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Key Points:6

• We introduce two variational inference methods: automatic differential variational7

inference and Stein variational gradient descent.8

• We applied the methods to solve synthetic and real-data seismic tomography, pro-9

ducing similar probabilistic results to Monte Carlo methods.10

• Variational methods are efficient alternatives to Monte Carlo for generally non-11

linear Geophysical inverse and inference problems.12
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Abstract13

Seismic tomography is a methodology to image the interior of solid or fluid media, and14

is often used to map properties in the subsurface of the Earth. In order to better inter-15

pret the resulting images it is important to assess imaging uncertainties. Since tomog-16

raphy is significantly nonlinear, Monte Carlo sampling methods are often used for this17

purpose, but they are generally computationally intractable for large datasets and high-18

dimensional parameter spaces. To extend uncertainty analysis to larger systems we use19

variational inference methods to conduct seismic tomography. In contrast to Monte Carlo20

sampling, variational methods solve the Bayesian inference problem as an optimization21

problem, yet still provide probabilistic results. In this study, we applied two variational22

methods, automatic differential variational inference (ADVI) and Stein variational gra-23

dient descent (SVGD), to 2D seismic tomography problems using both synthetic and real24

data and we compare the results to those from two different Monte Carlo sampling meth-25

ods. The results show that ADVI provides a biased approximation because of its implicit26

Gaussian approximation, and cannot be used to find multi-modal posteriors; SVGD can27

produce more accurate approximations to the results of Monte Carlo sampling methods.28

Both methods estimate the posterior distribution at significantly lower computational29

cost, provided that gradients of parameters with respect to data can be calculated ef-30

ficiently. We expect that the methods can be applied fruitfully to many other types of31

geophysical inverse problems.32

1 Introduction33

In a variety of geoscientific applications, scientists need to obtain maps of subsur-34

face properties in order to understand heterogeneity and processes taking place within35

the Earth. Seismic tomography is a method that is widely used to generate those maps.36

The maps of interest are usually parameterised in some way, and data are recorded that37

can be used to constrain the parameters. Tomography is therefore a parameter estima-38

tion problem, given the data and a physical relationship between data and parameters;39

since the physical relationships usually predict data given parameter values but not the40

reverse, seismic tomography involves solving an inverse problem (Curtis & Snieder, 2002).41

Tomographic problems can be solved using either the full, known physical relation-42

ships, or by using a linearised procedure which involves creating approximate, linearised43

physics that is assumed to be accurate close to a particular chosen reference model. In44
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the linearised procedure, one seeks an optimal solution by perturbing the model so as45

to minimize the misfit between the observed data and the data predicted by the linearised46

physics. The physics is then re-linearised around this new reference model, and the pro-47

cess is iterated until the preturbations are sufficiently small. Since most tomography prob-48

lems are under-determined, some form of regularization must be introduced to solve the49

system (Aki & Lee, 1976; Dziewonski & Woodhouse, 1987; Iyer & Hirahara, 1993; Taran-50

tola, 2005). However, regularization is usually chosen using ad hoc criteria which intro-51

duces poorly understood biases in the results; thus, valuable information can be concealed52

by regularization (Zhdanov, 2002). Moreover, in nonlinear problems it is almost always53

impossible to estimate accurate uncertainties in results using linearised methods. There-54

fore, partially or fully nonlinear tomographic methods have been introduced to geophysics55

which require no linearisation and which provide accurate estimates of uncertainty us-56

ing a Bayesian probabilistic formulation of the parameter estimation problem. These in-57

clude Monte Carlo methods (Mosegaard & Tarantola, 1995; Sambridge, 1999; Malinverno58

et al., 2000; Malinverno, 2002; Malinverno & Briggs, 2004; Bodin & Sambridge, 2009;59

Galetti et al., 2015, 2017; Zhang et al., 2018) and methods based on neural networks (Röth60

& Tarantola, 1994; Devilee et al., 1999; Meier et al., 2007b, 2007a; Shahraeeni & Cur-61

tis, 2011; Shahraeeni et al., 2012; Käufl et al., 2013, 2015; Earp & Curtis, 2019).62

