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Trichoplein binds PCM1 and controls endothelial
cell function by regulating autophagy
Andrea Martello1, Angela Lauriola2, David Mellis1, Elisa Parish1, John C Dawson3, Lisa Imrie4,

Martina Vidmar1, Noor Gammoh3 , Tijana Miti�c1, Mairi Brittan1, Nicholas L Mills1,5,

Neil O Carragher3, Domenico D’Arca2,* & Andrea Caporali1,**

Abstract

Autophagy is an essential cellular quality control process that has
emerged as a critical one for vascular homeostasis. Here, we show
that trichoplein (TCHP) links autophagy with endothelial cell (EC)
function. TCHP localizes to centriolar satellites, where it binds and
stabilizes PCM1. Loss of TCHP leads to delocalization and protea-
some-dependent degradation of PCM1, further resulting in degra-
dation of PCM1’s binding partner GABARAP. Autophagic flux under
basal conditions is impaired in THCP-depleted ECs, and SQSTM1/
p62 (p62) accumulates. We further show that TCHP promotes
autophagosome maturation and efficient clearance of p62 within
lysosomes, without affecting their degradative capacity. Reduced
TCHP and high p62 levels are detected in primary ECs from
patients with coronary artery disease. This phenotype correlates
with impaired EC function and can be ameliorated by NF-jB inhi-
bition. Moreover, Tchp knock-out mice accumulate of p62 in the
heart and cardiac vessels correlating with reduced cardiac vascu-
larization. Taken together, our data reveal that TCHP regulates
endothelial cell function via an autophagy-mediated mechanism.
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Introduction

Autophagy is an essential quality control function for the cell to

maintain its homeostasis, through selectively degrading harmful

protein aggregates or damaged organelles. Moreover, autophagy is a

vital intracellular process for recycling nutrients and generating

energy for maintenance of cell viability in most tissues and adverse

conditions [1]. Basal autophagy mediates proper cardiovascular

function [2]. Variety of cardiovascular risk factors can cause defec-

tive autophagy in vascular cells, producing high levels of metabolic

stress and impairing the functionality of endothelial cells (ECs) [3].

Autophagy has been shown to regulate angiogenic activity and the

release of von Willebrand factor from ECs [4]. Also, endothelial-

specific deficiency of autophagy is pro-inflammatory and pro-senes-

cent, as it promoted atherogenic phenotype in a murine model of

atherosclerosis [5].

Specific autophagic receptors are responsible for selective autop-

hagy by tethering cargo to the site of autophagosomal engulfment

[6]. The recognition of ubiquitinated substrates is provided by

molecular adaptors including p62/SQSTM1 (p62), which bind on

one side to ubiquitin and, on the other end, to autophagosome-

specific proteins (like members of the LC3/GABARAP/Gate16

family). The interaction between p62 and LC3/GABARAP bridges

the autophagic machinery with its cargo, thereby fostering the selec-

tive engulfment by the autophagosome [7]. In mammalian cells, six

ATG8 orthologues exist that are divided into the LC3 and GABARAP

subfamilies which have a non-redundant function during

autophagosome biogenesis. Specifically, LC3 subfamily members

promote elongation of phagophore membranes, whereas GABARAP

is critical in the closure of the phagophore membrane [8], and

fusion of autophagosomes with lysosomes [9]. Recent studies

demonstrated that a pool of GABARAP exists in the centrosome and

peri-centrosomal region and regulates autophagosome formation

during amino acid starvation [10].

The levels of p62 are regulated transcriptionally and through

continuous degradation during basal autophagy. The defective

autophagy, however, induces accumulation of p62, followed by

the formation of aggregates [11]. Accumulation of p62 is further

observed in human ECs in the cerebral cavernous malformation

disease [12] and in human smooth muscle cells whereby p62

accumulation accelerated the development of stress-induced

premature senescence [13]. Besides its role in autophagy, p62 is a

scaffolding hub for the cellular signalling pathways involving NF-
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kB activation, nerve growth factor signalling and caspase

activation [14].

Trichoplein (TCHP) is cytosolic ubiquitously expressed 62 kDa

protein identified as a keratin filament binding protein [15]. So far,

the function of TCHP is deemed dependent on its partner proteins

and their cellular localization. In proliferating cells, TCHP serves as

a scaffold protein not only for appendage-associated Ninein,

involved in microtubule anchoring at the mother centriole [16], but

also for the centriole-associated Aurora kinase A activity, implicated

in the destabilization of cilia [17]. Alternatively, in differentiated,

non-dividing epithelial cells, TCHP translocates from the centrioles

to keratin filaments, and desmosomes [15]. TCHP was reported to

reside on the outer mitochondrial membrane (OMM), where it binds

mitofusin2 (Mfn2), regulating the ER–mitochondria tethering and

promoting mitochondria fission [18,19]. Moreover, increased levels

of TCHP enable decorin evoked mitophagy [20].

It is still unknown what role TCHP plays in EC function, particu-

larly regarding its localization and mechanisms of action. We report

here that TCHP localizes in centriolar satellites and it has an unex-

pected role in controlling autophagy in ECs.

Results and Discussion

Lack of TCHP impairs endothelial cell function

Accumulating evidence links the intact autophagic responses with

the preservation of cardiovascular homeostasis in several physiolog-

ical and pathological settings [21].

To examine the impact of TCHP on endothelial function, we

performed a Matrigel tubule formation assay. TCHP down-regulation

(Fig EV1A) severely affected the tubule forming capacity of HUVECs

in vitro (Fig EV1B) and the formation of vessels in vivo using Matrigel

plugs (Fig EV1C). In agreement, a reduced level of TCHP also affects

ECs migration as measured in the wound healing (Fig EV1D). To

further dissect the phenotype of ECs lacking TCHP, we analysed the

expression of a subset of genes controlling angiogenesis, inflammation

and cell cycle. TCHP knock-down cells showed an increase of IL1b,
IL6, IL8, MCP1, CDKN2A/p16 and CDNKNB/p14 expression

(Fig EV1E) and displayed a senescent-associated phenotype as seen

by the increase of CDKN2A/p16 (Fig EV1F), b-galactosidase activity

(b-Gal) (Fig EV1G) and the accumulation of aggresomes at 7 days

postlentiviral transduction (Fig EV1H).

