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Abstract
Captive populations provide a valuable insurance against extinctions in the wild. 
However, they are also vulnerable to the negative impacts of inbreeding, selection 
and drift. Genetic information is therefore considered a critical aspect of conserva-
tion management. Recent developments in sequencing technologies have the poten-
tial to improve the outcomes of management programmes; however, the transfer of 
these approaches to applied conservation has been slow. The scimitar-horned oryx 
(Oryx dammah) is a North African antelope that has been extinct in the wild since the 
early 1980s and is the focus of a large-scale and long-term reintroduction project. To 
enable the selection of suitable founder individuals, facilitate post-release monitor-
ing and improve captive breeding management, comprehensive genomic resources 
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1  | INTRODUC TION

As human activities and habitat loss accelerate global species de-
clines (Ceballos, Ehrlich, & Dirzo, 2017; Li et al., 2016), captive and 
semi-captive populations are becoming increasingly important as 
potential sources for reintroductions (Fritz, Kramer, Hoffmann, 
Trobe, & Unsöld, 2017; Russell, Thorne, Oakleaf, & Ballou, 1994; 
Spalton, 1993). A central goal of ex situ breeding programmes is 
therefore to achieve population viability through maintaining ge-
netic diversity and minimising inbreeding (Frankham, Ballou, & 
Briscoe, 2002). Consequently, the value of genetic analysis in con-
servation management has long been recognised (Lacy, 1987). 
However, a lack of appropriate resources and baseline data has 
meant that in practice, genetic information is not always used. This 
has arguably contributed towards the failure of numerous reintro-
duction attempts (Robert, 2009; Tallmon, Luikart, & Waples, 2004; 
Weeks et al., 2011). Continued advances in sequencing technology 
have now made it possible to generate high resolution genomic data 
for practically any species, and the wider uptake of these approaches 
by the conservation community would undoubtedly increase the 
chance of successful management outcomes (Allendorf, Hohenlohe, 
& Luikart, 2010; Shafer et al., 2015; Supple & Shapiro, 2018; Wildt 
et al., 2019).

The advent of next-generation sequencing over the past decade 
has meant that reference genomes are now available for hundreds 
of species (Koepfli, Paten, Genome 10K Community of Scientists, 
& O’Brien, 2015). However, most genomes have been assembled 
using short-read sequencing technologies and as a result are highly 
fragmented into hundreds or thousands of scaffolds, often with-
out any chromosomal assignment (Bradnam et al., 2013; Salzberg 
& Yorke, 2005). Consequently, there has been growing interest in 
sequencing technologies that incorporate long-range, chromosomal 

information to improve contiguity, reduce error rates and make 
downstream annotation more reliable (van Dijk, Jaszczyszyn, 
Naquin, & Thermes, 2018). For example, 10X Chromium sequenc-
ing uses Linked-Reads to provide long-range haplotype informa-
tion, whilst Hi-C contact mapping uses structural information to 
build chromosome-length scaffolds (Dudchenko et al., 2017). These 
approaches show great promise for studies of threatened species 
where well characterised genomes are rarely available. Reference 
assemblies can aid in the development of SNP arrays (Humble 
et al., 2016), which provide a powerful approach for genotyping low 
quality samples (Carroll et al., 2018), whilst structural and annota-
tion information provide the opportunity to elucidate the genetic 
basis of inbreeding depression, hybrid sterility and adaptation to 
captivity (Allendorf et al., 2010; Kardos, Taylor, Ellegren, Luikart, & 
Allendorf, 2016; Knief et al., 2016).

Alongside these developments in genome assembly, whole 
genome resequencing is increasingly being employed to gen-
erate high resolution data sets of mapped genomic markers 
(Dobrynin et al., 2015; Ekblom et al., 2018; Kardos, Qvarnström, & 
Ellegren, 2017; Robinson et al., 2016; Westbury, Petersen, Garde, 
Heide-Jørgensen, & Lorenzen, 2019). This has opened up the op-
portunity for precisely measuring genetic diversity, a critical aspect 
of conservation management, particularly when selecting found-
ers for reintroduction (IUCN/SSC, 2013). However, only a hand-
ful of studies have employed genomic approaches for measuring 
genetic diversity in captive species (Çilingir et al., 2019; Robinson 
et al., 2019; Willoughby, Ivy, Lacy, Doyle, & DeWoody, 2017) and 
therefore most estimates are based on traditional markers such as 
microsatellites and fixed panels of SNPs. These can be associated 
with high sampling variance and ascertainment bias (Väli, Einarsson, 
Waits, & Ellegren, 2008), making comparisons across species and 
populations problematic. As the conservation community continues 

are required. Here, we used 10X Chromium sequencing together with Hi-C contact 
mapping to develop a chromosomal-level genome assembly for the species. The re-
sulting assembly contained 29 chromosomes with a scaffold N50 of 100.4 Mb, and 
displayed strong chromosomal synteny with the cattle genome. Using resequencing 
data from six additional individuals, we demonstrated relatively high genetic diversity 
in the scimitar-horned oryx compared to other mammals, despite it having experi-
enced a strong founding event in captivity. Additionally, the level of diversity across 
populations varied according to management strategy. Finally, we uncovered a dy-
namic demographic history that coincided with periods of climate variation during the 
Pleistocene. Overall, our study provides a clear example of how genomic data can un-
cover valuable insights into captive populations and contributes important resources 
to guide future management decisions of an endangered species.

K E Y W O R D S

conservation genomics, Hi-C, PSMC, single nucleotide polymorphism (SNP), whole genome 
resequencing, 10X Chromium
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to integrate the management of captive breeding programmes and 
natural populations (Redford, Jensen, & Breheny, 2012), there is a 
growing need to reliably characterise the distribution of diversity 
across metapopulations.