Bayesian methods use Bayes’ theorem to update a prior probability distribution63

function (pdf – either a conditional density function or a discrete set of probabilities)64

with new information from data. The prior pdf describes information available about65

the parameters of interest prior to the inversion. Bayes’ theorem combines the prior pdf66

with information derived from the data to produce the total state of information about67

the parameters post inversion, described by a so-called posterior pdf – this process is re-68

ferred to as Bayesian inference. Thus, in our case Bayesian inference is used to solve the69

tomographic inverse problem.70

Monte Carlo methods generate a set (or chain) of samples from the posterior pdf71

describing the probability distribution of the model given the observed data; thereafter72

these samples can be used to estimate useful information about that pdf (mean, stan-73

dard deviation, etc.). The methods are quite general from a theoretical point of view so74

that in principle they can be applied to any tomographic problems. They have been ex-75

tended to trans-dimensional inversion using the reversible jump Markov chain Monte Carlo76

(rj-McMC) algorithm (Green, 1995), in which the number of parameters (hence the di-77
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mensionality of parameter space) can vary in the inversion. Consequently the param-78

eterization itself can be simplified by adapting to the data which improves results on oth-79

erwise high-dimensional problems (Malinverno et al., 2000; Bodin & Sambridge, 2009;80

Bodin et al., 2012; Ray et al., 2013; Young et al., 2013; Galetti et al., 2015, 2017; Hawkins81

& Sambridge, 2015; Piana Agostinetti et al., 2015; Burdick & Lekić, 2017; Galetti & Cur-82

tis, 2018; Zhang et al., 2018, 2019). Although many applications have been conducted83

using McMC sampling methods (previous references, Shen et al., 2012, 2013; Zulfakriza84

et al., 2014; Zheng et al., 2017; Crowder et al., 2019), they mainly address 1D or 2D to-85

mography problems due to the high computational expense of Monte Carlo methods. Some86

studies used McMC methods for fully 3D tomography using body wave travel time data87

(Hawkins & Sambridge, 2015; Piana Agostinetti et al., 2015; Burdick & Lekić, 2017) and88

surface wave dispersion (Zhang et al., 2018, 2019), but the methods demand enormous89

computational resources. Even in the 1D or 2D case, McMC methods cannot easily be90

applied to large datasets which are generally expensive to forward model given a set of91

parameter values. Moreover, McMC methods tend to be inefficient at exploring complex,92

multi-modal probability distributions (Sivia, 1996; Karlin, 2014), which appear to be com-93

mon in seismic tomography problems.94

Neural network based methods offer an efficient alternative for certain classes of95

tomography problems that will be solved many times with new data of the same type.96

An initial set of Monte Carlo samples is taken from the prior probability distribution over97

parameter space, and data are computationally forward modelled for each parameter vec-98

tor. Neural networks are flexible mappings that can be regressed (trained) to emulate99

the mapping from data to parameter space by fitting the set of examples of that map-100

ping generated using Monte Carlo (Bishop, 2006). Since for each input data vector the101

neural network only produces one parameter vector, trade-offs between parameters are102

not clearly represented in the mapping from data to model parameters. The trained net-103

work then interpolates the inverse mapping between the examples, and can be applied104

efficiently to any new, measured data to estimate corresponding parameter values. The105

first geophysical application of neural network tomography was Röth and Tarantola (1994),106

but that application did not estimate uncertainties. Forms of networks that estimate to-107

mographic uncertainties were introduced by Devilee et al. (1999) and Meier et al. (2007b,108

2007a) and have been applied to surface and body wave tomography in 1D and 2D prob-109

lems (Meier et al., 2007b, 2007a; Earp & Curtis, 2019). Nevertheless, neural networks110
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still suffer from the computational cost of generating the initial set of training examples.111

That set may have to include many more samples than are required for standard Bayesian112

MC, because the training set must span the prior pdf whereas standard applications of113

MC tomography sample the posterior pdf which is usually more tightly constrained. Neu-114

ral networks have the advantage that the training samples need only be calculated once115

for any number of data sets whereas MC inversion must perform sampling for every new116

data set. However, in high dimensional problems the cost of sampling may be prohibitive117

for both MC and NN based methods due to the curse of dimensionality (the exponen-118

tial increase in the hypervolume of parameter space as the number of parameters increases119

