface (those
shots that create duplex waves). c) TRMi for a single shot at x=-1 km. We increased the
gain on the amplitudes in this panel to highlight in the image the relatively low-amplitude
diffractor at the bottom corner of the step compared to the other events. d) TRMi for all
shots at the surface.

5 Snapshots of the receiver wavefield (left column) Ur(x, t0), and the associated cu-
mulative TRMi I(x, t0) (right column) which includes only energy for t ∈ [t0, T ] for a single
shot at x=1 km. Start time t0 starts at 1.2 seconds and decreases by 0.12 s in successive
rows, while T is the fixed maximum recording time of 3.1 s. In the receiver wavefield (left)
the events are: <a> edge artifact from injecting the recorded data from a finite-aperture
array into a finite-difference modeling scheme. <b> Diffraction from top of the step at x=0
km. <P> Primary wave transmitted though the step, similar to the dashed left ray in
Figure 2(a). <D> Duplex wave similar to the right dashed up-going wave in Figure 2(a).
Areas of overlap that contribute energy to the image at the correct locations are circled. In
the cumulative TRMi image (right column) the labeled events are: <a'> TRMi contribution
of <a> and <P> overlapping in the receiver wavefield. <b'> TRMi contribution of <b> and
<P> overlapping. <V> Image of the vertical part of the step from the TRMi contribution of
<P> and <D> overlapping in the receiver wavefield.

6 Final image of the step model in Figure 2(a): the sum of the RTM in Figure 3 and
TRMi in Figure 4(d).

7 TRMi of the step model without including the Laplacian operator in the imaging
condition, equation 2.
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8 a) TRMi of the step model in Figure 2(a) with free-surface multiples included in
the recorded data, constructed by stacking the images of all shots. Note that amplitudes
were increased and clipped in the images to visualize artifacts in the image. b) Final image
of the step model in Figure 2(a), given by the sum of the RTM image in Figure 3 and the
TRMi image in Figure 8(a).

9 Two-step staircase model with variable density and a constant seismic velocity of
2 km/s.

10 Final image: sum of RTM and the TRMi for the two-step model in Figure 9, with-
out including free-surface multiples in the recorded data.

11 Final image: sum of RTM and the TRMi for the two-step model in Figure 9, in-
cluding free-surface multiples in the recorded data.

12 A section of the Marmousi model (displayed as the physical quantity of impedance)
with the x-direction compressed by a factor of 4 to create more steeply dipping reflectors.
We refer to this modified version of the Marmousi model as the squeezed Marmousi Model.

13 a) RTM image of the squeezed Marmousi model in Figure 12. The high-impedance,
steeply dipping faults picked from the model in Figure 12 are outlined by red dots. b) TRMi
of the squeezed Marmousi model in Figure 12 using the same reflection data as was used
to construct the RTM image in Figure 13(a). Red dots are the same as in Figure 13(a). c)
Final image of the model in Figure 12: Image = RTM in (a) + TRMi in (b).

14 a) RTM image of a squeezed Marmousi model similar to Figure 12 but with the con-
trast in impedance determined by velocity heterogeneity with constant density of 2 kg/m3,
and a smooth reference model. b) Associated TRMi of the model used in (a). c) Final
image for this model: Image= RTM in (a) + TRMi in (b).

15 Schematic of waves that overlap to image the interface along the yellow line in
Figure 14(b): the solid black line is the reflected primary while the dotted line is the trans-
mitted diving wave. Note that to create the diving wave, we extended the smooth reference
velocity model in depth past 0.6 km.

16 Final image: sum of the RTM and TRMi for the step model in Figure 2(a), using
a migration reference model that is too slow (25� slower than the correct velocity). The
vertical structure is imaged too deeply while the horizontal reflectors are imaged too shal-
lowly, leaving a gap between the two.
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Figure 1: Schematic cartoon of different types of imaging methods with their associated
reference model. We separate the various wave types and methods into 5 categories: i.
primaries used in reverse-time migration (RTM) with a smooth reference model. ii. Down-
going wave that cannot be extrapolated from the surface using a constant-velocity model.
iii. Reflected diving waves that can be extrapolated and hence used for RTM if velocity
increases correctly with depth in the smooth model. iv. Including abrupt interfaces in
the reference model (solid horizontal line) can allow us to predict up-going waves from the
source, which can then be used to image vertical structures. v. The up- and down-going
Green’s functions (dotted and solid arrows, respectively) at a point(circle) on the vertical
interface are kinematically different, hence it is not possible to image the vertical structure
at the interface using Marchenko imaging methods. In panels other than lower-right, solid
rays would be predicted from the source side within RTM, while dashed rays would be
predicted from the receiver side.
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(a) (b)

