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A B S T R A C T

Background: Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US
each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been
validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we
report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury
and which can track the state of the brain during recovery across multiple ages and species.
Methods: Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake
four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and
focal) or sham. From these recordings, we generated event-related potential functional networks and assessed
whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-
injured.
Findings: Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury
prediction algorithm developed from our analysis of the changes in the event-related potentials functional
networks ultimately produced a tool with 82% predictive accuracy.
Interpretation: This novel approach is the first application of auditory event-related potential functional networks
to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that
offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials
data is noninvasive and inexpensive.

1. Introduction

Traumatic brain injury (TBI) can be defined as alterations in brain
function resulting from an external force (Eucker et al., 2011). TBI is
the leading cause of disability and death in children in the United States
and the two age groups that are at highest risk for TBI are infants and
toddlers (0–4 years) and young adults (15–19 years) (Faul et al., 2010).
Given the significant cost and impact of mild pediatric TBI in the US,
there is an urgent need for accurate diagnostic tools to identify mild TBI
in the young brain.

Currently, there are no biomarkers available for the diagnosis and
prognosis of concussion in children (Davis et al., 2017). Clinicians ty-
pically use balance or eye-tracking and cognitive tests; however, there
is little data to support their use to assess concussion in children aged
5–12 years (Davis et al., 2017). A multimodal framework that enables
age-appropriate diagnosis and clinical assessment of pediatric concus-
sion as well as prognosis of recovery is necessary.

Event-related potentials (ERPs) are electrical signals evoked in

response to a sensory stimulus. ERPs consist of characteristic sequences
of peaks and troughs called ERP components that indicate cognitive
processing. Auditory ERPs, evoked in response to an auditory stimulus,
are involuntary, do not require prior training of the subject and permit
easy control of the stimuli. Several studies show persistent changes in
the amplitudes and latencies of auditory ERP components in TBI pa-
tients compared to controls (De Beaumont et al., 2007; Dundon et al.,
2015; Mazzini et al., 2001). In this study, we recorded auditory ERPs in
juvenile piglets to develop quantitative, unbiased predictors of brain
state after injury.

Traditionally, the analysis of ERPs is component-dependent, where
researchers infer the significance of the changes in the magnitude and
latency of the ERP components from different channels located in re-
gions associated with specific cognitive processing states in humans.
However, such an analysis of ERP components is subjective. Network
analysis allows simultaneous investigation of neural activity recorded
by all the electrodes, thereby eliminating component- and method-
specific bias. In this preliminary study, we generated functional
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networks before and after well-characterized diffuse and localized
white matter injury in piglets to evaluate whether significant alterations
occur in post-TBI ERPs.

2. Materials and methods

2.1. Diffuse & localized injury in piglets

All animal experimental protocols were approved by the
Institutional Animal Care and Use Committee (IACUC) of the University
of Pennsylvania. Twenty-two 4-week-old female Yorkshire piglets were
used, equivalent to the human toddler (Dickerson and Dobbing, 1967).

Piglets were allocated to an injury or sham group. All piglets were
anesthetized with 1.5% isoflurane, intubated and mechanically venti-
lated. Either a focal injury via controlled cortical impact (CCI) or a
diffuse injury by rapid non-impact sagittal rotation (RNR) (Margulies
et al., 2015) was prescribed to the piglets in the injury group. Sagittal
RNRs at approximately 130 rad/s were prescribed and previously de-
termined to induce mild TBI (Margulies et al., 2015; Weeks et al.,
2014). ERPs were measured one day before injury and on 1, 4, and
7 days after injury. Sample sizes for each group of piglets in this pre-
liminary study were 9 for Sham, 7 for sagittal (SAG) RNR, 3 for coronal
(COR) RNR and 3 for CCI.

2.2. Immunohistochemistry

Immunohistochemical processing of a sub-sample of piglet brains
was performed 8 days after injury. Brains were perfused and fixed with
10% neutral buffered formalin for 24 h (Ibrahim et al., 2010). Sections

were stained for beta-amyloid precursor protein. Positive staining, in-
dicative of damaged axons, was identified by a neuropathologist blind
to the injury group. The cumulative sum of positively stained area was
used to calculate an axonal injury volume (AIV), calculated as a percent
of total cerebral volume.