– Curtis & Lomax, 2001).120

Variational inference provides a different way to solve a Bayesian inference prob-121

lem: within a predefined family of probability distributions, one seeks an optimal approx-122

imation to a target distribution which in this case is the Bayesian posterior pdf. This123

is achieved by minimizing the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951)124

– one possible measure of the difference between two given pdfs (Blatter et al., 2019),125

in our case the difference between approximate and target pdfs (Bishop, 2006; Blei et126

al., 2017). Since the method casts the inference problem into an optimization problem,127

it can be computationally more efficient than either MC sampling or neural network meth-128

ods, and provides better scaling to higher dimensional problems. Moreover, it can be used129

to take advantage of methods such as stochastic optimization (Robbins & Monro, 1951;130

Kubrusly & Gravier, 1973) and distributed optimization by dividing large datasets into131

random minibatches – methods which are difficult to apply for McMC methods since they132

may break the reversibility property of Markov chains which is required by most McMC133

methods.134

In variational inference, the complexity of the approximating family of pdfs deter-135

mines the complexity of the optimization. A complex variational family is generally more136

difficult to optimize than a simple family. Therefore, many applications are performed137

using simple mean-field approximation families (Bishop, 2006; Blei et al., 2017) and struc-138

tured families (Saul & Jordan, 1996; Hoffman & Blei, 2015). For example, in Geophysics139

the method has been used to invert for the spatial distribution of geological facies given140

seismic data using a mean-field approximation (M. A. Nawaz & Curtis, 2018; M. Nawaz141

& Curtis, 2019).142
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Even using those simple families, applications of variational inference methods usu-143

ally involve tedious derivations and bespoke implementations for each type of problem144

which restricts their applicability (Bishop, 2006; Blei et al., 2017; M. A. Nawaz & Cur-145

tis, 2018; M. Nawaz & Curtis, 2019). The simplicity of those families also affects the qual-146

ity of the approximation to complex distributions. To make variational methods easier147

to use, ”black box” variational inference methods have been proposed (Kingma & Welling,148

2013; Ranganath et al., 2014, 2016). Based on these ideas, Kucukelbir et al. (2017) pro-149

posed an automatic variational inference method which can easily be applied to many150

Bayesian inference problems. Another set of methods has been proposed based on prob-151

ability transformations (Rezende & Mohamed, 2015; Tran et al., 2015; Q. Liu & Wang,152

2016; Marzouk et al., 2016); these methods optimise a series of invertible transforms to153

approximate the target probability and in this case it is possible to approximate arbi-154

trary probability distributions.155

We apply automatic differential variational inference (ADVI – Kucukelbir et al.,156

2017) and Stein variational gradient descent (SVGD – Q. Liu & Wang, 2016) to a 2D157

seismic tomography problem. In the following we first describe the basic idea of varia-158

tional inference, and then the ADVI and SVGD methods. In section 3 we apply the two159

methods to a simple 2D synthetic seismic tomography example and compare their re-160

sults with both fixed-dimensional McMC and rj-McMC. In section 4 we apply the two161

methods to real data from Grane field, North Sea, to study the phase velocity map at162

0.9 s and compare the results to those found using rj-McMC. We thus demonstrate that163

variation inference methods can provide efficient alternatives to McMC methods while164

still producing reasonably accurate approximations to Bayesian posterior pdfs. Our aim165

is to introduce variational inference methods to the geoscientific community and to en-166

courage more research on this topic.167

2 Methods168

2.1 Variational inference169

Bayesian inference involves calculating or characterising a posterior probability den-170

sity function p(m|dobs) of model parameters m given the observed data dobs. Accord-171

ing to Bayes’ theorem,172

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)173
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where p(dobs|m) is called the likelihood which is the probability of observing data dobs174

conditional on model m, p(m) is the prior which describes known information about the175

model that is independent of the data, and p(dobs) is a normalization factor called the176

evidence which is constant for a fixed model parameterization. The likelihood is usually177

assumed to follow a Gaussian probability density function around the data predicted syn-178

thetically from model m (using the known physical relationships), as this is assumed to179

be a reasonable approximation to the pdf of uncertainties or errors in the measured data,180

and because noise reduction is performed by stacking, which through the central limit181

theorem justifies the use of a Gaussian distribution.182

Variational inference approximates the above pdf p(m|dobs) using optimization. First183

a family (set) of known distributions Q = {q(m)} is defined. The method then seeks184

the best approximation to p(m|dobs) within that family by minimizing the KL-divergence:185

