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In previous few decades, the revolution of the modern 
molecular techniques happened. These modern advances 

have genuine ramifications of different zones of Parasitol-
ogy, examples are the expansion of the modern techniques 
for the prevention of parasitism through a higher learning 
of parasitic reproduction and improvements (Gasser, 2006; 
Hodgkinson, 2006). Likewise, the correct distinguishing 
proof of parasites (without the expense of sexual and de-
velopmental stage) and the inherited characterization have 
fundamental ramifications for taxonomy (scientific order 
and phylogenetic relationship), people hereditary quali-
ties, science and the investigation of sickness transmission, 
and are furthermore vital to examination, medication and 
the prevention of the disease that they cause (Conraths 
and Schares, 2006; Gasser, 2006).Generally, the clinical 
symptoms of infection with bursate (order Strongylida) 
roundworms have been established on the identification of 
eggs and larvae from the feces of the animal. The presences 
of the eggs of various types of strongylids are the genu-

ine diagnostic issues, for example, the eggs of hookworms, 
trichostrongyloids and knob worms (Setaria digitata) have 
similar basic morphology (except for those of the class 
Nematodirus). To overcome this problem, the culture of the 
feces is used to transform the eggs to infective larvae L3, 
which help the identification of parasite at the genus level. 
Nevertheless, coprological studies using this methodology, 
is troublesome, monotonous and requires individual abili-
ties at perceiving these developmental stages (Gasser, 2006; 
Jacobs and Schnieder, 2006). Nevertheless, these criteria 
are much of the time lacking for particular identification. 
Diverse nucleic acid procedures give different techniques 
to beat the imperatives of standard systems, mainly for 
those who depend upon the DNA amplification (Monis 
et al., 2009). Furthermore, the DNA sequence based am-
plification, ligase reaction, displacement amplification, 
replicas-mediated amplification and linear-L amplifica-
tion (Conraths and Schares, 2006). The polymerase chain 
reaction (PCR)based techniques are very helpful, accurate 
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Table 1: Antihelminthdrugs resistance status of different countries.
Countries Benzimidazoles

(route)
Imidazothiazoles
(route)

Macrocyclic lactones 
(route)

Nematode species/genera

Argentina Oral,Inj Oral ,Inj Inj Hspp,Cspp,Ospp,
Australia Oral --- oral Hspp,Cspp,TSSP,
Brazil Inj Inj Inj Hspp,Cspp,Ospp,
Belgium - Inj Inj Cspp,Ospp,
United Kingdom - - Inj Cspp,
Germany, - - Inj Cspp,Ospp,
Sweden - - Inj Cspp,Ospp,
Belgium, - - Inj Cspp,Ospp,
India Morantel tartrate (oral) Hp
New Zealand Oral - Oral ,Inj Hspp,Cspp,Ospp,Tspp
USA Oral ,Inj - Inj Hspp,Cspp,Ospp,

(Hspp= Haenonchus species, Cspp= Cooperia species, Ospp= Ostertagia species, Tspp= Tricostronglidaespecies, Hp= Haemonchus placei)

and easy accusable for the analysis purpose (Gasser, 2006).

antiparastiC drugs and development of their 
resistanCe in livestoCK
GI nematode infections are causing the significant diseases 
in the animals of Pakistan and around the world. A viable 
technique is required for the successful control of nema-
todes by reducing their disease rate and transmission to 
other host keeping in mind that the end goal is to shield 
dairy cattle from production disasters. Procedures for the 
control of roundworms by utilizing antihelmintic medica-
tions must to be formulated in light of the quantization 
and identification of species (Mochizuki et al., 2006). There 
are five broad-spectrum and one narrow spectrum anthel-
mintic classes but mostly three classes of anthelmintic 
medications; Benzimidazoles (BZ), Imidazothiazoles (IT) 
and Macrocyclic lactones (ML) are utilized for the con-
trol of nematode parasites around the world. Antiparasitic 
drugs resistance has been characterized as a lessening in 
the adequacy of a medication against a populace of para-
sites, which are typically powerless to this medication by 
a particular dosage or focus. Multiple resistance develop 
when the entities are resistance to at least 2 diverse anthel-
mintic classes either because of selection by each class au-
tonomously or because of cross-resistance (Prichard et al., 
1980). Resistance inside a medication class has a tendency 
to be normal to all individuals from the class, in spite of the 
fact that distinctions in strength imply that a few medica-
tions hold action nevertheless when obvious resistance has 
been recorded to others in their group.

