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Epigenomic Assessment of Cardiovascular 
Disease Risk and Interactions With 
Traditional Risk Metrics
Kenneth Westerman, PhD; Alba Fernández-Sanlés, PhD; Prasad Patil, PhD; Paola Sebastiani, PhD;  
Paul Jacques, DSc; John M. Starr, MD, PhD; Ian J. Deary, MD, PhD; Qing Liu, PhD; Simin Liu, MD, ScD;  
Roberto Elosua, MD, PhD; Dawn L. DeMeo, MD; José M. Ordovás , PhD

BACKGROUND: Epigenome-wide association studies for cardiometabolic risk factors have discovered multiple loci associated 
with incident cardiovascular disease (CVD). However, few studies have sought to directly optimize a predictor of CVD risk. 
Furthermore, it is challenging to train multivariate models across multiple studies in the presence of study- or batch effects.

METHODS AND RESULTS: Here, we analyzed existing DNA methylation data collected using the Illumina HumanMethylation450 
microarray to create a predictor of CVD risk across 3 cohorts: Women’s Health Initiative, Framingham Heart Study Offspring 
Cohort, and Lothian Birth Cohorts. We trained Cox proportional hazards-based elastic net regressions for incident CVD 
separately in each cohort and used a recently introduced cross-study learning approach to integrate these individual scores 
into an ensemble predictor. The methylation-based risk score was associated with CVD time-to-event in a held-out fraction 
of the Framingham data set (hazard ratio per SD=1.28, 95% CI, 1.10–1.50) and predicted myocardial infarction status in the 
independent REGICOR (Girona Heart Registry) data set (odds ratio per SD=2.14, 95% CI, 1.58–2.89). These associations 
remained after adjustment for traditional cardiovascular risk factors and were similar to those from elastic net models trained 
on a directly merged data set. Additionally, we investigated interactions between the methylation-based risk score and both 
genetic and biochemical CVD risk, showing preliminary evidence of an enhanced performance in those with less traditional 
risk factor elevation.

CONCLUSIONS: This investigation provides proof-of-concept for a genome-wide, CVD-specific epigenomic risk score and sug-
gests that DNA methylation data may enable the discovery of high-risk individuals who would be missed by alternative risk 
metrics.

Key Words: cardiovascular disease ■ DNA methylation ■ epigenomics ■ risk prediction

DNA methylation is an important epigenetic pathway 
through which genetic variants and environmen-
tal exposures impact disease risk.1,2 Methylation 

at specific cytosine-phosphate-guanine (CpG) sites 
has been associated with disease in epigenome-wide 
association studies, even showing associations in 
blood as a convenient but non-target tissue such as 
for type 2 diabetes mellitus.3 Methylation-based risk 
scores (MRS) allow genome-wide aggregation of epi-
genetic information, similarly to the more established 

genetic risk scores, and allow for the use of models 
with arbitrary complexity. These risk scores are often 
developed initially by using methylation as a proxy for 
disease risk factors, such as body mass index 4 and 
general aging-related morbidity.5 Alternatively, given 
sufficient sample size, epigenetic associations with 
disease risk can be modeled directly.6

Associations between DNA methylation and car-
diovascular disease (CVD) have been explored in 
many different cohorts and using diverse approaches. 
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Cross-sectional associations have been found across 
multiple relevant tissues, namely blood, aorta, and 
other vascular tissues.7 Some investigations aimed at 
cardiovascular risk factors have discovered CpGs pre-
dictive of CVD development,8,9 while Mendelian ran-
domization approaches have suggested causality of 
at least some of these CpG-risk factor associations.10 
A few studies directly modeling incident CVD as a 

primary outcome have either been conducted using 
only global (not locus-specific) methylation levels,11 or 
have found limited additional predictive power in the 
presence of known risk factors.12 A recent large-scale 
meta-analysis found multiple CpG sites predictive of 
incident coronary heart disease, but focused on uni-
variate approaches.13 We have previously investigated 
methylation regions and modules associating with in-
cident CVD, generating mechanistic insights but with-
out aggregating these results into a direct predictor 
of risk.14 Additionally, it is unclear how the CVD risk 
tracked by DNA methylation is redundant with or com-
plementary to existing risk metrics, including genetic 
scores15 and those based on traditional cardiovascular 
risk factors (eg, the Framingham Risk Score for gen-
eralized CVD).16

Combining signal across population-scale cohorts 
can increase sample size while attenuating the effect 
of study-specific biases and confounding factors, 
but can be prone to emergent sources of confound-
ing from “batch” effects or other systematic biases 
in methylation data across cohorts. This is especially 
problematic when there is notable class imbalance (ie, 
different outcome frequencies) across cohorts.17 The 
most common method for dealing with this hetero-
geneity is meta-analysis, but standard meta-analysis 
approaches are restricted to univariate (one CpG site 
at a time) models. Other approaches include batch 
effect correction on the input data set (eg, ComBat18), 
direct adjustment for batch/study in linear models, or 
adjustment for derived variables intended to capture 
technical biases (eg, surrogate variable analysis19), but 
these approaches can often lead to over- or under-
estimates of true biological effects.17 An alternative 
approach described recently, cross-study learning, 
instead trains an ensemble predictor consisting of one 
or multiple models per cohort.20 This strategy allows 
the use of arbitrarily complex models while avoiding 
technical confounding from direct combination of the 
data sets.

To develop an improved DNA methylation-based 
cardiovascular risk predictor using multiple hetero-
geneous training cohorts, we used a cross-study 
learning method to develop an ensemble of pe-
nalized time-to-event regression risk models. The 
resulting composite risk score performed well in a 
held-out data subset, associating with survival even 
in the presence of traditional risk factors, and show-
ing similar performance to models trained on naively 
merged data sets. External validation was achieved 
in a case-control study for prevalent myocardial in-
farction (MI). Further, interactions were assessed be-
tween the composite methylation-based risk score 
and other risk predictors, finding that it is potentially 
most effective in those with low Framingham Risk 
Scores.

CLINICAL PERSPECTIVE

What Is New?
•	 An epigenomic (DNA methylation-based) car-

diovascular risk score was developed using 
a recently introduced statistical approach for 
combining risk models across cohorts.

•	 Interactions between an epigenomic risk score 
and existing genomic and clinical risk scores for 
cardiovascular disease were assessed.

What Are the Clinical Implications?
•	 DNA methylation may add a new molecular di-

mension to the prediction of cardiovascular risk.
•	 This epigenomic risk score may perform best in 

individuals with lower Framingham Risk Scores 
and thus identify high-risk individuals who 
would otherwise go undetected.

Non-standard Abbreviations and Acronyms

BMI	 body mass index
BMIQ	� Beta-Mixture Quantile Dilation 

normalization
CpG	 cytosine-phosphate-guanine site
CSL	 cross-study learner
CVD	 cardiovascular disease
FHS	� Framingham Heart Study Offspring 

Cohort
FHS-JHU	� Framingham Heart Study (Johns 

Hopkins University subset)
FHS-UM	� Framingham Heart Study (University 

of Minnesota subset)
FRS	 Framingham Risk Score
GRS	 genomic risk score
HDL	 high-density lipoprotein
ICC	 intraclass correlation coefficient
LBC	 Lothian Birth Cohorts 1936
LDL	 low-density lipoprotein
MI	 myocardial infarction
MRS	 methylation-based risk score
REGICOR	� Registre Gironí del COR
SNP	 single-nucleotide polymorphism
SSL	 single-study learner
WHI	 Women’s Health Initiative
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METHODS
Study Participants and Phenotype 
Collection
Phenotypes (demographic, anthropometric, bio-
chemical, and clinical), DNA methylation data, and 
imputed genotypes were available either from 
publicly available controlled-access databases or 
upon request from the cohorts. Cohort-specific 
details are provided in Data S1. Blood-based bio-
chemical markers (total cholesterol, low-density 
lipoprotein cholesterol, high-density lipoprotein cho-
lesterol, triglycerides, fasting glucose, high-sensitivity  
C-reactive protein, and systolic blood pressure) were 
log10-transformed for all analyses. In the Lothian 
Birth Cohort 1936, LDL was estimated from total 
cholesterol and triglycerides using the Friedewald 
equation. Diabetes mellitus was defined as either use 
of diabetes mellitus medication or a measured fasting 
blood glucose level of >125 mg/dL. Antihypertensive 
medication use, smoking status, and diabetes mel-
litus status were assumed to be false where missing, 
though missing data rates for these variables in the 
held-out FHS (Framingham Heart Study) subset were 
low (0.1%, 0.1%, and 7%, respectively). Analysis of 
these data sets was approved by the Tufts University 
Health Sciences Institutional Review Board (protocol 
12592), and all subjects gave informed consent.