KL[q(m)||p(m|dobs)] = Eq[logq(m)]− Eq[logp(m|dobs)] (2)186

where the expectation is taken with respect to distribution q(m). It can be shown that187

KL[q||p] ≥ 0 and has zero value if and only if q(m) equals p(m|dobs) (Kullback & Leibler,188

1951). Distribution q∗(m) that minimizes the KL-divergence is therefore the best ap-189

proximation to p(m|dobs) within the family Q.190

Combining equations (1) and (2), the KL-divergence becomes:191

KL[q(m)||p(m|dobs)] = Eq[logq(m)]− Eq[logp(m,dobs)] + logp(dobs) (3)192

The evidence term logp(dobs) generally cannot be calculated since it involves the eval-193

uation of a high dimensional integral which takes exponential time. Instead we calcu-194

late the evidence lower bound (ELBO) which is equivalent to the KL-divergence up to195

an unknown constant, and is obtained by rearranging equation (3) and using the fact196

that KL[q||p] ≥ 0:197

ELBO[q] = Eq[logp(m,dobs)]− Eq[logq(m)]198

= logp(dobs)−KL[q(m)||p(m|dobs)] (4)199

Thus minimizing the KL-divergence is equivalent to maximizing the ELBO.200

In variational inference, the choice of the variational family is important because201

the flexibility of the variational family determines the power of the approximation. How-202

ever, it is usually more difficult to optimize equation (4) over a complex family than a203
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Figure 1. An illustration of the workflow of ADVI. (a) An example of a posterior pdf in the

original positive half space of parameters m. (b) The posterior pdf in the transformed real vari-

able space θ (red) and an initial Gaussian approximation (blue). (c) The posterior pdf (red) and

the standard Gaussian distribution (blue) in standardized variable η; gradients with respect to

variational parameters are calculated in this space. (d) and (e) show the posterior pdf (red) and

the approximation obtained using ADVI (blue) in the unconstrained real variable space and the

original space, respectively.

simple family. Therefore, many applications are performed using the mean-field varia-204

tional family, which means that the parameters m are treated as being mutually inde-205

pendent (Bishop, 2006; Blei et al., 2017). However, even under that simplifying assump-206

tion, traditional variational methods require tedious model-specific derivations and im-207

plementations, which restricts their applicability to those problems for which derivations208

have been performed (e.g., M. A. Nawaz & Curtis, 2018; M. Nawaz & Curtis, 2019). We209

therefore introduce two more general variational methods: the automatic differential vari-210

ational inference (ADVI) and the Stein variational gradient descent (SVGD), which can211

both be applied to general inverse problems.212

2.2 Automatic differential variational inference (ADVI)213

Kucukelbir et al. (2017) proposed a general variational method called automatic214

differential variational inference (ADVI) based on a Gaussian variational family. In ADVI,215

a model with constrained parameters is first transformed to a model with unconstrained216

real-valued variables. For example, the velocity model m that usually has hard bound217
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constraints (such as velocity being greater than zero) can be transformed to an uncon-218

strained model θ = T (m), where T is an invertible and differentiable function (Figure219

1a and b). The joint probability p(m,dobs) then becomes:220

p(θ,dobs) = p(m,dobs)|detJT−1(θ)| (5)221

where JT−1(θ) is the Jacobian matrix of the inverse of T which accounts for the volume222

change of the transform, and | · | represents the absolute value. This transform makes223

the choice of variational approximations independent of the original model since trans-224

formed variables lie in the common unconstrained space of real numbers.225

In ADVI, we choose a Gaussian variational family (e.g., blue line in Figure 1b),226

q(θ;φ) = N (θ|µ,Σ) = N (θ|µ,LLT ) (6)227

where φ represents variational parameters µ and Σ, µ is the mean vector and Σ is the228

covariance matrix. As in Kucukelbir et al. (2017), for computational purposes we use a229