As well as facilitating the assessment of genetic diversity, se-
quence data from a diploid genome assembly can be used for recon-
structing demographic history. For example, studies are increasingly 
employing methods such as the Pairwise Sequential Markovian 
Coalescent (PSMC, Li & Durbin, 2011) to infer past periods of pop-
ulation instability in wild species (Nadachowska-Brzyska, Li, Smeds, 
Zhang, & Ellegren, 2015; Palkopoulou et al., 2015; Prado-Martinez 
et al., 2013) and whilst some have documented dynamic patterns 
that coincide with past ecological variation (Beichman et al., 2019; 
Mays et al., 2018), others have uncovered signals of persistent pop-
ulation decline (Dobrynin et al., 2015; Westbury et al., 2019). As 
contemporary levels of genetic diversity are largely the result of 
mutations and genetic drift that occurred in the past (Ellegren & 
Galtier, 2016), an understanding of past population dynamics can 
place current estimates of diversity into a historical context (Stoffel 
et al., 2018).

The scimitar-horned oryx (SHO), Oryx dammah, is a large 
iconic antelope and one of two mammalian species classified as 
extinct in the wild by the International Union for Conservation of 
Nature (IUCN SSC Antelope Specialist Group, 2016). This arid-land 
adapted species was once widespread across North Africa, how-
ever a combination of hunting and land-use competition resulted 
in rapid population decline until the last remaining individuals dis-
appeared in the 1980s (Woodfine & Gilbert, 2016). Before they 
were declared extinct, captive populations were established from 
what is thought to be around 50 individuals, mostly originating 
from Chad (Woodfine & Gilbert, 2016). In the decades that fol-
lowed, captive SHO numbers increased to reach ~15,000 individ-
uals (Gilbert, 2019). These are primarily held in private collections 
without strict management schemes such as those in the United 
Arab Emirates (Environment Agency of Abu Dhabi, EAD) and 
southern USA (Wildt et al., 2019), but also within studbook man-
aged breeding programmes including those in Europe (European 
Endangered Species Program, EEP) and North America (Species 
Survival Plan Program, SSP). Rapid reductions in population size, 
such as those associated with the founding of captive populations, 
are generally expected to lead to a substantial loss of genetic di-
versity (Frankham et al., 2002). However, an early study using mi-
tochondrial DNA reported considerably high levels of variation in 
captive SHO populations (Iyengar et al., 2007). Furthermore, a re-
cent analysis using both microsatellites and a small panel of SNPs 
found support for higher levels of genetic diversity in studbook 
managed populations, implying that diversity is not spread evenly 
across the globe (Ogden et al., 2020).

A programme of SHO reintroductions occurred in Tunisia be-
tween 1985–2007 (Woodfine & Gilbert, 2016) and since 2014, a 
large-scale effort to release the species back into its native range 
has been led by the EAD. To date, ~200 individuals have been re-
leased into Chad, and more animals are due to be reintroduced in 

the coming years until a self-sustaining population is reached. To 
facilitate an assessment of ex situ genetic variation and inform the 
selection of suitable founder individuals, SNP genotyping using 
reduced representation sequencing (ddRAD) has been carried out 
across multiple populations (Ogden et al., 2020). However, to carry 
out analyses that rely on markers with known genomic coordinates, 
such as demographic inference (Li & Durbin, 2011) or characterising 
runs of homozygosity (Kardos, Luikart, & Allendorf, 2015), a genome 
assembly for the SHO is required. This would also support the future 
development of genotyping arrays, where optimising SNP genomic 
context has been shown to improve validation outcomes (Humble 
et al., 2016).

In this study, we used a combination of 10X Chromium sequenc-
ing and Hi-C based chromatin contact maps to generate a chro-
mosomal-level genome assembly for the species. We additionally 
resequenced six individuals from across three captive populations 
to generate a panel of genome-wide SNPs. The resulting data were 
used to investigate the strength of chromosomal synteny between 
SHO and cattle (Bos taurus), elucidate patterns of diversity between 
mammalian species and across captive SHO populations, and recon-
struct historical demography of the oryx. We hypothesised that: (a) 
SHO and cattle would display strong chromosomal synteny given 
relatively recent divergence times; (b) levels of diversity in the SHO 
would be low compared to other mammals, considering the species 
is extinct in the wild; (c) individuals from intensively managed zoo 
populations would display higher levels of genetic diversity than 
those from unmanaged collections; and (d) patterns of past popu-
lation disturbance would coincide with known periods of climatic 
change in North Africa.

2  | MATERIAL S AND METHODS

2.1 | Sampling and DNA extraction

Peripheral whole blood (male; international studbook #20612) and 
liver tissue (female; international studbook #42652) were collected 
from the captive herd at the Smithsonian Conservation Biology 
Institute in Front Royal, Virginia, USA. The male oryx represents ap-
proximately 15% of founders to the global population documented 
in the international studbook. Whole blood was collected into EDTA 
blood tubes (BD Vacutainer Blood Tube, Becton, Dickinson and 
Company) and stored frozen until analysis. Total genomic DNA was 
isolated and used to generate the de novo reference genome assem-
bly (see below for details). Additional blood and tissue samples were 
obtained for whole genome resequencing from six individuals rep-
resenting three of the main captive populations: the EEP (n = 2, in-
ternational studbook numbers #35552 and #34412), the SSP (n = 2, 
international studbook numbers #33556 and #36948) and the EAD 
(n = 2, for further details see Table S1). EEP blood samples were col-
lected by qualified veterinarians during routine health procedures 
and protocols were approved by Marwell Wildlife Ethics Committee. 
Total genomic DNA was extracted between one and five times using 
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either the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Cat. No. 
69504) or the QuickGene DNA Whole Blood or Tissue Kit (Kurabo 
Industries). Elutions were pooled and concentrated in an Eppendorf 
Concentrator Plus at 45°C and 250 x g until roughly 50 µl remained.