TCHP binds PCM1 to regulate its localization

To identify TCHP interacting partners, we performed co-immuno-

precipitation (Co-IP) coupled with mass spectrometry analysis using

FLAG-tagged TCHP as bait in HEK293 cells. The centriolar satellite

protein PCM1 was identified as the most enriched protein in anti-

FLAG pull-down in comparison with the control experiment

(Table EV1 and Appendix Fig S1A). We validated the mass spec-

trometry results showing that in HEK293 cells, two different FLAG-

tagged versions (N- and C- terminal) of TCHP co-immunoprecipi-

tated with endogenous PCM1 (Fig 1A). TCHP displays two coiled-

coil regions, at the N terminus (1–136 AA), which are necessary and

sufficient for centriolar localization and function [22]. Using FLAG-

tagged TCHP deletion mutants (Appendix Fig S1B), we found that

the residues corresponding to the second coiled-coil region (41–136

AA) are critical for the binding to PCM1 (Fig 1B). Moreover, we

demonstrated that the interaction between TCHP and PCM1 is

conserved in HUVECs since TCHP is co-immunoprecipitated with

endogenous PCM1 (Fig 1C).

Endogenous or expressed TCHP showed a dynamic localization

in cells that could be due to a different repositioning of TCHP during

different cell cycle stages or under the effect of cellular stressor or

stimuli [15,17]. Moreover, THCP localization in different subcellular

compartments may mirror different functional roles played by the

same protein. We next tested the localization of PCM1 and TCHP in

ECs. PCM1 was the first satellite protein identified [23] and is acting

as satellite assembly scaffold for other centriolar satellite proteins

such as Cep290 [24] and Cep72 [25].

We established that TCHP extensively co-localized with PCM1 in

the pericentriolar matrix and satellite region (Fig 1D) and localized

close to the nucleus in the same compartment occupied by the

centriolar satellite proteins CEP290 and CEP72 (Fig 1D). Interest-

ingly, depletion of TCHP had a significant effect on PCM1 localiza-

tion, showing loss of PCM1 accumulation at the perinuclear region

and dispersion throughout the cytoplasm (Fig 1E).

Overall, these data demonstrated for the first time that TCHP

binds PCM1 and localizes in centriolar satellites. During the revision

of this manuscript, an independent study was published reporting

the spatial and proteomic profiling of 22 human satellite proteins

using proximity-dependent biotin identification, including PCM1,

CEP290 and CEP72 [26]. Consistently with these results, this unbi-

ased approach has identified TCHP as part of the centriolar satellite

protein network, directly interacting with PCM1, CEP290 and CEP72.

▸Figure 1. TCHP interacts directly with PCM1.

A, B (A) Immunoblot analysis showed HEK293 transfected for 48 h with expression vectors for TCHP, and FLAG-TCHP at N- and C-terminal. (B) Immunoblot analysis
showed HEK293 transfected for 48 h with expression vectors for TCHP-FLAG C-terminal or constructs with deletions of the coiled-coil domain 1 (TCHP D1) and 2
(TCHP D2), as indicated in the scheme. For (A and B), total lysates were immunoprecipitated with anti-FLAG antibodies, and blots were probed sequentially with
anti-PCM1, anti-FLAG and anti-ACTIN antibodies. IgG light chains are indicated with Red Ponceau staining. The input totals were analysed by parallel
immunoblotting as a control for the level of expression.

C Anti-PCM1 immunoprecipitation from HUVECs cells and TCHP and PCM1 immunoblot.
D Co-localization of TCHP-V5 and centriolar satellite proteins. HUVECs were transduced with TCHP-V5 lentivirus and stained for anti-PCM1, anti-CEP290, anti-CEP72

and anti-V5 antibodies. Scale bars, 25 and 5 lm in the inset. Right panel: the two-channel intensity correlation of pixels corresponding to regions identified with
TCHP-V5 and satellite markers (n = 90 cells; Pearson co-localization coefficient).

E TCHP knock-down or control cells were stained for anti-PCM1 antibody. Panel below: quantification (n = 50 cells; unpaired t-test; **P = 0.004 vs. control). Scale
bars, 50 and 5 lm in the inset.

Data information: Statistical analyses were performed on at least three independent experiments. Data are represented as mean � SD.
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TCHP regulates PCM1 and GABARAP stability

Since the constant turnover of PCM1 is regulated by the proteolytic

degradation [27], we analysed PCM1 protein levels and degradation

rate in the TCHP-depleted cells. Like centrosomes and cytoskeleton-

associated proteins [28], PCM1 was enriched in the Triton X-100

insoluble fraction, and TCHP depletion reduced PCM1 at the steady

state (Fig 2A). Next, we used cycloheximide (CHX) and MG132 to

block the translation and proteasomal degradation, respectively.

Expression of PCM1 and GABARAP increased in TCHP knock-down

cells compared to the control cells (Appendix Fig S2A and B). In

TCHP-depleted cells treated with CHX, PCM1 protein degradation

was enhanced compared to control cells, while inhibited by MG132,

thus revealing the augmented proteasome-dependent turnover of

PCM1 (Fig 2A).

PCM1 binds directly to GABARAP through a canonical LIR motif

regulating GABARAP-specific autophagosome formation [10].

Although PCM1 depletion did not affect autophagy per se, it has

destabilized GABARAP, but not LC3 [29], through proteasomal

degradation [10]. Recently, the PCM1-GABARAP interaction has

been further dissected through the analysis of the crystal structure

of the PCM1 LIR motif bound to GABARAP, demonstrating that the

manipulation of the key sites in either the PCM1 LIR motif or

sequences flanking the LIR motif can alter the binding specificity of

autophagy adaptors and receptors to ATG8 proteins [30]. The pref-

erence in PCM1 binding might explain the non-redundant functions

of LC3 and GABARAP subfamilies.

GABARAP protein is essential for maturation and expansion [8]

and autophagosome fusion with lysosomes [9]. Accordingly, we

confirmed in ECs, a proteasome-dependent reduction of GABARAP

during the 6 h of treatment with CHX. Without TCHP, in line with

reduced stability of PCM1, the rate of GABARAP degradation was

enhanced (Fig 2B). Conversely, ectopic expression of TCHP-V5

increased PCM1 (Fig 2C) and GABARAP protein levels (Fig 2D)

extending their stability. Altogether, these data suggest that TCHP

regulates PCM1 and GABARAP by proteasomal degradation.

Whether TCHP affects the stability of other centriolar satellites

components or whether the loss of TCHP had a more severe effect

on the integrity of centriolar satellites remains to be determined.

TCHP down-regulation impairs autophagic homeostasis

We next set to establish what role TCHP plays in autophagy. Trans-

mission electron microscope (TEM) revealed a significant increase

in the number of autophagic vesicles when TCHP is depleted in

HUVECs (Fig EV2A).

Alongside the reduction in GABARAP, immunocytochemistry

staining revealed an increased number of LC3- and p62-positive

puncta (Fig 3A). We next set to determine the regulation of the

autophagic flux by analysing the levels of p62 and LC3 in basal and

Hank’s buffered (HBSS) starved cells with or without bafilomycin

A1 (BafA1). In a full medium, Western blot analysis confirmed an

increased level of the lipidated form of LC3 (LC3-II) band and an

increase of p62 protein levels in TCHP knock-down cells compared

with control (Fig 3B). When autophagic flux was blocked with

BafA1 at basal conditions, there was a higher accumulation of p62

in the control cells compared with TCHP knock-down cells. On the

other hand, the LC3 lipidation rate increased more in control cell

than in the TCHP knock-down cells after autophagy stimulation.