DNA Methylation Data Processing
DNA methylation data for all initial cohorts (Womens 
Health Initiative [WHI], FHS, and Lothian Birth 
Cohorts [LBC]) were collected using the Illumina 
HumanMethylation450 microarray platform21 and 
downloaded as raw intensity files. FHS methylation 
data were collected in 2 primary batches in 2 cent-
ers—1 in subjects from a nested case-control for CVD 
measured at Johns Hopkins University (FHS-JHU), 
and the other in a larger set of remaining Framingham 
Offspring participants measured at the University of 
Minnesota (FHS-UM). Preprocessing was performed 
using the minfi and wateRmelon packages for R.22,23 
Sample-wise filters were as follows: robust overall 
signal in the main cluster based on visual inspection 
of an intensity plot, <10% of probes undetected at a 
detection threshold of P<1e-16, and a reported sex 
matching methylation-based sex prediction. Probes 
were removed using the following criteria: >10% of 
samples undetected at a detection threshold of P<1e-
16, location in the X or Y chromosomes, non-CpG 
probes, cross-hybridizing probes, probes measuring 
SNPs, and probes with an annotated single-nucleotide 
polymorphism at the CpG site or in the single-base 
extension region. Samples were normalized using the 
Noob method for background correction and dye-bias 

normalization, followed by the BMIQ method for probe 
type correction.24,25 Blood cell fractions for 6 blood 
cell types (CD4+ T-cells, CD8+ T-cells, B-cells, natu-
ral killer cells, monocytes, and granulocytes) were es-
timated using a common reference-based method,26 
and 5 of these (excluding granulocytes) were included 
in cell count-adjusted statistical models. After quality 
control and filtering steps, 390  597 CpG sites were 
shared between the 3 data sets, formatted as beta val-
ues (roughly equal to the ratio of methylated signal to 
total microarray signal, or �= M

M+U+100
.

DNA methylation data for the REGICOR (Registre 
Gironí del COR) cohort were collected using the 
Illumina MethylationEPIC microarray platform27 and 
analyzed using the wateRmelon23 and methylumi28 R 
packages. Samples were excluded based on detec-
tion P>0.05 in at least 1% of probes or failure to clus-
ter in the appropriate sex based on X chromosome 
methylation. Probes were excluded based on detec-
tion P>0.05 in at least 1% of samples, a bead count 
<3 in at least 5% of samples, discarding by Illumina 
based on underperformance (n=1031) or changes in 
the manufacturing process (n=977), non-CpG targets, 
and cross-hybridization (n=43  979). A batch normal-
ization was performed by standardizing beta values 
to mean zero and unit variance within each bisulfite 
conversion batch before analysis. After quality control 
and preprocessing, 811 610 CpG sites across 391 in-
dividuals were available for analysis. Participants were 
further excluded from analysis because of unknown 
smoking habits (n=10) and unavailable information re-
garding diabetes mellitus, hypertension, or hyperlipid-
emia (n=53). Surrogate variable analysis19 was used to 
calculate 2 surrogate variables, representing potential 
technical and biological confounders, for adjustment in 
MRS replication models.

CVD Risk Modeling
Study-specific CVD risk models were trained using 
penalized Cox proportional hazards regressions with 
the elastic net penalty. CVD events were defined as 
including coronary heart disease, stroke, and death 
from CVD (see Data S1 for cohort-specific details), 
and times were right-censored based on the most re-
cent exam available in each cohort. The elastic alpha 
parameter was initially set at 0.05 (closer to ridge re-
gression) to retain a higher number of CpGs with non-
zero weights while still performing feature selection.29 
Inner cross-validation loops varying alpha between 
0.05 and 0.95 showed negligible differences in model 
performance (evaluated by mean squared error). The 
penalty parameter λ was optimized through 5-fold 
cross-validation (use of 10-fold cross-validation did not 
meaningfully change the results). For each model, only 
the most variable 100 000 CpGs according to median 
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absolute deviation (≈25% of all available sites shared 
across platforms) were included to decrease the com-
putational burden and ensure that the selected CpGs 
would have meaningful interindividual variation.

The cross-study learner (CSL) was constructed 
as an ensemble of study-specific regression models. 
Scores from each single-study learner (SSL) were 
combined using the “stacking” approach,20 imple-
mented as follows. First, predictions from each SSL to 
both itself and the other training data sets were com-
bined into a design matrix (with dimensions Ntotal×# 
SSLs). This formed the input to an additional penal-
ized Cox regression (ridge regression with λ optimized 
through 5-fold cross-validation and coefficients re-
stricted to be non-negative) of all training studies at 
once. Coefficients from this regression, corresponding 
to input study-specific SSLs, were normalized to sum 
to 1 to produce the CSL weights. For use in new data 
sets, SSL scores were each standardized to mean zero 
and unit variance before calculating their weighted sum 
(using the “stacking” weights) as the final CSL score.

A series of approaches for combining information 
across cohorts were tested as alternatives to the CSL. 
The naive “combined” approach consisted of simply 
aggregating observations from all training sets into a 
single data set and training an elastic net regression 
as described above while adjusting for study as a fixed 
effect. The ComBat method trained across all studies 
as with the “combined” approach, but included an 
empirical Bayes-based preprocessing step to directly 
remove mean differences across studies that were not 
associated with the outcome of interest (incident CVD 
events).18

MRS evaluation in FHS-UM was performed using 
Cox proportional hazards models, with a series of 
models adjusting for covariates including demo-
graphics, anthropometrics, biochemical values, and 
cell subtype estimates. Additional sensitivity models 
incorporated flexible spline bases for age and cell 
type fractions (pspline function) and an interaction 
between age and sex. Robust standard errors were 
used to account for family structure as has been sug-
gested for clustered data30 and used for epigenetic risk 
models in FHS.31 The proportional hazards assump-
tion was assessed using the cox.zph R function, and 
no violation was detected (P>0.05). To compare risk 
scores generated using different models (combined 
and ComBat-preprocessed) to the CSL, Cox regres-
sions adjusting for the “basic” covariate set were used 
to evaluate each MRS alone, the CSL MRS plus the 
combined MRS, and the CSL MRS plus the ComBat-
preprocessed MRS in the held-out FHS-UM data set. 
Likelihood ratio tests were then used to compare each 
of the 2-MRS models to that CSL-only model, with the 
resulting P values indicating whether either of these 
alternative scores provided additional benefit. MRS 

evaluation in the REGICOR case-control used logistic 
regression models, adjusting for the same sets of co-
variates where possible, though traditional biochemical 
risk factors were only available in discrete low versus 
high categories.

The biology underlying the CSL model was eval-
uated through a series of enrichment tests using the 
component CpG loci and annotated genes. Gene 
ontology-based enrichment analysis of each cohort-
specific model was performed using the gometh 
function from the missMethyl package for R.32 This 
procedure uses gene annotations for CpGs from 
the HumanMethylation450 microarray annotation 
from Illumina (v1.0 B2). Enrichment analysis is then 
performed for each gene ontology category using 
Wallenius’ non-central hypergeometric distribution 
to account for inconsistent representation of CpG 
sites across genes. The overall merged set of CpGs 
included in the final CSL model was then tested for 
enrichment in transcription factor binding sites using 
HOMER tool.33 CpG loci (with respect to genome build 
hg19) were provided as inputs, with 200 base-pair win-
dows and repeat-masked sequences.

Genomic Risk Score Calculation
Imputed genotype data for WHI were retrieved from 
dbGaP (accession: phs000746.v2.p3. Variants were fil-
tered for imputation R2>0.3, and annotated with rsIDs, 
loci, and allelic information using the 1000 Genomes 
Phase 3 download from dbSNP (download date: April 
13, 2018). Weights for the genetic risk score calculation 
(6 630 151 variants) were based on the genome-wide 
CVD score developed by Khera et al.15 We note that 
these scores were developed only for populations of 
European descent, and thus are not optimized for the 
mixed-ancestry WHI population. Genomic risk scores 
(GRS) were then calculated as the weighted sum of 
allelic dosages, normalized by the number of relevant 
SNPs available. Genotype data processing and GRS 
calculation were performed using PLINK 2.0.

