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The Green Airliner that Never Was: Aerodynamic Theory, Fuel-Efficiency, and 

the Role of the British State in Aviation Technology in the mid-Twentieth 

Century 

 

Graham Spinardi, 

 

Abstract 

 

Two aerodynamic concepts theorised in the early twentieth century – laminar flow 

control and flying wings - offer the potential for more efficient aircraft. However, 

despite compelling advantages on paper and optimistic predictions, the fuel-saving 

benefits of these technologies have not yet been fully realised. This paper documents 

British work on these concepts, with a particular focus on laminar flow control. Faced 

with an increasingly difficult funding context and a lack of a clear military rationale, 

these potentially significant advances in aircraft efficiency were stymied by a Catch-

22 situation: the government was only prepared to provide financial support for the 

development of an operational prototype if operational performance had already been 

demonstrated. This case also highlights the challenges faced in the commercial uptake 

of radical aviation technologies, even when they appear to offer greater efficiency and 

environmental benefits. 

Introduction 

 

In 2003 an authoritative study of the technological options for reducing the 

environmental impacts of air travel, carried out under the auspices of the Royal 

Aeronautical Society, set out potential technical advances that could result in 

substantially greener airliners.1 Amongst the options described in this Greener by 

Design report was a technique known as Laminar Flow Control (LFC), which when 

used with a ‘flying wing’ aircraft design, was said to offer ‘the greatest aerodynamic 

potential for reducing the contribution of air travel to climate change.’2 

 

What was notable about this claim was that this approach – a flying wing with LFC – 

did not involve novel concepts that had recently been invented. As the Greener by 

Design report notes, a LFC flying wing airliner had been proposed over half a century 

earlier. The British aircraft manufacturer Handley Page sought to pioneer the use of 

LFC technology during the 1950s, and its 1960 design study of a LFC flying wing 

airliner (the HP 117) predicted efficiency improvements compared to conventional 

transatlantic airliners that were expected to ‘result in the direct operating costs being 

reduced by at least 50%!’3  

 

Both the flying wing and laminar flow control concepts stemmed from the burgeoning 

of aerodynamics theory in the early twentieth century. Simply put, a flying wing seeks 

to eliminate all aircraft structures (particularly the fuselage) that do not provide lift, 

thus increasing the lift-to-drag ratio of the airframe. The idea of LFC built on the 

understanding of how air flowing over a wing quickly becomes turbulent, adding 

greatly to friction and thus drag. The most popular approach to LFC used suction 

through the wing surface to keep the boundary layer thin enough not to become 

turbulent.4 According to a 1999 NASA survey, written before climate change became 

a mainstream concern: ‘Laminar-flow control is a technology that offers the potential 



for improvements in aircraft fuel usage, range or endurance that far exceed any single 

known aeronautical technology. For transport-type airplanes, e.g., the fuel burned 

might be decreased a phenomenal 30 percent. Fuel reduction will not only help 

conserve the earth’s limited supply of petroleum but will also reduce engine emissions 

and, therefore, air pollution.’5 

 

To clarify definitions, there is some overlap between the use of the terms Laminar 

Flow Control and Boundary Layer Control (BLC). LFC or ‘laminarisation’ refers to 

attempts to maintain laminar flow in order to reduce drag and is one possible use of 

BLC, which can also be used to increase lift (e.g. to enable take off for carrier-based 

aircraft) or to control stalling effects. Moreover, LFC can encompass passive 

approaches involving only the shape of the wing or, as documented here, active 

techniques involving either sucking or blowing. 

 

Given that both flying wing and LFC concepts have long been known (in principle) to 

offer fuel-efficiency benefits, why is it that their practical implementation in airliner 

design continues to remain a potential, rather than actual, solution? The airliner of 

today differs little from those of sixty years ago in its aerodynamic fundamentals. In 

this regard, the current Boeing 787 airliner, although innovative in its use of structural 

carbon fibre, is a direct descendent of the Boeing 707, first introduced into service in 

1958. Since the 1960s (when the original turbojet engines were replaced by the more 

efficient turbofan) airliner technology has evolved so that the ‘dominant configuration 

in the world fleet is the classic swept-winged turbofan powered aircraft.’6 In the 

meantime, other approaches to airliner design have either proved commercially 

unsuccessful (the supersonic airliner), have found niche markets only (turboprop-

powered straight-winged airliners for short-haul operations), or in the case of LFC 

and flying wings, have not been used at all.  

 

Within this broader issue, there is also a more specific question of whether the failure 

of these airliner technologies to become mainstream can be seen as typical of much 

post-war UK innovation. An extensive UK research base, with many specialised 

research establishments, some of which were supported and orientated by Cold War 

concerns, provided a rich source of invention that government and industry appeared 

unable to nurture to commercial fruition.7 Civil aviation in particular benefitted 

greatly from direct government support, as well as from the potential synergies that 

stemmed from facilities, staff, and a shared knowledge base that had substantive 

military funding.8 

 

This paper addresses these issues with a particular focus on a detailed account of the 

British experience with LFC. Official NASA histories describe US work on LFC, and 

several (mainly popular) books and papers have described flying wing developments, 

but British LFC developments remain almost entirely undocumented.9 This story is 

significant because it involves the earliest detailed plans for a LFC flying wing 

airliner, and more broadly because it sheds light on the obstacles to the development 

of greener airliners based on these principles, as well as on broader issues of 

technological innovation. What follows begins with an account of the early 

development of these two key aerodynamic innovations – laminar flow control and 

flying wings. The core of this paper then draws on documents in the UK National 

Archives to describe the period when Britain was at the forefront of LFC research, 



and when the anticipated advantages of this new technology failed to materialise in 

operational aircraft.  

Early Days 

 

The decades after the first successful powered flight of the Wright brothers’ Flyer in 

December 1903 were characterised by fecund and varied invention. Theoretical 

understanding of aerodynamics developed rapidly, and almost every conceivable type 

of aircraft was built and tested.10 Aircraft structures were made of either wood or 

metal, or a combination, and both biplanes and triplanes were common, along with 

more exotic airframes.11 However, by the end of the 1930s (with some exceptions) 

what it meant to be an aircraft had stabilised. Thereafter the most common design 

would be a monoplane with all-metal construction (with both frame and skin made 

from metal), based on a fuselage with a tail-plane at the rear (for stability) and main 

wing forward of the midpoint (for lift).  