Figure 2: a) Step model and schematic of primary (left-going) and duplex (right-going)
waves that we use for imaging vertical structures. The star represents a source, the solid
line is the source ray path before reflecting from the vertical structure, dashed lines represent
the transmitted (primary) and reflected wave (duplex) after the source ray meets the vertical
structure. The rays through the step are straight because the contrast is only in the density,
(our imaging scheme also works for variable velocity profiles). b) Similarly for the case of
multiply scattered waves, but with solid lines for rays produced by free-surface multiples,
and dashed lines for rays produced by an internal multiply scattered wave.
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Figure 3: Reverse-time migration image of the step model in Figure 2(a).
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(a) (b)

(c) (d)

Figure 4: TRMi of the step model in Figure 2(a). a) TRMi for a single shot at x=1 km.
The recorded data that is used for this image does not have free-surface multiples. b) TRMi
constructed by stacking the images of all shots to the right of the vertical interface (those
shots that create duplex waves). c) TRMi for a single shot at x=-1 km. We increased the
gain on the amplitudes in this panel to highlight in the image the relatively low-amplitude
diffractor at the bottom corner of the step compared to the other events. d) TRMi for all
shots at the surface.
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Figure 5: Snapshots of the receiver wavefield (left column) Ur(x, t0), and the associated
cumulative TRMi I(x, t0) (right column) which includes only energy for t ∈ [t0, T ] for a
single shot at x=1 km. Start time t0 starts at 1.2 seconds and decreases by 0.12 s in
successive rows, while T is the fixed maximum recording time of 3.1 s. In the receiver
wavefield (left) the events are: <a> edge artifact from injecting the recorded data from a
finite-aperture array into a finite-difference modeling scheme. <b> Diffraction from top of
the step at x=0 km. <P> Primary wave transmitted though the step, similar to the dashed
left ray in Figure 2(a). <D> Duplex wave similar to the right dashed up-going wave in
Figure 2(a). Areas of overlap that contribute energy to the image at the correct locations
are circled. In the cumulative TRMi image (right column) the labeled events are: <a'> TRMi
contribution of <a> and <P> overlapping in the receiver wavefield. <b'> TRMi contribution
of <b> and <P> overlapping. <V> Image of the vertical part of the step from the TRMi
contribution of <P> and <D> overlapping in the receiver wavefield.
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Figure 6: Final image of the step model in Figure 2(a): the sum of the RTM in Figure 3
and TRMi in Figure 4(d).
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Figure 7: TRMi of the step model without including the Laplacian operator in the imaging
condition, equation 2.
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(a)

(b)

Figure 8: a) TRMi of the step model in Figure 2(a) with free-surface multiples included in
the recorded data, constructed by stacking the images of all shots. Note that amplitudes
were increased and clipped in the images to visualize artifacts in the image. b) Final image
of the step model in Figure 2(a), given by the sum of the RTM image in Figure 3 and the
TRMi image in Figure 8(a).
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Figure 9: Two-step staircase model with variable density and a constant seismic velocity of
2 km/s.
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Figure 10: Final image: sum of RTM and the TRMi for the two-step model in Figure 9,
without including free-surface multiples in the recorded data.
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Figure 11: Final image: sum of RTM and the TRMi for the two-step model in Figure 9,
including free-surface multiples in the recorded data.
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Figure 12: A section of the Marmousi model (displayed as the physical quantity of
impedance) with the x-direction compressed by a factor of 4 to create more steeply dip-
ping reflectors. We refer to this modified version of the Marmousi model as the squeezed
Marmousi Model.
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(a)

(b)

(c)

Figure 13: a) RTM image of the squeezed Marmousi model in Figure 12. The high-
impedance, steeply dipping faults picked from the model in Figure 12 are outlined by red
dots. b) TRMi of the squeezed Marmousi model in Figure 12 using the same reflection
data as was used to construct the RTM image in Figure 13(a). Red dots are the same as
in Figure 13(a). c) Final image of the model in Figure 12: Image = RTM in (a) + TRMi
in (b).
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(a)

(b)

(c)

Figure 14: a) RTM image of a squeezed Marmousi model similar to Figure 12 but with
the contrast in impedance determined by velocity heterogeneity with constant density of 2
kg/m3, and a smooth reference model. b) Associated TRMi of the model used in (a). c)
Final image for this model: Image= RTM in (a) + TRMi in (b).
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Figure 15: Schematic of waves that overlap to image the interface along the yellow line
in Figure 14(b): the solid black line is the reflected primary while the dotted line is the
transmitted diving wave. Note that to create the diving wave, we extended the smooth
reference velocity model in depth past 0.6 km.
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Figure 16: Final image: sum of the RTM and TRMi for the step model in Figure 2(a),
using a migration reference model that is too slow (25� slower than the correct velocity).
The vertical structure is imaged too deeply while the horizontal reflectors are imaged too
shallowly, leaving a gap between the two.
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