Risk Score Interaction Analysis
Interaction analysis was performed using similar Cox 
regression models to those above, adjusting for the 
“basic” set of covariates and using robust standard 
error estimates. To facilitate visual comparisons, main-
effect regressions for the MRS were fitted within risk 
strata defined by the Framingham Risk Score (FRS) or 
genomic risk score (GRS), both separately in each data 
set having >25 events in the group, and after merging 
these data sets and allowing for stratified baseline haz-
ards (strata() argument to the coxph function). To ob-
tain overall interaction effect estimates, an interaction 
between MRS and either FRS or GRS was introduced 
into a combined regression including all data sets, 
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while allowing stratified baseline hazards. We note 
that main effects in the interaction analysis are biased 
away from the null since the regression data sets were 
used for training the MRS. Regressions assessing the 
GRS excluded non-European ancestry participants to 
match the ancestry used to develop the CVD score.15

For quasi-replication of these associations in the 
REGICOR data set, stratified logistic regressions were 
used to discriminate MI cases from controls using the 
MRS, while adjusting for estimated cell count fractions 
as well as 2 surrogate variable analysis components (as 
in the main REGICOR models). In the absence of con-
tinuous values for blood pressure and lipids, an empir-
ical risk function was generated by first performing a 
logistic regression on the following cardiovascular risk 
factors: age, sex, estimated cell count fractions, body 
mass index, diabetes mellitus, smoking status, hyper-
lipidemia (binary), and hypertension (binary), along with 
2 surrogate variable analysis components. Predicted 
risks based on this model were then used to stratify 
subjects into 4 risk groups by evenly splitting the range 
of predicted risks into 4 segments (thus resulting in 
strata based on raw risk, rather than percentiles).

RESULTS
Cross-Study Learner Model Development
Epigenomic model development was performed in 3 
cohorts, including the WHI, FHS, and LBC 1936. The 

FHS data set was divided into 2 functionally separate 
groups (FHS-JHU and FHS-UM) based on differences 
in subject selection and geographic location of labora-
tory methylation analysis (see Methods). Further popu-
lation details can be found in Table 1.

Figure  1 outlines the computational workflow. 
Briefly, a cross-study learning (CSL) model was devel-
oped by training time-to-event elastic net regressions 
on 3 of the data sets, while holding out the FHS-UM 
subset for evaluation. The FHS-UM subset was cho-
sen to hold out as it more closely represents the larger 
free-living Framingham population. While there is mod-
erate heterogeneity between the included cohorts (for 
example, in original cohort study designs, details of 
CVD definitions, and length of follow-up), the intent of 
the present investigation was to explore the extraction 
of shared signal across cohorts with recognized het-
erogeneity. Next, a model re-trained on all 4 data sets 
were subject to external replication in the REGICOR 
study. CSL model CpGs were characterized as to their 
potential biological function, and model performance 
was assessed across strata of alternative cardiovascu-
lar risk metrics.

The initial predictor was developed by training 
individual penalized Cox proportional hazards re-
gression models (single-study learners, or SSLs) in 
each of the 3 training cohorts (WHI, FHS-JHU, and 
LBC). Scores from these models were aggregated 
through a “stacking” method, in which the outcomes 

Table 1.  Baseline Parameters of the Populations Used for Model Development

Study/Subset WHI FHS-JHU LBC FHS-UM

Sample size 2023 484 818 2103

Age, y 65 (59–70) 71 (64–77) 69 (68–70) 64 (59–71)

Sex (women) 2023 (100%) 145 (30%) 406 (50%) 1270 (60%)

Ancestry

% European 959 (47%) 484 (100%) 818 (100%) 2103 (100%)

% African American 651 (32%) 0 (0%) 0 (0%) 0 (0%)

% Hispanic 413 (20%) 0 (0%) 0 (0%) 0 (0%)

Body mass index, kg/m2 29.1 (25.5–33.3) 28.2 (25.5–31.3) 27.5 (24.9–30.3) 27.4 (24.3–31)

LDL cholesterol, mg/dL 150 (126–175) 88 (73–107) 118 (89.5–150.3) 107 (87–128)

HDL cholesterol, mg/dL 51 (43–60) 49 (40–60) 56.1 (47.2–68.3) 56 (45.8–69)

Triglycerides, mg/dL 127 (92–177) 101.5 (75–141.2) 128.4 (97.4–171.2) 102 (73–142)

Fasting glucose, mg/dL 96 (88.6–108) 106 (97–116) Unavailable 100 (94–109)

Systolic blood pressure, mm Hg 131 (120–143) 130 (117–143) 148.7 (137–161.3) 126 (116–138)

No. CVD events

Prior only 0 127 70 112

Incident only 1009 67 133 146

Prior and incident 0 58 164 34

Total 1009 252 367 292

Follow-up time, y 22 10 14 10

Continuous values shown as: median (interquartile range). CVD indicates cardiovascular disease; FHS-JHU, Framingham Heart Study Offspring Cohort 
(Johns Hopkins University subset); FHS-UM, Framingham Heart Study Offspring Cohort (University of Minnesota subset); HDL, high-density lipoprotein; LBC, 
Lothian Birth Cohorts 1936; LDL, low-density lipoprotein; and WHI, Women’s Health Initiative.
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and model predictions from each of the individual 
data sets are combined, and a regression is used 
to assign weights to each of the model scores (see 
Methods). This procedure led to FHS-JHU dropping 
out of the ensemble model, with weights for this ini-
tial predictor as follows: 0.57 (WHI), 0.0 (FHS-JHU), 
and 0.43 (LBC). This result means that the FHS-JHU 
score did not transfer to the rest of the data sets (ie, 
to WHI and LBC) as well as the scores from the other 
2 components models.

Assessment in Held-Out FHS Subset
Stacking of the 3 initial predictors resulted in model 
weights of 0.57, 0, and 0.43 for WHI, FHS-JHU, and 
LBC, respectively (ie, the FHS-JHU sub-model did 
not contribute to the initial stacked ensemble model). 
The resulting ensemble predictor was evaluated using 
robust Cox proportional hazards models in FHS-UM, 
showing strong associations with incident CVD in an 
unadjusted model (hazard ratio [HR]=1.58, 95% CI, 
1.37–1.83), which was attenuated partially through 
adjustment for standard covariates (age, sex, and 
estimated cell type fractions; HR, 1.28; 95% CI, 1.10–
1.50) as well as CVD risk factors (HR, 1.29; 95% CI, 

1.09–1.51). Results for the unadjusted model and 3 risk 
factor-adjusted models are shown in Table 2, and as-
sociated Kaplan–Meier curves across epigenetic risk 
tertiles are shown in Figure 2.

Additional sensitivity analyses were performed to 
assess the robustness of these results to variations 
in the model-building or evaluation approach. Hazard 
ratios in the held-out FHS-UM were no higher using 

Figure 1.  Computational workflow for MRS development and evaluation.
The initial MRS was trained in 3 cohorts with Framingham Heart Study Offspring Cohort (University of Minnesota subset) held out to 
evaluate performance. The final MRS was then trained using all 4 data sets and examined for biological significance, before testing for 
prevalent myocardial infarction discrimination in an independent cohort and assessment of interactions with genetic and traditional 
risk scores. FHS-JHU indicates Framingham Heart Study Offspring Cohort (Johns Hopkins University subset); FHS-UM, Framingham 
Heart Study Offspring Cohort (University of Minnesota subset); LBC, Lothian Birth Cohorts 1936; MI, myocardial infarction; MRS, 
methylation-based risk score; and WHI, Women’s Health Initiative.

Table 2.  MRS Performance in Held-Out FHS Subset

Model HR Per SD MRS* P Value

Unadjusted† 1.58 [1.37–1.83] 5.4e-10

Basic‡ 1.28 [1.10–1.50] 2.0e-03

Plus risk factors§ 1.29 [1.09–1.51] 2.7e-03

FRS only∥ 1.36 [1.19–1.58] 2.0e-05

FHS indicates Framingham Heart Study; FRS, Framingham Risk Score; 
HR, hazard ratio; and MRS, methylation-based risk score.