2.2 | 10X Genomics sequencing and assembly

Two technologies were employed to sequence and assemble the SHO 
reference genome: 10X Genomics linked-read sequencing and chro-
mosome conformation capture (Hi-C). For the 10X assembly, high mo-
lecular weight genomic DNA was isolated from ~2 ml of whole blood 
from individual #20612 using Nanobind magnetic discs (Circulomics, 
Inc.). Genomic DNA concentration and purity were assessed with 
a Qubit 2.0 Fluorometer (ThermoFisher Scientific) and NanoDrop 
2000 spectrophotometer (ThermoFisher Scientific). Capillary elec-
trophoresis was carried out using a Fragment Analyzer (Agilent 
Technologies, CA, USA) to ensure that the isolated DNA had a mini-
mum molecule length of 40 kb. Genomic DNA was diluted to ~1.2 ng/
µl and libraries were prepared using Chromium Genome Reagents 
Kits Version 2 and the 10X Genomics Chromium Controller instru-
ment fitted with a microfluidic Genome Chip (10X Genomics). DNA 
molecules were captured in Gel Bead-In-Emulsions (GEMs) and nick-
translated using bead-specific unique molecular identifiers (UMIs; 
Chromium Genome Reagents Kit Version 2 User Guide). Size and con-
centration were determined using an Agilent 2100 Bioanalyzer DNA 
1000 chip (Agilent Technologies). Libraries were then sequenced 
on an Illumina NovaSeq 6000 System following the manufacturer's 
protocols (Illumina, CA, USA) to produce >60X read depth using 
paired-end 150 bp reads. The reads were assembled into phased 
pseudohaplotypes using Supernova Version 2.0 (10X Genomics). This 
assembly will hereafter be referred to as the 10X assembly.

2.3 | Hi-C sequencing and scaffolding

Using liver tissue from individual #42652, an in situ Hi-C library was 
prepared as previously described (Rao et al., 2014). The Hi-C library 
was sequenced on a HiSeq X Platform (Illumina) to a coverage of 
60X. The Hi-C data were aligned to the 10X Genomics linked-read 
assembly using Juicer (Durand et al., 2016). Hi-C genome assem-
bly was then performed using the 3D-DNA pipeline (Dudchenko 
et al., 2017) and the output was reviewed using juicebox assembly 
tools (Dudchenko et al., 2018). No bases were changed, added or 
removed during Hi-C scaffolding and therefore the genome assem-
bly represents a single individual: #201612. Where alternative hap-
lotypes were present due to allelic variation in the 10X assembly, 
hereafter referred to as under-collapsed heterozygosity, one variant 
was chosen at random and incorporated into the 29 chromosome-
length scaffolds. Alternative haplotypes are reported as unanchored 
sequences so that the primary scaffolds were free from duplica-
tion. This assembly will hereafter be referred to as the 10X + HiC 
assembly.

2.4 | Genome annotation and completeness

To identify and annotate interspersed repeat regions we used 
repeatmasker v4.0.7 to screen the 10X assembly against both the 
Dfam_consensus (release 20170127: Wheeler et al., 2013) and 
RepBase Update (release 20170127: Bao, Kojima, & Kohany, 2015) 
repeat databases. Sequence comparisons were performed using 
rmblastn v2.6.0 + with the -species option set to mammal. We next 
predicted protein-coding genes with augustus version 3.3.2 (Stanke 
et al., 2006) using the gene model trained in humans. Prediction 
of untranslated regions of the genes was disabled. Functional an-
notation of the predicted genes was then performed using eggnog-
mapper v2.0 (Huerta-Cepas et al., 2017) against the eggNOG 5.0 
orthology database (Huerta-Cepas et al., 2019). The alignment al-
gorithm diamond was specified as the search tool (Buchfink, Xie, & 
Huson, 2015). A final set of protein-coding genes was obtained by 
filtering the genes predicted by augustus for those with gene names 
assigned by eggnog-mapper. We then transferred the repeat and 
gene annotations from the 10X assembly to the 10X + HiC assembly 
using custom scripts. Genome completeness of both the 10X and 
10X + Hi-C assemblies was assessed using busco v2 with 4,104 genes 
from the Mammalia odb9 database (Simão, Waterhouse, Ioannidis, 
Kriventseva, & Zdobnov, 2015) and the gVolante web interface 
(Nishimura, Hara, & Kuraku, 2017).

2.5 | Genome synteny

We aligned the SHO chromosomes from the 10X + HiC assembly to 
the cattle genome (Bos taurus assembly version 3.1.1, GenBank acces-
sion number GCA_000003055.5: Zimin et al., 2009) using last v746 
(Kiełbasa, Wan, Sato, Horton, & Frith, 2011). The cattle assembly was 
first prepared for alignment using the command lastdb. Next, lastal 
and last-split commands in combination with parallel-fastq were used 
to align the SHO chromosomes to the cattle assembly. Coordinates 
for all alignments were extracted from the resulting multiple align-
ment format file and visualised using the R package rcircos v1.2.0 
(Zhang, Meltzer, & Davis, 2013) and the JavaScript library D3.js.

2.6 | Whole-genome resequencing and alignment

Library construction was carried out for whole genome resequenc-
ing of the six focal individuals using the Illumina TruSeq Nano High 
Throughout library preparation kit (Illumina). Paired-end sequenc-
ing was performed on an Illumina HiSeq X Ten platform at a depth 
of coverage of 15X. Sequencing reads were mapped to the SHO 
10X + HiC chromosomes using bwa mem v0.7.17 (Li, 2013) with the 
default parameters. Any unmapped reads were removed from the 
alignment files using samtools v1.9 (Li, 2011). We then used picard 
tools to sort each bam file, add read groups and mark and remove 
duplicate reads. This resulted in a set of six filtered alignments, one 
for each of the resequenced individuals.
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2.7 | SNP calling and filtering

HaplotypeCaller in gatk v3.8 (Van der Auwera et al., 2013) was first 
used to call variants separately for each filtered bam file. GenomicVCF 
files for each individual were then used as input to GenotypeGVCFs 
for joint genotyping. The resulting SNP data set was filtered to in-
clude only biallelic SNPs using bcftoolsv1.9 (Li, 2011). We then ap-
plied a set of filters to obtain a high-quality data set of variants using 
vcftools v0.1.13 (Danecek et al., 2011). First, loci with Phred-scaled 
quality scores of <50 and genotypes with a depth of coverage <5 or 
>38 (twice the mean sequence read depth) were removed. Second, 
loci with any missing data were discarded. Finally, we removed loci 
with a minor allele frequency of less than 0.16 to ensure the minor 
allele was observed at least twice.