Finally, the treatment with HBSS re-activated the autophagic flux in

TCHP knock-down cells as demonstrated by substantial degradation

of LC3-II and reduction of p62 (Fig 3B).

The reduced autophagic flux was further analysed using

mCherry-EGFP-LC3 assays as a complementary approach [31]. The

mCherry fluorescence was lower in TCHP knock-down cells

compared with the control, attesting to a decrease in autolysosome

formation and a slower autophagic flux in cells lacking TCHP

(Fig 3C). There was not a significant difference in the percentage or

a total number of mature autolysosomes following starvation in

HBSS medium (Fig 3C). These results were also confirmed by quan-

titative ratiometric flow cytometry analysis showing a decrease in

mCherry/GFP fluorescence ratio in TCHP knock-down cells

compared with the control, while HBSS treatment increased the

ratio in both conditions (Fig 3D).

To further confirm the impairment of autophagic flux in TCHP

knock-down cells, we performed a non-radioactive pulse-chase

protocol using L-azidohomoalanine (AHA) labelling to quantify

long-lived protein degradation during autophagy [32] (Figs 3E and

EV2B). TCHP knock-down cells conserved a substantial amount of

cellular fluorescence intensity as compared with the control sample.

Conversely, after autophagy stimulation, under amino acid starva-

tion for 2 h, both TCHP knock-down and control cells had reduced

fluorescence intensity (Figs 3E and EV2B).

Finally, overexpression of TCHP reduced the basal level of p62 in

ECs and the accumulation of p62 after BafA1 treatment under full

growth medium (Fig 3F) and increased the degradation of p62

during nutrient starvation or treatment with torin-1 (Fig 3F). More-

over, exogenous TCHP partially rescued PCM1 localization in the

centriolar satellites (Fig EV2C) and decreased p62 accumulation in

ECs lacking TCHP (Fig EV2D). In an attempt to validate the rescue

experiments using TCHP mutants, we observed that exogenously

expressed TCHPD1,2, unlike wild-type TCHP or TCHPD1, failed to

co-localize with PCM1, at least in HeLa cells. Moreover, a scattered

PCM1 staining pattern was observed, similar to that seen after TCHP

knock-down. The latter finding would suggest that the TCHPD,1,2
mutant could act as a dominant-negative for TCHP or perhaps other

centriolar satellite proteins. Further studies will be required to eluci-

date the independent role of TCHPD,1,2 mutant in ECs. Overall,

these results demonstrated a reduced autophagic flux in TCHP

knock-down cells. Nevertheless, although the autophagic flux is

reduced in TCHP knock-down cells, stress-induced autophagy

appears to be functional, suggesting that TCHP-dependent reduction

of basal autophagy is reversible and could be pharmacologically re-

activated.

The depletion of TCHP inhibits autophagosome maturation and
efficient delivery of p62 to the lysosomes

Since GABARAP is critical for autophagosome expansion and matura-

tion [9], we performed the proteinase K protection assay [33] to assess

the efficiency of cargo receptor loading during autophagosome

biogenesis and maturation. Autophagic vesicles were isolated by cyto-

plasm differential centrifugation and treated with proteinase K to

determinate the proportion of the cargo receptor p62, and the ATG8

family proteins, LC3 and GABARAP, are not accessible to the protease

because protected within autophagosome. We found that the
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Figure 2. TCHP regulates PCM1 and GABARAP stability.

A, B (A) Control or TCHP knock-down HUVECs were subjected to cycloheximide (CHX) and MG132 treatments for the indicated number of hours before immunoblotting.
PCM1 levels were analysed in the insoluble fraction. Laminin has been used as a loading control. Below panel: quantification of PCM1 degradation (one-way
ANOVA; *P = 0.0180 vs. control time 0). (B) Condition as in (A), Western blot for anti-GABARAP and anti-ACTIN antibodies. Below panel: quantification of GABARAP
degradation (one-way ANOVA; *P = 0.0215 vs. control time 0).

C, D (C) Control or TCHP overexpressing HUVECs were subjected to CHX treatment for the indicated number of hours prior to immunoblotting. Western blot was probed
for anti-PCM1 and anti-V5 antibodies. Laminin has been used as a loading control. (D) Condition as in (C), Western blot was probed for anti-V5, anti-GABARAP and
anti-ACTIN antibodies. Below panels: quantification of (C) (one-way ANOVA; **P < 0.0001 vs. control time 0; ##P = 0.0003 vs. control CHX) and (D) (one-way
ANOVA; **P < 0.0001 vs. control time 0; ##P = 0.0056 vs. control CHX).

Data information: Statistical analyses were performed on at least three independent experiments. Data are represented as mean � SD.
Source data are available online for this figure.
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sensitivity of p62, LC3 and GABARAP to proteinase K was enhanced

by TCHP knock-down in the low-speed pellet (LSP) and high-speed

pellet (HSP) in full medium and after BafA1 treatment (Fig 4A).

We then analysed the structure of autophagosomes in control

and TCHP knock-down cells treated with BafA1 (Fig 4B). Accord-

ingly, with documented roles for ATG8s and in particular GABARAP

family in enlarging autophagosomal membranes [34], we observed

a considerable reduction for the average size of autophagic vesicles

(AVs) and autophagosomes (APs) in TCHP knock-down cells

(Fig 4B).

Since syntaxin 17 (STX17) is localized explicitly at mature

autophagosomes [35], we analysed the recruitment of STX17 to

autophagosome to distinguish unsealed and immature phagophore

from mature autophagosomes. We observed a significant decrease

in the number of cells with double-positive for LC3 and STX17 in

TCHP knock-down cells at the basal condition and after BafA1 treat-

ment (Fig 4C). Moreover, STX17 recruitment to the autophagosome

(LC3/STX17-positive puncta per cells) is disrupted in TCHP knock-

down cells during the BafA1 treatment (Fig 4C).

Collectively, these results demonstrated that TCHP down-regula-

tion impairs basal autophagy leading to the accumulation of unre-

solved autophagosomes. These conclusions, however, do not

exclude possible direct participation of TCHP in autophagosome

maturation. Recent studies in the transition from phagophore to

autophagosome are expanding the number of proteins and molecu-

lar machineries, such as TRAPP [36] and CHAMP2A [37], operating

at the autophagosome closure, highlighting its complexity.