 

From this rich mixture of theorising and experiment, two aerodynamic concepts 

emerged that would have enduring conceptual credibility stymied by hard-to-resolve 

practical challenges: the flying wing and laminar flow control. The idea of a flying 

wing – in which the whole of the structure provides lift, with no distinct fuselage or 

separate tail – is almost as old as that of aviation itself. Hugo Junkers patented a wing-

only aircraft concept in 1910, though he was not optimistic about its practical 

realisation, noting in 1920 (in this clumsy translation) that: ‘Probably such an ideal 

aircraft will never entirely become reality, but in my opinion will the further 

development of aircraft engineering move into that direction so that we will, in the 

foreseeable future, come very close to this ideal.’12  

 

The closest Junkers came to realising this ideal was the 1930 G-38 airliner whose all-

metal structure involved a huge 148 feet wide and six foot deep wing (with space for 

passengers to sit in the wing space next to the fuselage looking forward). However, 

the G-38 was not a pure flying wing, with a long fuselage after the wing leading to a 

biplane tail, and a stub of a fuselage at the front. Flight magazine noted at the time 

that the aircraft ‘does not realize the ideal of the “flying wing,” although it goes some 

way towards it.’13 

 

Others, notably Jack Northrop in the USA, sought to push the flying wing concept to 

its fullest expression. Work on prototypes led to Northrop being awarded a contract in 

1941 to build a large flying wing bomber, the XB-35, with the British noting that the 

‘predicted performance of this aircraft is outstanding.’14 A Northrop press release 

claimed that: ‘The savings in cost of construction of such an airplane as compared 

with conventional types is also extensive, as the Northrop aircraft consists essentially 

of a thick wing in which there are virtually no structural complications.’15 

 

However, Northrop’s optimism was misplaced. The XB-35 was plagued by 

production and technical problems (many unconnected with the flying wing design). 

Delivery was intended to be two years after the contract was signed, but the first XB-

35 did not fly until June 1946, three years late and 400% over budget.16 The aircraft 

also suffered from instability in pitch and yaw (the latter of which was fixable but the 

former not) making bombing much more inaccurate than with conventional aircraft. 



Even worse, a test flight on June 5, 1948 of what was now designated the YB-49 

(with the propeller piston engines replaced by turbojets) provided fatal evidence of the 

aircraft’s propensity to stall.17 Although the Air Force still ordered 30 aircraft for 

surveillance purposes, budgetary constraints, along with a preference for more proven 

technology, meant that these were cancelled at the start of 1949.18 

 

British aircraft designers also sought to exploit the theoretical advantages of the flying 

wing concept.19 Aircraft designer Captain G. T. R. Hill developed a series of 

Pterodactyl aircraft. Ironically, given the problems with stability that would be an 

enduring issue for flying wing aircraft, Hill’s initial motivation was to reduce the 

large number of fatal accidents suffered due to loss of control.20 Although the 

Pterodactyl did achieve good stalling performance, and a subsequent fighter version, 

the V5, was built, the project was cancelled because it appeared to offer no clear 

advantage as handling improved for conventional designs.21 Another ‘tailless’ design, 

the HP-75 Manx developed by Handley Page in the 1930s, was neither a pure flying 

wing (it had both a stubby nose and more vestigial tail than its namesake feline), nor a 

great success. Its development was interrupted when Handley Page’s chief designer, 

the German Gustav Lachmann, was interned, but revived in 1942 when it became 

clear that Northrop in the US was seriously pursuing its flying wing design.22  

 

Interest in flying wing designs also led the Ministry of Aircraft Production to establish 

a Tailless Aircraft Advisory Committee in 1943. Projects initiated then – the 

Armstrong Whitworth AW52 and the de Havilland DH108 (the first British aircraft to 

exceed the speed of sound) - came to fruition after the war. Of these the AW52 was 

particularly significant. Not only did it integrate turbojet engines into an almost pure 

flying wing design (the nose protruded slightly from the front of the wing), but the 

AW52 also marked the world’s first attempt to design an aircraft using boundary layer 

control with suction through the wing. Two prototype aircraft (half the size of the 

planned aircraft) were built, and the first flew on 13 November 1947 (see below).  

Laminar Flow Control Takes Off 

 

Flying wing aircraft fell out of favour after the Second World War (although before 

he died Jack Northrop saw designs of the US B2 stealth bomber that would first fly in 

1989), but interest in laminar flow control (LFC) was on the up. Airplane 

development had initially focused on achieving the necessary lift, but the importance 

of drag in undermining performance soon became a concern. Ludwig Prandtl had set 

out his boundary-layer theory in 1904, but wider understanding of this took until the 

1920s with publication of what became known as the ‘Lanchester-Prandtl wing 

theory’ (Prandtl’s work built on ideas developed by the British scientist/engineer 

Frederick Lanchester).23 

 

British appreciation of the importance of drag was pioneered by Professor Melvill 

Jones at the University of Cambridge, whose paper on ‘The Streamline Aeroplane’ 

was presented to the Royal Aeronautical Society in 1929.24  Jones highlighted a 

number of techniques that could be used to reduce aircraft drag (for example, using 

retractable wheels) by reducing the friction caused by turbulence on aircraft surfaces. 

Because the friction for a laminar boundary layer is significantly lower than that for a 

turbulent boundary layer, a key challenge was how to maintain laminar airflow over 

surfaces, especially over the wings. 



 

One possibility was to delay the onset of turbulence by clever wing design (moving 

the point of maximum thickness further back), with the North American Aviation 

Mustang fighter being the first operational example in 1940.25 However, even with 

such passive laminar flow control, the boundary layer will eventually become 

turbulent and add to drag. Another approach to reducing drag was discussed in a 1936 

paper by A. A. Griffith and F. W. Meredith of the Royal Aircraft Establishment 

(RAE). They noted that: 

 

Jones showed how great an improvement in the aeroplanes of the time was 

possible by proper streamlining. About the same time it occurred to the present 

authors that still better results could be obtained by using perforated surfaces and 

sucking the boundary layer into the machine by an exhausting fan, the air being 

finally ejected with its total head restored by the fan. In this way the formation of a 

wake by skin friction could be avoided and power could be saved.26 

 

The potential benefits were reckoned to be considerable, with Griffith and Meredith 

calculating that it ‘appears that the combined saving possible by boundary suction … 

may amount ideally to five-sixths of the power at present consumed by skin 

friction.’27 Using suction for Boundary Layer Control (BLC) had already been 

explored at the Langley laboratory of the National Advisory Committee for 

Aeronautics (NACA) in the US, though the initial focus there was on increasing lift 

rather than reducing drag.28 

 

However, concern about German military intentions meant that rearmament was the 

main focus of UK aviation policy in the late 1930s, and LFC work was limited in 

nature. The RAE was keen to pursue the matter, with RAE’s Superintendent writing 

to the Director of Scientific Research at the Air Ministry in May 1937 to say that ‘we 

propose to commence an investigation into the possibility of reducing the drag of 

wings by suction.’29 Later that year, he reported that: ‘The experimental results show 

that the application of the method to improve the maximum lift has been successful 

but that the application to drag reduction has met with very little success.’30  

 

As well as increasing lift and reducing drag, BLC was also investigated as a technique 

for aerofoil control. The aforementioned AW52 flying wing aircraft incorporated 

suction on the outer wing surfaces in an attempt to counter the ‘early wing tip stall’ 

that was seen as ‘a weakness of the swept-back wing’, and the AW52 system was 

designed to ‘delay considerably the loss of control due to the stalling of the wing tips 

carrying the control surfaces’.31 However, in practice lack of control was still a 

problem, and the AW52 flight tests did not go well. Armstrong Whitworth’s two 

AW52 prototypes were first flown in 1947, but tests pilots complained of difficulties 

in controlling oscillations, and on 30 May 1949 one aircraft was lost when the pilot 

felt compelled to eject (this being the first use of the British Martin-Baker ejector 

seat).32 

The Boundary Layer Control Committee and the ‘Thick Wing’ 