Resistance from each of the three classes, benzimidazoles, 
levamisole and the avermectins, have now been accounted 
for in various parts of the world, and nematode parasite 
populaces have been found with resistance from every one 
of the three main classes of drugs (McKellar and Jackson, 
2004). Published cases of anthelmintic resistance in differ-

ent country of the world in gastrointestinal nematodes of 
cattle illustrated below in Table 1 and Table 2 (Sutherland 
and Leathwick, 2011).

Nematodes infections are controlled in ruminants which 
mainly depends upon the use of broad spectrum anthel-
mintic prophylactically (McKellar and Jackson, 2004). 
Anthelmintic resistance to the all main classes has major 
negative impact on animal prosperity and production profi-
ciency making control gradually more difficult and in some 
cases unmanageable (Gilleard, 2006; Kaplan, 2004). Mul-
tidrug resistance now impedes the sustainability of small 
ruminant industry. On the other side, despite a worldwide 
concern in the progress of antihelmintic resistance in small 
ruminants, only slight attention is given to the progress of 
drug resistance in large ruminant parasites (Coles, 2002). 
There are sluggish progresses in development of resistance 
in large ruminants as compared to the small ruminants, 
where it is very rapid. But now reports from the different 
part of world show that anthelmintic resistance in cattle 
parasites is emerging increasingly (Gasbarre et al., 2009a; 
Gasbarre et al., 2009b; Sutherland and Leathwick, 2011) 
and indicate a significant challenge to the cattle indus-
try. However the knowledge of genetics and mechanism 
of drug resistance development is now succeeding but till 
there are much more facts that remain poorly understood 
(Beech et al., 2011).

phenotypiC and genotypiC assays used for the 
anthelminthiC resistanCe diagnosis
Dynamic issue of anthelmintic resistance has provoked the 
expansion understanding of the requirement for depend-
able and consistent identification strategies (Hunt et al., 
2008). Phenotypically the most valuable methods includ-
ing, fecal egg reduction test, egg hatching assay and the 
coprological test, number of disadvantages regarding price, 
fittingness, and comprehension of perception were observ-
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Table 2: Anthelmintic resistant percentage reported in world  (Ramos et al., 2016).  
Drugs New Zealand Brazil Argentina Belgium, Germany

and Sweden
Belgium and 
Germany

% Benzimidazoles (BZ) Resistance  76% 25% 32% Not detected Not detected
% Imidazothiazoles (IT) Resistance 6% 8% Not detected Not detected Not detected
% Macrocyclic lactones (ML)Resistance 92% 92% 60% 74% 39%
%  Multidrug Resistance 74% 8-12% 28% Not detected Not detected

ed during phenotypic identification. Furthermore, these 
strategies are similarly tedious and labor required. To 
overcome these issues, molecular techniques are used for 
the finding of antihelmintic medication resistance. These 
advance techniques includes SNP-PCR, qPCR, direct se-
quencing, pyrosequencing genotyping and next generation 
sequencing(deep amplicon sequencing etc.) (de Lourdes 
Mottier and Prichard, 2008). Isotype-1 gene of the be-
ta-tubulin, NA gated cation channels and GABA gene 
were genetically changed which leads to the development 
of resistance in roundworms parasite (Beech et al., 2011; 
de Lourdes Mottier and Prichard, 2008), so by employing 
the above genetic marker, we can identify the anthelmintic 
resistance. 

biology of HaemoncHus
A standout amongst the most important group of GI para-
sitic nematodes of domestic livestock belongs to the genus 
Haemonchus (superfamily Trichostrongylidea).Haemonchus 
has four species (i-e) Haemonchusplacei, Haemonchus con-
tortus, Haemonchussimilis and Haemonchus longistipeswhich 
were reported in different areas of the world indifferent 
hosts. The roundworm;Haemonchus is a blood sucking 
parasite that lives in the abomasa (or stomach) of differ-
ent artiodactyl hosts (Hoberg et al., 2004) and they are 
among the most financially critical helminth parasites of 
bovine, sheep and goats around the world (Urquhart et al., 
1996). The development birthplace of genus Haemonchusis 
sub-Saharan Africa where a mixture of animal types in na-
tive artiodactyls hosts are available. Three of these H. placei, 
H. contortusand H. similis are more universally transport-
ed by the anthropogenic movement of local domesticated 
animals.H. placei is dominating parasite of bovine and of 
major financial significance in tropical and sub-tropical 
areas (Urquhart et al., 1996). It presents sporadically in 
moderate areas, for example, Europe (western), Asia and 
recently it has also been diagnosed in Sweden and Canada 
proposing temperature range extension. Resistance from 
both BZ and macrocyclic lactones has been observed in H. 
placei, however generally little data is available on its prev-
alence (Chaudhry et al., 2014). The sympatric nematode 
H. contortusis a profoundly pathogenic nematode species 
that infect extensive of ruminant species however is most 
prevalent in sheep and goats. In spite of the fact that H.
contortus is initially a tropical nematode, however recently 
it is reported in numerous mild and even sub-ice regions 

