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Generalized Time Slot Index Modulation for
Optical Wireless Communications

Ardimas Andi Purwita, Student Member, IEEE, Anil Yesilkaya, Student Member, IEEE,
Majid Safari, Member, IEEE, and Harald Haas, Fellow, IEEE

Abstract—A novel modulation scheme for an indoor optical
wireless communication (OWC) system referred to as generalized
time slot index modulation (GTIM) is proposed for single-carrier
frequency domain equalization (SC-FDE) systems. This scheme
is further referred to as SC-GTIM. In SC-GTIM, information
bits are flexibly encoded onto both the amplitudes and positions
of pulses. A set partitioning algorithm is proposed to construct a
codebook for the SC-GTIM system. In this paper, SC-GTIM will
be compared with the conventional pulse amplitude modulation-
based SC-FDE (SC-PAM) and time slot index modulation-based
SC-FDE (SC-TIM). By considering a multipath optical wireless
channel and the limited dynamic range of a light emitting diode
(LED), a considerable bit error ratio (BER) gain can be achieved
by SC-GTIM. It is concluded that SC-GTIM is a promising
technique for low to medium spectral efficiency transmission and
uplink schemes.

Index Terms—PAM, frequency domain equalization, index
modulation, optical wireless communication.

I. INTRODUCTION

THE recent forecasts in 2016 show that 60% of mobile
data traffic is offloaded to a fixed network, e.g., WiFi

or femtocell [2]. An exponentially growing number of mobile
devices, followed by the ever-increasing mobile data traffic,
is predicted to increase sevenfold in 2021. Moreover, cutting
edge technologies, namely augmented/virtual reality (AR/VR),
internet-of-things (IoT), massive machine-type communica-
tions (MMTC) and ultra high definition video/gaming ap-
plications create a data greedy ecosystem. This progressive
demand will rapidly drain the capabilities of the existing radio
communication technologies. To cope with this issue, higher
frequencies (above 6 GHz) spectra are being utilized, such as
milimeter wave (30 GHz to 300 GHz) [3], terahertz (300 GHz
to 3 THz) [4] and optical wireless communications (OWC) (10
THz to 1 PHz) [5]. Specifically, OWC can enable a high area
spectral efficiency that can further boost the network capacity
[6], [7]. Furthermore, OWC offers an unlicensed and very
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wide spectra which opens abundant opportunities for wireless
systems to meet future mobile data traffic demands [7].

Inspired from spatial modulation (SM) [8], [9], which
encodes both constellation symbols and transmit antenna in-
dex, the term index modulation (IM) is first introduced in
[10]. Instead of the transmit antenna index, subcarriers are
used in [10]. This method is referred to as subcarrier-IM
orthogonal frequency division multiplexing (OFDM). These
transmit entities, namely transmit index (space domain) and
subcarrier index (frequency domain), can be extended to other
domains such as time domain [11], [12] or combinations of
them [13], [14]. In fact, IM is not only limited to these
domains, and could, for example, include orbital angular
momentum (OAM) [15]. Recent survey papers in [16]–[18]
summarize that IM appears to be a potential candidate for the
future wireless communication systems due to its spectral and
energy efficiency as well as lower hardware complexity. These
advantages can also be adopted to OWC, and this paper aims
to focus on this topic.

In this paper, we specifically focus on the application of
time-domain IM, namely time slot IM (TIM), to intensity
modulation and direct detection (IM/DD)-based OWC. We
base our work on the recent application of TIM to a single-
carrier frequency domain equalization (SCFDE)-based system
as discussed in [11]. In [11], both time slots and constellation
symbols are simultaneously encoded at the transmitter side.
In the context of single carrier (SC) transmissions in IM/DD-
based OWC, SCFDE systems have been studied in [19], [20].
It is concluded that the SCFDE systems offer lower com-
putational complexity and lower peak-to-average power ratio
(PAPR) compared to OFDM-based and carrierless amplitude
and phase (CAP) systems. To the best of our knowledge, both
limitations and advantages of TIM to SCFDE systems in OWC
have not been investigated in detail.

Contribution: First, we show that the advantages of apply-
ing TIM to pulse-amplitude modulation (PAM)-SCFDE with
linear dynamic range of light emitting diode (LED) are very
limited. These limitations are mainly due to the constraint of
choosing a fixed number of active time slots, which can cause
the minimum Euclidean distance of the constellation symbols
is smaller than that of the conventional system. Then, a novel
TIM, namely generalized TIM (GTIM), which removes the
constraint and allows arbitrary number of active time slots,
is proposed. In addition, we also propose a set partitioning
algorithm to design a good codebook which maximizes both
Hamming and Euclidean distances. Consequently, the error
performance of the proposed system shows a significant gain
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compared to both TIM-based and conventional systems.

A. Related Works

In the context of OWC with intensity modulation and direct
detection, TIM can be interpreted as a hybrid PAM and pulse-
position modulation (PPM) system from the perspective of
IM due to the real and positivity constraints of the transmitted
signal. This fact is also stated in [17]. In order to increase the
spectral efficiency, PAM and PPM are merged and proposed in
[21] for optical fibre communications. After that, several works
have been published on the generalization of time domain
pulses. In [22], an attempt to generalize conventional PPM is
made. Unlike conventional PPM, two pulses are activated in a
single block. A year after, a bandwidth efficient generalization
of PPM, namely multiple PPM (MPPM) is proposed in [23]
for optical communications. In 2004, the combination of PAM
and PPM are used for ultra wideband systems [24], which is
referred to as PPAM. The constructions of signal sets of PPAM
are provided in [25], which is based on Euclidean distances
and in [26], which uses the set partitioning algorithm for a
trellis coded modulation [27]. Multiple PPAM (MPAPM) for
OWC is briefly discussed in [28]. Combinations of TIM-based
systems and other transmission entities, e.g., transmit antennas,
are presented in [13], [14], [29]. In [11], single-carrier index
modulation (SCIM) is proposed where only time slot entity
is used without combining with other entities. In this paper,
the advantages and limitations of the application of TIM in
OWC systems are investigated. To the best of our knowledge,
a similar study has not been presented yet.

The remainder of this paper is organized as follows. A
system model for the PAM-SCFDE is provided in Section
II. TIM and GTIM will be discussed in Section III. The
proposed construction method for GTIM is given in Section
IV. In Section V, simulation and analytical results are provided.
Section VI concludes this paper.

Notation: A boldface, lower case letter denotes a vector,
and a bold face, upper case letter denotes a matrix. The
expected value and floor operations are denoted by E [·] and
b·c, respectively. The superscripts T or H denote a transpose
and a Hermitian transpose of a vector or a matrix, respectively.
The tail distribution function of a standard normal distribution
is denoted by Q(·).

II. SYSTEM MODEL

A. Transmitter and Receiver Models

A block-based transmission system with a cyclic prefix (CP)
and N-point discrete Fourier transform (DFT) is used in this
paper as depicted in Fig. 1. The Bt-bit binary vector b is par-
titioned into L sub-blocks, i.e., b = [bT

0 ,b
T
1 , · · · ,b

T
L−1]

T, such
that J = N/L, where J is a time slot length. The length of each
vector bl becomes, B = Bt/L bits. Then, each bl is mapped
onto a J−length symbol vector sl =

[
sl,0, sl,1, · · · , sl,J−1

]T

by a one-to-one mapping function fS according to a set
S ∈

{
SPAM,STIM,SGTIM

}
which denotes the codebooks of the

unipolar SC-PAM, SC-TIM and SC-GTIM, respectively. Note
that throughout this paper, SC-PAM refers to PAM-SCFDE
[19], SC-TIM refers to PAM-based SCIM, and the proposed

Fig. 1. A system model of PAM with block transmission and CP.