 

The Second World War diverted most British aviation research towards the war 

effort, but some work on boundary layer control continued at both the RAE33 and the 

National Physical Laboratory.34 Towards the end of the war, the Ministry of Aircraft 



Production (MAP) began to take an interest in innovative approaches to aircraft 

design, concerned not only about military potential, but also post-war competition in 

commercial airliners (as evidenced by the establishment of the Brabazon Committee 

that led to the pioneering Comet jet airliner).35 The Tailless Aircraft Advisory 

Committee was set up by MAP in 1943, and this was followed in early 1946 by what 

was first termed ‘the Committee on Suction and Blowing’, but formally named the 

Boundary Layer Control Committee (BLCC).36 Its formation stemmed from the belief 

that ‘we can now foresee a considerable future for methods of reducing drag, 

increasing lift and providing control by means of suction or blowing.’37 

 

An early preoccupation of the BLCC was the Griffith ‘thick wing’ aerofoil, a concept 

devised by A. A. Griffith, co-author of the 1936 paper that had proposed the idea of 

reducing drag through suction. A 1945 study by the National Physical Laboratory 

(NPL) noted that ‘the use of thick suction wings holds out prospects of greater range 

or pay load because of the increased aerodynamic and structural efficiency 

obtainable.’38 The study also noted that ‘the employment of thick wings may be 

expected to lead to the abolition of the fuselage as a compartment for passengers and 

cargo and to complete submersion of the engines in the wing at much smaller all up 

weights … than up to now has been thought possible.’ However, there were 

disadvantages, including complexity, difficulty of control, and limited top cruising 

speed. 

 

Griffith’s thick wing concept was discussed in the 1946 Wilbur Wright lecture, given 

at the Royal Aeronautical Society by E. R. Relf of the College of Aeronautics. He 

noted that with boundary layer suction ‘very great increases of maximum lift have 

been demonstrated experimentally both here and abroad’.39 However, these 

applications of BLC had involved conventional wing shapes, whereas Griffith’s 

distinctive idea was ‘to design the shape to suit the suction.’40 The resulting thick 

wing was designed to have natural laminar flow over most of its surface, with suction 

slots towards the rear of the wing. Although experiments suggested that these suction 

slots could not restore laminar flow towards the trailing edge, it was concluded that 

‘the suction principle still has great attractions, one of which is that it enables very 

thick sections to be used without fear of any turbulent separation and probably with a 

laminar boundary layer up to the slot.’41 A potential advantage of this was that it 

could have ‘a profound influence on the minimum size of “flying wing” that is a 

practical proposition from the point of view of internal space.’42 

 

However, there was a downside, and a report on Relf’s lecture noted that ‘these thick 

sections appear to have a fairly low critical Mach number, so that they are likely to be 

useful at moderate speeds only.’43 Compressibility effects placed a practical limit of 

around 450 mph on the speed of a thick wing aircraft, but with the advent of engines 

based on gas turbine technology (the turbojet and the turboprop), increasing speed 

was seen as a desirable aircraft characteristic for most applications. Opinions were 

divided at the BLCC’s second meeting in May 1946. Mathematician Professor 

Sydney Goldstein argued that ‘he was sure that except for the very high speed civil 

aircraft for VIP’s [sic] the suction wing would pay’, but others thought that ‘that 

economic arguments … suggested that speed was all-important in the operation of 

civil air lines.’44 

 



Nevertheless, the BLCC continued to support work on thick suction wings. One of the 

industrial participants in the BLCC, Armstrong Whitworth (the contractor for the all-

wing AW52), was asked to prepare thick wing aircraft design studies, and testing was 

carried out of models in wind-tunnels, and of thick wing gliders in Australia.45 In 

November 1947, the BLCC ‘decided to go ahead with the construction of a tailless 

aircraft with swept back wings using a 30% symmetrical section of the Griffith 

type.’46  

 

Professor Goldstein, then President of the Aeronautical Research Council (ARC), 

proudly described British suction wing work in the Eleventh Wright Brothers lecture, 

presented at the Institute of Aeronautical Sciences in Washington, DC on December 

17, 1947.47 On his return to the UK he pressed for progress to be made, arguing that 

‘the decision must now be taken either to put a great deal of effort into getting the 

Armstrong Whitworth thick wing aircraft flying or to drop the idea altogether’, and he 

sounded a familiar warning by noting that ‘to proceed on low priority would only 

mean that the Americans would be first in the field.’48  

 

Armstrong Whitworth’s chief designer John Lloyd had agreed to design a thick wing 

aircraft, but at the BLCC’s 11th meeting he made it clear ‘that no useful purpose 

would be served by further design work until wind tunnel results on a model of the 

proposed lay-out were available.’49 Accordingly Professor Goldstein pushed for 

access to scarce wind tunnel facilities, arguing that the thick wing work should be 

given higher priority than defence work. The BLCC, ‘without going so far, agreed 

that the work should have at least as high a priority as the military projects.’50 Gaining 

such priority, however, required more evidence. Before offering more wind tunnel 

access the Director of RAE wanted to see ‘a comparison in which an aircraft with 

suction showed on paper an advantage over a conventional aircraft.’51 Likewise, the 

Performance Sub-Committee of the Aerodynamics Committee of the Aeronautical 

Research Council ‘considered that design studies were needed to show the overall 

gains to be expected from practical applications of boundary-layer control.’52 

 

Such a study (‘Thick Wing Suction Civil Design Study’) was produced by Armstrong 

Whitworth in February 1949, but, if anything, it undermined the case for the thick 

wing. The study showed the thick wing aircraft would ‘have a performance very much 

the same as the Brabazon 1’ – a very large conventional airliner intended for 

transatlantic operation. According to Lloyd ‘the reason why the suction aircraft 

appeared no better than the conventional aircraft was the low propulsive efficiency of 

the jet, together with the need to fly considerably slower than the critical Mach 

number.’53 If paper studies were only supportive when moderate speed was 

acceptable, tests were even less encouraging. Flight tests of a Griffith type wing 

provided mixed results due to both insufficient surface smoothness of the wing 

causing transition to turbulence before the suction slot and inadequate suction. 

Following modifications, wind tunnel tests achieved the expected drag reduction, but 

the overall conclusion was that a very high standard of surface finish would be 

required for such a wing to be effective.54 

 

It was now clear that enthusiasm for the thick wing’s theoretical elegance, and its 

structural advantages in offering large internal spaces for a flying wing aircraft, had 

obscured serious practical limitations as regards speed and the difficulty of 

manufacturing smooth wing surfaces. Moreover, for the size of aircraft then under 



consideration the thick wing stowage was of limited value because ‘in practical sizes, 

space is insufficient to allow the advantage in load to be taken in extra passengers.’55 

This was (and continues to be) a recurring concern with flying wing airliners: 

providing standing room in the wing space means a very large aircraft, unsuited to 

many airports. 