We then examined the subcellular distribution of p62 in ECs

stained for LAMP2, aggregates and ubiquitinated proteins. Knock-

down of TCHP increased the percentage of p62 puncta that were

also negative for LC3 and LAMP2 (Fig EV3A), therefore, and

suggests that TCHP could impair the delivery of p62 to the lysosome

(LAMP2-negative p62 puncta). Finally, in TCHP knock-down cells, a

considerable fraction of p62 puncta failed to co-localize with the

aggregates and ubiquitinated proteins (Fig EV3B and C).

Lack of TCHP affects lysosome distribution but not the
lysosomal activity

Although we observed that lack of TCHP affected autophagic flux

and autophagosome maturation, we then analysed whether the lyso-

somes activity or distribution are compromised in TCHP knock-

down cells.

Immunostaining demonstrated a discrete alteration in shape, distri-

bution and intensity of RAB11, EEA1 and RAB7 vesicles (Fig EV4A).

Besides, knock-down of TCHP altered the cellular positioning of lyso-

somes as shown by LAMP2 immunolabelling, inducing a marked

perinuclear clustering of these organelles. Further, increased intensity

of LysoTracker RedTM in TCHP knock-down cells suggested increased

acidification and activity of lysosomes (Fig EV4B).

We then performed the epidermal growth factor (EGF) receptor

(EGFR) degradation assay to analyse lysosome activity [38]. Endo-

cytosis and subsequent lysosomal-mediated degradation are the

primary regulators of EGFR stability following ligand activation. Cell

stimulation with EGF upon knock-down of TCHP resulted in an

increasing degradation of EGFR compared with control (Fig EV4C).

We then analysed the lysosome distribution and microtubule

(MT) network in TCHP knock-down cells and control cells during

◀ Figure 3. Analysis of autophagy in TCHP-depleted endothelial cells.

A Immunofluorescent staining for LC3 and p62 in TCHP knock-down and control cells. Scale bars, 25 lm. Lower panel: quantification (n = 90 cells, unpaired t-test; LC3:
**P < 0.0001 vs. control; p62: **P < 0.0001 vs. control).

B Western blot of p62 and LC3 during under normal culture condition or starved condition (HBSS) or the presence of BafA1 (2 h) in TCHP knock-down or control cells.
Lower panels: p62 quantification (one-way ANOVA; **P = 0.0003 vs. control, ##P = 0.0093 vs. shTCHP) and LC3 quantification (one-way ANOVA; **P = 0.0008 vs.
control, ##P = 0.0011 vs. shTCHP).

C HUVECs were transduced with the tandem mCherry-EGFP-LC3 and with shRNA TCHP or control vectors. Left panels: representative picture of mCherrry-EGFP-LC3
reporters. Scale bars, 25 lm. Right panel: quantification of the number of mCherry-only (red bars, autolysosomes) or double-positive (mCherry+/EGFP+; yellow bars,
autophagosomes) (n = 80 cells, one-way ANOVA; *P = 0.0447 vs. control; ##P = 0.0007 vs. shTCHP).

D Ratiometric flow cytometric analysis of mCherrry-EGFP-LC3 reporters as in C (one-way ANOVA; *P = 0.0247 vs. control; ##P = 0.0088 vs. shTCHP).
E Quantification of long-lived protein degradation assay in TCHP knock-down and control cells by flow cytometry (one-way ANOVA; **P = 0.0018 vs. control,

##P < 0.0001 vs. shTCHP).
F HUVECs were transduced with TCHP-V5 and control vectors. Western blot for anti-V5 and anti-p62 antibody during under normal culture condition or HBSS or BafA1

or torin-1 treatment. Lower panel: quantification (one-way ANOVA; **P = 0.0044; #P = 0.0117 vs. TCHP-V5).

Data information: Statistical analyses were performed on at least three independent experiments. Data are represented as mean � SD.

▸Figure 4. TCHP contributes to autophagosome maturation.

A The postnuclear fraction (PNS) from TCHP knock-down and control HUVECs in the presence or absence of BafA1 was separated into (low-speed pellet) LSP and (high-
speed pellet) HSP fractions and then analysed by immunoblots using anti p62, LC3 and GABARAP antibodies. The sub-fractions were treated with proteinase K (Prot.
K) with or without Triton X-100 (TX-100). Quantification of the Western blot: the p62, LC3 and GABARAP levels relative to respective GAPDH were quantified using
densitometry analysis and normalized to the value of non-treated samples.

B Representative TEM images of autophagosomes in control and TCHP knock-down HUVECs in the complete medium after 3-h incubation with BafA1 (scale bars,
600 nm): (i), quantification of mean autophagic vesicles (AVs) and autophagosome (APs) area and (ii), distribution of the cross-section areas of the analysed vesicles
expressed in percentage (n = 7 cells; > 100 vesicles per sample; AVs: unpaired t-test; **P < 0.0001 vs. control; APs: unpaired t-test **P < 0.0001 vs. control).

C Left panels: representative single-channel and merged images of HUVECs expressing GFP-LC3 and immunostained for STX17. Scale bars, 25 and 2 lm in the inset.
Right panels: quantification of LC3/STX17-positive cells in the presence or absence of BafA1 (one-way ANOVA; **P = 0.0060 vs. control; #P = 0.0136 vs. control BafA1)
and quantification LC3/STX17-positive puncta per cells (n = 50 cells; one-way ANOVA; **P < 0.0001 vs. shTCHP BafA1).

Data information: Statistical analyses were performed on at least three independent experiments. Data are represented as mean � SD.
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starvation (endothelial basal medium without FBS) and recovery

(replenishment of serum). Analysis of lysosome distribution showed

that, in control cells, the starvation increased the proportion of cells

with predominantly perinuclear lysosomes, while upon recovery,

LAMP2-positive vesicles localized at the cell periphery (Fig EV4D).

On the contrary, TCHP knock-down cells showed that the perinu-

clear distribution of lysosome in growing condition (full medium) is

not changed during starvation or recovery conditions (Fig EV4D).

Previous studies reported that TCHP is required for functional MT

anchoring to the centrosome [16]. As expected, TCHP knock-down

cells showed an unfocused MT network in growing conditions

which it is not modulated by starvation (Fig EV4D). Altogether, our

results have revealed that the loss of TCHP inhibits the lysosome

distribution progressively without substantially changing the lysoso-

mal acidity and activity. Finally, p62 level in TCHP knock-down

cells decreased in serum starvation conditions as in control cells

(Fig EV4E), confirming that in TCHP knock-down cells, the autop-

hagic process is not affected by the limited mobility of lysosomes

and the defective MT network.