GTIM will be referred to as SC-GTIM. Finally, the transmitted
symbol vector is defined as s =

[
sT
0 , s

T
1 , · · · , s

T
L−1

]T whose
length is N symbols.

For a unipolar M-PAM, the elements of the symbol vectors
are chosen from a set of symbols, which is defined as:

PM =

{
Ia +

Ib − Ia

M − 1
i

����� i ∈ {0,1, · · · ,M − 1}, [Ia, Ib] ⊂ R
+

}
.

Note that the constellation set PM is defined such that the
linear dynamic range of an LED, which is defined as [Ia, Ib],
is incorporated. Intuitively, the symbol sl, j ∈ PM models the
driving current of an LED. Note that [Ia, Ib] is assumed to be
strictly positive. In practice, this is achieved by adding a DC
bias.

Let η be the normalized spectral efficiency in bits per
symbol, and it is defined as:

η ,
B
J

(bits/symbol). (1)

Note that the spectral efficiency of a block transmission in
bps/Hz with PAM and the CP length of Lcp is [30, p. 226]:

R =
N

N + Lcp
2η (bps/Hz), (2)

where N/(N + Lcp) is the bandwidth penalty due to the CP.
For a block transmission with SC-PAM, the transmitted

symbol vectors are chosen from the set SPAM which is defined
as:

SPAM =

{
sl = [sl,0, sl,1, · · · , sl,J−1]

T
���� sl, j ∈ PM

}
,

where
��SPAM

�� = 2B is the cardinality of the set SPAM.
Typically, SC-PAM is defined with J = 1 and sl ∈ PM for
l = {0,1,2, · · · , L − 1 = N − 1}. For example, with M = 2 and
B = 1, if bl,0 = 0, then sl,0 is mapped to sl,0 = Ia. Otherwise,
sl,0 is mapped to sl,0 = Ib. Equivalently with J = 2, the set
SPAM can also be expressed as:

SPAM =


[
Ia
Ia

]
bl ,0=[0]
bl ,1=[0]

,

[
Ib
Ia

]
bl ,0=[1]
bl ,1=[0]

,

[
Ia
Ib

]
bl ,0=[0]
bl ,1=[1]

,

[
Ib
Ib

]
bl ,0=[1]
bl ,1=[1]

. (3)

Notice that the mapping remains the same as in the case with
J = 1. This representation will be used to relate SC-PAM to
SC-TIM and SC-GTIM. For SC-PAM, the Gray code is always
used to ensure the optimality in the sense of error probability
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(a)

(b)

Fig. 2. (a) A continuous-time channel model after the parallel-to-serial
conversion and before the serial-to-parallel conversion, and (b) a discrete-time
equivalent channel model.

[31]. For a unit energy transmit pulse, the energy per symbol
for the SC-PAM is denoted as:

Es,PAM =
1
|PM |

∑
s∈PM

|s |2

=
1
6

(
2
(
I2
a + IaIb + I2

b

)
+
(Ib − Ia)

2

M − 1

)
, (4)

where the second equality is obtained from sum of series
formula. The energy per bit is denoted by Eb,PAM = Es,PAM/η.

A discrete-time channel c(n) is formed by sampling a
continuous-time channel impulse response cc(t) with a symbol
rate Rs. The impulse response cc(t) is the cascaded finite
impulse response (FIR) filter that models a digital-to-analog
converter (DAC), hdac(t); LED, hled(t); a frequency-selective
wireless optical channel (WOC), hoc(t); a photodiode (PD),
hpd(t); a transimpedance amplifier (TIA); and an analog-to-
digital converter (ADC), hadc(t), see Fig. 2. Note that x(n) and
y(n) are the discrete-time transmitted and received symbols
after the parallel-to-serial conversion and before the serial-
to-parallel conversion, respectively. An additive white noise
w(n) with zero mean and variance σ2

w is used in this paper.
This additive white noise represents both the thermal and shot
noises that can be modeled as white, Gaussian, and signal-
independent noise [32, p. 267].

B. Channel Model

As for the calculation of WOC, a frequency-domain ap-
proach proposed by Schulze [33] is used in this paper. The
advantage of the frequency-domain approach is that infinite re-
flections can be taken into account. In addition, an arbitrarily-
oriented device that is being held by a person is assumed,
and a human body is modeled by a rectangular prism in the
calculation of the WOC as in [34], [35].

The block-based transmission with PAM is applied for an
uplink case due to a lower computational complexity and lower
PAPR requirements at the transmitter side. Furthermore, it is
assumed that the transmission is carried out over the infrared
(IR) spectrum to avoid any visual discomfort for the users. An
attenuation factor between the access point (AP) and the user

Fig. 3. A geometric model for the optical channel.

equipment (UE), which is illustrated in Fig. 3, is defined as
follows:

H =
m + 1

2π
cosm (φ)

AAP cos (ψ)
d2 vAP,UE(FoV), (5)

where m is the Lambertian index, AAP denotes the AP pho-
todetector area and φ is the radiance angle between the normal
vector nu and the position of the AP. The incidence angle
between the normal vector na and the position of the UE is
denoted by ψ. The orientations of an LED in the UE and a
PD in the AP are shown by the unit normal vector nu and na,
respectively. The distance between the UE and AP is denoted
by d. A binary function vAP,UE is the visibility factor of the link
between an AP and UE, i.e., vAP,UE is one if −π/2 ≤ φ ≤ π/2
and zero otherwise. The visibility factor is also a function of
the field-of-view (FoV) of a receiver. That is, vAP,UE(FoV) is
one if 0 ≤ ψ ≤ FoV ≤ π/2. The diffuse link can be calculated
using a sum of products of (5) and the delay factor of reflecting
surfaces, see [33] for more detailed information.

C. Equalization

With the CP length Lcp being equal or larger than the length
of the channel taps, the discrete-time channel model can be
denoted as:

C(z) =
Lcp∑
n=0

c(n)z−n. (6)

The N × N channel matrix H is a circulant matrix whose
first column is

[
c(0), c(1), . . . , c(Lcp),0

]T, where N ≥ Lcp. A
circulant matrix can be diagonalized by using a normalized
DFT matrix W as:

H =WHΓW,

where Γ is a N × N diagonal matrix whose diagonal entry is
the N-point DFT of the channel tap c(n). At the receiver side,
the received symbol vectors r are equalized by a feedforward
equalization matrix F. Finally, the estimated symbol vectors ŝ
are further processed to obtain an estimated bit stream of b,
which is denoted with b̂, by using the inverse of the mapping
function fS , namely f −1

S
.
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A minimum mean square error (MMSE)-based filter is used
in this paper. For a block transmission of PAM, it is shown in
[36] that the optimal filter F can be written as:

F = RsHH
(
HRsHH + Rw

)−1
, (7)

where Rs denotes the autocorrelation matrix of s, i.e., Rs ,
E

[
ssH

]
. The same definition also applies to the autocorrelation

matrix of the noise vector w, i.e., Rw = E
[
wwH

]
= σ2

wI. A
brute-force search is used to estimate the transmitted symbol,
i.e.,:

ŝl = arg min
sl ∈STIM

| |ŝl − sl | |. (8)

Then, bl is estimated by b̂l = f −1
STIM

(
ŝ
l

)
.