 

Reporting the discussion of the ARC Performance Sub-Committee on 6 December 

1949, H. F. Vessey concluded that ‘the application of thick wing suction is severely 

restricted to a few types of a specialised aircraft. The question now is whether we can 

afford the large effort (say £2,000,000) which will be required to bring one of these 

applications to fruition.’ Vessey acknowledged that ‘we must decide whether we are 

to concentrate a large amount of effort on thick wing suction or to cease work 

altogether.’56 In February 1950 the ARC’s Performance Sub-Committee ‘came to the 

broad conclusion that research on the maintenance of larger areas of laminar flow on 

wings of ordinary thickness was likely to be more fruitful in the near future, and have 

a wider application, than the development of the very thick suction wing.’57 

According to a later report, UK thick wing research was stopped in 1952 ‘because of 

the demand for higher cruising speeds.’58 

Handley Page and Laminar Flow Control 

 

Thereafter the main thrust of UK research focused on achieving drag reduction by 

‘laminarisation’ of ordinary wings, and Handley Page Ltd, driven by the enthusiasm 

of chief designer Gustav Lachmann, became the main industrial advocate of this 

approach. Lachmann was determined, as he later wrote in 1961, to ‘ponder 

independently on the question what is really worthwhile doing’, and for him this was 

laminar flow research.59  

 

One of the challenges was establishing whether theoretical predictions of LFC could 

be demonstrated in practically useful aircraft over a range of speeds higher than 

hitherto experienced, and across a range of altitudes. The key characteristics for 

airflow over an aerofoil are expressed by the Reynolds Number, a ratio of inertial 

resistance to viscous resistance. Higher Reynolds Numbers typically mean more 

turbulence, and thus more challenging conditions for restoring and maintaining 

laminar flow. 

 

In 1950 the ARC’s Performance Sub-Committee pointed out ‘that the acceptance by 

aircraft designers of boundary-layer suction as a reliable method of improving aircraft 

performance depends upon conclusive experimental results being obtained at a high 

Reynolds number.’60 It was noted that the RAE were ‘investigating the possibility of 

using both wind-tunnel and flight experiments to provide such information.’61 As to 

the practical applications of LFC, the Sub-Committee was sceptical: 

 

It finally concluded that since the military application of this technique is 

extremely limited, it is doubtful whether the cost necessary to develop a successful 

civil aircraft could be afforded at the present time; further it is uncertain whether 

such aircraft have any economic advantages over the conventional jet-propelled 

airliner.62 

 



However, enthusiasm was revived with a significant development in 1953 when 

Handley Page achieved the world’s first flight-test demonstration of LFC across the 

whole wing chord (the distance from the front to the back of the wing) using a suction 

sleeve fitted to a de Havilland Vampire fighter. Once the system of suction had been 

redesigned to ensure a sufficiently aerodynamic surface, laminar flow ‘was then 

maintained repeatedly in flight.’63 Similarly promising results were achieved the 

following year in the US with the Northrop F.94 sleeve, and ‘such encouraging results 

were repeated during well over 100 flights, some over 1000 miles range.’64 In all 

these flight-tests the problem of ‘insect and dirt contamination was prevented by 

covering the nose of the wing at take-off and discarding the cover at altitude.’65 

 

However, progress in the development of LFC was hindered by advances elsewhere 

in aircraft design, as the move to faster aircraft powered by jet engines and with 

swept-back wings complicated matters. The ARC’s Performance Sub-committee first 

recommended that ‘an experimental aircraft be built to study the application of 

boundary-layer control for laminar flow’ in 1955, but progress was slow because 

there ‘were still serious doubts as to whether suction would be effective on a 

sweptback wing.’66 The AW52 flight tests, along with other flight tests in 1952, had 

indicated ‘that sweepback could precipitate transition quite close to the leading-edge, 

because of the instability of the boundary-layer cross-flow associated with pressure 

gradients normal to the stream direction.’67 The AW52 wings had been designed to 

maximise natural laminar flow (i.e. based on the shape rather than active sucking or 

blowing), but the flight tests had ‘revealed an unexpected phenomenon – that sweep 

has a profound de-stabilizing effect on the laminar boundary layer as it passes round 

the nose of a wing.’68 The conclusion was reached that it ‘would seem that no laminar 

flow is present on normal wings of any appreciable size and speed if their sweep 

exceeds roughly 20 degrees.’69 

 

These doubts were later allayed as ‘more elaborate theories and a wind-tunnel 

experiment with suction in America showed that the early theoretical results were far 

too pessimistic.’70 This work suggested ‘that the suction quantities that would be 

required for say, a 40o sweptback wing might be only about 50% greater than for an 

unswept wing.’71 By the late 1950s it was thus thought the challenges of 

laminarisation of swept wings could be overcome. An April 1959 RAE review 

reported that:  

 

The use of suction for the maintenance of laminar flow has been studied in this 

country and the USA for over 20 years, and developments towards a practical 

scheme started some 10 years ago. Until 1952, attention was mainly concentrated 

on two-dimensional flows as appropriate to unswept wings of large aspect-ratio, 

but since then the three-dimensional flow problems associated with sweepback 

effects have been successfully tackled.72 

 

In the same month, Handley Page produced an analysis of the benefits of LFC based 

on ‘frequent consultations with representatives of the Ministry of Supply and the 

Royal Aircraft Establishment, and also with members of British Overseas Airways 

Corporation and British European Airways.’ Based on a Boeing 707 type aircraft, 

with or without laminarisation, and flying on the London/New York route, it 

concluded that with even ‘the most adverse assumptions the saving is 16.3%.’73 

However, the problem for Handley Page was that convincing evidence of the benefits 



of LFC in practice could only be obtained by building and operating a LFC aircraft. 

Wind tunnel and flight testing in the UK and USA indicated that the concept was 

feasible, but many practical issues needed to be addressed to show that a LFC aircraft 

would be reliable and economic. As Lachmann wrote in 1961: ‘The step from the 

present state of the art to the successful application on an economical transport 

aircraft is obviously still very big but there is sufficient promise that the reward is 

worth the effort.’74 

Building an LFC Aircraft (on Paper) 

 

The challenge was making this step. Even if feasible, there still remained doubts 

about whether laminarisation would be worthwhile given the extra cost of 

development, the likely need for more maintenance, and the weight penalty involved. 

Thus the 1959 RAE review noted that:  

 

The reduction in drag achieved by maintaining laminar flow over the wing and tail 

unit is of course only obtained at the expense of some additional weight – the extra 

weight of the suction surfaces, and of the suction pumps, drives and ducting. 

Design studies by Handley Page have indicated that this weight penalty amounts to 

between 4% and 4½% all-up weight for a large aircraft. (More recent studies by 

Handley Page suggest a somewhat lower figure.)75 

 

Given that fuel was then a relatively small part of the cost of aircraft operations 

(taking into consideration R&D, construction, crew, and maintenance), it was clear 

that the greatest potential benefits would be for long-range aircraft. However, there 

were doubts about whether civil aircraft needed a range greater than the 3000 miles 

that was then the longest range available. It was concluded that: ‘If a requirement for 

a very long range civil transport can be established laminar flow designs become even 

more attractive.’ The RAE were sceptical about the civil need, but noted that: 

‘Although the requirement for a very long range civil aircraft may be in doubt that for 

a troop transport aircraft, it may be argued, is more real.’76  

 

However, with many other procurement programmes considered more pressing by the 

armed services, there was no sign of financial support for such a military requirement. 