2.8 | Mitochondrial genome assembly

Sequencing reads for the six resequenced individuals were mapped 
using bwa mem v0.7.17 (Li, 2013) to a published mitochondrial ref-
erence genome of an SHO originating from the Paris Zoological 
Park (NCBI accession number: JN632677, Hassanin et al., 2012). 
Alignment files were filtered to contain only reads that mapped 
with their proper pair. Variants were called using samtools mpileup 
and bcftools (Li, 2011) call commands and filtered to include only 
those with Phred quality scores over 200 using vcftools (Danecek 
et al., 2011). The resulting VCF file was manually checked and sites 
where the called allele was supported by fewer reads than the alter-
native allele were corrected. Consensus sequences for each individ-
ual were extracted using the bcftools consensus command. We next 
used geneious prime v2019.2.1 (https://www.genei ous.com) to an-
notate the mitochondrial consensus sequences and extract the cy-
tochrome b, 16S and control region from each individual. Sequence 
similarity and haplotype frequencies were calculated using the R 
package pegas (Paradis, 2010). To place the mitochondrial data into a 
broader geographic context, the six control region sequences were 
aligned to 43 previously described haplotypes (NCBI accession num-
bers DQ159406–DQ159445 and MN689133–MN689138, Iyengar 
et al., 2007; Ogden et al., 2020) using geneious prime. A median-
joining haplotype network was generated using popart v1.7 (Leigh 
& Bryant, 2015).

2.9 | Genetic diversity

We assessed genetic diversity of SHO using two genome-wide 
measures. First, we used vcftools to estimate nucleotide diversity 
(π) across all six resequenced individuals based on high-quality vari-
ants called by gatk. Second, we estimated individual genome-wide 
heterozygosity as the proportion of polymorphic sites over the total 
number of sites using the site-frequency spectrum of each individual 
sample. For this, filtered bam files were used as input to estimate the 
observed folded site-frequency spectrum (SFS) using the -doSaf and 

-realSFS functions in the program angsd (Korneliussen, Albrechtsen, 
& Nielsen, 2014). We excluded the X chromosome and skipped any 
bases and reads with quality scores below 20. Genome-wide het-
erozygosity was then calculated as the second value of the SFS 
(number of heterozygous genotypes) over the total number of sites, 
for each chromosome separately. To compare the level of diversity 
in SHO with other species, we visualised genome-wide heterozygo-
sity values for a number of mammalian species collected from the 
literature (Table S2) against census population size and International 
Union for Conservation of Nature (IUCN) status. Finally, assuming a 
per site/per generation mutation rate (μ) of 1.1 × 10–08, we used our 
estimate of nucleotide diversity (π) as a proxy for θ to infer long-term 
Ne, given that θ = 4Ne μ.

2.10 | Demographic history

To reconstruct the historical demography of the SHO, we used 
PSMC. (Li & Durbin, 2011). This method uses the presence of het-
erozygous sites across a diploid genome to infer the time to the most 
recent common ancestor between two alleles. The inverse distribu-
tion of coalescence events is referred to as the instantaneous inverse 
coalescence rate (IICR) and for an unstructured and panmictic popu-
lation, can be interpreted as the trajectory of Ne over time (Chikhi 
et al., 2018). To estimate the PSMC trajectory, we first generated 
consensus sequences for all autosomes in each of the filtered bam 
files from the six resequenced individuals using samtools mpileup, 
bcftools call and vcfutils.pl vcf2fq. Sites with a root-mean-squared 
mapping quality less than 30, and a depth of coverage below four or 
above 40, were masked as missing data. PSMC inference was then 
carried out using the default input parameters to generate a distribu-
tion of IICR through time for each individual. To generate a measure 
of uncertainty around our PSMC estimates, we ran 100 bootstrap 
replicates per individual. For this, consensus sequences were first 
split into 47 nonoverlapping segments using the splitfa function in 
PSMC. We then randomly sampled from these, 100 times with re-
placement, and re-ran PSMC on each of the bootstrapped data sets.

To determine the extent to which the PSMC trajectory could 
vary, we scaled the coalescence rates and time intervals to popu-
lation size and years based on three categories of neutral mutation 
rate and generation time. Our middle scaling values corresponded 
to a mutation rate of 1.1 × 10–08 and a generation time of 6.2 years. 
These were based on the per site/per generation mutation rate re-
cently estimated for gemsbok (Oryx gazella, Chen et al., 2019) and 
the generation time reported in the International Studbook for the 
SHO (Gilbert, 2019) and are therefore considered the most appro-
priate estimates. Low scaling values corresponded to a mutation 
rate of 0.8 × 10–08 and a generation time of three, and high scaling 
values corresponded to a mutation rate of 1.3 × 10–08 and a genera-
tion time of 10. Finally, to test the reliability of our IICR trajectories, 
we simulated sequence data under the inferred PSMC models and 
compared estimates of genome-wide heterozygosity with empiri-
cal values (Beichman, Phung, & Lohmueller, 2017). To do this, we 

https://www.geneious.com
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used the program macs (Chen, Marjoram, & Wall, 2009) to simulate 
1,000 × 25 Mb sequence blocks under the full demographic model 
of each individual, assuming a recombination rate of 1.0 × 10–08 base 
pair per generation and a mutation rate of 1.1 × 10–08. Simulated het-
erozygosity was then calculated as the number of segregating sites 
over the total number of sites for each 25 Mb sequence. Empirical 
heterozygosity was calculated for each individual as the number of 
variable sites over the total number of sites in 25 Mb nonoverlapping 
sliding windows along the genome. This was carried out using the 
filtered SNP data set and the R package windowscanr.