III. TIME SLOT INDEX MODULATION

For readability purposes, TIM for SC-FDE will be first
explained based on [11]. Then, it is followed by the gener-
alization of the SC-TIM, namely SC-GTIM. To apply an IM
to SC-PAM, an additional symbol is required to denote that a
transmission entity is inactive. In our case, that transmission
entity is a time slot. The additional symbol is denoted as I0.
Therefore, by applying IM to SC-PAM, a symbol sl, j is now
sl, j ∈ {PM , {I0}}. The same argument is also used in [37,
p. 736]. In the IM literature [16], [17], [37], I0 is typically
chosen to be 0. In this paper, we assume a general case where
I0 ∈ {0, Ia−ε}, for a small positive value ε . A reason to choose
I0 = Ia − ε is to minimize the effect of the rapid switching
problem, which decreases the lifetime of an LED, if I0 is
chosen to be 0.

A. Single-Carrier Time Slot Index Modulation (SC-TIM)

In SC-TIM, the B-bit vector bl contains a B1-bit and a B2-
bit binary vectors, i.e., B = B1 + B2. A B1-bit binary vector
is used to modulate the index of the active time slots. Note
that B1 is defined such that K out of J are chosen from the
set PM , and the others are set to be I0. It is also worth noting
that K out of J can be interpreted as choosing K out of J time
slots to be active. A B2-bit binary vector is used to modulate
the M−PAM symbols from PM . Therefore, B1 and B2 can be
calculated as:

B1 =

⌊
log2

(
J
K

)⌋
, and B2 = K log2 M . (9)

For example, with K = 1, J = 2 and P2 = {Ia, Ib}, we have the
possible transmitted symbol sl ∈ STIM, such that the mapping
set STIM is:

STIM =


[
I0
Ia

]
bl ,0=[0]
bl ,1=[0]

,

[
I0
Ib

]
bl ,0=[1]
bl ,1=[0]

,

[
Ia
I0

]
bl ,0=[0]
bl ,1=[1]

,

[
Ib
I0

]
bl ,0=[1]
bl ,1=[1]

. (10)

In this case, bl,1 = 0 denotes the first time slot as inactive,
while bl,1 = 1 denotes the second time slot as inactive. In
addition, bl,0 = 0 denotes that the PAM constellation symbol
Ia is chosen. Otherwise, the PAM constellation symbol Ib

Fig. 4. The working principle of f
SSCTIM with (10).

is chosen. A working principle of (10) is shown in Fig. 4.
Following the notation in Section II, suppose the binary input
vector is b = [1,0,1,1,0,1,0,0,1,0]T and L = 5, then we have
b0 = [b0,0, b0,1]

T = [1,0]T, b1 = [b1,0, b1,1]
T = [1,1]T, etc.

Based on (10), [1,0]T maps to [I0, Ib]
T, and [1,1]T maps to

[Ib, I0]
T consecutively.

Compared to the energy per symbol of the SC-PAM in
(4), it is generally harder to obtain a compact expression for
Rs. The naive way is (i) to list all possible combinations of
alphabets ssH; (ii) count the frequency of each element of the
alphabet for given parameters M , K and J; and (iii) calculate
Rs = E

[
ssH

]
by taking the expectation value of all possible

combinations. However, for K = 1 and I0 = 0, Rs
TIM,K=1 can

be found as shown in (11). The constants p and q can be
calculated as:

p =
1

2B

∑
s∈PM

|s |2 =

( (
I2
a + I2

b

)
(2M − 1) + 2IaIb(M − 2)

)
3
(
1 − 1

M

)
2(B+1)

,

q =
1

2J2M

∑
x∈PM

∑
y∈PM

xy = M2(Ia + Ib)
22−(J+M+2),

where sum of series formula is used to obtain these expres-
sions. It is worth noting that Rs

TIM,K=1 is not a circulant
matrix. This is an example of a scenario when the simple
single-tap equalization cannot always be performed by a PAM-
based SC-TIM. In this case, the PAM-based SC-TIM has a
higher computational complexity.

Note that p is also the average energy per symbol for the
PAM-based SC-TIM which is lower than that without TIM,
i.e., Es,TIM = p ≤ Es,PAM. Typically, IM has lower transmitted
energy due to the value of the additional symbol, i.e., I0, that
is usually 0. However, in terms of PAPR, the PAM-based SC-
TIM has a larger PAPR as the peak value of s is still Ib, while
the average energy is lower. It is worth noting that the increase
in PAPR does not occur for other IM systems such as OFDM-
IM, where the PAPR is the same as the conventional OFDM
system, see Fig. 4 in [17].

For an IM scheme, an average pairwise-error probability
(PEP) over all possible pairs of symbols is typically used as
an upper bound. The average BER is upper bounded by the
average PEP (APEP), that is,:

Pb ≤
1

B2B

∑
si ∈STIM

∑
s j ∈STIM

s j,si

dH(si, sj)P
(
si → sj

)
= APEP. (12)
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Rs
TIM,K=1
N×N =




p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p

J×J

q q · · · q
q q · · · q
...

...
. . .

...
q q · · · q

J×J
· · ·


q q · · · q
q q · · · q
...

...
. . .

...
q q · · · q

J×J
q q · · · q
q q · · · q
...

...
. . .

...
q q · · · q

J×J

p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p

J×J
· · ·


q q · · · q
q q · · · q
...

...
. . .

...
q q · · · q

J×J
...

...
. . .

...
q q · · · q
q q · · · q
...

...
. . .

...
q q · · · q

J×J

q q · · · q
q q · · · q
...

...
. . .

...
q q · · · q

J×J
· · ·


p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p

J×J



(11)

A Hamming distance between the bits associated with both si
and sj is denoted by dH(si, sj). The PEP is defined as:

P
(
si → sj

)
= Q

(
dE(si, sj)

2
√
σ2

e

)
, (13)

where dE(si, sj) = | |si − sj | | denotes the Euclidean distance
between si and sj . The autocorrelation matrix of the error
vector e = ŝ − s is defined as:

Re , E
{
eeH}

=
(
Rs
−1 +HHRw

−1H
)−1

, (14)

where the Woodbury identity is used, see [36]. Let the average
noise power of e be σ2

e , which is defined as:

σ2
e , tr (Re) /N .

For the SC-PAM, instead of using the upper bound in (12),
a good approximation can be obtained as follows:

Pb,PAM ≈
1
N

N−1∑
i=0

2
log2 M

(
1 −

1
M

)
Q ( f (Ia, Ib, βi)) , (15)

f (Ia, Ib, βi) =

√√√ 1.5(Ib − Ia)2 log2(M)βi

(M − 1)2
(
2
(
I2
a + IaIb + I2

b

)
+
(Ib−Ia)2

M−1

) ,
where the Gray code is assumed and βi = Eb,PAM/[Re]i . It is
assumed in (15) that the error vector e coming from both the
noise w and the remaining intersymbol interference (ISI) is
approximated by a Gaussian distribution [38].