Without defence bankrolling of LFC work there was a ‘chicken and egg’ stalemate. 

Large-scale funding, either from government or industry, was unlikely until the 

technology was proven, but such ‘proof’ could not be obtained unless a laminarised 

aircraft was built and tested. The need for such a demonstration had been recognised 

by the ARC’s Performance Sub-Committee which had recommended ‘in 1955 that an 

experimental aircraft should be built to provide data from which a proper assessment 

of the advantages of such a technique could be made.’77 

 

Handley Page’s first plan for such a demonstration was the HP 113 - a small two-

engined ‘high performance long-range executive aircraft.’78 Funded by the Ministry 

of Supply (MOS), the HP 113 design study was delivered in May 1958. In the 

accompanying letter, F. Handley Page noted that work with the RAE, the National 

Physical Laboratory, and the College of Aeronautics, Cranfield, along with US data, 

indicated ‘clearly that the application of boundary layer control to transport aircraft is 



entirely practicable and would have the effect of considerably increasing the range for 

a given weight.’79 

 

The benefits projected for LFC in the HP 113 study were substantial: 

 

A comparison between this aircraft in conventional and laminarised forms shows 

to good advantage the substantial range benefit from the elimination of a turbulent 

boundary-layer airflow. It increases the maximum range from 3,870 to over 6,300 

miles. When operating with maximum payload the range with full allowances is 

increased by over 60 per cent from 2,240 to 3,640 miles.80 

However, the MOS response was discouraging: 

 

I am bound to say that my first reaction is that the aircraft you are proposing is 

likely to be too expensive for us to consider solely on the research ticket – although 

I take your point that it may be the smallest to which boundary layer control could 

usefully be applied. On the other hand it seems to me very doubtful that the MOS 

will be able to sponsor it as a civil project.81 

Nevertheless, the MOS enlisted RAE to provide an assessment, noting that ‘despite 

the uncertainty of how we should be able to finance such a project it deserves a 

careful technical appraisal.’82 A meeting was held in Whitehall on 24 June 1958 with 

participants from the Ministry and RAE. Also present was Sir Melvill Jones who 

‘stressed his conviction that laminarised commercial aircraft would eventually be 

developed.’83 Although there was some scepticism about Handley Page’s estimates of 

the benefits and costs of LFC, the bottom line from the Ministry’s point of view was 

‘that there was little chance of finding the three million pounds which would be 

required to build and test the HP. 113.’84 Flight testing of a laminarised half tail plane 

or wing were discussed as cheaper options and ‘it was agreed that Handley Page 

should be asked to submit an estimate of the economic advantage of the laminarised 

airliner and to suggest less costly means of demonstrating its practicability than the 

building of the H.P. 113.’85  

 

Further discussion with Lachmann continued in July, when it was confirmed that 

Handley Page was ‘continuing with the design of the Midge wing with distributed 

suction on both surfaces’ and would have detailed drawings and design detail by the 

end of the year.86 Lachmann also described their work on understanding the problem 

that insects might pose for maintaining a LFC system in flight, particularly as regards 

the degree to which fly contamination would naturally be cleaned away in flight: ‘The 

experiment consisted of firing live flies at the leading edge of a Victor wing, climbing 

to altitude and flying at high speed to erode the remains of the flies.’87 Lachmann’s 

belief was ‘that flies collected at low altitude would be eroded sufficiently for laminar 

flow to be established at high altitudes.’88 

 

The meeting also discussed ‘possible cheaper methods of demonstrating the 

practicability of a laminar flow airliner than the building of the HP. 113.’89 The need 

for cheaper ways of demonstrating LFC was also stressed in a September 1958 report 

from the MOS’s Transport Aircraft Technical Committee: 

 

The money likely to be available for research aircraft in the next few years will 

support only the minimum essential programme. In view of this and of doubts 



about the economic advantages of boundary layer control in practice, less costly 

ways of investigating the problems must be considered and the firm are at present 

looking into this.90 

 

Despite the scepticism of the MOS and RAE, Handley Page’s endeavours were now 

strongly supported by the ARC Sub-Committee which noted that ‘the outstanding 

need was for the application of suction to be demonstrated in a comprehensive flight 

experiment involving either the construction of a small aircraft such as the H. P. 113 

or the extensive conversion of a long range jet transport.’ Its preference was for the 

smaller aircraft ‘on account of its lower total cost and shorter time scale and since it 

was thought likely to offer a more convincing proof of the benefits of 

laminarisation.’91  

 

However, Handley Page’s next proposed laminarised aircraft was, if anything, more 

ambitious. The HP 117 study produced in June 1960 not only made use of suction to 

maintain laminar airflow, but it also used a flying wing design. Whereas the main 

selling point of the HP 113 had been distance, the combination of laminarisation with 

a flying wing in the HP 117 was seen to offer a radical transformation in the 

economics of air travel. The HP 117 study thus envisaged a different technological 

vision for civil aviation to one that was based on ever increasing speed. In sync with 

that era’s technological optimism, Handley Page acknowledged that supersonic air 

travel was ‘a new and inevitable development’, but it argued that its expense would 

only make it more exclusive: ‘With costs at a level making air travel a luxury, 

passenger air transportation can be expected to remain the preserve of the expense 

account traveller or the wealthy, and a significant increase in air passenger traffic is 

unlikely without a correspondingly significant reduction in fares.’92 

 

Handley Page argued that the HP 117’s greater fuel efficiency could enable air travel 

for the masses: ‘It is considered that conditions for general adoption of long range air 

travel would be met, if operating speeds of current jet transports are maintained with a 

spectacular reduction in direct operating costs.’93 The HP 117 would achieve this 

through ‘the full exploitation of low drag associated with laminar flow in combination 

with the low structure weight of the all-wing aeroplane.’94 The all-wing design meant 

that the HP117 would not have passenger windows, as there was simply no fuselage 

in which to put them. Instead Handley Page proposed to replicate outside views by the 

use of televisions placed throughout the cabin: 

 

Because both of the all-wing layout and the need to apply suction over nearly all of 

the external surface, it has not been possible to provide windows for the 

passengers. It is intended that in lieu of direct vision from windows the passengers 

will be provided with a view from one or more suitable points on the aircraft by 

means of closed circuit colour television. It is believed that in this way feelings of 

claustrophobia will be avoided and that the really excellent view-point that can 

thus be provided will, in fact, constitute additional passenger appeal.95 

 

Although the HP 117 was juxtaposed in contrast to the presumed technological 

trajectory of increasingly speedy aircraft, Handley Page’s paper studies also extended 

to supersonic airliner concepts. One study showed that a fully integrated design could 

enable an increase of at least 25% in payload.96 However, the ARC’s Performance 



Sub-Committee was also interested in the use of laminarisation on more conventional 

supersonic designs along the lines of Concorde, and recommended in 1962 ‘that a 

further study should be undertaken comparing a laminar and turbulent supersonic 

transport of the “Bristol” type carrying say, 100 passengers.’97 Interest in applying 

LFC to supersonic aircraft would continue throughout the 1960s, though its usefulness 

remained contested with, for example, one 1969 report claiming that ‘the benefits to 

be derived from the laminarisation of supersonic transport aircraft could be seen to be 

insignificant.’98 

 