3  | RESULTS

3.1 | Chromosomal-level genome assembly

The genome assembly of the SHO, generated using both 10X 
Chromium and Hi-C technologies, had a total length of 2.7 Gb 
(Table 1). The use of Hi-C data successfully incorporated scaffolds 
into 29 chromosomes and increased the scaffold N50 by almost three-
fold from 35.2 Mb to 100.4 Mb, and the contig N50 by over two-fold 
from 378 kb to 852 kb (Table 1). Around 149 Mb of undercollapsed 
heterozygosity was identified and incorporated into the assembly as 
unanchored sequence. The estimated GC content of the 10X-Hi-C 
assembly was 41.8%. busco analysis of gene completeness revealed 
that 93.3% of core genes were complete in the 10X + Hi-C assembly 
which represents a marginal improvement in gene completeness 
compared to the 10X assembly (Table 1). Repetitive sequence 
content based on LTR elements, SINEs, LINEs, DNA elements, small 
RNAs, low complexity sequences and tandem repeats corresponded 
to approximately 47.8% of the genome (Table S3). SINEs and LINEs 

were the most common repeat elements, representing around 
38% of the overall repeat content. Gene prediction using augustus 
identified a total of 29,666 candidate protein-coding genes, of which 
14,110 were assigned common gene names using eggnog-mapper.

3.2 | Genome synteny

To explore genomic synteny between SHO and cattle, we aligned 
the 29 chromosomes from the 10X + Hi-C assembly to the cattle as-
sembly (BosTaurus version 3.1.1). Visualisation of the full alignment 
identified one chromosomal fusion between cattle chromosomes C1 
and C25 which was located on SHO chromosome SHO2 (Figure 1; 
Figure S1). All remaining SHO chromosomes mapped mainly or ex-
clusively to a single cattle chromosome, reflecting strong chromo-
somal synteny between the two species. Specifically, for 28 SHO 
chromosomes, over 90% of the total alignment length was to a single 
cattle chromosome, with 11 of these aligning exclusively to a single 
cattle chromosome.

3.3 | Whole genome resequencing and 
SNP discovery

Whole genome resequencing of the six focal individuals resulted in 
an average sequencing coverage of 18.9 (min = 15.5, max = 27.2). 
After variant calling, a total of 12,945,559 biallelic SNPs were discov-
ered using gatk’s best practice workflow (see Materials and Methods 
for details). Of these, a total of 8,063,284 polymorphic SNPs re-
mained after quality filtering, with a mean minor allele frequency 
of 0.29. A full breakdown of the number of variants remaining after 
each filtering step is provided in Figure S2.

3.4 | Mitochondrial genome assembly

We used the whole genome resequencing data, together with 
a publicly available mitochondrial DNA reference sequence to 
assemble the mitochondrial genome for the six focal SHO individuals. 
An average of 1,211,796 reads per individual mapped to the 
reference sequence (min = 27,178, max = 5,663,594), equivalent to 
an average mitochondrial sequencing coverage of 3,487 (min = 342, 
max = 7,934). Across each of the six consensus sequences, a total of 
125 substitutions were identified, with sequence similarity ranging 
between 99.5% to 100% (Table S4). Individuals from EEP and SSP 
breeding programmes each displayed a unique mitochondrial 
haplotype whilst the haplotypes of both EAD animals were identical. 
Furthermore, we identified a total of five control region haplotypes, 
five 16S haplotypes and three cytochrome b haplotypes. To place 
our mitochondrial data into a broader context, we compared the 
control region sequences for each individual with 43 previously 
published haplotypes. Visualization of the haplotype network 
revealed that all five haplotypes from this study corresponded to 

TA B L E  1   Genome assembly statistics for both iterations of the 
SHO genome assembly

10X 10X + Hi-C

Length (bp) 2,720,895,635 2,720,101,635

Scaffold N50 (bp) 35,228,849 100,398,400

Scaffold L50 21 11

Longest scaffold (bp) 136,126,622 198,955,781

Contig N50 (bp) 378,550 852,138

GC content (%) 41.82 41.83

Complete core genes 
(%)

92.76 93.25

Complete & partial 
core genes (%)

95.98 96.15

Missing core genes (%) 4.02 3.85

Average number of 
orthologs per core 
gene

1.05 1.04

Notes: Complete core genes, complete and partial core genes, missing 
core genes and average number of orthologs per core gene were 
assessed using busco v2 with the Mammalia odb9 database (4,104 
genes).
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previously published sequences (Table S1). Haplotypes from the four 
EAD and SSP animals clustered together on the left-hand side of the 
haplotype network, whilst haplotypes from the two EEP animals 
clustered separately on the right-hand side of the network. This 
suggests that a reasonably wide proportion of the known genetic 
diversity for the species has been captured (Figure S3).