with continuous range expansion potentially connected 
with a dangerous atmospheric global warming (Waller et 
al., 2004). Haemonchus contortus is the most drug resistant 
parasite worldwide including multi-drug resistance, mak-
ing its control progressively troublesome (Gilleard, 2006; 
Kaplan, 2004).

H.contortus and H.placei association
A number of early discussions in regards to the connection 
among H.placei and H.contortus. During late 70s, Gibbons 
(1979) thought about H.placei and H.contortus which be-
long to single species not two. But the morphological and 
molecular analysis supported these isolate into separate 
species. Many fixed differences of the morphology like 
pattern of cuticle ridges and also the spicule pattern were 
different in both species ( Jacquiet et al., 1997; Lichtenfels 
et al., 1986). Other differences include image of the stained 
metaphase, spreads of karyotype through DAPI methods; 
all chromosomes (autosomes, sexsomes) are of equal size in 
case of H.contortus, while the sexosomes are larger than au-
tosomes in case of H.placei (Amarante et al., 1997; Le Jam-
bre, 1979). Moreover, there are fixed sequencing contrasts 
in the rDNA (ITS-2), rDNA (NTS) and mtDNA (nd4) 
gene (Blouin et al., 1997; Stevenson et al., 1996; Zarlenga 
et al., 1994).

H.contortusresistanCe model parasite
Antihelminth resistance is an important issue for the an-
imal parasites control and a possible risk to the maintain-
ability of group wise treatment programs being utilized 
for the control human parasitic infections in the emerging 
countries. Antihelmintic resistance is basically a quantita-
tive complex quality by which different transformations 
take place to change the resistance phenotype. Essential-
ly, mixes of bioinformatics and genetic approaches are re-
quired to perceive the principal changes and measure the 
influence of the resistance makeup. Thus, a model parasite 
is required as a key to the other parasite species for genetic 
and genomic approaches. Haemonchus contortus is a small 
ruminant nematode parasite; who has demonstrated an 
amazing desire to create resistance from any of the medi-
cations utilized as a part of its control. Incompletely along 
these lines, and somewhat as a result of its test managea-
bility, inquire about on this nematode has donated more 
knowledge of resistance against the antihelmintic drugs 
than the any other parasite. H.contortus deals range of pref-
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erences as a trial framework comprising the capacity for 
attempt hereditary crosses; a precondition for hereditary 
mapping. This analysis will talk about the present advance 
on creating H. contortus used as a model more easily un-
derstandable in terms of resistance study  than the other 
parasite (Gilleard, 2013).

genetiC struCture of H. contortus
Roundworm mtDNA experiences a great rate of genetic 
changes and the rate of change in Haemonchus contortus is 
ten times high as compared to the vertebrates. The DNA of 
H.contortus has a great degree of diversity. DNA of the H.
contortus contains different genetic subunits like microtu-
bules, different glycol proteins, a pair of glutamate cl-chan-
nel subunits, acetylcholine receptors, PEP carboxykinase, 
galectins, Tc1 transposable component, transposon and 
microsatellites repeats. All above hereditary investigations 
showed great genetic variety (Anderson et al., 1998; Kwa 
et al., 1993). Genetic variety may be intra-population or 
inter-populations (topographically isolated or anthelmint-
ic selection). Experiment in four types of trichostrongylid 
roundworms showed that 96 to 99% variation of nucleo-
tides are found in intra-populations (Hoekstra et al., 1997). 
H. contortus indicates awesome hereditary mutation both 
intra-populations and inter-population. Polymorphism re-
lies upon the rate of transformation, the reasonable pop-
ulation size and the rates of movement. H. contortus is a 
great fruitful nematode present in large numbers of rumi-
nants from the humid to slight cool atmospheres. Its host 
population estimate is immense due to the domestication 
of ruminants, and selling the animals’ is major resource of 
relocation of the parasite. Up to thousands of H. contortus 
worms can be present in single animal. This worms a pro-
ductive reproducer that is a single female produced up to 
10000 eggs. The size of the Population on field is typically 
substantially higher as compared to the inside of animal. 
The successful population size is enormous in H. contortus. 
The estimate of the population, its high multiplication level 
and the huge scope of its condition are helpful for extraor-
dinary hereditary mutation. Benzimidazoles (BZs) binds to 
beta-tubulin, resulting in the disturbance of microtubules 
synthesis phenomenon. Genetic variation or mutations on 
the gene of β-tubulins were observed which modified the 
phenotype of H. contortus from the susceptible to resistance 
(Grant, 1994; Prichard, 2001).