NF-jB inhibition reduces p62 accumulation, restoring endothelial
cell function

To elucidate the mechanisms behind the accumulation of p62 in

ECs, we have developed a phenotypic screening assay to select

compounds, which could decrease the accumulation of p62 in

ECs lacking TCHP. We screened a library of 176 target-annotated

compounds (including protease, epigenetics and kinase inhibitors)

at two different doses (0.3 and 3.3 lM) with the primary outcome

to reduce the number of p62 cytoplasmic puncta (Appendix Fig

S3A and B). The screen generated a list of 25 hits (Table EV2)

with the top ones being excluded due to high toxicity (apicidin

and terreic acid) or negative effect on endothelial function (splito-

micin) [39]. The screen identified BAY11-7082 (IKK inhibitor),

TYRPHOSTIN AG1288 (tyrosine kinases inhibitor) and SB202190

(p38MAPK inhibitor) as having a definite effect on reducing p62

accumulation in TCHP knock-down cells (Fig EV5A); named

compounds were further tested in secondary functional assays.

BAY11-7082 was the only compound that was able to reduce

cytokine transcription (Fig EV5B) and restore migratory capacity

in TCHP knock-down ECs (Fig EV5C). TCHP knock-down cells

exhibited a marked increase in NF-jB S536 phosphorylation

compared to the control cells. Treatment with BAY11-7082

reduced NF-jB phosphorylation (Fig EV5D) and p62 expression

(Fig EV5E) in TCHP knock-down cells, revealing an NF-jB-depen-
dent contribution to p62 accumulation. As expected, silencing of

NF-jB/p65 reduced p62 expression in ECs lacking TCHP

(Fig EV5F). Since NF-kB response element has been identified in

the p62 promoter [40,41], TCHP knock-down ECs showed an

increased enrichment of NF-jB/p65 on IKBa (as positive control

locus for NF-jB translocation [42]) and p62 promoters by chro-

matin immunoprecipitation (Fig EV5G).

P62 was initially described as a scaffold protein and a signalling

hub for the interactions with many types of enzymes through dif-

ferent binding domains [43]. It is well known also that p62 induces

inflammatory cytokines production via TRAF6 polyubiquitination

and thereby NF-jB activation [44]. Instead, a previous study

demonstrated that stimulated autophagy, by enhanced degradation

of p62, reduced inflammation, whereas blocking autophagy had an

opposite effect [45]. Thus far, the phenotypic screens identified

genes which reduce the accumulation of p62 following stress stim-

uli, as a novel approach to map autophagy pathways [46,47]. While

our screen was designed to identify compounds targeting the accu-

mulation of p62, it is likely that among our hits, we also identified

compounds which regulate autophagy.

Accumulation of p62 in ECs of patients with premature coronary
artery disease and the heart and vessels of Tchp knock-out mice

Accumulation of p62-positive aggregates is among the best-known

characteristics of autophagy-deficient tissues [11]. We analysed the

expression of TCHP, p62 and cytokines in the ECs from patients

with premature coronary artery disease (CAD). The ECs were

obtained from the vessel wall of patients with endothelial dysfunc-

tion, comprising significant impairments in proliferation, adhesion

and migration [48]. Gene expression analysis showed that ECs from

patients express a low level of TCHP and high level of p62 and

cytokines in comparison with the ECs from healthy donors (Fig 5A).

Treatment of ECs from patients with BAY11-7082 has reduced the

accumulation of p62 puncta (Fig 5B) and cytokine expression

(Fig 5C), while it improved their migratory capacity (Fig 5D). Being

that NF-jB is a critical mediator of endothelial cell dysfunction and

impairs vascular regeneration [49], reactivation of autophagy

through inhibition of NF-jB may help to restore vascular function

and reparative angiogenesis.

Heart of Tchp knock-out mice presented a reduced cardiac vascu-

larization with a significant accumulation of p62 in the cardiomy-

ocytes and the vessels (Fig 5E). Finally, p62 accumulated in the

◀ Figure 5. p62 accumulation in ECs from patients with CAD and Tchp knock-out mice.

A Expression of TCHP, p62, IL-1b, IL-8 and IL-6 in ECs from vessels wall from patients with CAD (n = 8 patients per group, unpaired t-test; TCHP **P < 0.0001; p62
**P = 0.0007; IL-1b **P < 0.0001; IL-8 **P < 0.0001; and IL-6 **P < 0.0001 vs. healthy subject).

B Staining and quantification of p62 in ECs from healthy subject and patients either treated with vehicle (DMSO) or BAY. Scale bars, 50 lm; (n = 3 patients per group;
n = 80 cells; one-way ANOVA; **P < 0.0001 vs. healthy DMSO; ##P = 0.003 vs. patients DMSO).

C Expression of IL-6, IL-8 and IL-1b (n = 3 patients per group; one-way ANOVA; IL-6: *P = 0.0135 vs. healthy DMSO; #P = 0.0180 vs. patients DMSO; IL-8: *P = 0.0139 vs.
healthy DMSO; ##P = 0.0024 vs. patients DMSO; IL-1b: *P = 0.0104 vs. healthy DMSO; ##P = 0.0069 vs. patients DMSO).

D Migration speed, in ECs from healthy subject and patients either treated with vehicle (DMSO) or BAY (n = 3 patients per group; one-way ANOVA; *P = 0.0325 vs.
healthy DMSO; #P = 0.0336 vs. patients DMSO).

E Left panels: representative images of the heart of wild-type and Tchp knock-out mice stained for CD31 (green) and p62 (magenta). Scale bars, 100 and 50 lm for the
inset. Right panels: quantification of the percentage of cardiac area (n = 4 mice per group; unpaired t-test; **P = 0.083 vs. wild-type) or vessels positive for p62 (n = 4
mice per group; unpaired t-test; **P = 0.058 vs. wild-type) and vessel density (n = 4 mice per group; unpaired t-test; **P = 0.0097 vs. wild-type).

Data information: Data are represented as mean � SD.

10 of 16 EMBO reports e48192 | 2020 ª 2020 The Authors

EMBO reports Andrea Martello et al



liver and pancreas of Tchp knock-out mice (Appendix Fig S4).

Together, our data ascertain the secure link between depletion of

TCHP, p62 accumulation and vascular function.

In conclusion, these results reveal for the first time the pivotal

role for TCHP in linking EC function with the control of basal autop-

hagy, highlighting a possible novel role in vascular disease.

Materials and Methods

Cells and cell culture and reagents

Human umbilical vein ECs (HUVECs) and ECs from healthy donor

and patients were cultured in EGM-2 (EBM-2 + SingleQuotsTM Kit)

and 2% foetal bovine serum (FBS) (Lonza). HUVECs and ECs were

used between P2 and P6 passages. HEK293T (ATCC) were grown in

Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/l glucose,

2 mM L-glutamine, without Na pyruvate (Lonza), 10% FBS and 1%

penicillin/streptomycin (Pen/Strep). Reagents and doses were as

follows: LysoTracker (Thermo Fisher), bafilomycin A1 (Sigma,

200 nM), torin-1 (CST, 10 lM), BAY11-7082 (Abcam, 300 nM),

TYRPHOSTIN AG1288 (Abcam, 300 nM), SB202190 (Tocris,

300 nM), cycloheximide (Sigma, 2 lM) and MG132 (Sigma, 2 lM).