With the HP117 again having failed to gain development funding, Handley Page 

produced its final design study for a LFC aircraft in late 1966. Attempting to find a 

less expensive approach, this proposed a conversion of Hawker Siddely Aviation’s 

successful small (6 to 8 seater) HS 125, described in 1964 as ‘a business-man’s 

transport.’99 Handley Page’s laminarised version, known as the HP 130, would retain 

most of the HS 125 design, but with the addition of laminarised wings and extra 

powerplants fitted under the rear of the fuselage to provide suction. The cost of 

providing one such aircraft was put at £4 million, and with the aim of demonstrating 

the feasibility of LFC it was argued ‘that the proposed aircraft conversion probably 

represented the cheapest and quickest means of realizing these objectives.’100 

 

But paper studies alone were not enough. Lachmann himself had summarised the 

situation in 1962, noting that ‘various projects for laminarized research aircraft have 

been put forward but have shared the fate of so many other projects, gyrating once or 

twice through the prescribed tortuous course of committees, sometimes dying of sheer 

exhaustion even before the final coup de grace was administered by the controller of 

the purse strings.’ The problem, Lachmann lamented, was that this ‘malaise is 

symptomatic for British aviation’: ‘Available funds for research and development are 

restricted, of course, and the chances of official support of development are 

particularly poor for any scheme which is not completely cut and dried and for which 

no immediate requirement exists. No fundamentally new scheme, of course, can make 

such a claim.’101 

Calculating the Incalculable 

 

There was a Catch-22 situation. Funds to build an operational aircraft would only be 

forthcoming if an operational aircraft could demonstrate that the concept was 

effective in practice, but no such aircraft could be built without funding. As the ARC 

Sub-Committee ‘noted with concern’ in March 1965, ‘despite its frequent reiteration 

of confidence in the application of boundary-layer suction, no aircraft has yet been 

built in this country to demonstrate the principle under actual operating conditions.’102  

 

Further collection of empirical data on laminarisation in the UK was limited to tests 

with a Handley Page swept wing with suction that was both flown on a Lancaster 

aircraft at Cranfield and tested in the 13 ft x 9 ft wind tunnel at RAE Bedford.103 An 

RAE report noted that ‘although this relatively inexpensive experiment will provide 

useful aerodynamic background together with experience in suction wing construction 

and operation, its value as a confidence demonstration to aircraft designers and 

operators leaves much to be desired.’104 

 



Throughout the 1960s the ARC’s Performance Sub-Committee continued to 

recommend further work on LFC, without having the authority to provide the funds to 

do so. Its March 1965 review endorsed the ‘previously expressed views of the Sub-

Committee that at both subsonic and supersonic speeds, laminar flow aircraft appear 

commercially attractive and technically feasible.’105 Its key recommendations were 

that ‘the design study contract recently placed should be followed by the construction 

of an aircraft to demonstrate the effectiveness of boundary-layer suction at subsonic 

speeds under actual operating conditions’; that ‘the work in progress or planned at 

NPL, RAE and Cranfield with the aim of obtaining a better understanding of the 

leading-edge contamination problem and of the most effective solutions should be 

pursued vigorously’; and that ‘a programme of basic research on laminar flow at 

supersonic speeds should be undertaken.’106 

 

However, given funding constraints this was easier said than done. The UK had great 

ambitions in aerospace and defence technology (including the Anglo-French 

Concorde supersonic airliner), but lacked the economic resources to fulfill them all. 

Even within the ARC’s Aerodynamics Committee there was ambivalence about how 

to proceed. In June 1965, the Committee’s secretary wrote that ‘some criticism was 

expressed, by members not present at the previous meeting, of the wording of the 

recommendation made at that meeting … that an aircraft making use of boundary-

layer suction should be built.’ In effect, this ambivalence reflected the same doubts 

that had inhibited large-scale government support. The Committee did not want to 

commit to ‘an aircraft which is unsatisfactory in some respects and which would not 

therefore be the best one to be built’, but at the same time felt that ‘when an 

acceptable design study has been completed, that aircraft should be built with as little 

delay as possible so that the effectiveness of boundary-layer suction at subsonic 

speeds may be demonstrated under actual operating conditions.’107 

 

While the ARC’s Aeronautics Committee was generally supportive of LFC, the RAE 

provided a more sceptical counterpoint. An April 1967 RAE report concluded that 

‘the future for subsonic laminar-flow aircraft looks bleak, unless there is a strong 

military case for extremely long range. The technique was not supported for civil use 

ten years ago, and advances in technology in conventional aircraft since then have 

tended to reduce its attractions.’108 This report did not consider the use of flying wing 

type designs, such as the HP 117, but instead focused on two comparisons of aircraft 

with what was now considered the standard layout along the lines of the Boeing 707, 

one with suction laminarisation of wings and tailplane and the other without. One 

comparison involved aircraft with 1960 technology, the other with expected 1975 

technology.109 However, the key comparison emphasised by the RAE report was not 

between aircraft of the same vintage, but rather between the 1960 laminarised aircraft 

with the conventional 1975 one: 

 

A comparison between the estimated performance of a 1960 laminar-flow aircraft 

and a 1975 conventional aircraft is now revealing ... It shows that the performance 

of the 1960 laminar-flow aircraft is appreciably worse at all design stage lengths 

than that predicted for the 1975 conventional aircraft, and it suggests that unless 

design stages of even more than about 5500 nm are required by airlines, the 

continued development of the conventional aircraft will be able to cater for the 

growth in required range.110 

 



The report conceded that for military applications, ‘if very great ranges (say, more 

than 7000 nm design stage) are required for transport purposes, the developed 

laminar-flow aircraft appears as a strong contender.’ But ‘for civil operation, all that 

can be said on the basis of the present estimates is that a laminar-flow aircraft, which 

was judged (rightly or wrongly) to be not worth proceeding with in the 1955-60 era, 

has not been made more attractive with the passage of time, and advances in 

conventional aircraft technology.’111 The main reason for this was the increasing 

efficiency of turbofan engines that reduced the benefits of the aerodynamic efficiency 

offered by laminarisation. 

 

The RAE’s econometric analysis of the costs and benefits of LFC involved many 

assumptions. As the report noted, there was a crucial ‘lack of experience in this 

country of operating such an aircraft under realistic operational conditions.’ Lack of 

knowledge from practical experience was a problem because ‘the benefit from 

laminar flow control depends on quantities which cannot be adequately tested by 

wind-tunnel, rig, or even research flight testing alone.’ As the report noted: ‘Unless 

practical experience is gained and satisfactory results demonstrated by transport 

operations over typical routes for a substantial period, it seems unlikely that any 

prospective user could be persuaded to select a laminar-flow aircraft.’112 

 

By 1968 the end of the line had almost been reached. LFC work at NPL, RAE and 

Cranfield had ground to a halt, and in May the ARC’s Performance Sub-Committee 

reported that ‘no work is now proceeding; some items have been completed; others 

have been stopped.’113 The Sub-Committee returned again to discussing the potential 

merits of LFC, and the apparent difference of opinion between the negative 

conclusions of the RAE and the optimistic analysis of Handley Page: 

 