benZimidaZole mode of aCtion in HaemoncHus
During the 60s, the first drug of BZ group, thiabendazole, 
was discovered and along these lines various anthelmintic 
of the BZ class have been presented and stay in regular use 
for the control of helminths programs in domesticated and 
friendly animals (McCracken and Lipkowitz, 1990). The 
mode of activity of BZ was at first resolved to incorporate 
the weakening of microtubule function. Microtubules are a 
crucial portion of the cytoskeleton filling a decent gene of 

the interest comprising improvement in the chromosomes 
in the middle of division of the cell, giving a supporting 
structure to the cell and an advancement of intracellular 
particles framework and exocytosis. The 450 amino acids 
are used in the formation of five microtubules proteins 
known as one alpha- tubulin and 4 beta-tubulin. The 
microtubules are formed by a dynamic process in which 
monomers of the tubulin are joined positive side and other 
negative side depolemerization occur. Beginning examina-
tions on the method of activity of the BZ in nematodes 
were in Ascaris where BZ disrupts the microtubules of the 
intestinal cells of microtubule work (Perry and Randolph, 
1999; Van den Bossche et al., 1982). In this manner, mi-
crotubules of the intestinal cells in parasitic nematodes 
Trichostrongylus vanished after treatment of BZ. Be that 
as it may, when a resistant population treated similarly the 
microtubules were as yet present (Sangster et al., 1985). 
Genetic analysis of the above phenomenon, it was assumed 
that BZ binds with microtubules to apply its impact on 
the monomers tubulin protein formation and interrupt the 
development of β-tubulin (Friedman and Platzer, 1978). 
Microtubulin molecule have 3 main drug tying positions, 
the vinblastine restricting site, the taxol restricting site and 
the colchicine restricting site (Gill and Lacey, 1992). The 
benzimidazole drugs bind at colchicine restricting site and 
interrupt the polymerization of β-tubulin monomer in 
roundworms parasite (Dawson et al., 1984; Friedman and 
Platzer, 1978; Sangster et al., 1985) by making a complex 
of benzimidazole and tubulin,inhibiting the fusion of tu-
bulin monomers at positive shaft which ultimately hinder 
the formation and preservation of β-tubulin. Ultimately 
the starvation of nematodes occur by disruption of the in-
testinal cell (Abongwa et al., 2017) (Figure 1). Above re-
search work assisted this theory of stopping of the polym-
erization of beta tubulin in vivo as well as in vitro (Lubega 
et al., 1993; Oxberry et al., 2001a; Oxberry et al., 2001b).
Diagrammatically, model was constructed about the mode 
of action of benzimdazole drugs in H. contortus (Prichard, 
2001; Robinson et al., 2004).

meChanism of aCtion of benZimidaZole 
resistanCe in HaemoncHus
In the beginning of 80s, Driscoll discovered in the free living 
roundworm Caenorhabditis elegans through mutagenesis to 
perceive inherited loci that could develop BZ resistance. 
Overall, twenty eight mutations were recognized in C. 
elegans that involve in BZ resistance development and 
these present on a single locus and ben-1. Genetic cloning 
developed for the encoding of the β-tubulin ben-1 
(Driscoll et al., 1989). In the beginning of 90s, first time 
in H. contortus β-tubulin locus was observed with the help
of southern blots and representing a diminishing in the 
amount of hybridizing areas in resistance differentiated 
risky populations (Geary et al., 1992; Kwa et al., 1993; 
Lubega et al., 1994; Roos et al., 1990). In a comparative
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Figure 1: Model illustrates the mechanism of action of 
benzimidazole (BZ) drug (Prichard, 2001; Robinson et al., 
2004). 