B. Single-Carrier Generalized Time Slot Index Modulation
(SC-GTIM)

The main difference between SC-TIM and SC-GTIM is that
K does not have to be fixed in SC-GTIM. To compare it with
(10), we have, for example,:

SGTIM =


[
I0
I0

]
bl ,0=[0]
bl ,1=[0]

,

[
Ib
I0

]
bl ,0=[1]
bl ,1=[0]

,

[
I0
Ib

]
bl ,0=[0]
bl ,1=[1]

,

[
Ib
Ib

]
bl ,0=[1]
bl ,1=[1]

, (16)

(a) SC-PAM (3) (b) SC-TIM (10) (c) SC-GTIM (16)

Fig. 5. Vector representations: (a) SC-PAM with M = 2 and the Gray code
and without IM (η = 1), (b) SC-TIM with K = 1 and J = 2 (η = 1) and
(c) SC-GTIM with J = 2 (η = 1). The circle markers show the symbols that
can be chosen and labeled with binary vectors. The other markers show the
chosen symbols.

where the number of bits in SC-GTIM is defined as B =
log2 |S

GTIM |. Notice that K is not fixed for all elements of
SGTIM in the above example. In addition, SC-GTIM in (16)
reduces to on-off keying (OOK) with return-to-zero pulse or
PPM, which is known to achieve the Shannon capacity in low
spectral efficiency regions [39]. It is worth mentioning that SC-
TIM cannot be reduced to OOK as SC-TIM is constrained by
(9), which shows less flexibility compared to SC-GTIM.

To illustrate the set SGTIM based on (16) and compare it
with other examples in (3) and (10), the vector representations
of

[
sl,0, sl,1, · · · , sl,J−1

]T are illustrated in Fig. 5. The point
oI0 is the shifted origin with respect to I0. e.g., in R2, oI0 is
(I0, I0). The index l is omitted as it is not relevant. Note that a
directed vector that starts from oI0 is used. Fig. 5 uses circles
to show all possible sl that can be chosen and the directed
vectors with markers to show the chosen sl . In this way, we
have a classic constellation diagram representation. Fig. 5(c)
clearly illustrates a more flexible constellation design of SC-
GTIM compared to the others. If this can be cultivated fully,
a significant performance gain can be achieved.

We now compare SC-GTIM with SC-TIM in (10). It is
obvious to see that the BER of SC-TIM with STIM expressed
in (10) will be limited by the vectors [I0, Ia]

T and [Ia, I0]
T if

|Ia− I0 | < |Ib− Ia |. Consequently, the BER of SC-TIM is worse
than that of the conventional SC-PAM. In this case, a codebook
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that has more possible constellation points is required. This is
where SC-GTIM has the advantage by means of freeing the
number of active time slots.

A collection of possible codewords Ss is defined as:

Ss =
{
sl = [sl,0, sl,1, · · · , sl,J−1]

T
�� sl, j ∈ {PM , {I0}}

}
. (17)

The indexing and grouping of all possible
[sl,0, sl,1, · · · , sl,J−1]

T ∈ SGTIM ⊆ Ss will affect the BER.
There are:

G =
(M + 1)J !(

(M + 1)J − 2B
)
!

(18)

ways of indexing and grouping in the construction of the set
SGTIM. Based on (13) and the upper bound in (12), the design
problem can be formulated as:

arg max
SGTIM

C =
∑

si ∈SGTIM

∑
s j ∈SGTIM

s j,si

dH(si, sj)dE(si, sj) (19)

subject to: |SGTIM | = 2B .

The problem in (19) can be seen as the problem of choosing
2B active vectors in

[
sl,0, sl,1, · · · , sl,J−1

]T and labeling them
with a B-bit vector. To be more specific, the goal is to label
a vector such that it has both large Hamming and Euclidean
distances. As (19) is a combinatoric problem which has G
many possible combinations, a meta-heuristic solution for a
permutation-based combinatorial optimization problem can be
used. However, it will be shown in the next section that a
simpler way can be applied by using the knowledge of the
Gray encoding.

C. Spectral Efficiency Comparison for Different Time Slot
Length J

In this subsection, the normalized spectral efficiencies in
bits per symbol of the conventional SC-PAM, SC-TIM and
SC-GTIM are compared, see (2) for a conversion to the
unit bps/Hz. Specifically, we are interested in the maximum
achievable η given M ≥ 2 and different J. Notice that it will
be straightforward for both SC-PAM and SC-GTIM, but it is
not the case for SC-TIM. For SC-TIM, the normalized spectral
efficiency is defined as:

ηTIM
max = max

1≤K≤J

⌊
log2

(
J
K

)⌋
+ K log2 M

J
and

K∗ = inf arg max
1≤K≤J

⌊
log2

(
J
K

)⌋
+ K log2 M

J
,

where inf denotes the infimum of a set. The infimum ensures
that K∗ is not J if there is another value except J. The closed
form solutions of the above problem formulations are difficult

to obtain due to the linear combination of the terms
⌊
log2

(
J
K

)⌋
and K log2 M .1 Therefore, ηTIM

max and K∗ will be calculated
numerically.

1If the term K log2 M does not exist, then it is straightforward given that

arg max
K

(
J

K

)
is the nearest integer of J/2.

(a)

(b)

Fig. 6. (a) Maximum achievable η for SC-TIM, ηTIM
max , and (b) K optimal to

achieve ηTIM
max , K∗.

As for the conventional SC-PAM, it can be readily obtained
as ηPAM

max = log2 M . For SC-GTIM, given M and J, there are
(M+1)J possible choices of vector sl , see (17). Therefore, the
number of bits that can be transmitted for SC-GTIM is upper
bounded by:

2B ≤ (M + 1)J .

Using the definition of η in (1) and the fact that B must be
an integer, we have:

ηGTIM
max = bJ log2(M + 1)c/J .

Hence, ηPAM
max ≤ ηGTIM

max . The numerical results for ηmax of
all systems are shown in Fig. 6(a). Therefore, we have
ηPAM

max ≤ η
TIM
max ≤ η

GTIM
max . This shows the advantages of SC-

GTIM in terms of spectral efficiency.
It is also interesting to discuss K∗ as shown in Fig. 6(b).

Based on (9), SC-TIM with K = J reduces to SC-PAM. It
means that when K∗ = J, then SC-TIM cannot have a better
spectral efficiency than that of SC-PAM. This illustrates the
disadvantage of having a fixed number of active time slots.

IV. CONSTRUCTION OF A GOOD SET SGTIM

In this section, the construction of a good set SGTIM is
provided. We start with a simple example in two dimensions
(2-D), i.e., J = 2, and this is followed by an introduction of
several necessary notations. Then, a more detailed algorithm
is given next with more relevant examples having higher
dimensions, i.e., J > 2.

A. Simple Example in 2-D (J = 2)

For a better enumeration and illustration, PM is redefined
as:

PM = {m0,m1, · · · ,mM−1 | Ia = m0 < m1 < · · · < mM−1 = Ib} ,
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Now, assume that a uniform M-PAM constellation is used,
i.e., |mi − mj | = c,∀i , j ∈ {0,1, · · · ,M − 1} and a positive
constant c. In this example, we use the following collection
of possible codewords:

Ss =


[
I0
I0

]
,

[
m0
I0

]
,

[
m1
I0

]
,

[
I0
m0

]
,

[
m0
m0

]
,

[
m1
m0

]
,

[
I0
m1

]
,

[
m0
m1

]
,

[
m1
m1

],
which represents the case where M = 2 and J = 2. Suppose
that we define B = 3 bits, then we should pick 23 = 8 of |Ss | =

9. Now that we have defined Ss, our design problem can be
summarized as follows:

given: M,B, J

choose 2Bof sl ∈ Ss and label them with binary vector

such that the 2B chosen sl have as large C (see (19)) as
possible.

The basic operation of the construction algorithm is the
set partitioning algorithm denoted by SP. The following are
simple illustrations of the heuristic steps taken in the SP
operation. Now, we discuss them in a high level. In the next
subsection, these steps will be formalized and detailed.