Initially, the Sub-Committee was very concerned about these differences, but 

following discussion between RAE and Handley Page Limited, they have now 

been explained satisfactorily. Many of the assumptions in the two studies were in 

reasonable agreement but there were two main reasons for the final differences.114 

 

One difference concerned cost assumptions – that ‘since 1959, there has been a 

relative decrease in fuel costs and a relative increase in crew costs’ – making fuel 

savings less significant. The other concerned the extra initial and maintenance costs 

that would be incurred by an LFC aircraft over those of a conventional aircraft.115 The 

problem, as the Sub-Committee had repeatedly pointed out, was that hard evidence 

was not available: 

 

Clearly, some of these other figures must be regarded as purely arbitrary estimates 

and so, as on many occasions in the past, the discussions have highlighted the 

difficulties of making any accurate assessment of the possible performance 

advantages from laminarisation in the absence of reliable and substantiated data on 

manufacturing and maintenance costs.116 

The Sub-Committee took issue with the RAE analysis in one particular regard – the 

comparison of a standard aircraft with a laminarised one of the same layout - noting 

that ‘the comparison should be made by designing the two aircraft completely 

independently – to find the best aircraft of each type to meet a specified requirement. 

This approach could have a marked effect on the conclusions.’117 Nevertheless, the 



analysis suggested that the shifting cost assumptions, particularly ‘the better specific 

fuel consumption expected from high bypass-ratio engines’, had moved the crossover 

point (when a laminarised aircraft would make economic sense) from around 3500 

miles to more like 5500 miles.118 

 

Whatever the exact figures, the trend did not favour investment in a laminarised 

aircraft, and the Sub-Committee noted that it had ‘been informed that at present, the 

Ministry of Technology foresees no civil or military requirement for an aircraft with a 

range of 5000 miles or more.’119 Nevertheless, the Sub-Committee was reluctant to let 

go, noting that it ‘appreciates that it is difficult in present economic circumstances to 

press for the construction of any research aircraft, but nevertheless, they urge most 

strongly that this decision not to proceed with any operational research aircraft for 

laminar flow should not be thought of as a final decision but rather, that it should be 

kept under regular review. Requirements have changed in the past and may well 

change again in the future.’120 

 

LFC technology fared not much better in the USA, where more comprehensive flight-

testing had been carried out. Starting in 1963, the Norair X21A swept-wing laminar-

flow aircraft had completed ‘about 110 flights with 360 hours in the air.’121 The X-21, 

‘despite encouraging results from model tests in various wind tunnels’, initially 

demonstrated no laminar flow in flight tests. The problem, it seemed, was turbulence 

emanating from the join of the wing to the fuselage.122 These problems with span-

wise contamination, as well as with surface smoothness, ‘consumed significant 

periods for their solution.’123 By the time this problem was solved, high level Air 

Force support had waned, perhaps because of the increasing demands of Vietnam, and 

the programme was cancelled, although the X-21 was by then achieving laminar flow 

over 95% of its laminarised surfaces: ‘Unfortunately, top management in government 

and industry remembered the difficulties and time required to reach this point more 

than they did the accomplishment.’124 

 

Postscript: Laminar Flow Control and Flying Wing Technology since the 1960s 

 

While the UK had foregone its initial strengths in LFC research by the end of the 

1960s, the concept was not dead in the USA. There was no immediate follow-up to 

the Northrop X-21 flight-testing because the potential benefits of LFC fitted no urgent 

requirements, whereas Vietnam posed a very pressing challenge for the US Air 

Force.125 On the one hand, there was ‘a lack of contemplated need for very long-range 

missions for commercial aircraft for which the benefits of active laminar-flow control 

were a necessity’, and on the other, ‘the price of jet fuel was then so low that the 

estimated fuel-cost savings for commercial transports with ranges of interest was 

almost offset by estimated increases in manufacturing and maintenance costs.’126 

 

This calculus changed with the 1973 ‘oil crisis’, when the OPEC oil embargo resulted 

in a dramatic increase in the price of jet fuel. As a result, NASA established the 

ACEE (Aircraft Energy Efficiency) program.127 Of the six major projects aimed at 

increasing aviation efficiency, one of the most radical was LFC. The task of the LFC 

group was in some ways more challenging than it had been in the 1960s test 

programme because now the aim was to develop technology that would be suitable 

for the civil airliner industry ‘where manufacturing and operational costs are more 



important.’128 The ACEE/LFC program carried out, and sponsored, a wide range of 

activities, from basic research to flight-testing, in order to establish the practicality of 

LFC. Key concerns included insect contamination and the consequent in-flight loss of 

laminarisation, along with maintenance costs. Flight tests on a relatively small aircraft 

demonstrated that LFC could be maintained over a portion of the wings under 

operational conditions that were typical of commercial airliners: ‘during four years of 

flight testing from November 1983 to October 1987, no dispatch delays were caused 

by LFC systems.’129 

 

Despite these findings, uncertainty over maintenance costs and potential in-flight loss 

of LFC deterred airliner manufacturers from using LFC.130 Both Boeing and Airbus 

have flight-tested hybrid LFC, in which a combination of natural and active laminar 

flow control provides a more reliable, though less efficient solution than active LFC, 

and this was implemented on the Boeing 787-9 variant (Kingsley-Jones 2014; 

Goldhammer, 2010; Mecham, 2012).131 Nonetheless, an airliner with extensive 

suction-LFC does not appear to be a near-term prospect.  

 

The operational and economic arguments made against LFC in the 1950s and 1960s 

continue to militate against adoption of active LFC in airliners. Although there has 

been considerable testing of the technology, actual operational experience is lacking. 

Airline operators and manufacturers are wary of anything that might interfere with 

routine, frequent aircraft operation. The average airliner flies more than four times a 

day; some short-haul aircraft go through a remarkable ten cycles per day.132 While the 

extra time and cost of maintenance could be justified by greater fuel efficiency, a 

more intractable concern stems from the worry that some flights – maybe a very small 

percentage – might suffer loss of laminarisation due to insect contamination or 

adverse weather conditions. The consequent loss of efficiency and thus range might 

mean that aircraft would either have to carry extra fuel – thus undermining the 

efficiency gains provided by LFC – or would have to be able to divert to airports short 

of their intended destination.  

 

Different considerations inform the potential for a flying wing airliner, with or 

without LFC. In 1947 Flight magazine predicted that: ‘Some day the flying wing will 

emerge as the accepted form of a passenger air liner.’133 That day is not imminent, 

although the operational performance of the B2 bomber since 1997 means that the 

feasibility of the technology is no longer in doubt. Developed more for stealth rather 

than efficiency, the B2 nevertheless shows that fly-by-wire avionics negate earlier 

concerns about stability. However, the efficiency gains from eliminating non-lift 

structures in flying wing designs must be balanced by other disadvantages. The 

classic cylindrical airliner fuselage is well-suited to providing pressurised cabin space 

with minimal use of structural materials, whereas cabins that extend along the wings 

produce more complex geometries with a concomitant requirement for more structural 

materials that add to overall weight. In addition, flying wings big enough to 

accommodate standing passengers in the wings would be very large and heavy, and 

many airports could not handle such planes without expensive improvements. 