2.3. Data acquisition and auditory stimulus

The E-Prime (2.0.10.353 SPI) software program, a 32-channel net
(Electrical Geodesics, Inc. HydroCel™ Geodesic Sensor Net) and
Electrical Geodesics, Inc. Net Amps 400 EEG amplifier were used to
generate auditory stimuli and acquire neural responses.

Two sequences of 100 2-ms clicks were played by a portable USB
speaker to each piglet for the standard (Std) and oddball (OB) para-
digms. The clicks in the standard paradigm were “white noise”, at
800 Hz auditory frequency. Clicks in the OB paradigm consisted of a
random combination of 70% standard (OB-Std) “white noise” clicks
(same as used in the Std paradigm) and 30% target (OB-Trgt) “brown
noise” clicks (auditory frequency of 1000 Hz). Paradigms were repeated
until a minimum of two acceptable standard trains and oddball trains
per piglet were obtained.

2.4. Traditional analysis of ERP amplitudes and latencies for selected
channels

Amplitudes and latencies of ERP components were detected using a
custom MATLAB® (R2015b, Mathworks, Inc.) script. Four distinct ERP
components identified from previous studies in adult pigs were selected
for analysis. The first two peaks and troughs in the ERP signals from

Fig. 1. Schematic describing auditory ERP acquisition and functional network construction methods.
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channels 15 (left auditory cortex), 16 (right auditory cortex), 17 (near
frontal lobe midline), 19 (parietal lobe midline), 20 (occipital lobe
midline), and 28 (near central midline) were selected because they are
conventionally studied in the ERP literature (Andrews et al., 1990;
Arnfred et al., 2004; Heisz and McIntosh, 2013; Martoft et al., 2001;
Rogers et al., 2015). The latency ranges for each peak were based on the
information from a study performed in adult Gottingen mini-pigs
(Arnfred et al., 2004). The four ERP components examined were: N40
(the negative peak found in the latency range of 20–60ms post-sti-
mulus), P60 (positive peak found in range of 40–80ms), N120 (negative
peak found in range of 90–150ms) and P200 (positive peak found in
range of 150–250ms). If a peak with the correct polarity was not found
in the specified latency range of the ERP for a specified channel, the
peak was excluded from analysis.

2.5. Generation of auditory ERP functional networks

A single network edge between two channels was constructed by
calculating the maximum absolute cross-correlation between the aver-
aged, z-scored post-stimulus ERP signals from both channels (Fig. 1B).
The collection of cross-correlations between all pairs of channels form
the network, which is depicted as a 32× 32 matrix (Fig. 1C) and a set
of connections between electrode sensor locations (Fig. 1D).

Our ERP networks were fully connected with a network density of 1
defined as 496 edges among 32 nodes. ERP networks, as a function of
network density, were generated by progressively removing the
weakest edges. In order to threshold each network, network edges with
values below the range of 48th–99th percentile edge values were se-
quentially removed. The range of thresholds was applied to each net-
work and subsequently a series of network metrics on each thresholded
network were calculated in order to examine the effect of density on
sham, SAG, COR and CCI networks.

We calculated two network metrics on the thresholded networks in
order to quantify functional network influence, integration and segre-
gation in the brain: nodal strength and global efficiency. Nodal strength
(NS) was calculated as the sum of all connections or edges from a
specified node. Paths are unique sequences of edges between two dis-
tinct nodes and their lengths are measured by the sum of edges. Global
efficiency (GE) was calculated as the average of the inverse of the
shortest path lengths in the network.

2.6. Discrimination of injured and uninjured ERPs

Each post-click signal was classified as injured or not injured. There
were three types of epochs (and data sets): Standard (Std), Oddball-
Standard (OB-Std) and Oddball-Target (OB-Trgt). A single machine
learning model was constructed for each type of epoch. Preprocessed
ERP signals were used to construct the model.

To construct our machine learning models, a binary classification
dataset was created, in which epochs were classified as uninjured if
they were acquired before injury (Day 0) in the SAG and CCI groups.
Sham epochs from all days were also classified as uninjured. ERP
epochs were classified as injured if acquired between 1 and 5 days after
injury in the SAG and CCI groups. The data set was randomly split into
three sets: training (38%), testing (38%) and validation (24%). The
training set was used to tune the parameters of the model, the testing
set was used to select the final model and the validation set was used to
report the predictive capability of the model with metrics such as ac-
curacy and area under ROC curve (AUC). All performance data pre-
sented in this report were determined from the validation set. CORs
were not included in our training set because it is characteristically a
mild TBI (in terms of total axonal injury volume) compared to CCI and
SAG (Eucker et al., 2011; Ibrahim et al., 2010). Instead, we evaluated
the performance of CORs using the algorithm separately.