Lentiviral vectors, plasmid constructs and siRNAs

The pLKO DNA plasmids containing the shRNA sequence against

human TCHP were purchased from Sigma-Aldrich (Mission�RNAi

TRCN0000127662 and TRCN TRCN0000130868). The scrambled

sequence shRNA plasmid was purchased from Addgene, plasmid

#1864. The packing plasmids used were pCMV-dR8.2 dvpr, plasmid

#8455 and pCMV-VSVG, plasmid #8454 from Addgene. p62-V5

(HsCD00434166), TCHP-V5 (HsCD00444989) and empty vector

(pLX304) are from DNASU plasmid collection, and pBABE-puro

mCherry-EGFP-LC3B (Addgene plasmid # 22418) and pBABEpuro

GFP-LC3 (Addgene plasmid # 22405) were a gift from Jayanta

Debnath. To generate an expression plasmid for 3xFLAG-tagged, the

full-length TCHP coding sequence was amplified by PCR with

primers having the sequence 50-GATGACAAGCTTGGAAACTCCG
AGCCTCAGAGA-30 and 50 GGATCCTCTAGATTCTCTGTACTTATG

GTACCC-30. The PCR product was digested with HindIII and XbaI,

and the resulting DNA fragment was inserted into p3xFLAG-CMV-

7.1 (Sigma) to prepare p3xFLAG-TCHP. A 3xFLAG–TCHP coding

sequence was then amplified by PCR; the products were gel purified

and verified by sequencing. The deletion mutants FLAG-TCHP D1,
lacking the first coiled motif of TCHP protein, and FLAG-TCHP

D1,2, lacking the first and second coiled-coil motives, were gener-

ated by PCR starting from the previously described p3XFLAG-TCHP

full-length construct. The products of the PCR were gel-purified,

verified by sequencing and cloned into the HindIII-XbaI sites of the

p3x-FLAG-CMV-7.1 expression vector.

The primers used in PCR are TCHP D1 Fw_: 50-GCGAT
TAAGCTTTTCAGGATGTCTGACATCTGC-30; TCHP D1.2 Fw_: 50-G
CGATTAAGCTTCAACTTTTGTACGAACACTGG-30; and TCHP Rw_:

50-GGATCCTCTAGATTCTCTGTACTTATGGTACCC-30.
siRNA for NFjBp65 is SMARTpool: ON-TARGETplus RELA

siRNA (Dharmacon), and siRNA for TCHP is SMARTpool: ON-

TARGETplus TCHP siRNA (Dharmacon).

Endothelial cells functional assays

The following functional assays were performed as previously

described [49]: Matrigel assay with HUVECs was performed using

BD Matrigel Basement Membrane Matrix (BD Biosciences). Migra-

tion was analysed with the ECIS machine [ECIS chip array (8W1E)]

(Applied Biophysics). The migration speed was calculated in

micrometres per hour.

Proteinase K protection assay

The subcellular fractionation (PNS; postnuclear supernatant =

300 × g for 5 min at 4°C, LSP; low-speed pellet = 700 × g for 5 min

at 4°C, HSP; high-speed pellet, HSS; high-speed super-

natant = 100,000 × g for 30 min at 4°C) of control of TCHP knock-

down ECs was performed as described in Ref [33]. In brief, each

fraction of LSP and HSP was treated with 100 lg/ml proteinase K

on ice with or without 0.5% Triton X-100 for 30 min. The fraction

samples were precipitated with 10% trichloroacetic acid, washed

with ice-cold acetone three times, resuspended in sample buffer

including 3 M urea and then analysed by Western blot for p62, LC3,

GABARAP and GAPDH antibody. GAPDH was used as a loading

control, as described in Ref [33].

In vivo Matrigel plug assay

Experiments involving mice were covered by the project and

personal licenses issued by the UK Home Office, and they were

performed in accordance with the Guide for the Care and Use of

Laboratory Animals (the Institute of Laboratory Animal Resources,

1996) and in accordance with Animal Research Report of In vivo

Experiments (ARRIVE) guidelines. CD-1 mice (male, 10 weeks old)

were subcutaneously injected into the groin regions with 400 ll
Matrigel containing recombinant mouse basic FGF (PeproTech,

250 ng/ml) and heparin (Sigma, 50 U/ml) mixed with control or

TCHP siRNA (Dharmacon) [lipids (Lipofectamine RNAiMAX

reagent, ratio 1:1 in volume) 5 lg/gel, n = 5 per group]. After

21 days, mice were sacrificed, and the Matrigel plugs were removed

and fixed in 4% paraformaldehyde.

RNA extraction and quantitative real-time analysis

Total RNA was extracted using miReasy kit (Qiagen). For mRNA

analysis, cDNA was amplified by quantitative real-time PCR (qPCR)

and normalized to 18S ribosomal RNA. Each reaction was

performed in triplicate. Quantification was performed by the 2�DDCt

method [50]. Primers are from Sigma (KiCqStartTM Primers).

Chromatin immunoprecipitation

Nuclei were isolated from formaldehyde (1% final)-fixed HUVECs

by lysing in ChIP Lysis Buffer [1% SDS, 10 mM EDTA, 50 mM Tris–

HCL (pH 8.1)] supplemented with protease inhibitors. Chromatin

was fragmented by sonication using a Bioruptor UCD-300 ultra-

sound sonicator (Diagenode). DNA-cross-linked proteins were

immunoprecipitated (1% kept as input) using 5 lg of NF-jB/p65
(Millipore) or control mouse IgG antibody. The antibody was pulled

down with protein G beads (Dynabeads, Thermo Fisher) at 4°C
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overnight. Associated DNA was then purified by extraction using

Monarch PCR & DNA Cleanup Kit (New England Biolabs). Immuno-

precipitated DNA and total input were used as a template for real-

time qPCR. ChIP primers for NF-jB/p65 on IjBa promoter are Fw

GTGCGCCCTCAACTAACAGT and Rev CATCCCAATGAAGCTT

CTGA. Identification of the NF-jB/p65 binding sites in the p62

promoter was performed retrieving ENCODE dataset GSM935527

(Chr 5: 179,245,409-179,256,832). Primers for NF-jB/p65 on p62

promoter are Fw CTAAAGATGGCCCAGAGCAG and Rev CCC

CCTCCCAAATAATCCTA.

Mass spectrometric analysis

Gel bands were subjected to overnight trypsin digestion, and peptide

extracts were dried by Speedvac. The dried peptide samples were

resuspended in MS-loading buffer (0.05% trifluoroacetic acid in

water) and then filtered using Millex filter before HPLC-MS analysis.