3.5 | Genetic diversity

Next, we investigated the level of variation in the SHO using two 
genome-wide measures. Our estimate for nucleotide diversity (π), 
the average number of pairwise differences between sequences, 
was 0.0014. Average genome-wide heterozygosity across all six 
individuals was in line with this, at 0.0097 (Figure 2a). Whilst this 
is lower than values estimated for mammals such as the Eurasian 
wolf (Canis lupus lupus) and the western gorilla (Gorilla gorilla), this 
is considerably higher than estimates for endangered species such 
as the baiji river dolphin (Lipotes vexillifer) and the cheetah (Acinonyx 
jubatus). Furthermore, given a census population size of around 
15,000 individuals, this level of diversity is in line with that of species 
with similar census sizes such as the orangutan and the bonobo. 
Among individuals, genome-wide heterozygosity ranged between 
0.00076 and 0.0011, with animals from the EAD displaying the 
lowest levels of genome-wide heterozygosity (Figure 2b). Diversity 
estimates for animals from European and American captive breeding 

populations were similar, with American animals being slightly 
more diverse (Figure 2b). Genome-wide heterozygosity also varied 
across autosomes, with some individuals displaying larger variance 
in heterozygosity than others (Figure 2b). Using our estimate of 
genome-wide heterozygosity as a proxy for θ, and assuming a 
mutation rate of 1.1e−08, long-term Ne of the SHO was estimated to 
be ~22,237 individuals.

3.6 | Demographic history

To investigate historical demography of the SHO, we characterised 
the temporal trajectory of coalescent rates using PSMC. The 
PSMC trajectory showed the same pattern across all six individuals 
and therefore the curve for only one individual (#34412 from 
the EEP) is presented here (Figure 3, see Figure S4 for all PSMC 
distributions). Assuming a generation time of 6.2 years and a 
mutation rate of 1.1 × 10–08, the trajectory could be reliably 
estimated from approximately two million years ago. It was 
characterised by an overall decline towards the present day, 
interspersed with multiple periods of elevated IICR during the 
Pleistocene. If IICR is assumed to be equivalent to Ne, the period 
of decline during the early-mid Pleistocene reached a minimum 
effective population size of ~21,000 individuals. There was a sharp 
increase immediately after this, which peaked ~150 ka before it 
gradually declined again at the onset of the Last Glacial Period. 

F I G U R E  1   Synteny between the 29 
SHO 10X + HiC chromosomes (prefixed 
with SHO) and the cattle chromosomes 
(prefixed with C). Mapping each SHO 
chromosome resulted in multiple 
alignment blocks (mean = 2.5 kb, 
range = 0.3–12.5 kb) and alignments over 
10 kb are shown [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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After the Last Glacial Maximum 22 ka, the trajectory underwent a 
period of increasing IICR, although at this point, estimates become 
unreliable as demonstrated by both the larger variance in bootstrap 
estimates within individuals, and the larger variation in IICR values 

across individuals (Figure S4). Under alternative generation and 
mutation rate scalings, population size and year estimates shift in 
either direction. For example, the peak in Ne around 150 ka could 
shift by around 15,000 individuals and by up to 70 ka. To test the 
reliability of our PSMC trajectories, we compared the distributions 
of genome-wide heterozygosity calculated from both simulated 
and empirical data. For all individuals, the distribution of simulated 
heterozygosity was highly similar to empirical values, with the 
average empirical heterozygosity lying within the 95% confidence 
intervals of the simulated distribution indicating that the PSMC 
models are a good fit to the data (Figure S5).

4  | DISCUSSION

As captive populations become increasingly important for the pres-
ervation of species, it is essential that genetic resources and baseline 
data are available to inform population management and improve 
reintroduction planning. In this study, we utilised third-generation 
sequencing technologies to generate a chromosomal-level genome 
assembly for the scimitar-horned oryx, a species declared extinct in 
the wild and the focus of a long-term reintroduction programme. We 
combined this with whole genome resequencing data from six in-
dividuals to characterise synteny with the cattle genome, elucidate 
the level and distribution of genetic diversity, and reconstruct his-
torical demography. These results improve our understanding of an 
endangered antelope species and provide an important foundation 
to guide future management decisions.

F I G U R E  3   PSMC inference of the instantaneous inverse 
coalescent rate (IICR) through time under different scalings for 
SHO individual #34412 from the EEP. See Figure S4 for PSMC 
distributions of all individuals. The orange trajectory was scaled by 
a mutation rate of 1.1 × 10–08 and a generation time of 6.2 (middle), 
the grey trajectory was scaled by a mutation rate of 0.8 × 10–08 and 
a generation time of three (low) and the gold trajectory was scaled 
by a mutation rate of 1.3 × 10–08 and a generation time of 10 (high). 
Fine lines around the orange trajectory represent 100 bootstrap 
replicates. The shaded grey area corresponds to the Last Glacial 
Period and the Last Glacial Maximum (LGM) is indicated by the 
dashed line [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  2   (a) Relationship between genome-wide heterozygosity and census population size for a selection of mammals, with individual 
points colour coded according to IUCN status. Some species names have been removed for clarity. Vertical bars correspond to the range 
of genome-wide heterozygosity estimates when more than one was available. Figure modified from Ekblom et al., (2018). For sources, see 
Table S2. (b) Differences in genome-wide heterozygosity across SHO individuals with colours corresponding to population. Raw data points 
represent the average genome-wide heterozygosity of each chromosome in each individual. Centre lines of boxplots reflect the median, 
bounds of the boxes reflect the 25th and 75th percentiles and upper and lower whiskers reflect the largest and smallest values. Further 
details about individual animals can be found in Table S1 [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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4.1 | Genome assembly