*Estimated hazard ratio per SD of the methylation-based risk score [95% 
CI].

†No covariates.
‡Adjusted for age, sex, and estimated cell type fractions.
§Additionally adjusted for body mass index, low-density lipoprotein 

cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, 
diabetes mellitus status, and current smoking.

∥Adjusted for Framingham Risk Score (uses all risk factors other than body 
mass index and cell type fractions).
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penalized logistic regression in training (unadjusted 
HR, 1.52; 95% CI, 1.32–1.76), excluding individuals 
with past events in training (unadjusted HR, 1.55; 95% 
CI, 1.33–1.81), or adjusting for race in WHI (unadjusted 
HR, 1.20; 95% CI, 1.03–1.39). Neither were these 
results affected by training using the full set of 
390 597 CpGs. Similarly, variations in the evaluation 
regressions did not produce meaningfully different 
results, either when excluding all individuals who 
experienced prior CVD events (Table S1), analyzing 
incident CVD as a binary outcome using logistic 
regression (unadjusted odds ratio per SD=2.15, 95% 
CI, 1.91–2.42), or stratifying by sex. Adjustment for 
age and cell type fractions as flexible spline functions 
as well as an age-sex interaction to assess possible 
residual confounding did not decrease estimated 
HRs from the basic model (saturated model HR, 1.31; 
95% CI, 1.12–1.52). Use of the MRS for binary incident 
CVD prediction resulted in a c-statistic of 0.642 (95% 
CI, 0.599–0.685), compared with 0.691 (95% CI, 
0.653–0.729) for the Framingham Risk Score alone 
and 0.695 (95% CI, 0.655–0.734) using the 2 scores 
together.

Results from comparison of CSL performance to 
models trained on combined data sets (either naive 
combination or including preprocessing using ComBat) 
are shown in Figure S1. The ComBat-preprocessed 
model had modestly higher hazard ratios in FHS-UM, 
while relative differences with the combined model 
depended on the covariates included. However, likeli-
hood ratio tests using the basic model covariates (age, 
sex, and cell type fraction-adjusted) did not reveal a 

strong added benefit of either the combined (P=0.58) 
or ComBat (P=0.08) risk scores over that using only 
the CSL.

Final CSL Model Characterization
The stacking regression in the final CSL model de-
fining the methylation-based risk score (MRS) gave 
the most weight to WHI (0.48) and LBC (0.38), while 
retaining non-zero weights for FHS-JHU (0.06) and 
FHS-UM (0.08). This result indicates that the WHI 
and LBC-trained models were better able to transfer 
across the combined-cohort set of outcomes com-
pared with the other models. There was little overlap 
of specific CpG sites across cohort-specific mod-
els, with a maximum of 13 CpGs shared between 2 
models (WHI and FHS-UM) and no CpGs shared be-
tween >3 or (Figure 3A). This could result from heter-
ogeneity in the complex relationships between DNA 
methylation and CVD across populations. However, 
it may also reflect the tendency of the elastic net re-
gression to select only a single feature from a group 
of correlated features, where the specific CpGs se-
lected in different data sets varied because of the 
presence of biological and technical noise. However, 
even if the SSLs were capturing different biological 
mechanisms, the CSL model is designed to capture 
such heterogeneous signal from across cohorts. 
Despite the lack of site-specific overlap, there was 
broad agreement for 3 of the 4 component SSL 
models at the level of enriched biological processes, 
with all except FHS-JHU enriched most strongly for 
proximity to genes involved in homophilic cell adhe-
sion (Figure  3B). MRS component CpGs tended to 
be found in similar genomic loci to the overall set of 
variable CpGs and were enriched in gene bodies and 
depleted in CpG islands compared with the full mi-
croarray CpG set. However, MRS CpGs did show a 
modest enrichment in and around CpG islands com-
pared with the set of variable CpGs (Figure 3D). To 
seek more clarity as to potential biological mecha-
nisms represented by the MRS, the HOMER tool was 
used to calculate enrichment of transcription factor 
binding motifs in the MRS component CpG sites. 
Using the union of all individual SSL CpG sites as 
input, no strong enrichments were found (all q>0.5).
To better understand the stability of the risk score 
over time, intraclass correlation coefficients (ICCs) 
were calculated for 2 sets of grouped samples: 26 
technical replicates from FHS and ≈1000 longitudinal 
samples (across 3 visits, or about 6 years total) from 
LBC (Table S2). The technical replicates showed an 
ICC of 0.85, while the longitudinal samples showed 
an ICC of 0.68. As would be expected, the ICC for 
samples closer in time (Waves 1 & 2; ICC=0.69) were 
higher than that for samples more distant in time 

Figure  2.  Kaplan–Meier survival curves in the held-out 
Framingham Heart Study Offspring Cohort (University of 
Minnesota subset data set).
Individual curves correspond to tertiles of the initial (3-data 
set) methylation-based risk score. Vertical ticks correspond to 
censored observations, and colored bands represent 95% CI for 
tertile-specific survival curves. X-axis is limited to the time span 
in which at least 50 uncensored observations remained for each 
tertile (3275 days). MRS indicates methylation-based risk score.
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(Waves 1 & 3; ICC=0.61). Based on the observa-
tion of imperfect stability of the MRS over time as 
well as the partial attenuation in held-out hazard 

ratios after adjustment for age, its component CpGs 
(the 1305-element union of all CpGs in any of the 
4 individual SSL models) were examined for overlap 

Figure 3.  Characterization of the final cross study learner model.
A, Overlap of cytosine-phosphate-guanine (CpG) sites in the 4 individual predictors constituting the 
final model. B, Study-specific weights for constructing the ensemble model (derived from the “stacking” 
regression). C, Results from Gene Ontology (GO)-based enrichment analysis using genes annotated to 
single-study learner component CpGs. All GO terms with false discovery rate <0.001 in any cohort are 
shown and colored according to −log(P value) for enrichment in each single-study learner. Values were 
cut at −log(P)=20 for visualization purposes. D, Proportion of CpGs in the full set of cross study learner 
CpGs (union of CpG sets in each component SSL) compared with the 100 000 most variable CpGs (as 
used in single-study learner model development) and the full set of available CpGs. Groupings according to 
both gene-based and CpG island-based CpG annotations are shown. CpG indicates cytosine-phosphate-
guanine; FHS-JHU, Framingham Heart Study Offspring Cohort (Johns Hopkins University subset); FHS-UM, 
Framingham Heart Study Offspring Cohort (University of Minnesota subset); LBC, Lothian Birth Cohorts 
1936; MRS, methylation-based risk score; WHI, Women’s Health Initiative; UTR, untranslated region; and 
TSS, transcription start site.
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with established epigenetic age metrics. While no 
enrichment was seen for the original cross-tissue 
DNAm age from Horvath,34 strong enrichment was 
seen for the morbidity-directed PhenoAge5 (9 of 513 
CpGs; P=2.3e-5) and especially the blood-specific 
aging marker from Hannum et al35 (13 of 71 CpGs; 
P=5.9e-21). We note that these overlaps do not con-
stitute a major fraction of either CpG set but are none-
theless highly statistically significant. The PhenoAge 
metric is based on some known cardiovascular risk 
factors (eg, C-reactive protein) and is known to asso-
ciate with CVD but is not trained in any of the cohorts 
included here.

Discrimination in Myocardial Infarction 
Case-Control Study
As one form of replication, the MRS was investigated 
for its discriminative performance in a nested case-
control for prior myocardial infarction in the REGICOR 
cohort (Table 3; cohort description in Table S3), which 
was matched for sex and age and thus free of po-
tential confounding by these variables. We note that 
this data set contained prevalent (rather than incident) 
events, and thus provides replication in a similar but 
not identical biological context. These methylation data 
were collected on the next generation of Illumina meth-
ylation microarray (MethylationEPIC), which does not 
perfectly overlap with the HumanMethylation450 plat-
form, but contained ≈93% of the CpGs input to the 
MRS model training procedure. The MRS was able 
to discriminate cases and controls in both unadjusted 
(odds ratio=1.79, P=6.33e-6) and, to a lesser degree, 
risk factor-adjusted models (odds ratio=1.61, P=0.019). 
Odds ratios were qualitatively similar across modeling 
strategies (Combined, ComBat, and CSL) for all of the 
adjustment models (Figure S1B).