Nano-ESI-HPLC-MS/MS analysis was performed using an online

system consisting of a nano-pump (Dionex Ultimate 3000, Thermo

Fisher) coupled to a QExactive instrument (Thermo Fisher) with a

precolumn of 300 lm × 5 mm (Acclaim Pepmap, 5 lm particle size)

connected to a column of 75 lm × 50 cm (Acclaim Pepmap, 3 lm
particle size). Samples were analysed on a 90-min gradient in the

data-dependent analysis (1 survey scan at 70k resolution followed

by the top 10 MS/MS). The gradient between solvent A (2% acetoni-

trile in water 0.1% formic acid) and solvent B (80% acetonitrile-20%

water and 0.1% formic acid) was as follows: 7 min with buffer A,

over 1 min increase to 4% buffer B, 57 min increase to 25% buffer

B, over 4 min increase to 35%, over 1 min increase to 98% buffer B

and stay under those conditions for 9 min, switch to 2% buffer B

over 1 min and the column was conditioned for 10 min under those

final conditions. MSMS fragmentation was performed under nitrogen

gas using high energy collision dissociation in the HCD cell. Data

were acquired using Xcalibur ver 3.1.66.10. Data from MS/MS spec-

tra were searched using MASCOT Versions 2.4 (Matrix Science Ltd,

UK) against the human subset of UniProt database with the maxi-

mum missed-cut value set to 2. Following features were used in all

searches: (i) variable methionine oxidation, (ii) fixed cysteine

carbamidomethylation, (iii) precursor mass tolerance of 10 ppm,

(iv) MS/MS tolerance of 0.05 amu, (v) significance threshold (P)

below 0.05 (MudPIT scoring) and (vi) final peptide score of 20.

Progenesis (version 4 Nonlinear Dynamics, UK) was used for LC-MS

label-free quantitation. Only MS/MS peaks with a charge of 2+, 3+ or

4+ were taken into account for the total number of “Feature” (signal

at one particular retention time and m/z), and only the five most

intense spectra per “Feature” were included. Results were exported

using a peptide score cut off of 20. From the exported results sheet,

differentially expressed proteins were considered significant if the P-

value was less than 0.05 and if the number of peptides used in quan-

titation per protein was equal to or more than 2.

Protein network analysis has been performed using STRING soft-

ware (https://string-db.org/).

Phenotypic screening assay

Image acquisition
Plates were imaged on a wide-field Imagexpress Micro XL high

content microscope (Molecular Devices). Images of Hoechst-labelled

nuclei and p62 antibody labelling were imaged using the DAPI and

Cy3 filter sets from 4 different sites within the well using a 20× S

Plan Fluor objective containing up to 200 cells per field of view.

Image analysis
Images were analysed using a custom workflow developed in the

MetaXpress Custom Module Editor (Molecular Devices). A top hat

filter (size = 10 pixels, shape = circle) was applied to remove back-

ground fluorescence from the p62 images. Using the granularity

module, nuclei were first identified in the DAPI image using a user-

defined intensity above local threshold method and maximum

(30 lm) and minimum (10 lm) widths. p62 puncta were then

detected by using a user-defined intensity above local background

and maximum (1 lm) and minimum (0.5 lm) widths. The nuclear

objects were then used as seeds to create a pseudo-whole cell by

growing the mask by 50 pixels. Finally, the nuclear region was

subtracted from the whole-cell mask to give nuclear and cytoplas-

mic masks. The number of p62 puncta in the nuclear and cytoplas-

mic regions was counted per cell.

Data analysis
Data handling and analysis was done using Spotfire High Content

Analyser software (PerkinElmer). Data were aggregated to whole

well averages and were plate normalized to the negative controls by

dividing all values on the plate by the median value for the negative

control and then scaling the values between 0 and infinity, with 1

being the median of the negative controls on that plate. For hit

identification, control cells (no shRNA) were used as positive

controls and an ensemble-based tree classifier was used to identify

hit compounds with a cross-validated fivefold CV misclassification

error of 0.4%. The following features were used in the ensemble-based

tree classifier: Cell_Count;Nuclear_Granules_Nuclear_count_Sum;

Cytoplasmic_Granules_Nuclear_Count_Sum.

Western blot analyses

Total proteins were extracted in RIPA buffer containing 1 mM

sodium orthovanadate and Complete Protease Inhibitor Cocktail

(Roche Applied Science) and quantified using the PierceTM BCA

protein assay kit (Thermo Fisher). Equal amounts of proteins were

loaded onto SDS–polyacrylamide gels and transferred to PVDF

membrane. The membranes were then blocked with 5% non-fat

milk in TBST 0.1% and immunoblotted overnight at 4°C with the

following primary antibodies (1:1,000): TCHP (Santa Cruz Biotech-

nology, SC-515025), b-actin (Sigma, A5441), p62 (GeneTex,

GTX100685), LC3B (CST, #2775), p16 (BD Biosciences, 551154),

NF-jB (Millipore, MAB3026), (S536) NF-jB (CST, #3033), PCM1

(CST, #5213) and GABARAP (CST, #13733), NDP52 (CST, #60732)

and V5 (Thermo Fisher, R960-25). Secondary antibodies (1:5,000):

anti-Mouse IgG–Peroxidase (Sigma, A5906) and anti-Rabbit IgG–

Peroxidase (Sigma, A0545), were incubated for 1 h at RT. Pixel

intensity/quantification was performed using ImageJ.

Immunofluorescence

HUVECs cells were plated on fibronectin-coated glass coverslips.

Twenty-four hours later, the slides were fixed with 4%

paraformaldehyde, permeabilized with 0.05% Triton X-100 in PBS
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and then incubated with the primary antibody (1:400) in 3% BSA

overnight at 4°C. Secondary antibodies diluted 1:1,000 in 3% BSA.

Slides were imaged on Zeiss LSM-780 confocal. Primary and

secondary antibodies used for immunofluorescence were as follows:

PCM1 (CST, #5213), p62 (GeneTex, GTX100685), LC3B (CST,

#2775), Rab7 (CST, #9367), Rab11 (CST, #5589), EEA1 (CST,

#3288), LAMP2 (CST, #49067), STX17 (Proteintech, 17815-1-AP),

CEP290 (Proteintech, 22490-1-AP), CEP72 (Proteintech, 19928-1-

AP) and a-Tubulin (Abcam, ab184613). Aggregates of ECs were

measured using the PROTEOSTAT kit (Enzo Life Science, ENZ-

51035-0025). Senescence of ECs was measured using the Cellular

Senescence Assay Kit from Cell Biolabs, Inc. (Cat: CBA-230).

Imaging analysis

The image analysis software Cell Profiler was used to quantify co-

localization and lysosome distribution. A detailed description of

each stage of the Cell Profiler workflow is located on their website

(http://cellprofiler.org).