One of the main outcomes of this study is a chromosomal-level 
genome assembly for the SHO, a species belonging to the sub-
family Hippotraginae within the family Bovidae and superorder 
Cetartiodactyla. This was achieved using a combination of 10X 
Chromium sequencing and Hi-C contact mapping. The total assem-
bly length was 2.7 Gb, similar to the hippotragine sable antelope 
(Hippotragus niger; Koepfli et al., 2019) and gemsbok (Oryx gazella; 
Farré et al., 2019) reference assemblies, which have total lengths of 
2.9 and 3.2 Gb respectively. The use of Hi-C data successfully incor-
porated scaffolds into 29 chromosomes, increasing the scaffold N50 
to 100.4 Mb. This is more than 20 times the scaffold N50 reported 
for the sable antelope (~4.6 Mb, Koepfli et al., 2019) and almost dou-
ble that of the N50 reported for gemsbok (47 Mb, Farré et al., 2019). 
In contrast, the contig N50 of the 10X-Hi-C assembly was >850 kb 
which represents a substantial improvement over both sable ante-
lope (45.5 kb) and gemsbok assemblies (17.2 kb). Repeat content 
(47.8%) was in line with that of European bison (Bison bonasus; 47.3%, 
Wang et al., 2017) and sable antelope assemblies (46.7%, Koepfli 
et al., 2019) but higher than that of the Tibetan antelope (Pantholops 
hodgsonii; 37%, Ge et al., 2013), whilst GC content was identical to 
that reported for the sable antelope (41.8%, Koepfli et al., 2019). 
Furthermore, a larger number of protein-coding genes were pre-
dicted in the SHO assembly than in studies of sable and Tibetan an-
telope and busco analysis identified 93.3% of core genes. Our SHO 
assembly is therefore of very high quality and will serve as an impor-
tant resource for the wider antelope and bovid research community.

4.2 | Genome synteny

To further evaluate genome completeness and to explore chro-
mosomal synteny, we mapped the SHO chromosomes to the cat-
tle reference genome. The resulting alignment revealed complete 
coverage to all chromosomes in the cattle assembly, including the 
X-chromosome. This is in line with the results of the busco analy-
sis and suggests that the SHO genome assembly is close to com-
plete. Furthermore, all but one of the SHO chromosomes showed 
near-to, or complete chromosomal homology with cattle, indicating 
that the Hi-C contact mapping approach reliably anchored scaf-
folds into chromosomes. In general, while Bovidae genomes show 
a high degree of synteny, they can vary in their diploid chromosome 
number due to the occurrence of centric fusions (Gallagher Jr and 
Womack, 1992; Wurster & Benirschke, 1968). We clearly identified 
the fixed centric fusion between cattle chromosomes 1 and 25 that 
has previously been described in the oryx lineage using cytogenic 
approaches (Kumamoto, Charter, Kingswood, Ryder, & Gallagher, 
1999). However, we found no evidence for the fusion between chro-
mosomes 2 and 15 that has been karyotyped in some captive indi-
viduals (Kumamoto et al., 1999). Chromosomal rearrangements both 
within and between species have been implicated in poor reproduc-
tive performance due to the disruption of chromosomal segregation 

during meiosis (Hauffe & Searle, 1998; Steiner et al., 2015; Wallace, 
Searle, & Everett, 2002). Genotype data from additional individuals 
would facilitate a comprehensive assessment of structural polymor-
phism across captive populations of SHO using methods that utilise 
patterns of linkage and substructure (Knief et al., 2016).

4.3 | Genetic diversity

To assess the level of genetic diversity in the SHO we used whole 
genome resequencing data from six individuals originating from 
three captive populations. A recent meta-analysis has demon-
strated that threatened species harbour reduced genetic diver-
sity compared to their nonthreatened counterparts due to the 
elevated impacts of inbreeding and genetic drift in small popula-
tions (Willoughby et al., 2015). In contrast, a handful of studies 
have uncovered unexpectedly high levels of diversity in species 
thought to have experienced strong population declines (Busch, 
Waser, & DeWoody, 2007; Dinerstein & McCracken, 1990; Hailer 
et al., 2006). While the SHO has been kept in captivity for the 
last 50 years, equivalent to around eight generations, it is unclear 
to what extent this has impacted its genetic variation. We found 
several lines of evidence in support for considerably high genetic 
diversity in the scimitar-horned oryx. First, the SHO genome as-
sembly contained ~150 Mb of under-collapsed heterozygosity due 
to the presence of numerous alternative haplotypes. Second, we 
detected over eight million high quality SNP markers, which given 
the small discovery pool of six individuals, is relatively high for a 
large mammalian genome. Third, our estimates of genetic diver-
sity were appreciably higher than in other threatened mammalian 
species.

These results are in some respects surprising given that the 
SHO underwent a period of rapid population decline in the wild, 
followed by a strong founding event in captivity. However, the 
species has bred well in captivity, reaching ~15,000 individuals 
in the span of several decades. This is likely to have reduced the 
strength of genetic drift, which alongside individual-based man-
agement, may have prevented the rapid loss of genetic diversity. 
This is in line with theoretical expectations that only very severe 
(i.e. a few tens of individuals) and long-lasting bottlenecks will 
cause a substantial reduction in genetic variation (Nei, Maruyama, 
& Chakraborty, 1975). With this in mind, it is also possible that the 
original founder population size was larger than previously thought, 
particularly for the EAD population, where records of founders are 
sparse. Additionally, as contemporary levels of genetic diversity 
are largely determined by long-term Ne (Ellegren & Galtier, 2016), 
we cannot discount the possibility that historical patterns of abun-
dance have contributed to the variation we see today.

Nevertheless, caution must be taken when comparing estimates 
of diversity across species as the total number of variable sites, 
and therefore genetic variation, is sensitive to SNP calling criteria 
(Hohenlohe et al., 2010; Shafer et al., 2017). Furthermore, there are 
multiple ways to measure molecular variation (Hahn, 2018). However, 
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our results are broadly in line with similar species such as the sable 
antelope, where a comparable number of variants were called in a 
similar number of individuals (Koepfli et al., 2019). Additionally, our 
estimates of genome-wide heterozygosity were calculated based on 
genotype likelihoods and therefore should be robust to sensitivities 
resulting from filtering (Korneliussen et al., 2014). Finally, we took 
care to compare our estimates of genetic diversity with equivalent 
measures in the literature. Therefore, we expect our measures of 
genetic variation to reflect the true level of diversity in the species.