To improve the accuracy of the predictive model, the ERP data were
dimensionally reduced using XDawn, a novel dimensionality reduction

algorithm that is similar to principal component analysis, which max-
imizes signal-to-noise ratio of ERPs (Barachant et al., 2012; Rivet,
2009.; Rivet and Souloumiac, 2007) and outputs data with a reduced
number of components in the channel dimension. The dimensionally
reduced ERP data were then used to calculate covariance matrices for
each ERP epoch using XDawnCovariance (XDawnCov); this step sim-
plifies classification of data into injured and uninjured groups. To
predict TBI, the output from a separate logistic regression model
(Pedregosa et al., 2011) applied to Xdawn and XDawnCov was averaged
and a single predictive model for each ERP paradigm was constructed.

Each predictive model outputs two scores representing the prob-
abilities that an epoch belongs to the injured and uninjured class, where
the sum of both scores for the same epoch is 1. For each animal, a
probability score for injury (InjScore) was computed as the geometric
mean (over the range of 0 to 1) of probability scores for the injured
class for all ERP epochs. In order to convert the continuous InjScore to a
discrete classification (injured or uninjured), we applied the k-means
clustering (Pedregosa et al., 2011) method (k= 2) to each paradigm's
InjScores. All three paradigms were combined by taking the majority
vote over all discrete InjScore classifications for every animal. We also
analyzed the mean of all continuous InjScores from each paradigm for
each animal. An ROC analysis was used to determine the critical value
of InjScore above which animals should be classified injured. The Inj-
Score threshold was taken where both the true positive rate was highest
and the false positive rate was lowest.

2.7. Statistical analyses

The non-parametric Dunnett's test (Gao, 2008) was used for com-
parison of ERP latencies and magnitudes between Day-1 (PRE) and all
post-injury days (POST 1 d, 4 d and 7 d). For the analysis of network
metrics as a function of network density, group differences between
SAG, COR and CCI compared to Sham were found by performing two-
tailed permutation tests at each density value and then correcting for
multiple comparisons using the Benjamini-Hochberg correction proce-
dure (Harris et al., 2016). The level of significance was 0.05 for all
statistical tests. All statistical tests were performed in R 3.4.1 (R Core
Team, 2017).

3. Results

3.1. Histopathology

Histopathological assessment of axonal damage yielded a mean of
0.0% in Sham (n= 3), 0.31% of total cerebral volume in SAG (n=2),
0.0% in COR (n= 3) and 4.69% in CCI (n= 1) animals respectively,
similar to our previous findings (Eucker et al., 2011; Margulies et al.,
2015). Based on axonal histopathology, we expected that COR would
present mild alterations in ERPs compared to SAG and CCI to be con-
sistent with lower axonal injury damage.

3.2. Traditional analysis of ERP amplitudes and latencies for selected
channels

The median values of the amplitudes and latencies of the N40, P60,
N120 and P200 components from channels 15, 16, 17, 19, 20, and 28
were largely unchanged from PRE levels and did not vary widely in
response to SAG injury or study day (Fig. 2). For N40 latencies, the
POST 7 d time point only the SAG group was significantly longer (non-
parametric Dunnetts test, p= 0.01) than PRE for Channel 15. All other
comparisons of N40 latencies and amplitudes from post-injury to pre-
injury for channels 15, 16, 17, 19, 20, and 28 were not significantly
different (p > 0.05). Channel 19's P60 amplitudes decreased sig-
nificantly on all post-SAG days relative to PRE. A reduction in P60
amplitudes at 4d was only seen in the Sham group compared to PRE
(Fig. 2). All significant changes in the latencies and amplitudes of N120
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or P200 in the SAG group were also present in the Shams, from chan-
nels 16, 17, 20 and 28. In summary, significant changes in amplitudes
and latencies from PRE levels were observed in early peaks (N40 and
P60) in the SAG group. For the traditional ERP analysis, statistical tests
were not performed on data from COR and CCI because of small sample
sizes (n=3).