Interactions With Alternate Risk Metrics
To understand how the present risk score interacts with 
other established CVD risk metrics, the performance 

of the MRS was re-evaluated after stratifying individu-
als by risk scores reflecting either demographic and 
biochemical features (Framingham Risk Score), or ge-
netic variants (GRS based on Khera et al15). First, the 
marginal effects of these risk scores were confirmed 
in each population. The FRS was strongly predictive 
in WHI and FHS, while surprisingly showing no asso-
ciation with CVD incidence in LBC (Table S4). As the 
data set with the largest number of available events, 
imputed genotypes were retrieved for WHI and GRS 
calculated, demonstrating a moderate association with 
CVD (odds ratio per SD=1.28, P=1.1e-6).

In pooled Cox models using study-specific base-
line hazards and performed using the final 4-study 
MRS, it appeared that the MRS was more effective 
in those in lower “traditional” risk strata (based on 
models stratified by FRS categories; Figure 4A). As 
a sensitivity analysis, the cohorts were fully stratified 
into separate models, in which this pattern was visu-
ally clear in WHI and FHS-JHU (Figure S2). The pat-
tern did not appear in LBC, although we note that the 
Framingham Risk Score also did not show a “main 
effect” for incident CVD in this cohort. A similar pat-
tern appeared with respect to genetic risk in WHI 
(European ancestry participants only based on the 
formulation of the relevant risk score), in which max-
imum MRS performance was achieved in the lowest 
alternative risk stratum. Supplementing these visual 
comparisons, combined Cox regressions across 
all cohorts (allowing for different baseline hazards 
across studies) showed a strong MRS-FRS inter-
action effect (7% reduction in HR for the MRS per 
10% increase in FRS; P=8.27e-05), while that for the 
MRS-GRS interaction did not reach nominal statisti-
cal significance (2% reduction in HR for the MRS per 
SD increase in GRS; P=0.719).

To explore the clinical potential of these interactions 
further, we returned to the initial MRS (trained in 3 data 
sets with FHS-UM held out). The FHS-UM data set 
was filtered to include only participants with lower CVD 
risk based on the FRS (<10% estimated 10-year risk). 
Within this lower-risk subset, participants in the upper 
MRS quintile had more than double the risk of the re-
mainder of the participants: 7% (12/176) of the upper 
MRS quintile experienced incident events, while 3% 
(19/701) of the remaining 4 MRS quintiles experienced 
incident events.

FRS could not be calculated in the REGICOR data 
set, as not all risk factors were available as continuous 
values. However, stratified models replicated the ob-
servation of greater MRS discrimination in the lowest 
alternative risk stratum. An empirical risk function was 
generated through logistic regression of MI status on 
cardiovascular risk factors (age, sex, body mass index, 
diabetes mellitus, smoking status, hyperlipidemia [bi-
nary], and hypertension). Predicted MI risk using this 

Table 3.  Results From Replication in REGICOR Myocardial 
Infarction Case Control

Model ComBat Combined CSL

Minimal* 1.79 [1.39–2.31] 1.86 [1.45–2.38] 1.83 [1.41–2.37]

Basic† 2.16 [1.58–2.93] 2.12 [1.57–2.87] 2.14 [1.58–2.89]

Plus risk 
factors‡

1.76 [1.22–2.54] 1.66 [1.15–2.4] 1.61 [1.11–2.34]

Results are presented as: odds ratio per SD methylation-based risk score 
[95% CI]. CSL indicates cross study learner; MRS, methylation-based risk 
score; and REGICOR, Registre Gironí del COR.

*Adjusted for 2 surrogate variable analysis components.
†Additionally adjusted for age, sex, and estimated cell type fractions.
‡Further adjusted for body mass index, low-density lipoprotein, high-

density lipoprotein cholesterol, systolic blood pressure, diabetes mellitus 
status, and current smoking.
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model was used to stratify subjects into 4 risk groups, 
with MRS odds ratios (per SD) of 4.49 in the lowest-risk 
group versus 1.20 in the highest-risk group. More de-
tailed results from these analyses are shown in Table S5.

DISCUSSION
Epigenetic signatures of cardiometabolic diseases and 
aging in general are being actively explored as bio-
markers of disease risk that are potentially modifiable 
and reveal underlying biological mechanisms. Here, 
in a novel application of a cross-study ensembling 
method, we introduce a DNA methylation-based score 
specific to cardiovascular disease risk. The model per-
forms similarly to one trained on a direct combination 
of the component data sets and may perform best in 
individuals predicted to be at lower risk based on tra-
ditional risk factors.

We opted to use cross-study learning to train 
our risk model based on the expectation that differ-
ences across cohorts (eg, demographic, behavioral) 
may contribute to heterogeneity in both the marginal 
distribution of the CpG features and the conditional 

distribution of the CVD outcome. Under these condi-
tions, the generalizability of a single-study predictor is 
often obscured or overstated.36,37 The performance of 
the CSL model was similar to that of models trained on 
the merged cohorts with or without batch adjustment 
via ComBat. This suggests that the assumptions made 
by these direct combination strategies (ie, that the het-
erogeneity structure can be captured by variation in the 
marginal effects of each CpG site) are met. In practice, 
this underlying structure is unknown, and we highlight 
that the CSL was able to produce similar gains in accu-
racy without making specific assumptions.

In assessing the stability of the MRS, we observed 
reasonable reproducibility between technical repli-
cates (ICC=0.85). ICCs for LBC subjects over time 
were somewhat lower (ICC=0.68), which is to be 
expected because of not only changes in environ-
ment, but also the known epigenetic evolution with 
age that we observed to be enriched in the compo-
nents of our score. Furthermore, this value is at the 
upper end of the range of single-CpG repeatability 
measurements over time calculated in the combined 
Lothian Birth Cohorts (1921 and 1936).38 These ICC 

Figure 4.  Interactions of MRS with other biomarkers of CVD risk.
A, Hazard ratios for the MRS within subsets of 10-year generalized CVD risk according to the Framingham 
Risk Score. B, Hazard ratios for the MRS within quartiles of a genetic cardiovascular risk score (in 
European-ancestry WHI participants only). Hazard ratios are estimated using the final MRS, which was 
trained using each of these data sets. Cox regressions included stratum-specific baseline hazards and 
were adjusted for age, sex, and estimated cell subtype fractions. Error bars represent standard errors 
for the hazard ratio estimates. Annotated P values describe the test of interaction between the MRS and 
the alternative risk metric. FRS indicates Framingham Risk Score; GRS, genetic risk score; and MRS, 
methylation-based risk score.
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values suggest an imperfect but usable reproducibil-
ity of the MRS, and an aggregate marker that is fairly 
robust considering the low replicability that has been 
observed for individual sites in technical replicates 
(general median ICC of 0.3 and mode of 0.75 in a 
“high reliability” cluster).39

Our observation that different CpGs tended to be 
selected across studies (Figure  3) is in agreement 
with the relative lack of replication seen in prior car-
diovascular epigenomic studies.7 However, the en-
richment of the MRS component CpGs for proximity 
to genes related to cell-cell adhesion (in all subsets 
except FHS-JHU) is indicative of shared underlying 
biological mechanisms. As we have previously ob-
served in the WHI and FHS cohorts, it appears that 
immune activation is central to the prognostic infor-
mation contained in leukocyte DNA methylation.14 For 
example, epigenetic processes have been shown to 
be involved in the activation and increased adhesion 
of monocytes in response to environmental insults 
and metabolic stress, though these have been ex-
plored primarily in relationship to histone modifica-
tions.40 Our results provide preliminary support for an 
attractive model in which a methylation-based score 
could act as a monitor of cumulative stress in leuko-
cytes and their corresponding activation towards a 
more atherogenic state.