study, cloned pieces of isotyp-1 β–tubulin gene were used to 
test the polymorphism at said locus by using the southern 
blot technique and recognized the fragments of different 
length in H. contortus worm’s populations. On the bases of 
RFLP analysis of the resistance populations showed only 1 
to 2 fragments and 2-6 fragments which were recognized 
for susceptible gene in H. contortus population based on re-
striction enzymes used for the study. This decrease in poly-
morphism proved that the isotype-1 locus of the beta-tubu-
lin was responsible for production of resistance in parasitic 
populations (Roos et al., 1990). Likewise, when  purified 
polypeptide from β-tubulin of susceptible populations of 
H. contortus showed strong binding to BZ in vitro while it 
displayed modified phenotypes for resistant populationsm 
(Lubega and Prichard, 1991). Further analysis of the 
sequence of the isotype-1 locus of the β-tubulin gene 
reveals that it is due to only the substitution of the single 
amino acid at position F200Y (TTC to TAC) was the 
principle polymorphism that decide the nature of action 
against the benzimdazole drugs in the populations of H. 
contortus (Kwa et al., 1993). Another study was published 
in which the deletion of the fragment from beta-tubulin 
gene of H. contortus was responsible for the development 
of resistance against benzimidazole and the amount of this 
type of resistance is extraordinary in nature (Beech et al., 
2011). This is the only main case of such type of resistance 
in which isotype2 β-tubulin deletion was observed has been 
characterized along these lines its general significance is yet 
to be resolved. Above describe work gives solid proof that 
the phenylalanine to tyrosine substitution F200Y (TTC 
to TAC) is a vital determinant of BZ resistance (Figure 
2). In any case, affiliation investigations of this compose 
can’t absolutely approve that a specific polymorphism is fit 
for giving a resistant appearance; it is believable that the 
polymorphism in gene could be practically accountable for 
resistance. To set up this connection among a SNP and the 
phenotypic resistant is a main task on account of nematodes 

parasite since there is an absence of opposite genetics to 
contemplate gene capacity in these organisms. Though, on 
account of BZ resistance, this obstacle was overwhelmed 
by a few investigations that limit the variation in  the beta-
tubulin gene to adjust BZ sensitivity was tried to utilizing 
the C. elegans for expression system as a hetero-locus gene 
(Kwa et al., 1995). The alleles of the isotype-1 locus of 
the β-tubulin that have the residues of the phenylalanine 
P200F (TTC) in H. contortus showed drug susceptibility 
while tyrosine deposit P200Y (TAC) alleles did not showed 
any drug susceptibility. Moreover, the practical importance 
of F200Y (TTC to TAC) substitution was specifically 
shown by test used for mutagenesis. Replacing the residue 
of phenylalanine with the residue of tyrosine at position 
P200Y (TAC) which evacuated the capacity of the alleles 
of β-tubulin collected from susceptible strain of the H. 
contortus return to ben-1ofC. Elegans mutant to resistant 
phenotype (Kwa et al., 1995). Starting now and into the 
foreseeable future, because of P200 change in isotype-1β-
tubulin locus of H. contortus, believable relationship studies 
was run down by significantly examinations. Recently 
different changes have been observed in isotyp-1 β-tubulin 
genes which incorporate in the development of BZ 
resistance. The phenylalanine at position P167F (TTC) 
of β-tubulin isotype-1 was first reported in H. contortus 
which also have high affinity for the bind of benzimidazole 
with microtubules (Prichard, 2001; Robinson et al., 2004) 
& tyrosine residue P167Y (TAC) polymorphism in this 
position was thus, connected with BZ resistance (Prichard, 
2001). This polymorphism incorporates a substitution at 
F167Y (TTC to TAC) in resistance parasite as like the 
position P200. The changes at both P167Y (TAC) and 
P200Y (TAC) have not been found in the equivalent allele 
sequence of H. contortus and appear to be fundamentally 
unrelated P167Y (TAC) was found just in worms that had 
the wild-type P200Y (TAC) (Redman et al., 2015; Sangster 
et al., 1985). Some later confirmation recommends that a 
glutamate to alanine substitution E198A (GAA to GCA) 
in isotype-1 locus of β-tubulin can conceivably add to 
BZ resistance. Ghisi (2007) and Rufener (2009) have 
recognized alanine substitution at codon P198A (GCA) in 
BZ resistance H. contorts populations. Likewise with P167Y 
(TAC), the P198A (GCA) polymorphism was discovered 
just in allelic sequence that was genetically wild-type at site 
P200Y (TAC) and P167Y (TAC) (Ghisi et al., 2007; Van 
den Brom et al., 2015).
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Figure 2:  Model illustrates the mechanism of resistance 
of benzimidazole (BZ) drug (Prichard, 2001; Robinson et 
al., 2004).