3.3. TBI alters auditory ERP networks

We thresholded our networks to remove weak edges as removal of
weak edges in the network reveals the largest differences in network
properties between the sham and injured groups that may not be evi-
dent at a single network density value. Nodal strength (NS) quantifies
the number and strength of the connection that each electrode has to all
other electrodes, where a higher nodal strength represents increased
synchrony with ERPs from other electrodes. NS increased as network
density increased because more edges implies a greater sum of con-
nections. Before injury, all NS curves from injury groups were not sig-
nificantly different (p > 0.28) from sham (Fig. 3). At POST 1 d, there
was a large reduction in NS values (p < 0.012) in all injury groups by
31.9% (in SAG), 34.4% (in COR) and 43.4% (in CCI) relative to Sham.
This suggests that local connectivity decreased 1d after all modes of
injury relative to Sham. By POST 4 d, NS of COR and CCI injury groups
increased (p < 0.03) relative to Sham, and by POST 7 d all injury
groups' NS values were comparable to Sham (p > 0.2). By POST 7 d,
NS values from Sham, SAG, COR and CCI have magnitudes comparable
to PRE NS values.

Global Efficiency (GE) quantifies functional integration, which is
the ability to combine specialized information from distributed brain
regions. GE estimates the ease with which brain regions communicate,
and is commonly based on the concept of a path. As more network
edges are added to a network and network density increases, GE in turn
increases (Fig. 4). GE values were significantly different (p < 0.05) on
PRE for the COR and SAG groups compared to Sham, but not for CCI.
All GE values were similar to sham at POST 1 d for all injury groups
(p > 0.14). On POST 4 d, SAG, COR and CCI showed lower GE values
(p < 0.02) than Sham at network density of 1. SAG, CCI, and COR
injuries also showed lower (p < 0.049) GE values at POST 7 d

compared to Sham at network densities> 0.75. A higher global effi-
ciency implies stronger connectivity or information transfer between
the two most weakly connected nodes in the network.

3.4. Discrimination between injured and uninjured ERPs

Our objective was to develop a robust metric for identifying TBI in a
given animal using our ERP dataset. The Std predictive algorithm
outperforms both OB Std and OB Trgt, which indicates that the Std
paradigm may be the most informative individual paradigm for pre-
dicting injury. However, we obtained maximal predictive performance
(82% accuracy, AUC=0.82), when we combined the output of all
three paradigms (Table 1).

The mean InjScore from all paradigms for each injury group (Sham,
SAG, COR or CCI) on days-1, 1 or 4 was calculated (Fig. 5). Sham/Pre-
injury had the lowest mean InjScore (0.14), compared to the remainder
of injury groups and days, while SAG at day 4 had the largest mean
InjScore value (0.32), indicating a higher number of composite ERP
epochs that were predicted to be injured. The mean InjScores for SAG at
days 1 (p=0.022) and 4 (p=0.02) were significantly larger than that
for Sham/Pre-injury. All post-CCI comparisons were not significantly
different (p > 0.19) from Sham/Pre-injury. The ROC analysis of Inj-
Scores against their true classifications revealed InjScores thresholds as
0.13 (Sensitivity: 55%, Specificity: 92%) for Std, 0.18 (Sensitivity: 54%,
Specificity: 75%) for OB-Std, 0.19 (Sensitivity: 64%, Specificity: 75%)
for OB-Trgt and 0.18 (Sensitivity: 54%, Specificity: 75%) for all para-
digms. Although the InjScore may range from zero to one, InjScores
from the combination of all paradigms that exceeded 0.19 were asso-
ciated with being classified as injured.

Using our validation set, eight out of nine Sham or pre-injured an-
imals were correctly predicted as uninjured. All CCI animals (n=2)
were classified as having uninjured auditory ERPs on post-injury day 1,
and an injured ERP signature on post-injury day 4. All SAG animals
were classified as injured on both post-injury days 1 and 4 (n=2 each).

The mean InjScore for day 1 post-COR animals was not significantly
different (p=0.29) from that of the uninjured group. Only one out of
three COR animals was classified as injured on day 1 compared with
100% of SAG and 0% of CCI. The “uninjured” classification of animals

Fig. 2. Median N40 latencies for channel 15 (left auditory cortex) and P60 amplitudes for channel 19 (parietal lobe midline) in Sham and SAG groups from the
Standard paradigm.
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experiencing rapid head rotations in COR was consistent with our
finding of reduced axonal injury in COR. We also find no significant
alterations in auditory ERPs at 1 day after a rapid COR head rotation.