Moreover, the perception that passengers like to have windows (contrary to what was 

espoused in the HP 117 design) means that modern flying wing designs usually take 

the form of a compromised ‘blended wing’ in which there is sufficient fuselage to 

provide windows.134 



Conclusion 

 

Historical and sociological studies of technology have shown that many, often 

contingent, factors shape how some technologies emerge successfully from competing 

possibilities.135 This history of LFC technology, intertwined with consideration of 

flying wing aircraft design, tells a tale that is familiar for post-war British innovation. 

The capacity of the UK’s research base to generate new technological possibilities – 

many of them stemming from military R&D – appeared to outpace the ability of 

industry and/or the government to nurture those inventions to commercial maturity. 

Within this overall generalisation, there are illustrative examples that indicate the 

importance of both investment and market demand. The pharmaceutical industry 

proved successful in turning inventions into products, aided by British procurement 

mechanisms that ensured both a demand for its products and unusually high levels 

(for the UK) of R&D investment.136 Elsewhere, as in the case of carbon fibre, the 

more typical problem in other sectors was that British industry struggled to match the 

consistent investment approach taken by key competitors.137  

 

However, simply to lament ‘short-termism’ would be naïve because it is not always 

possible to judge how long it will take to turn a promising invention into a 

commercial success. For example, research done at the defence research 

establishments meant that between the 1960s and 1980s the UK was a world leader in 

compound semiconductors such as gallium arsenide. However, commercial success 

was elusive and for many years gallium arsenide was described with the well-known 

aphorism: ‘the technology of the future, always has been, always will be.’138 It was 

only a convergence of several other technologies that reached maturity during the 

1980s and 1990s, leading to many unexpected digital applications, that created a large 

demand for gallium arsenide.139 In effect, the UK had helped created the technology 

base for others to exploit, but the time between research advances and commercial 

opportunity was so great as to have required a ‘long-termism’ well beyond most 

governments, never mind industry.  

 

In the case of aviation technology, government support and direction in the post-war 

years was framed by twin competitive rationales – one military, directed at the Soviet 

Union; the other economic, directed at the USA. These were mutually supportive with 

regard to underlying knowledge and enabling technologies, but also in competition for 

resources. The UK’s post-war ambitions in military and aerospace technologies 

quickly came up against economic reality, with retrenchment by governments of both 

colours, leading to a catalogue of cancellations of aircraft projects.140 Commercial 

success for civil airliners depended on large production runs because of the very high 

initial costs of design, testing, and production tooling, but without a compelling 

technological edge it proved hard for UK manufacturers to gain a significant share of 

the much larger US market (not helped by the disastrous crashes suffered by de 

Havilland’s pioneering Comet airliner).141 

 

Indeed, government investment in civil aviation rarely paid off, as shown by the oft-

quoted data on the returns to government civil aerospace investment between 1945 

and 1974 show.142 Governments instead sought to justify investment in civil aviation 

on the grounds of economic ‘externalities’ that could not readily be quantified, such 

as employment, spin-off, or even national prestige.143 Perhaps the most significant 

externality of all – that of the ‘tragedy of the commons’ – was not a consideration for 



these governments. It is now - and if the idea of a ‘climate emergency’ is to be taken 

seriously, innovation in aviation technology should no longer be considered in terms 

either of narrow economic costs or nationally focussed benefits. 

 

The question remains as to whether LFC technology (perhaps in combination with a 

flying wing design) can still have a role in greener aviation. Should LFC be 

considered a failed technology, or just one that has not succeeded yet? Technologies 

that fail - what have been termed ‘extinct innovations’ – can be revived when social 

conditions become more suitable.144 This history shows how the proponents of LFC 

faced an insurmountable Catch-22 situation whereby funding to develop an 

operational aircraft could only be obtained if operational efficacy had already been 

demonstrated. 

 

If anything, recent decades have seen such barriers to entry become even stronger for  

the commercial uptake of new technologies by civil aviation. In the immediate post-

war years a variety of designs appeared possible, but the more that the paradigmatic 

Boeing 707 type airliner gained acceptance, the more difficult it became for radical 

potential entrants to break into the market. Alongside a growing consensus amongst 

airlines and their customers about what an airliner should look like, there also 

developed a number of path dependence effects that helped to lock in the established 

paradigm and lock out less conventional designs. The paradigmatic airliner approach 

benefitted from the ‘increasing returns’ that accrue from well-funded R&D and from 

‘learning by doing’ in design, manufacturing and operation, while alternative 

aerodynamic designs were relatively neglected.145 Similarly, there are ‘network 

externalities’ involved in the infrastructure of aviation (the physical structure of 

airports and supporting maintenance facilities) that can militate against other 

aerodynamic approaches, such as large and heavy flying wings.146  

 

Perhaps the most significant of these path dependence effects stems from concerns 

over safety. It is a moot point as to whether the Comet would have presaged enduring 

commercial success for the UK aviation industry, but its catastrophic failures due to 

metal fatigue not only led to the establishment of new testing methods for airliners, 

but also provided a salutary lesson in the risks of reputational damage. This culture of 

safety (recently undermined at Boeing to its great cost147) became embodied in a 

regulatory environment that has been remarkably stable over the last fifty years, and 

persistent in promoting risk-averse incrementalism.148 

 

In contrast, any pressures to improve environmental performance, particularly as 

regards fuel efficiency have been notoriously fickle. While fuel efficiency has always 

been desirable, the fluctuating price of fuel has favoured innovation focussed on 

small, predictable gains from improving familiar technologies. Radical, but 

potentially more efficient, approaches have mostly failed to move beyond R&D.149 

For many years, the only significant environmental considerations concerned the 

impact on those living nearby airports, with solutions to address local air pollution 

and noise often leading to engine designs that were less fuel efficient.150 

 

Concern about climate change has now brought ‘green aviation’ firmly onto the 

agenda, potentially changing what counts as important in aircraft design. This has 

revived R&D, with for example funding provided ‘to support NASA’s 

environmentally responsible aviation program.’151 However, fluctuating oil prices 



continue to mean that airline companies and airliner manufacturers have no stable 

rationale for adopting radical solutions to achieve greater fuel efficiency. As one 

account notes: ‘Although since the 1960s the level of interest in laminar flow has 

fluctuated with the price of oil, the price has never stayed high enough for long 

enough to persuade any aircraft manufacturer to take the plunge.’152 

 

Whether or not LFC and/or flying wing airliners are part of the solution, the 

commercial uptake of radical greener aviation technologies would thus seem to 

require a substantial reshaping of the societal context in order to align commercial 

interests with those of the environment. Perhaps the last word should go to Gustav 

Lachmann, whose advocacy of laminar flow control was frustrated during his 

lifetime: ‘Non-conformists never have an easy life, in fact it can become very 

frustrating in this era of take-over bids and the “Corporation man”. But I venture to 

suggest that in the past they often contributed to important reorientations of thought 

and development – and not only in Aviation.’153 Clearly, in an age of ‘climate 

emergency’ there needs to be a radical reorientation of thought so that the commercial 

‘realities’ of the ‘Corporation man’, that have stymied the adoption of radical 

technologies such as LFC and flying wing aircraft, are no longer seen as the most 

pressing realities. 
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