meChanism of bZ resistanCe on moleCular 
basis.
Above describe work for the component of benzimidazole 
resistance has been additionally inspected by hereditary 
means and solid confirmation exists that 3 unique SNPs 
[P200Y (TAC), P167Y (TAC) and P198A(GCA)] in the 
isotype-1β-tubulin gene was responsible for the resist-
ance against benzimidazole (Figure 3) (Brasil et al., 2012; 
Chaudhry et al., 2016; Chaudhry et al., 2015b; Ghisi et al., 
2007; Hoglund et al., 2009; Kotze et al., 2012; Kwa et al., 
1994; Redman et al., 2015; Rufener et al., 2009; Silvestre 
and Humbert, 2002). Number of studies has demonstrated 
the P200Y (TAC) SNP happens in field populations of 
parasitic nematodes recommending far reaching signifi-
cance around the world (Barrere et al., 2012; Barrere et al., 
2013a; Barrere et al., 2013b; Brasil et al., 2012; Chaudhry 
et al., 2016; Chaudhry et al., 2015b; Hoglund et al., 2009; 
Redman et al., 2015; Silvestre and Humbert, 2002). The 
P167Y (TAC) SNP has been reported in various countries 
of the world, but it is less common than the P200Y (TAC) 
change (Brasil et al., 2012; Redman et al., 2015; Silvestre 
and Humbert, 2002). A SNP at codon P198A (GCA) has 
also been identified in populations oriented from field of 
parasitic nematode H.contortus (Chaudhry et al., 2015b).
 
brief overview of origin and spread of 
benZimidaZole resistanCe 
Although, good improvement has been made in explaining 
mechanisms of BZ resistance at molecular basis; but still 
there are many more debates. In particular there have only 
been a few published investigation about the origins and 
spread of resistant alleles against the benzimidazole drugs 
in the populations of parasites (Chaudhry et al., 2016; 
Chaudhry et al., 2015b; Redman et al., 2015;  Silvestre 

and Humbert, 2002; Skuce et al., 2010). This is a complex 
topic but we suggest four broad models to determine how 
the drug resistance emerges and spreads in parasite popu-
lations (Fig. 2.6). These are obvious simplifications but in 
each case it allows different predictions to be made about 
the nature of the sequence polymorphism and the phyloge-
netic relationships between resistant alleles present in dif-
ferent parasite populations.

Figure 3: Molecular basis of benzimidazole resistance 
(Prichard, 2001; Robinson et al., 2004).

model 1.
Resistance could arise as a “new” or recent mutation that 
originate from the single point and then spread in whole 
population or area as a result of animal movement. In mod-
el 1, a single resistant haplotype would sweep through the 
populations leaving a genetic footprint of reduced poly-
morphism about the hereditary locus due to selection that 
is termed as “hard selective sweep” (Figure 4 B1) (Pritchard 
et al., 2010). Model 1 is observed in different mosqui-
toes (Ramos et al., 2016) and Drosophila (Andreev et al., 
1999) and BZ muted gene in H. contortus (Chaudhry et 
al., 2015b). In these cases the similar resistant haplotype is 
present in different resistant populations. 

model 2.
New mutations showing resistance might independent-
ly arise in different parasite populations with little or no 
migration between populations. In this case, there would 
be reduced polymorphism around the genetic locus un-
der selection but different resistant haplotypes would be 
present in different populations (Figure 4 B2). This type of 
origin and spread of the resistance termed as “soft selective 
sweep”. Soft selective sweep was observed in BZ resistance 
alleles in several farms of goat in France which was dueto 
the movement of animals (Silvestre and Humbert, 2002). 