4. Discussion

Auditory ERP components represent auditory information proces-
sing (Gosselin et al., 2006), which involves the sensory and limbic

systems. ERPs provide the advantages of high temporal resolution, non-
invasive and inexpensive recording of brain activity compared to CSF or
blood-based biomarkers, DTI and fMRI. At the time of this publication,
there are no studies that used auditory ERP networks to predict pe-
diatric TBI.

Based on previous ERP studies (De Beaumont et al., 2007; Dennis
et al., 2015; Dundon et al., 2015; Mazzini et al., 2001) conducted in
humans, we expected TBI to cause smaller peak amplitudes and longer

Fig. 3. Changes in nodal strength with network density for all injury groups and study dates compared to Sham from Standard paradigm. Mean values and standard
error bars are shown. Horizontal bars indicate significant difference of injury groups from sham at single density level using two-tailed permutation test with false
detection rate correction for multiple comparisons, p < 0.05.

Fig. 4. Changes in global efficiency with network density for all injury groups and study dates compared to Sham from Standard paradigm. Mean values and standard
error bars are shown. Horizontal bars indicate signficant difference of injury groups from sham at density level using two-tailed permutation test with false detection
rate correction for multiple comparisons, p < 0.05.
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latencies in the majority of channels, however we only observed this in
a few channels in our piglets. Piglet brains provide a platform for better
understanding the young child brain due to similar neuroanatomy and
development (Buckley, 1986; Dickerson and Dobbing, 1967; Duhaime,
1998; Margulies et al., 2015). While the characterization of auditory
ERP components in pigs is not as well developed as it is in humans, this
report suggests that knowledge of ERP components may be unnecessary
for identification of TBI. Also, previous publications indicate that au-
ditory structures are highly consistent between pigs and humans (Yi
et al., 2016).

4.1. Traditional analysis of ERPs poorly discriminated TBI

In our study, the traditional analysis of magnitudes and latencies
from auditory ERPs poorly discriminated TBI in piglets. Kraus et al.
recently used characteristic auditory brainstem ERPs to accurately
predict severity of concussion in children, but did not validate their
findings with a separate dataset (Kraus et al., 2016). Our study shows
longer latencies and lower amplitudes, with partial recovery compared
to the pre-injury baseline in select channels. Network analyses use all
the data from all channels as a robust means of gaining insight into the

effect of TBI on neural activity that may be relevant to the study of TBI
in various species and ages.

4.2. TBI alters auditory ERP networks

Few researchers study pediatric TBI and those that do, use a subject
population with highly variable ages, post-injury dates and brain injury
types (Dennis et al., 2015; Espy et al., 2004; Kraus et al., 2016). These
factors may explain the confounding results reported in human TBI
functional network literature. There are very few animal studies of
functional networks after TBI.

In rats with focal brain injury, increases in nodal strength and ef-
ficiency in resting-state fMRI BOLD networks were reported 7 days after
CCI, but not at 14 and 28 days post-injury relative to pre-injury (Harris
et al., 2016). We found no change in nodal strength and a decrease in
efficiency 7 days after CCI relative to Sham. Harris and colleagues im-
aged rats under medetomidine sedation and did not include shams,
making comparison with our study difficult.

Hypo- and hyperconnectivity varied in our study after injury by
injury type and time point. Similarly, several studies have shown con-
flicting findings on the effect of TBI on functional networks –some
proposing hyper-connectivity (Harris et al., 2016; Hillary et al., 2014,
2015; Sharp et al., 2011) and others hypo-connectivity (Kumar et al.,
2009; Mishra et al., 2014; Rigon et al., 2015; Stevens et al., 2012). We
believe that the discrepancy in the effect of TBI on functional con-
nectivity may be dependent on recovery time, type of stimuli, neuroi-
maging technique, regions analyzed and heterogeneity of TBI subject
population. The axonal damage found in the piglet cerebrum 8 days
after TBI may be the cause of acute hypo-connectivity observed, where
loss of axonal connectivity causes a failure of synchrony between cor-
tical neurons. However, axonal damage was observed after SAG and
CCI injuries, but not in COR. We speculate that the absence of axonal

Table 1
Accuracy, area under ROC curve and precision of TBI prediction algorithm
performed on validation set from Standard, Oddball Standard, Oddball Target
and majority vote over all three paradigms.