Existing epigenetic scores have shown varying 
strengths of association with incident cardiovascu-
lar disease. An early investigation examined blood-
based methylation in LINE-1 elements, finding strong 
associations of global hypomethylation with preva-
lent and incident ischemic heart disease (LINE-1), 
though additional reports showed opposite asso-
ciations of methylation at repetitive elements with 
CVD.41 Guarrera et al developed a biomarker for MI 
based on global LINE-1 and ZBTB12 gene methyla-
tion that provided a modest net reclassification index 
improvement (0.23–0.47) compared with traditional 
risk factors only. Multiple epigenetic aging metrics, 
though not developed specifically for CVD, have been 
shown to predict incident CHD, including PhenoAge 
(odds ratios from 1.02–1.08) and GrimAge (hazard 
ratio=1.07, adjusted for age and technical factors).5,31 
While these associations are statistically significant, 
they do not represent clinically meaningful improve-
ments in discrimination. Our observed hazard ratio 
of 1.28 (Basic model in the held-out FHS-UM data 
set) indicates that this MRS may be closer to clinical 
relevance. We note that our component CpG sites 
overlap strongly with those of these established epi-
genetic metrics including PhenoAge, suggesting that 
it captures some of the same biological patterns. 
However, the mechanistic significance of the specific 
methylation signals captured by these aging-related 
metrics, whether as markers of epigenetic regulation 

breakdown or the work of an “epigenetic mainte-
nance system”, is still unclear.34,42

In examining the potential clinical utility of an novel 
risk score for CVD, it is important to understand to 
what extent it is redundant with or complementary to 
existing risk metrics. We first note that the strength 
of this epigenetic score in adjusted models is lower 
than that found for traditional risk scores (Table S4) 
and some novel biochemical risk measures such as 
high-sensitivity Troponin I (adjusted HR for global 
CVD=3.01).43 However, analysis of interactions be-
tween different risk metrics can be clinically relevant, 
as demonstrated for example in a recent investiga-
tion exploring the interaction between genetic and 
lifestyle-based risk prediction for dementia.44 Here, 
we saw a pattern of stronger epigenetic risk asso-
ciations in individuals whose cardiovascular risk 
based on traditional metrics (here, the Framingham 
Risk Score) was low. This pattern replicated in the 
REGICOR data set (though FRS could not be directly 
calculated), with improved MRS discrimination in 
lower-risk subjects based on an empirical risk func-
tion. While these associations are preliminary, they 
suggest that an epigenetic risk score could help 
identify higher-risk individuals who otherwise would 
not have been detected by other metrics. While we 
did not identify any robust patterns of differential 
MRS performance in strata based on a genetic car-
diovascular risk score, there may have been lower 
power to detect any such patterns from the outset 
given the modest discriminatory performance of the 
GRS in WHI.

Multiple limitations should be acknowledged. 
While lymphocytes are known to be important in CVD 
pathogenesis, epigenetic signals have been reported 
in other CVD-relevant tissues, such as aorta and 
other vascular tissues,7 that were not examined here. 
Additionally, the present definition of CVD was cho-
sen to balance specificity of CVD subtypes with sam-
ple size, but this balance could be altered to focus 
on more specific disease subtypes (eg, myocardial 
infarction) or a broader definition of CVD (eg, includ-
ing heart failure). Finally, while the REGICOR data 
set provided an important age- and sex-matched 
case-control setting for replication of the MRS, this 
work would benefit from future replication in an in-
dependent cohort enabling assessment of incident 
disease.

In summary, we have developed an epigenetic risk 
score for cardiovascular disease that provides addi-
tional value beyond existing risk measures and may 
show improved performance in populations otherwise 
designated as low risk. Furthermore, we have shown 
a novel application of a cross-cohort ensembling 
method that may provide significant value to future in-
vestigations in genomic epidemiology.

D
ow

nloaded from
 http://ahajournals.org by on M

ay 5, 2020



J Am Heart Assoc. 2020;9:e015299. DOI: 10.1161/JAHA.119.015299� 12

Westerman et al� Epigenomic Assessment of Cardiovascular Risk

ARTICLE INFORMATION
Received November 13, 2019; accepted March 10, 2020.

Affiliations
From the JM-USDA Human Nutrition Research Center on Aging at Tufts 
University, Boston, MA (K.W., P.J., J.M.O.); Cardiovascular Epidemiology 
and Genetics Research Group, REGICOR Study Group, IMIM (Hospital del 
Mar Medical Research Institute), Barcelona, Catalonia, Spain (A.F.-S., R.E.); 
Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain (A.F.-S.); 
Department of Biostatistics, Boston University School of Public Health, 
Boston, MA (P.P., P.S.); Department of Psychology (J.M.S., I.J.D.) and 
Centre for Cognitive Ageing and Cognitive Epidemiology (J.M.S., I.J.D.), 
University of Edinburgh, United Kingdom; Department of Epidemiology, 
Brown University School of Public Health, Providence, RI (Q.L., S.L.); 
CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (R.E.); 
Medicine Department, Medical School, University of Vic-Central University 
of Catalonia (UVic-UCC), Vic, Catalonia, Spain (R.E.); Channing Division 
of Network Medicine, Department of Medicine, Brigham and Women’s 
Hospital, Boston, MA (D.L.D.); IMDEA Alimentación, CEI, UAM, Madrid, 
Spain (J.M.O.); Centro Nacional de Investigaciones Cardiovasculares 
(CNIC), Madrid, Spain (J.M.O.).

Acknowledgments
We thank all LBC 1936 study participants and research team members. 
Code supporting the analyses described here can be found at https://github.
com/kwest​erman/​meth_cvd. Code and instructions related to the original 
cross-study learning approach can be found at https://github.com/prpat​il/
csml_rep.

Sources of Funding
This work was supported by the US Department of Agriculture, Agriculture 
Research Service (8050–51000-098-00D). Dr. Westerman was addition-
ally supported by National Institutes of Health predoctoral training grant 
5T32HL069772-14. The WHI program is funded by the National Heart, 
Lung, and Blood Institute, National Institutes of Health, US Department 
of Health and Human Services through contracts HHSN268201600018C, 
HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, 
and HHSN268201600004C. This article was prepared in collaboration 
with investigators of the WHI but has not been reviewed by the WHI and 
does not necessarily reflect the opinions of the WHI investigators or the 
National Heart, Lung, and Blood Institute. The Framingham Heart Study is 
conducted and supported by the National Heart, Lung, and Blood Institute 
in collaboration with Boston University (Contract No. N01-HC-25195 and 
HHSN268201500001I). This article was not prepared in collaboration with 
investigators of the Framingham Heart Study and does not necessar-
ily reflect the opinions or views of the Framingham Heart Study, Boston 
University, or National Heart, Lung, and Blood Institute. The LBC 1936 
is supported by Age UK (Disconnected Mind program) and the Medical 
Research Council (MR/M01311/1). Methylation typing in LBC 1936 was sup-
ported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot 
Fund award), Age UK, The Wellcome Trust Institutional Strategic Support 
Fund, The University of Edinburgh, and The University of Queensland. LBC 
1936 work was conducted in the Centre for Cognitive Ageing and Cognitive 
Epidemiology, which supported Dr. Deary and is supported by the Medical 
Research Council and Biotechnology and Biological Sciences Research 
Council (MR/K026992/1).

Disclosures
None.

Supplementary Materials
Data S1 
Tables S1–S5 
Figures S1–S2 
References 45–49

REFERENCES
	 1.	 Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, 

van Iterson M, van Dijk F, van Galen M, Bot J, et al. Disease variants 

alter transcription factor levels and methylation of their binding sites. Nat 
Genet. 2016;49:131–138.

	 2.	 Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, Slagboom 
PE, van Zwet EW, Lumey LH, Heijmans BT. DNA methylation as a me-
diator of the association between prenatal adversity and risk factors for 
metabolic disease in adulthood. Sci Adv. 2018;4:eaao4364.

	 3.	 Bacos K, Gillberg L, Volkov P, Olsson AH, Hansen T, Pedersen O, 
Gjesing AP, Eiberg H, Tuomi T, Almgren P, et al. Blood-based biomark-
ers of age-associated epigenetic changes in human islets associate 
with insulin secretion and diabetes. Nat Commun. 2016;7:11089.

	 4.	 Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai P-C, 
Ried JS, Zhang W, Yang Y, et  al. Epigenome-wide association study 
of body mass index and the adverse outcomes of adiposity. Nature. 
2017;541:81–86.

	 5.	 Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, 
Baccarelli AA, Stewart JD, Li Y, et al. An epigenetic biomarker of aging 
for lifespan and healthspan. Aging (Albany NY). 2018;10:573–591.