model 3.
New mutations showing resistance could independent-
ly arise in several (or even numerous) different locations 
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and then convert stable by selection and transfer between 
parasite populations. The genetic footprint left by this has 
been named a “soft selective sweep” and is categorized not 
necessarily with a decrease in polymorphism about the lo-
cus but a region of linkage disequilibrium can still be po-
tentially detected (Fig. 4 B3) (Pennings and Hermisson, 
2006). This type of model was observed mutant genes for 
anthelmintics in T. circumcincta and H. contortusin the UK 
and Indian population (Chaudhry et al., 2016; Chaudhry 
et al., 2015b; Redman et al., 2015; Skuce et al., 2010) and 
observed in a number of insecticide resistance studies in 
different arthropods (Andreev et al., 1999). 

model 4.
Mutation could be conferred by an “ancient origin” as op-
posed to recent mutation(s). In this case, the polymor-
phism would have pre-existed in the ancestral parasite 
populations long before the onset of anthelmintic use. The 
polymorphism might be anticipated to be already present 
in most (if not all) parasite populations at some frequency 
even prior to drug selection (although the details of this 
would depend on the molecular bases of the worm popu-
lation). Since the polymorphism is ancient, it would be an-
ticipated to be present on multiple haplotype backgrounds 
due to effect of genetic recombination over the generations 
(Figure 4 B4). There would be potentially little genet-
ic footprint of selection in this case. Instead, the genetic 
variation around the selected polymorphism would reflect 
the population genetic structure of the parasite population. 
This has been identified in parasitic nematodes by a few 
authors (Chaudhry et al., 2016; Roos et al., 1990; Silvestre 
and Humbert, 2002).

Figure 4: (B1, B2, B3, B4) is the schematic representation 
of four different models about the origin of resistance mu-
tation in round worm populations. The blue circles repre-
sent different parasite populations at different geographical 
locations (e.g. different farms). The letter “R” represents a 
resistance mutation that is present in that parasite popula-
tion and the colour of the letter represents the haplotype 
background upon which that mutation is present. Sus-
ceptible haplotypes are not represented for simplicity. The 
grey, double headed arrows represents gene flow among 
different parasite populations. (B1) In this model, a recent 
mutation arises either shortly before or during the period 
of anthelmintic selection in one geographical location and 
then spreads by migration between parasite populations. 
Following the drug selection, the frequency of the muta-
tion would have increased and a single identical haplotype 
would be present in all populations. This extreme decrease 
in sequence polymorphism about the locus which is under 
selection is termed as “Hard selective sweep”. (B2) In B2 
model, there is no gene flow between parasite populations. 
Mutations arise either during or shortly before the period 
of anthelmintic usage. In this case, there would be reduced 

polymorphism around the genetic locus under selection in 
each resistant parasite population but different resistance 
haplotypes would be present in the different populations. 
(Occasionally the same resistance haplotype might be 
found at different locations due to the chance of a genetic

Figure 4 (B1, B2, B3, B4): Patterns of origin and spread of 
drug resistance (Chaudhry et al., 2016).

change is independently rising on the same susceptible co-
don that was shared between populations). (B3) This mod-
el is similar to that shown in B2 but in this case there is 
gene flow between parasite populations. Mutations arise 
at different geographical locations either during or shortly 
before the period of anthelmintic usage and then spread 
between parasite populations by migration. In this model, 
there will potentially be several (possibly numerous) dif-
ferent resistant haplotypes present with some shared and 
some different among different parasite populations. There 
is likely to be decreased polymorphism about the locus 
which is under selection (because susceptible haplotypes 
will be eliminated by drug treatment) but it is less extreme 
than for the model illustrated in panel B1. That’s termed 
as “soft selective sweep”. (B4) In this model an ancient 
pre-existing polymorphism is present in the parasite pop-
ulation and confers anthelmintic resistance. Since this mu-
tation is present for a long time, possibly millions of years, 
it will be present in parasite populations on many different 
haplotype backgrounds due to the effects of recombina-
tion through the ages. Furthermore, for a parasite with lit-
tle geographical sub-structuring the same haplotypes are 
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likely present in the different parasite population at this 
locus. The frequency of resistance mutation increases after 
the drug selection. Hence, in this model, one might antic-
ipate that the polymorphism is much less reduced round 
the locus under selection compared to the models shown 
in B1 to B3 and for numerous identical haplotypes to be 
present in the geographically separate parasite populations 
(although the details of this depends on the population 
structure of the parasite population). 
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