Accuracy AUC Precision

Standard 76.47 0.75 1.00
OB Standard 47.06 0.49 0.46
OB Target 70.59 0.71 0.67
Majority vote (all) 82.35 0.82 0.86

Fig. 5. Mean and standard error bar charts of injury probability scores (InjScores) for all paradigms from XDawn/XDawnCov machine learning models. Black
horizontal lines represent significant Wilcoxon ranksum test comparison with Sham/Pre-injury, p < 0.05. The red, dotted line represents the threshold of InjScore
determined from ROC analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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damage after COR may be due to intact but dysfunctional axons. A task-
related fMRI study has demonstrated less inter-hemispheric functional
connectivity in their TBI cohort, compared with healthy controls (Rigon
et al., 2015), which may suggest weakening functional edges in the
corpus callosum due to structural damage. Evidence of disrupted
functional EEG connectivity in the brain after combat-related blast in-
jury was reported 32 months after blast exposure (Sponheim et al.,
2011), which may support our hypothesis of intact but dysfunctional
axons.

Hypo-connectivity following TBI may be the result of cellular dys-
function (node failure) or white matter damage (edge failure). White
matter degradation may explain the decreased connectivity observed
across the ERP networks on day 1 after SAG injury compared to Sham.
Recent studies have found that functional connectivity patterns largely
reflect that of underlying structural or white matter connectivity
(Dennis et al., 2015; Honey et al., 2009; Mayer et al., 2011; Sharp et al.,
2011). However, it is unclear how much white matter tract integrity
must be disrupted in order to affect functional connectivity, and how
global and regional functional connectivity varies as a result. More
research is needed to further our understanding of the relationship
between the loss of white matter microstructure and functional dis-
connection.

Several studies have demonstrated that the direction of head motion
strongly affects the extent of axonal injury in various animal models
and ages (Atlan et al., 2017; Browne et al., 2011; Duhaime et al., 1987;
Gennarelli et al., 1982; Smith et al., 2003). By performing rapid head
rotations about the SAG and COR planes, we varied TBI severity by
modulating the amount of stretching along the white matter tracts in
order to examine its effect on functional connectivity. In our neonatal
and juvenile pig models, SAG rapid head rotations cause significantly
higher magnitudes of AIV compared to COR (Sullivan et al., 2015). The
minimum AIV was found at 5–6 day post-injury compared to 3–8 h,
1 day and 3–4 days, maximal AIV of 1.15% was observed at 1 day post-
injury in 4-week old piglets (Weeks et al., 2014). The AIV found in this
report align with previous reports. CCI had more focal axonal damage
than SAG, but larger AIV compared to SAG and COR rapid head rota-
tions. We speculate that any significant change in ERP networks is due
to deficits in cognitive ability due to the magnitude and regional lo-
cation of axonal injury.

4.3. Accurate discrimination between injured and uninjured ERPs

The XDawn and XDawnCov techniques have both been successfully
used to discriminate between ERP responses to different visual cues
(Barachant et al., 2012; Rivet, 2009, 2011). This study was a novel
application of XDawn/XDawnCov technique to the study of TBI.
XDawnCov was able to extract insight between injured and uninjured
animals by looking at covariance matrices, which similarly capture
synchrony across the brain, like the cross-correlation networks pre-
viously discussed.

Our injury prediction algorithm, combining Std and OB paradigms,
was able to reliably classify injured animals with>80% accuracy. This
study is the first ERP network study on TBI in animals. This EEG-based
biomarker may have direct application to humans, including infants,
providing clinicians the ability to track recovery states of brain injury in
subjects and to quantitatively assess whether a treatment is working
appropriately. To summarize, we have developed an auditory EEG-
based tool that detects mild TBI after trauma. It is non-invasive, por-
table, fast and inexpensive compared to other neuroimaging techni-
ques.

Similar to other neuro-imaging modalities, the application of ERPs
to the study of TBI has several limitations such as wide variability
within and between subjects and sensitivity to subject alertness.
Although our findings were statistically significant, our sample size was
modest and our findings should be replicated in a larger subject cohort.

5. Conclusions

Network analysis provides an objective, quantitative framework for
analyzing multi- source neural signals. We observed functional con-
nectivity alterations in auditory ERP networks due to diffuse and local
TBIs. Following diffuse injury, functional ERP networks in injured
groups showed hypo-connectivity compared to the sham group, and
enhancement of connectivity compared to pre-injury. We achieved 82%
accuracy in the prediction of TBI from the functional connectivity
networks of ERPs. Auditory ERPs provide a clinically adoptable method
that provides fast, mobile and objective indications of TBI. This work
has applications to sports-related concussions and strategies for early
TBI detection, prevention and reduction of severity.
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