	 6.	 Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, Flagg K, Hou J, 
Zhang H, Yi S, et al. DNA methylation markers for diagnosis and progno-
sis of common cancers. Proc Natl Acad Sci USA. 2017;114:7414–7419.

	 7.	 Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua 
R. Association between DNA methylation and coronary heart disease 
or other atherosclerotic events: A systematic review. Atherosclerosis. 
2017;263:325–333.

	 8.	 Hedman ÅK, Mendelson MM, Marioni RE, Gustafsson S, Joehanes 
R, Irvin MR, Zhi D, Sandling JK, Yao C, Liu C, et  al. Epigenetic pat-
terns in blood associated with lipid traits predict incident coronary 
heart disease events and are enriched for results from Genome-Wide 
Association Studies. Circ Cardiovasc Genet. 2017;10:e001487.

	 9.	 Aslibekyan S, Agha G, Colicino E, Do AN, Lahti J, Ligthart S, Marioni 
RE, Marzi C, Mendelson MM, Tanaka T, et al. Association of methyl-
ation signals with incident coronary heart disease in an epigenome-
wide assessment of circulating tumor necrosis factor α. JAMA Cardiol. 
2018;3:463–472.

	10.	 Richardson TG, Zheng J, Davey Smith G, Timpson NJ, Gaunt TR, 
Relton CL, Hemani G. Mendelian randomization analysis identifies CpG 
sites as putative mediators for genetic influences on cardiovascular dis-
ease risk. Am J Hum Genet. 2017;101:590–602.

	11.	 Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, 
Sparrow D, Vokonas P, Schwartz J. Ischemic heart disease and stroke 
in relation to blood DNA methylation. Epidemiology. 2010;21:819–828.

	12.	 Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, 
Di Gaetano C, Mattiello A, Ricceri F, Chiodini P, et al. Gene-specific DNA 
methylation profiles and LINE-1 hypomethylation are associated with 
myocardial infarction risk. Clin Epigenetics. 2015;7:133.

	13.	 Agha G, Mendelson MM, Ward-Caviness CK, Joehanes R, Huan T, 
Gondalia R, Salfati E, Brody JA, Fiorito G, Bressler J, et al. Blood leuko-
cyte DNA methylation predicts risk of future myocardial infarction and 
coronary heart disease. Circulation. 2019;140:645–657.

	14.	 Westerman K, Sebastiani P, Jacques P, Liu S, DeMeo D, Ordovás 
JM. DNA methylation modules associate with incident cardiovas-
cular disease and cumulative risk factor exposure. Clin Epigenetics. 
2019;11:142.

	15.	 Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, 
Natarajan P, Lander ES, Lubitz SA, Ellinor PT, et al. Genome-wide poly-
genic scores for common diseases identify individuals with risk equiva-
lent to monogenic mutations. Nat Genet. 2018;50:1219–1224.

	16.	 D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro 
JM, Kannel WB. General cardiovascular risk profile for use in primary 
care: the Framingham Heart Study. Circulation. 2008;117:743–753.

	17.	 Goh WWB, Wang W, Wong L. Why batch effects matter in omics data, 
and how to avoid them. Trends Biotechnol. 2017;35:498–507.

	18.	 Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microar-
ray expression data using empirical Bayes methods. Biostatistics. 
2007;8:118–127.

	19.	 Leek JT, Storey JD. Capturing heterogeneity in gene expression studies 
by surrogate variable analysis. PLoS Genet. 2007;3:e161.

	20.	 Patil P, Parmigiani G. Training replicable predictors in multiple studies. 
Proc Natl Acad Sci USA. 2018;115:2578–2583.

	21.	 Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang 
L, Schroth GP, Gunderson KL, et al. High density DNA methylation array 
with single CpG site resolution. Genomics. 2011;98:288–295.

	22.	 Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg 
AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive 

D
ow

nloaded from
 http://ahajournals.org by on M

ay 5, 2020

https://github.com/kwesterman/meth_cvd
https://github.com/kwesterman/meth_cvd
https://github.com/prpatil/csml_rep
https://github.com/prpatil/csml_rep


J Am Heart Assoc. 2020;9:e015299. DOI: 10.1161/JAHA.119.015299� 13

Westerman et al� Epigenomic Assessment of Cardiovascular Risk

Bioconductor package for the analysis of Infinium DNA methylation mi-
croarrays. Bioinformatics. 2014;30:1363–1369.

	23.	 Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-
driven approach to preprocessing Illumina 450K methylation array data. 
BMC Genomics. 2013;14:293.

	24.	 Fortin J-P, Triche TJ, Hansen KD. Preprocessing, normalization and 
integration of the Illumina HumanMethylationEPIC array with minfi. 
Bioinformatics. 2016;33:btw691.

	25.	 Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-
Cabrero D, Beck S. A beta-mixture quantile normalization method for 
correcting probe design bias in Illumina Infinium 450 k DNA methylation 
data. Bioinformatics. 2013;29:189–196.

	26.	 Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit 
CJ, Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as 
surrogate measures of cell mixture distribution. BMC Bioinformatics. 
2012;13:86.

	27.	 Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy 
P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ, et al. Critical eval-
uation of the Illumina MethylationEPIC BeadChip microarray for whole-
genome DNA methylation profiling. Genome Biol. 2016;17:208.

	28.	 Davis S, Du P, Bilke S, Triche T, Bootwalla O. methylumi: Handle Illumina 
methylation data. 2019.

	29.	 Benton MC, Sutherland HG, Macartney-Coxson D, Haupt LM, Lea RA, 
Griffiths LR. Methylome-wide association study of whole blood DNA 
in the Norfolk Island isolate identifies robust loci associated with age. 
Aging (Albany NY). 2017;9:753–768.

	30.	 Rogers WH. Regression standard errors in clustered samples. Stata 
Tech Bull. 1993;13:19–23.

	31.	 Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli 
AA, Li Y, Stewart JD, et al. DNA methylation GrimAge strongly predicts 
lifespan and healthspan. Aging (Albany NY). 2019;11:303–327.

	32.	 Phipson B, Maksimovic J, Oshlack A. MissMethyl: an R package 
for analyzing data from Illumina’s HumanMethylation450 platform. 
Bioinformatics. 2015;32:286–288.

	33.	 Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng 
JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-
determining transcription factors prime cis-regulatory elements re-
quired for macrophage and B cell identities. Mol Cell. 2010;38:576–589.

	34.	 Horvath S. DNA methylation age of human tissues and cell types. 
Genome Biol. 2013;14:R115.

	35.	 Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, 
Bibikova M, Fan JB, Gao Y, et al. Genome-wide methylation profiles re-
veal quantitative views of human aging rates. Mol Cell. 2013;49:359–367.

	36.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 
Second-generation PLINK: rising to the challenge of larger and richer 
datasets. Gigascience. 2015;4:7.

	37.	 Zhang Y, Bernau C, Parmigiani G, Waldron L. The impact of different 
sources of heterogeneity on loss of accuracy from genomic prediction 
models. Biostatistics. 2018;21:253–268. [Epub ahead of print].

	38.	 Shah S, McRae AF, Marioni RE, Harris SE, Gibson J, Henders AK, 
Redmond P, Cox SR, Pattie A, Corley J, et  al. Genetic and environ-
mental exposures constrain epigenetic drift over the human life course. 
Genome Res. 2014;24:1725–1733.

	39.	 Bose M, Wu C, Pankow JS, Demerath EW, Bressler J, Fornage M, 
Grove ML, Mosley TH, Hicks C, North K, et al. Evaluation of microarray-
based DNA methylation measurement using technical replicates: the 
Atherosclerosis Risk In Communities (ARIC) Study. BMC Bioinformatics. 
2014;15:312.

	40.	 Short JD, Tavakoli S, Nguyen HN, Carrera A, Farnen C, Cox LA, Asmis 
R. Dyslipidemic diet-induced monocyte “priming” and dysfunction in 
non-human primates is triggered by elevated plasma cholesterol and 
accompanied by altered histone acetylation. Front Immunol. 2017;8:958.

	41.	 Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA meth-
ylation as a biomarker for cardiovascular disease risk. PLoS One. 
2010;5:e9692.

	42.	 Lund JB, Li S, Baumbach J, Svane AM, Hjelmborg J, Christiansen L, 
Christensen K, Redmond P, Marioni RE, Deary IJ, et al. DNA methylome 
profiling of all-cause mortality in comparison with age-associated meth-
ylation patterns. Clin Epigenetics. 2019;11:23.