1) The first step: Choose 2 sets of
⌊
(M + 1)J /2

⌋
= 4

vectors of sl such that the Euclidean distance of the average or
center of mass of two sets are maximum. Then, label each set
with a binary value and denote the sets with PM=2,J̃=2

b0
, where

b0 ∈ {0,1} and J̃ is the number of elements of sl which are
taken into account. In this case, all elements of sl are taken
into account at once as J̃ = J. A sample of the result is
illustrated in Fig. 7(a). The chosen symbol vectors are shown
by squares, and the cross marker shows the unchosen symbol
vector. It is worth noting here that the elements in the set P2,2

b0
will be labeled as [b0X X], where X ∈ {0,1} denotes a binary
digit that is not assigned yet. That is, elements in P2,2

1 will be
labeled as [100], [101], [110] or [111] in the final step.

2) The second step: Partition each P2,2
b0

as in the first step.
The outputs are now denoted as P2,2

b0 ,b1
, where b0 is followed by

b1 ∈ {0,1} in the subscripts. Now, each set P2,2
b0 ,b1

contains two
vectors. The binary mapping of P2,2

b0 ,b1
is carried out such that

it forms the Gray mapping with its neighbors. For example:

P2,2
1,0 =


[

I0
m0

]
,

[
I0
m1

] and P2,2
1,1 =


[
m0
m1

]
,

[
m1
m1

]
are neighbors to each other, and [10] and [11] forms the Gray
mapping. A complete mapping is shown in Fig. 7(b).

3) The third step: As only 1 remaining bit needs to be
assigned, the final step is to make sure that each element forms
the Gray mapping with its neighbors. As depicted in Fig. 7(c),
the final chosen constellation symbols and their mappings are
denoted as:

P̃2,2 =
©«
[
I0
I0

]
000

,

[
m0
I0

]
001

,

[
m1
m0

]
010

,

[
m1
I0

]
011

,

[
I0
m0

]
100

,

[
I0
m1

]
101

,

[
m1
m1

]
110

,

[
m0
m1

]
111

ª®®¬ , (20)

which can be interpreted that each vector corresponds to the
binary vectors written below it.

B. Notations

The main goal of this subsection is to generalize the
previous notations before formalizing the proposed algorithm
for all J. We start by generalizing the notation P. A set of
J̃-length vectors whose elements are taken from {PM , {I0}}
is defined as:

PM ,J̃ =
{
p =

[
p0, p1, · · · , pJ̃−1

]T
}
, where pj ∈ {PM , {I0}} .

The set PM ,J̃ can be partitioned into PM ,J̃ = PM ,J̃
xB−1 ∪ P

M ,J̃
yB−1 ∪

PM ,J̃
dc , where xB−1 , yB−1 ∈ {0,1} and they are disjointed

from each other. The set PM ,J̃
dc is a set that is not processed

for the next step. With respect to our previous example, this
set is labeled as a cross marker in Fig. 7(a). Now, a mean or
‘center of mass’ vector of a subset PM ,J̃

xB−1 is defined as:

dS

(
PM ,J̃
xB−1

)
=

1

|PM ,J̃
xB−1 |

∑
p∈PM , J̃

xB−1

p, (21)

which is used to measure the distance between two subsets
of PM ,J̃ . The subset PM ,J̃

xB can be further partitioned into
PM ,J̃
xB−1 ⊃ P

M ,J̃
xB−1 ,xB−2 ∪ P

M ,J̃
xB−1 ,yB−2 . This partition can be done

until the array [xB−1, xB−2, · · · , x0] is obtained. The subset
of PM ,J̃ has a binary vector associated with it, for example
with B = 3, PM ,J̃

xB−1 ,xB−2 ,xB−3 associates with a binary vector
[xB−1, xB−2, xB−3].

An ordered set BB is a collection of B-bit binary vectors
that are arranged based on the Gray code, i.e.,:

BB =
(
b̃0, b̃1, · · · , b̃2B−1

)
, (22)

where b̃i =
[
b̃i,0, b̃i,1, · · · , b̃i,B−1

]T, b̃i, j ∈ {0,1}, b̃i,0
and b̃i,B−1 are the least significant bit (LSB) and the
most significant bit (MSB), respectively. A common way
to construct BB is the iterative and mirroring method
from BB−1 [31]. It follows that

[
b̃i,0, b̃i,1, · · · , b̃i,B−2

]T
=[

b̃2B−1−i,0, b̃2B−1−i,1, · · · , b̃2B−1−i,B−2
]T for 0 ≤ i ≤

⌊
2B−1

2

⌋
,

see following examples:

B2 =

( [
0
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
1

] )
, or

B3 =
©«

0
0
0

 ,

1
0
0

 ,

1
1
0

 ,

0
1
0

 ,

0
1
1

 ,

1
1
1

 ,

1
0
1

 ,

0
0
1

ª®¬ .
This inspires us to do the construction of the set SGTIM by
means of partitioning the set BB.2 That is, the MSB can be
assigned first by following the Gray code without worrying
about the other bits. In fact, it can be shown that the bit
mapping as shown in Fig. 7 follows the iterative method
discussed in [31].

Generally for J > 2, we need a container set denoting the
elements that have been chosen and labeled. Let the set S be

2Note that the name set partitioning is also used in [27], but ours is different
in the terms of the method used to partition and label the set. In addition,
the algorithm in [27] does not discuss a method on how to choose a set of
constellation symbols whose cardinality is smaller than the set of all possible
constellation symbols. Joint Euclidean-distance and Hamming-distance search
is also not discussed in [27].
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(a) (b) (c)

Fig. 7. (a) The first, (b) the second and (c) the third steps of the set partitioning algorithm.

an ordered set whose elements are indexed by the binary digit
bl . As an example, see (3), where bl = [bl,0, bl,1]T = [0,0]T
indexes the 0th element, and [bl,0, bl,1]T = [1,0]T indexes the
1st element. An ordered set SMJ−j is defined as:

SMJ−j =

©«



x
sJ−j
...

sJ−2
sJ−1


ª®®®®®®¬
, sJ−j ∈ {PM , {I0}} , for j ∈ {0,1, · · · , J − 1},

where x is the (J − j)-length column vector denoting the
elements that have not been defined yet. In other words, SMJ−j
defines an ordered set where the (J − j)th to the (J − 1)th
elements have been ordered and labeled. For example with
M = 3, B = 6 , J = 3, j = 1 and:

S3
3−1 =

©«
[

x
I0

]
00XXXX

,

[
x

m0

]
01XXXX

,

[
x

m2

]
10XXXX

,

[
x

m1

]
11XXXX

ª®®¬ . (23)

means that 2-length column vector x has not been defined;
moreover, the 2nd to the 3rd elements have been ordered and
labeled accordingly. The set S will be assigned as S = SM0
if all elements have been ordered and labeled. We use a
convention that if no element has been assigned, then it is
denoted by SMJ .

C. The Proposed Set Partitioning Algorithm

A complete pseudocode for the proposed set partitioning
algorithm is given in algorithm 1 for a given M,B and J (or
M, η and J). The main difference with the previous simple
example is that for J > 2, the operation SP can be invoked
multiple times. In addition, J̃ of J elements can be processed
at once. The advantage of doing this is that it is more modular
and more computationally efficient as the previously-defined
mapping set can be reused.