Cell profiler workflow for co-localization
The images were processed and subjected to a 20-module co-loca-

lization workflow. To summarize, the images are initially loaded

as separate channels, corrected for light illumination and aligned.

The images then undergo pixel-based correlation, where the pixel

intensities are compared in each image and any initial correlation

determined. The specific structures of interest are determined by

thresholding the images and segmenting them into objects, this

allows for any co-localization to be determined between the indi-

vidual channels and objects of interest. During the final stage of

image analysis, the images are further enhanced, and the objects

of interest are refined. The software then calculates various statis-

tics within the defined regions and calculates the number of

pixels within a specific object in each channel. The area occupied

by co-localized regions is then divided by the area of co-localized

objects of interest and a per image pixel fraction determined from

the total object pixels. This information is then converted into a

percentage co-localization or Pearson correlation and the data

exported.

Cell profiler workflow for lysosome distribution
Radial integrated fluorescence intensity was measured by using

eight concentric circles centred on the nucleus area (each nucleus

then acted as a seed for subsequent 2 lm rings to be draw radiating

from its periphery), thus covering 16 lm radial distribution of indi-

vidual cells. The sum of fluorescence integrated intensity of the

inner four circles was considered as perinuclear and the sum of the

outer four circles as the cytoplasm. Then, the percentage of perinu-

clear localization was calculated by dividing the sum of perinuclear

fluorescence by total fluorescence ([perinuclear/[perinuclear + cyto-

plasm]] × 100). Each treatment was evaluated by quantifying 20

cells per condition and per experiment.

Microtubule density
The intensities of microtubule network were quantified within

manually defined areas tracing the microtubule ends. Images were

imported into ImageJ software where the cell periphery of cells was

identified using a thresholding method. The total pixel density/

mean fluorescence intensity per whole cell after subtraction of the

background was measured and plotted for each condition.

Electron microscopic analysis

Cell pellets were prepared and fixed in 4% paraformaldehyde or

2.5% paraformaldehyde/0.2% glutaraldehyde in 0.1 M phosphate

buffer (pH 7). Pellets were embedded in HM20, 70-nm sections cut

and examined using a Philips CM10 transmission electron micro-

scope equipped with a Gatan Bioscan Camera.

Endothelial cells from patients

The study was performed with the approval of the South-East Scot-

land Research Ethics Committee, in accordance with the Declaration

of Helsinki and with the written informed consent of all participants.

Patients with premature coronary artery disease and a family history

of premature coronary artery disease (n = 8) were identified from

the outpatient department, Royal Infirmary of Edinburgh, Scotland,

UK. A control group of healthy age- and sex-matched subjects

(n = 8) with no evidence of significant coronary artery disease

following computed tomography coronary angiography (CTCA) was

recruited from the Clinical Research Imaging Centre, Royal Infirmary

of Edinburgh. Subjects attended the Clinical Research Facility at the

Royal Infirmary of Edinburgh for vascular assessment and tissue

sampling. Vessel wall endothelial cells were isolated from superficial

forearm veins by wire biopsy for in vitro expansion as reported in

Ref [48]. Briefly, under local anaesthetic, an 18-gauge venous

cannula was inserted into a superficial forearm vein and a J-shaped

guidewire passed and gently manipulated to harvest endothelial

cells. EGM-2 medium was syringed through the wire to detach cells,

which were collected by centrifugation and seeded into BD BioCoat

Collagen 1 coated six-well plates (BD Biosciences). Cells were incu-

bated under standard culture conditions in EGM-2 medium.

Non-radioactive long-lived protein degradation assay

A non-radioactive pulse-chase protocol using L-azidohomoalanine

(AHA) labelling was performed to quantify long-lived protein degra-

dation during autophagy [32]. Cells were cultured in L-methionine-

free medium for 30 min to deplete the intracellular methionine

reserves. Following methionine depletion, the cells were labelled

with AHA 18 h. Dialysed FBS (Thermo Fisher) was used to elimi-

nate L-methionine from this other source. After labelling, the cells

were cultured in regular medium or HBSS containing 10× L-methio-

nine (2 mM) for 4 h to chase out the short-lived proteins. Then,

cells were fixed in 4% formaldehyde in PBS and undergo a “click”

reaction between the azide group of AHA and a fluorescently tagged

alkyne probe (Click-iT� AHA; Thermo Fisher, C10102). The

degradation of AHA-containing proteins was then detected by flow

cytometry.

Autophagic flux analysis by quantitative ratiometric
flow cytometry

Cells stably expressing mCherry-GFP-LC3 were used for flow cyto-

metric analysis. Briefly, a BD LSR Fortessa (Beckman Coulter) using

488 and 561 nm lasers for green and red fluorophore excitation,
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respectively, was used to perform flow cytometry. The appropriate

forward/side scatter profile was used to exclude non-viable cells.

Cells undergoing autophagy were defined as those expressing a high

mCherry/GFP fluorescence ratio, since delivery by autophagy to the

lysosome quenches the GFP signal, but not the mCherry signal. The

gates to define what constituted an increased mCherry/GFP fluores-

cence ratio were set based on cells treated with BafA1. The bottom

of the gate for each set of flow cytometry experiments was therefore

set at the rightward base of the BafA1-treated curve.

TCHP knock-out mice tissues and histological analysis

Heart, liver and pancreas tissues are from C57BL/6N-Atm1Brd

Tchptm1b (EUCOMM)Wtsi/WtsiIeg (Tchp knock-out) mice and were kindly

provided from the Wellcome Trust Sanger Institute. Histological

analysis was performed on four wild-type mice (two male and two

female) and four Tchp knock-out mice (two male and two female)

16-week-old.

Paraffin cross-sections were blocked with normal goat serum,

incubated with anti-CD31 (Abcam; 1:200) and anti-p62 (Genetex

1:200) primary antibody overnight at 4°C, and then incubated with

Alexa 488-conjugated anti-rat IgG antibody (Thermo Fisher). High-

power fields were captured (at 400×), and the number of capillaries

and arterioles per field was counted. At least 30 randomly chosen

fields were evaluated per sample, in a blinded experiment. CD31-

positive vessel area was quantified using ImageJ software and

expressed per square micrometres.

Statistical analysis

Comparisons between different conditions were assessed using the

2-tailed Student’s t-test. If the normality test failed, the Mann–

Whitney test was performed. Continuous data are expressed as

mean � SD of at least three independent experiments. P-value <

0.05 was considered statistically significant. Analyses were

performed using GraphPad Prism v5.01.

Data availability

The mass spectrometry proteomics data from this publication have

been deposited to the ProteomeXchange Consortium (http://prote

omecentral.proteomexchange.org) via the PRIDE partner repository

[51] with the dataset identifier PXD015581.

Expanded View for this article is available online.
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