	43.	 Jia X, Sun W, Hoogeveen RC, Nambi V, Matsushita K, Folsom AR, Heiss 
G, Couper DJ, Solomon SD, Boerwinkle E, et al. High-sensitivity tropo-
nin I and incident coronary events, stroke, heart failure hospitalization, 
and mortality in the ARIC Study. Circulation. 2019;139:2642–2653.

	44.	 Licher S, Ahmad S, Karamujić-Čomić H, Voortman T, Leening MJG, 
Ikram MA, Ikram MK. Genetic predisposition, modifiable-risk-factor 
profile and long-term dementia risk in the general population. Nat Med. 
2019;25:1364–1369.

	45.	 Anderson GL, Cummings SR, Freedman LS, Furberg C, Henderson 
MM, Johnson SR, Kuller LH, Manson JE, Oberman A, Prentice RL, et al. 
Design of the Women’s Health Initiative clinical trial and observational 
study. Control Clin Trials. 1998;19:61–109.

	46.	 Kannel WB, Feinleib M, Mcnamara PM, Garrison RJ, Castelli WP. An 
investigation of coronary heart disease in families: the Framingham 
Offspring Study. Am J Epidemiol. 1979;110:281–290.

	47.	 Joehanes R, Ying S, Huan T, Johnson AD, Raghavachari N, Wang R, 
Liu P, Woodhouse KA, Sen SK, Tanriverdi K, et  al. Gene expression 
signatures of coronary heart disease. Arterioscler Thromb Vasc Biol. 
2013;33:1418–1426.

	48.	 Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: the Lothian Birth 
Cohorts of 1921 and 1936. Int J Epidemiol. 2012;41:1576–1584.

	49.	 Taylor AM, Pattie A, Deary IJ. Cohort profile update: the Lothian Birth 
Cohorts of 1921 and 1936. Int J Epidemiol. 2018;47:1042–1042r.

D
ow

nloaded from
 http://ahajournals.org by on M

ay 5, 2020



SUPPLEMENTAL MATERIALD
ow

nloaded from
 http://ahajournals.org by on M

ay 5, 2020



Data S1.

Supplemental Methods
Women’s Health Initiative
WHI methylation data came from the BA23 ancillary study, a combined case-
control and pseudo case-cohort sampling of 2129 women from the Women’s 
Health Initiative study. WHI is a larger prospective cohort beginning in 1993 
that included over 160,000 postmenopausal women from across the United 
States45. Included subjects had no self-reported CVD at baseline, and cases were 
chosen based on incident centrally adjudicated angina, revascularization, or CHD 
event during follow-up. Inclusion criteria for methylation measurement resulted 
in an oversampling of African American and Hispanic participants. Blood 
samples used for measurement of DNA methylation and clinical biochemistry 
were taken at baseline. Data are available in the dbGaP public repository 
(accession: phs000200.v11.p3; downloaded on September 27, 2017).

Framingham Heart Study Offspring Cohort
FHS methylation data came from a substudy of the Framingham Heart Study 
that measured DNA methylation in 2726 subjects from the Offspring Cohort. 
The Framingham Offspring Cohort was originally established in 1971 to follow 
5209 children of the original Framingham Heart Study participants and their 
spouses46. Fasting blood samples for both methylation and clinical biochemistry 
were collected from participants at Exam 8, which took place from 2005-8. Blood 
samples were also provided for clinical biochemistry measurements in previous 
exams, constituting the “past exposures” examined here. Data are available in 
the dbGaP public repository (accession: phs000007.v29.p10; downloaded on 
September 27, 2017). Adjudicated cardiovascular event data was collected 
through 2015, and events were defined here as any of: myocardial infarction, 
angina pectoris, stroke (approximately 90% being ischemic), or death from CHD 
(Framingham event codes 1-29). FHS methylation data were collected in two 
primary batches in two centers – one in subjects from a nested case-control for 
CVD measured at Johns Hopkins University (FHS-JHU)47, and the other in a 
larger set of remaining Framingham Offspring participants measured at the 
University of Minnesota (FHS-UM).
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Lothian Birth Cohorts
The Lothian Birth Cohorts consist of two birth cohorts (born in 1921 and 1936)
established in the Lothian region of Scotland48,49. Only the 1936 cohort was
analyzed here. Blood samples were collected in three waves starting in 2004,
with our primary analyses here focusing on samples from Wave 1 (2004-2007).
Cardiovascular outcomes were defined as general CVD or stroke determined at
each wave, and event times for survival models were approximated based on
the time between Wave 1 and the wave at which the event was reported. LBC
data are accessible through the European Genome-phenome Archive (accession:
EGAD00010000604).

REGICOR
The REGICOR dataset analyzed here consisted of a nested case-control for
myocardial infarction within the larger REGICOR (REgistre GIroní del COR)
cohort from the Girona Province in Catalonia (Spain). Whole blood samples were
collected from 391 total participants, with those from cases generally collected
within 24 hours of the event. Characteristics for this population are available in
Supp. Table S3.
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Table S1. MRS performance in held-out FHS subset without past 
CVD events.

Model HR per s.d. MRS p
Unadjusted1 1.55 1.9e-08
Basic2 1.27 7.3e-03
Plus risk factors3 1.30 6.0e-03
FRS only4 1.37 7.7e-05
1 No covariates
2 Adjusted for age, sex, and estimated cell type
fractions

3 Additionally adjusted for BMI, LDL, HDL, SBP,
diabetes status, and current smoking

4 Adjusted for Framingham Risk Score only

Table S2. MRS stability as evaluated by using multiple within-
subject measurements. Generic ICC heuristics for reference: 0-0.5 
= poor, 0.5-0.75 = moderate, 0.75 - 0.9 = good, 0.9-1 = excellent.

Cohort Group type # of pairs/groups ICC
FHS Duplicates 26 0.85
LBC36 Samples over multiple visits 758 0.68
LBC36 Samples over subsequent visits (Wave 1 & 2) 758 0.69
LBC36 Samples over longer time frame (Wave 1 & 3) 758 0.61

Table S3. Description of REGICOR myocardial infarction nested 
case-control population (continuous variables presented as: mean 
(standard deviation))

Sample size 391
Prior myocardial infarction 50.1%
Ancestry (% European) 100%
Age 63.2 (6.9)
Sex (% female) 48.6
Smoking 21.5%
Body mass index 28.5 (4.8)
Hypercholesterolemia 53.0%
Hypertension prevalence 57.1%
Diabetes prevalence 24.7%
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Table S4. Validation of Framingham Risk Score.

Study HR per s.d. MRS p
WHI 1.50 4.7e-61
FHS-JHU 1.40 9.9e-06
FHS-UM 1.63 8.5e-22
LBC 1.01 9.2e-01

Table S5. Risk factor-stratified MRS performance in the REGICOR 
dataset.

Risk factor group OR per s.d. MRS [95% CI] N
Q1 4.49 [1.64-12.28] 119
Q2 1.17 [0.67-2.04] 90
Q3 2.58 [1-6.68] 60
Q4 1.2 [0.31-4.59] 55
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Performance metrics are shown as a function of the test dataset, either FHS-
UM (a) or REGICOR (b), and the covariate adjustment. Performance is 
quantified by either hazard ratio from Cox models (a) or odds ratio from 
logistic models (b). Covariate sets used for adjustment for models named 
here are identical to their descriptions for the regression models presented 
above. Errors bars represent standard errors for the hazard ratio or odds ratio 
estimates.

Figure S1. Comparison of modeling approaches. 
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 a) Hazard ratios for the MRS within subsets of 10-year generalized CVD risk 
according to the Framingham Risk Score. b) Hazard ratios for the MRS within 
quartiles of a genetic cardiovascular risk score (in white participants only for 
WHI). Hazard ratios are estimated using the final MRS, which was trained using 
each of these datasets. Stratum-specific Cox regressions were adjusted for age, sex, 
and estimated cell subtype fractions. Estimates for strata with less than 25 
incident events are not shown. Error bars represent standard errors for the hazard 
ratio estimates (cut off above in panel (a) for ease of visualization of other points).

Figure S2. Interactions of MRS with other biomarkers of CVD risk.
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