In line 3, Jb denotes a parameter to control the number of
steps such that they are upper bounded by J − Jb + 1. The
statement Jbη = bJbηc is used to avoid rounding the number
of allocated bits to label SM0 . The variable Jit is used as a step
size for the loop process in line 6. In line 6(h), Bsp denotes the
number of bits required for labeling the set SM

J−(j−J̃)
during the

partitioning and labeling process, which is named as SP(·) in
line 6(i). Specifically, SP

(
J̃,Bsp,S

M
J−(j−J̃)

)
reads so that the J̃

Algorithm 1 The proposed set partitioning algorithm param-
eterized by (M,B, J, Jb)

1. Set M,B and J.
2. Calculate η = B/J.
3. Set Jb such that Jbη = bJbηc and Jb ∈ {1,2, · · · , J}.
4. Calculate Jit = inf ({k | k ∈ {1,2, · · · , J}, kη = bkηc}).
5. Initialize SMJ and assign j = 0.
6.(a) do

(b) if J − j , Jb
(c) J̃ = Jit;
(d) else
(e) J̃ = Jb;
(f) end
(g) j = j + J̃;
(h) Bsp = J̃η;
(i) SMJ−j = SP

(
J̃,Bsp,S

M
J−(j−J̃)

)
; // partition SM

J−(j−J̃)
(j) while j < J

7. Output SGTIM = SM0 .

elements of the vector in the set SM
J−(j−J̃)

will be labeled with
Bsp bits, and the output is denoted as SMJ−j . The function SP
will be formalized in the next subsection (at the first step of the
first example). The steps detailed in lines 6(b-i) are repeatedly
carried out until j = J. Therefore, if Jb = J, then only 1 step
is required. Generally, Jb can be interpreted as the number of
elements of a vector in SM that will be labeled at once in one
step. Finally, the algorithm outputs SGTIM as SGTIM = SM0 .

D. More Examples

1) The algorithm with (M = 2,B = 3, J = 2, Jb = 2):
This is the example that is previously discussed and illustrated
in Fig. 7. Here, we want to connect that example with the
definitions in the previous subsection. In this example, the
number of loops is one as Jb = 2. The algorithm 1 reduces
to SGTIM = S2

0 = SP
(
2,3,S2

2
)
. The steps taken in Figs. 7(a-c)

are formalized as following.
The 1st step (Fig. 7(a)): The first step is to partition P2,2

into P2,2
0 and P2,2

1 such that:(
P2,2

0 ,P2,2
1

)
= arg max
P2,2

0 ,P2,2
1

������dS

(
P2,2

0

)
− dS

(
P2,2

1

)������ (24)

subject to:���P2,2
0

��� = ���P2,2
1

��� = ⌊
(M + 1)J/2

⌋
, (25)
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P2,2
0 , P2,2

1 , ∅,P2,2
0 ,P2,2

1 ⊂ P2,2 and P2,2
0 ∩ P

2,2
0 = ∅. (26)

The expression in (24) guarantees that P2,2
0 and P2,2

1 have
the farthest distance with the constraints (25) and (26). The
expression in (25) indicates that both set P2,2

0 and P2,2
1 must

contain
⌊
(M + 1)J/2

⌋
elements. This is equivalent to:

blog2 |P
2,2
0 |c = blog2 |P

2,2
1 |c ≥ Bsp − 1,

which means that the partitioned sets P2,2
0 and P2,2

1 can be at
least represented by Bsp − 1 bits. The vectors in P2,2

0 and P2,2
1

will be assigned with the same 2Bsp−1 binary vectors, which
will be each appended by a new binary bit as the MSB. It
is intuitive that (24) can be found in the outer layer of P2,2,
see Fig. 8 for more examples and observe the positions of a
collection of binary vectors that differs only at the MSB. This
can be seen in the red and blue markers.

The 2nd step (Fig. 7(b)): At the 2nd step, the sets P2,2
0

and P2,2
1 can be further partitioned into P2,2

0,0, P2,2
0,1, P2,2

1,0 and
P2,2

1,1. The arrangement of all the sets is done such that P2,2
0,1

is the neighbor of P2,2
1,1 as the Hamming distance of the bits

associated with both sets is 1. Doing this ensures that the
MSB and the next bit position of binary vectors of sl ∈ P2,2

0,1
and sl ∈ P2,2

1,1 have the Hamming distance of 1.
The 3rd step (Fig. 7(c)): The same procedures in the 2nd step

can be repeated in the 3rd step. Alternatively, we can assign
the LSB of the elements of Ss and arrange it such that it
differs only at 1-bit position with their neighbors. The output
of the third step is the ordered set P̃2,2 as shown in Fig. 7(c).
Notice that the Hamming distance between two neighboring
binary vectors is 1; moreover, the Hamming distance with the
next neighbors is 2 and so on. Translating these processes
with respect to (19), the function SP ensures that the farther
constellation point has a larger Hamming distance. Other
examples with J = 2 and different values of M and B can
be found in Fig. 8.

2) The algorithm with (M = 2,B = 6, J = 4, Jb = 2):
Instead of J = 2, now we extend the previous example to
J = 4. In this example, it can be shown that the already-
defined codebook can be used to design another codebook with
higher dimensions. Furthermore, the number of iterations is 2,
and at each iteration SP

(
2,3,SM

J−(j−2)

)
is performed, which is

already illustrated in Fig. 7. The output of the first iteration,
i.e., SM4−2 = SP

(
2,3,SM4−0

)
, is given as:

S2
4−2 =

©«


x
I0
I0


000XXX

,


x

m0
I0


001XXX

,


x

m1
m0


010XXX

,


x

m1
I0


011XXX

,


x
I0
m0


100XXX

,


x
I0
m1


101XXX

,


x

m1
m1


110XXX

,


x

m0
m1


111XXX

ª®®®®¬
.

In this case, the length of the vector x is two. At the last
iteration, we have Jb = 2 and the output is SGTIM = SM4−4 as

expressed as:

S2
4−4 =

©«

I0
I0
I0
I0


000000

,


m0
I0
I0
I0


000001

,


m1
m0
I0
I0


000010

,


m1
I0
I0
I0


000011

,


I0
m0
I0
I0


000100

,


I0
m1
I0
I0


000101

,


m1
m1
I0
I0


000110

,


m0
m1
I0
I0


000111

,


I0
I0
m0
I0


001000

,


m0
I0
m0
I0


001001

,


m1
m0
m0
I0


001010

,


m1
I0
m0
I0


001011

,


I0
m0
m0
I0


001100

,


I0
m1
m0
I0


001101

,


m1
m1
m0
I0


001110

,


m0
m1
m0
I0


001111

, · · ·

ª®®®®¬
.

Notice that the vector x is replaced with the result as depicted
in Fig. 7(c), and the binary representation is appended by
replacing the LSBs with new ordered binary vectors.

3) The algorithm with (M = 3,B = 6, J = 3, Jb = 2):
The main purpose of this example is to visualize the mod-
ularity of the algorithm. At the first iteration, the process
S3

3−1 = SP
(
1,2,S3

3−0

)
is carried out. The output can be

expressed as in (23). Visually, it is equivalent to order and
label the symbol s2 in SGTIM, which can be shown in Fig. 9
along s2-axis. Then, on each plane with respect to the s2-
axis, SGTIM = S3

3−3 = SP
(
2,4,S3

3−1

)
is performed. Notice

that the constellation for SP
(
2,4,S3

3−1

)
is shown in Fig. 8(b).