To characterize the distribution of diversity in the SHO we com-
pared genome-wide heterozygosity among captive populations. 
Diversity estimates varied between groups, with animals from the 
EAD showing lower levels of diversity than those from European and 
American captive breeding populations. However, this comparison 
is based on estimates from a small number of individuals and there-
fore may not be a true reflection of the overall variation in genetic 
diversity. Nevertheless, this pattern is consistent with studies both 
in SHO and Arabian oryx (Oryx leucoryx) that found diversity to be 
lower in unmanaged populations than in studbook managed pop-
ulations (El Alqamy, Senn, Roberts, McEwing, & Ogden, 2012) and 
suggests that captive breeding programmes have been successful at 
maintaining genetic diversity. We also observed variation in the ge-
netic diversity of individual chromosomes, a pattern which has been 
demonstrated across a wide variety of taxa (Doniger et al., 2008; 
Nordborg et al., 2005; The International SNP Map Working Group, 
2001). Chromosomal variation in heterozygosity can arise through 
numerous mechanisms including recombination rate variation, 
mutation rate variation and selection (Begun & Aquadro, 1992; 
Hodgkinson & Eyre-Walker, 2011; Martin et al., 2016) and further 
studies will be required to understand the biological significance of 
these patterns in more detail.

4.4 | Historical demography

To provide insights into the historical demography of the SHO, 
we quantified the trajectory of coalescent rates using PSMC. This 
method does not necessarily provide a literal representation of past 
population size change as it assumes a panmictic Wright-Fisher 
population (Mazet, Rodríguez, Grusea, Boitard, & Chikhi, 2016). 
Nevertheless, fluctuations in the trajectory provide insights into 
periods of past population instability which may be attributed to 
factors including population decline, population structure, gene 
flow and selection (Beichman et al., 2017; Chikhi et al., 2018; Mazet 
et al., 2016; Schrider, Shanku, & Kern, 2016). The PSMC trajectory 
of the SHO was characterised by an initial expansion approximately 
two million years ago which coincides with the appearance of pre-
sent day bovid tribes in the fossil record (Bibi, 2013). This was fol-
lowed by periods of disturbance during the mid-Pleistocene and at 
the onset of the Last Glacial Period, although these time points shift 
in either direction under alternative scalings. Similar PSMC trajecto-
ries have been observed in other African grassland species such as 
the gemsbok, greater kudu and impala (Chen et al., 2019). Climatic 

variability in North Africa during these time periods was associated 
with repeated expansion and contraction of suitable grassland habi-
tat (Dupont, 2011), which is likely to have driven population decline 
or fragmentation in the SHO. This is consistent with previous find-
ings that ecological variation associated with Pleistocene climate 
change has shaped the population size and distribution of ungulates 
in Africa (Lorenzen, Heller, & Siegismund, 2012).

Interestingly, despite the expansion of suitable SHO habitat after 
the Last Glacial Maxima, the PSMC trajectory does not return to his-
toric levels. PSMC has little power to detect demographic change 
<20,000 years ago (Li & Durbin, 2011), however it is possible that 
increased human activities during this time-period impacted popula-
tion numbers. This is in line with a recent study that attributed wide-
spread declines in ruminant populations during the late Pleistocene 
to increasing human effective population size (Chen et al., 2019). 
Sequencing data from additional individuals will facilitate the reli-
able estimation of recent population size parameters using either 
site-frequency based methods or approximate Bayesian computa-
tion (Excoffier, Dupanloup, Huerta-Sánchez, Sousa, & Foll, 2013; 
Pujolar, Dalén, Hansen, & Madsen, 2017; Stoffel et al., 2018).

4.5 | Implications for management

The outcome of this study provides an important foundation for fu-
ture management of scimitar-horned oryx and supports the strategy 
currently in place to optimise the level of genetic diversity within re-
lease herds. In particular, our finding that genetic diversity is higher 
in individuals from captive breeding programmes reinforces previous 
results that informed the reintroduction program being carried out 
by the EAD. Here, individuals from European and American breed-
ing programmes are being used to maximise the representation of 
contemporary global variation and increase the adaptive potential of 
release herds. Furthermore, our chromosomal-level genome assem-
bly will provide a reference for generating mapped genomic markers 
in additional animals. This will facilitate individual-based studies of in-
breeding, relatedness and admixture to improve breeding recommen-
dations and enable hybrid assessment. Moreover, access to genome 
annotations will open up the opportunity for identifying putative loci 
associated with functional adaptation in both the wild and captivity. 
For example, predicting deleterious mutations in individuals within 
breeding programmes could help minimise the impacts of inbreed-
ing depression (Grossen, Guillaume, Keller, & Croll, 2020; Robinson 
et al., 2019) whilst population-wide screening of loci conferring dis-
ease resistance could help identify suitable source populations for 
future release (Epstein et al., 2016). Finally, access to a genome as-
sembly will facilitate the development of complementary genetic 
resources such as genotyping arrays. These would provide the pos-
sibility to genotype thousands of noninvasive samples and therefore 
have direct benefits for post-release monitoring and pedigree recon-
struction (Wildt et al., 2019). Overall, these approaches will contrib-
ute towards an integrated global management strategy for the SHO 
and support the transfer of genomics into applied conservation.
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5  | CONCLUSION

In conclusion, we have generated a chromosomal-level genome as-
sembly and used whole genome resequencing to provide insights 
into both the contemporary and historical population of an iconic 
species of antelope. We uncovered relatively high levels of genetic 
diversity and a dynamic demographic history, punctuated by periods 
of large effective population size. These insights provide support for 
the notion that only very extreme and long-lasting bottlenecks lead 
to substantially reduced levels of genetic diversity. At the popula-
tion level, we characterised differences in genetic variation between 
captive and semi-captive collections that emphasise the importance 
of metapopulation management for maintaining genetic diversity in 
the remaining populations of scimitar-horned oryx.
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