Therefore, the final result can be seen in Fig. 9, which shows
the arrangement of Fig. 8(b) on each plane. The location of
each plane is denoted by (23), which is carried out in the first
iteration, i.e., SP

(
1,2,S3

3−0

)
.

E. Optimality Discussion

First, we will discuss the effect of Jb, which parameterizes
algorithm 1. Recall that the arrangement in Fig. 8(c) has
Jb = 2. Alternatively, we can also set Jb = 1 for the same
problem. The result is shown in Fig. 10(a). It is obvious that
the arrangement in Fig. 10(a) has a worse BER compared
to Fig. 8(c). An easy way to see this is by looking at pairs
of symbols that have the Hamming distance of 2. There are
pairs with the Hamming distance of 2 in Fig. 10(a) that have a
smaller Euclidean distance than that of Fig. 8(c). Furthermore,
we can also find the same observation with Jb = 3 and Jb = 2.
In this paper, we claim that with respect to (19) the proposed
algorithm is suboptimal and a detailed optimality discussion
will be left for future studies. For a certain case such as the
arrangement in Fig. 8(b), which resembles that of 16-QAM,
Lemma 9 in [31] can be used to prove the optimality. However,
for a general J > 2 Lemma 9 in [31] cannot be directly
applied. Following [31], some definitions and trivial operations
such as the average distance spectrum, binary and codeword
permutation needs to be defined first. The proposed algorithm
gives a trade-off between the exhaustive search with the search
size as defined in (18) and a good set of SGTIM in terms of
the Euclidean and Hamming distances.

It is also worth discussing here that if |m0 − I0 | < |mi −

mj |,∀i , j ∈ {0,1, · · · ,M − 1} then the BER is limited by
|m0 − I0 |. Therefore, in order to maintain the BER gain of SC-
GTIM, a minor modification for the function SP is required.
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(a) (b)

(c) (d)

Fig. 8. SP(·) with: (a) M = 3, B = 3 and η = 1.5; (b) M = 3, B = 4 and η = 2; (c) M = 4, B = 4 and η = 2; (d) M = 5, B = 5 and η = 2.5.

Fig. 9. An illustration for the proposed algorithm with (3, 6, 3, 2).

The modification is carried out such that the set PM ,J̃
dc is

predefined to include the vectors p ∈ PM ,J̃ that contain the
value m0. It means that the vectors containing the value m0 are
not used. Fig. 10(b) illustrates the aforementioned modification
with the red cross, which denotes the unused vectors.

V. RESULTS AND DISCUSSION

A. Simulation Setup

(a) (b)

Fig. 10. (a) An output of algorithm 1 with (4,4,2,1) and (b) a modified con-
struction of Fig. 8(c) if |m0 − I0 | < |mi −m j |, ∀i , j ∈ {0, 1, · · · ,M − 1}.

In order to compare different results with different I0, a ratio
υ is defined as follows:

υ =
Ia − I0
dmin,M

, (27)

where dmin,M denotes the minimum distance of the conven-
tional M-PAM and defined as dmin,M = (Ib − Ia)/(M − 1).
The case where υ > 1 shows that the |Ia − I0 | is greater
than the minimum distance of the conventional M-PAM. As
the performance gains of SC-TIM and SC-GTIM compared to
the SC-PAM depend on υ, we are interested in two different
cases, which are υ < 1 (namely Cυ<1) and υ > 1 (namely
Cυ>1). The case Cυ>1 is the case where the LED is allowed
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Table I. Simulation Parameters

Parameters Notation Values Unit
3-dB LED bandwidth fled 35 MHz
LED Lambertian order m 1 -
PD’s responsivity R 0.7 A/W
PD’s gain M 50 -
PD’s FoV FoV 90◦ -
PD’s effective detection area AAP 1 cm2

Symbol rate Rs 50 MSymb/s
FFT size N 32 -
FEC threshold Pb,target 3.8 × 10−3 -

to be completely off during the transmission, i.e., I0 = 0. On
the other hand, the case Cυ<1 is the case where I0 , 0 and
the distance between Ia and I0 is smaller than the minimum
distance of SC-PAM. This is when the SC-TIM can be worse
than SC-PAM. In general, the cases Cυ>1 and Cυ<1 are defined
to show extreme performance gains of SC-TIM and SC-GTIM,
i.e., significant BER gains are achieved in Cυ>1 and slight BER
gains are achieved in the other case.

For our simulation setup, the characteristic of a high-speed
IR LED VSMY3940X01 [40] is used to have a practical linear
dynamic range value. Fitting the P − I curve with the 5th-
order polynomial function, we observe that Ia = 600 mA and
Ib = 800 mA. As for the I0, we pick I0 = 0 for Cυ>1 and
I0 = 550 mA for Cυ<1 with M ∈ {2,4}. The reason for this
is to show the dependency of I0 and the performance gains of
SC-TIM and SC-GTIM.

Other parameter values are shown in Table. I. The LED
is modeled as a first order Butterworth filter with the 3-dB
bandwidth fled = 35 MHz. The LED Lambertian order for
the optical channel calculation in (5) as m = 1. The ADC is
modeled as a zero-order hold with a fifth order Bessel lowpass
filter (LPF) whose 3-dB bandwidth is Rs(Lcp + N)/(2N). The
PD’s responsivity is chosen to be R = 0.7 A/W based on, for
example, [41]. Lastly, the FFT size is chosen to be N = 32
[36] and the BER target used in this paper is 3.8× 10−3 [42].

For the optical channel setup, the vertical and horizontal
distances between the UE and the AP are set to be dv = 1.6
m and dh = 1.55 m, respectively. For the orientation of the
UE, we set θ to be 27.75, see the configuration C1 in [34,
Fig. 7].

The room dimensions are assumed to be 5×3.5×3 m3. The
reflectivities of the walls are assumed to be 0.3, the reflectivity
of the ceiling is 0.69, and the reflectivity of the floor is
0.09. The reflectivities of the surfaces of the rectangular prism
modeling the human body are assumed to be 0.6 with the
exception of the upper surface, which is 0.9. In addition, the
resolution of the partition is 10 to generate the optical CIR
[33]. A more detailed discussion and explanation as to where
these values are taken from can be found in [32], [34].

B. Error Performance

The BER comparisons are shown in Fig. 11. All APEPs
are shown by solid lines to avoid confusion. The reason
for using the solid lines for all APEPs is that the upper
bounds are sufficiently tight, but not exactly equal, with each
corresponding simulation result. The simulation results are
shown with different markers. Note that for fair comparisons,

the set STIM is also constructed based on a Gray code and
exhaustive search. Fig. 11(a) shows the advantages of SC-
GTIM over both SC-PAM and SC-TIM. Approximately 2 dB
gain can be achieved by SC-TIM with J = 2 compared to SC-
PAM. To show the performance of SC-TIM with J = 4, the
constellation size needs to be increased due to the limitation
of vectors in Ss that can be chosen by SC-TIM. In order to
obtain η = 1 with J = 4, the parameters M and K of the
SC-TIM should be set as M = 4 and K = 1. As the minimum
distance in the interval [Ia, Ib] narrows, the BER performance
of SC-TIM is worse than that of SC-PAM. On the other hand,
as SC-GTIM can chose arbitrary vectors in Ss, approximately
10 dB gain can be obtained. It is also shown that even by
increasing η to be η = 1.5, the BER of SC-GTIM is still
better than SC-PAM and SC-TIM.

In Fig. 11(a)-(d), we also show the results of the case
when increasing J for SC-GTIM does not change the BER
performance. This means that by using the proposed set
partitioning algorithm, the average minimum distance does not
change significantly. This also means that the design problem
for higher dimension J can be reduced to design a good set
SGTIM for J = 2 which will reduce the memory complexity.
This issue will be discussed in the next subsection.

In Fig. 11(b), it can be seen that the performance of SC-
TIM with η = 2 is better with respect to SC-PAM compared to
those with η = 1. For SC-GTIM, the BER gain decreases, but
it is still significantly better than the others, i.e., approximately
5 dB better. In Fig. 8(b) and (c), it is shown that for J = 2,
η = 2 can be achieved by either M = 3 and M = 4. The
results in Fig. 11(b) show that we can take advantage of the
fact that |I0 − Ia | > dmin,M . That is, as the same η can be
achieved by a lower constellation size, the lower constellation
size should be chosen for designing the set SGTIM. The reason
for this is simply because of dmin,4 < dmin,3. In addition, we
also observe that about 2 dB gain with respect to SC-PAM
can still be achieved for SC-GTIM with η = 3.

The results for the case Cυ<1 are shown in Fig. 11(c)
and (d). At η = 1, Fig. 11(c) shows the limitation of SC-
TIM. As shown in Fig. 5(c), the BER is limited by two
constellation points near oIo . This problem can be averaged out
by increasing J, see (12). However, for SC-TIM with J = 4,
the problem with dmin,4 < dmin,2 also appears in Fig. 11(a);
hence, the BER is still worse compared to that of SC-PAM.
On the contrary, the advantage of SC-GTIM over the others
is still maintained.

The limitation of SC-GTIM is shown in Fig. 11(d). To
maintain the BER gain, it is clear that SC-GTIM cannot use the
constellation diagram in Fig. 8(b) as the minimum distance is
limited by all constellation points near I0, which will result in
a worse BER performance compared to SC-PAM and SC-TIM.
However, due to the flexibility of SC-GTIM, the constellation
diagram in Fig. 8(c) can be modified to be that as shown
in Fig. 10(b). As the constellation points near I0 acts as the
limitation, the vectors sl that contains the symbol Ia will not
be picked. Therefore, the same structure in Fig. 8(b) can be
used in Fig. 8(c) by not picking sj = Ia,∀ j. The result is that
the BER gain can still be achieved even though it is small.
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(a) (b) (c) (d)

Fig. 11. BER comparisons for: (a) Cυ>1 and η = 1; (b) Cυ>1 and η = 2; (c) Cυ<1 and η = 1; and (d) Cυ<1 and η = 2.

C. Complexity and PAPR Penalties

At first, one might think that the brute-force search is
the main reason for the additional complexity. In fact, the
computational complexities of SC-TIM and SC-GTIM are the
same as the conventional one if the Voronoi region is used
provided that the total transmitted bits Bt is the same. Fig. 8(b)
is used as an example. The goal is to decode the binary vector
[0011]T. Using the Voronoi region shown by red solid lines
(only regions of interest are shown), the MSB (the 3rd bit) can
be decoded first. This can easily be done based on the location
of the estimated s1, namely ŝ1, and the boundary (m0+m1)/2.
In addition, the operation is done over a single real value to
allow a fair comparison with the SC-PAM. The rest of the bits,
i.e., the 2nd to the 0th bits, can be estimated in the same way.
Hence, the computational complexity is O(B) and the same as
the SC-PAM.

As previously discussed after (7) and (11), it cannot be
guaranteed that the single-tap FDE can be applied to SC-TIM
and SC-GTIM systems. We observe that this is true for SC-
TIM with J > 1 since the matrix Rs is not circulant. On the
contrary, there are certain SGTIM such that Rs is circulant. For
example, Rs with the arrangements shown in Fig. 8(b) and
Fig. 9 have a circulant Rs. Generally, if:

η ∈ Z+ and M = 2η − 1, (28)

then Rs will be circulant. A simple explanation for this is
that for an equally-likely binary digit {0,1}, then all symbols
will be equally-likely selected if (28) is satisfied. Hence, in
terms of relative distances between constellation symbols, the
constellation resembles that of SC-PAM whose Rs is circulant.
If the single-tap FDE can be applied, the computational
complexity is O

(
2N log2 N

)
. Otherwise, it is O

(
2N2) .

The complexity penalties come from the mapping of bits
to the symbol, which is the size of the lookup tables (LUTs)
used to store the sets STIM and SGTIM. The case when J = 1
is used in order for SC-PAM to have a fair comparison. For

Table II. PAPR Comparisons

SC-PAM SC-TIM SC-GTIM
η = 1 0.57 dB 2.59 dB 2.02 dB
η = 2 0.58 dB 1.83 dB 1.8 dB

SC-PAM, the memory complexity is O
(
2B

)
. For SC-TIM and

SC-GTIM, the complexity is O
(
J2B

)
as the LUT is now a

matrix. As previously mentioned, the BER performance of SC-
GTIM can be invariant with respect to J due to the fact that
the minimum distance is the same. In this case, the memory
complexity of SC-GTIM can be limited to O(2B+1).

For PAPR comparisons, given the linear dynamic range
[Ia, Ib] and the new degree of freedom I0 < Ia, it is obvious
that the average energy per symbols of both SC-TIM and SC-
GTIM are lower; consequently, the PAPR increases as the peak
value remains the same. However, I0 can also be set such
that Ib < I0. In this case, the PAPR does not always increase
depending on |I0 − Ib |.

For PAPR comparisons, we only present the configurations
which give the best BER performances in Fig. 11. In addition,
only the case Cυ>1 is of interest as it gives a higher PAPR
compared to that of the other case. Table. II summarized
the PAPR comparisons. As previously mentioned before, the
PAPRs of either SC-TIM and SC-GTIM are higher due to the
fact that the average energy per symbol decreases. For a certain
configuration of SC-TIM, when the symbol I0 is picked more
frequently than in SC-GTIM, SC-GTIM has a lower PAPR
compared to SC-TIM; hence, the average energy per symbol
of SC-TIM is lower than that of SC-GTIM.

VI. CONCLUSIONS

This paper investigated the implementation of IM in single-
carrier PAM with block transmission for OWC. Specifically,
we compared PAM (SC-PAM) and SC-TIM with the proposed
SC-GTIM. The main difference between SC-TIM and SC-
GTIM was the flexibility in choosing an arbitrary number of
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active time slots. Specifically, only predefined K time slots
were active for SC-TIM, while there was no fixed K for SC-
GTIM. We showed that this flexibility in choosing the number
of active time slots was used to mitigate the performance
limitations of SC-TIM due to the linear dynamic range of
LEDs. A set partitioning algorithm was also proposed to
construct a codebook for SC-GTIM. In terms of BER, it was
shown that more than a 3 dB gain could be achieved by SC-
GTIM. In terms of maximum achievable spectral efficiency
for a given constellation size M , it was also shown that SC-
GTIM achieved better performance than the others. This was
especially true in low-to-moderate spectral efficiency scenar-
ios, where a 50% improvement could be achieved compared to
SC-PAM. In terms of computational complexity penalties, we
showed that there was a memory complexity penalty for both
SC-TIM and SC-GTIM compared to that of SC-PAM due to
the fact that the size of the codebook for mapping from bits to
symbols was larger. In addition, there was also a PAPR penalty
as the average energy per symbols for SC-TIM and SC-GTIM
were lower than that of SC-PAM, while the maximum of the
average transmitted energy was the same.
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