Cholesky factorization Σ = LLT where L is a lower-triangular matrix, to re-parameterize230

the covariance matrix to ensure that it is positive semidefinite (covariance is positive semidef-231

inite by definition). If Σ is a diagonal matrix, q reduces to a mean-field approximation232

in which the variables are mutually independent; in order to include spatial correlations233

in the velocity model we use a full-rank covariance matrix, noting that this incurs a com-234

putational cost since it increases the number of variational parameters.235

In the transformed space, the variational problem is solved by maximizing the ELBO,236

written as L, with respect to variational parameters φ:237

φ∗ = arg max
φ

L[q(θ;φ)]

= arg max
φ

Eq
[
logp(T−1(θ),dobs) + log|detJT−1(θ)|

]
− Eq [logq(θ)]

(7)238

This is an optimization problem in an unconstrained space and can be solved using gra-239

dient ascent methods without worrying about any constrains on the original variables.240

However, the gradients of variational parameters are not easy to calculate since the241

ELBO involves expectations in a high dimensional space. We therefore transform the242

Gaussian distribution q(θ;φ) into a standard Gaussian N (η|0, I) (Figure 1c), by η =243
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Rφ(θ) = L−1(θ − µ), thereafter the variational problem becomes:244

φ∗ = arg max
φ

L[q(θ;φ)]

= arg max
φ

EN (η|0,I)

[
logp

(
T−1

(
R−1φ (η)

)
,dobs

)
+ log|detJT−1

(
R−1φ (η)

)
|
]
− Eq [logq(θ)]

(8)245

where the first expectation is taken with respect to a standard Gaussian distribution N (η|0, I).246

There is no Jacobian term related to this transform since the determinant of the Jaco-247

bian is equal to one (Kucukelbir et al., 2017). The second expectation −Eq[logq(θ)] is248

not transformed since it has a simple analytic form as does its gradient (Kucukelbir et249

al., 2017) – see Appendix A.250

Since the distribution with respect to which the expectation is taken now does not251

depend on variational parameters, the gradient with respect to variational parameters252

can be calculated by exchanging the expectation and derivative according to the dom-253

inated convergence theorem (Çınlar, 2011) and by applying the chain rule – see Appendix254

B:255

∇µL = EN (η|0,I)
[
∇mlogp(m,dobs)∇θT

−1(θ) +∇θlog|detJT−1(θ)|
]

(9)256

The gradient with respect to L can be obtained similarly,257

∇LL = EN (η|0,I)
[(
∇mlogp(m,dobs)∇θT

−1(θ) +∇θlog|detJT−1(θ)|
)
ηT
]

+ (L−1)T (10)258

where the expectation is computed with respect to a standard Gaussian distribution, which259

can be estimated by Monte Carlo (MC) integration. MC integration provides a noisy,260

unbiased estimation of the expectation and its accuracy increases with the number of261

samples. Nevertheless, it has been shown that in practice a low number or even a sin-262

gle sample can be sufficient at each iteration since the mean is taken with respect to the263

standard Gaussian distribution (see discussions and experiments in Kucukelbir et al., 2017).264

For distributions p(m,dobs) for which the gradients have analytic forms, the whole pro-265

cess of computing gradients can be automated (Kucukelbir et al., 2017), hence the name266

”automatic differential”. We can then use a gradient ascent method to update the vari-267

ational parameters and obtain an approximation to the pdf p(m|dobs) (e.g. Figure 1d).268

Note that although the method is based on Gaussian variational approximations,269

the actual shape of the approximation to the posterior p(m|dobs) over the original pa-270

rameters m is determined by the transform T (Figure 1e). It is difficult to determine an271

optimal transform since that is related to the properties of the unknown posterior (Kucukelbir272
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et al., 2017). In this study we use a commonly-used invertible logarithmic transform (Team273

et al., 2016),274

θi = T (mi) = log(mi − ai)− log(bi −mi)

mi = T−1(θi) = ai +
(bi − ai)

1 + exp(−θi)

(11)275

where mi represents each original constrained parameter, θi is the transformed uncon-276

strained variable, ai is the original lower bound and bi the upper bound on mi. There-277

fore the quality of the ADVI approximation is limited by the Gaussian approximation278

in the unconstrained space and by the specific transform T in equation (11).279

To illustrate the effects of the transform in equation (11), we show an example in280

Figure 2. The original variable lies in a constrained space between 0.5 and 3.0 (a typ-281

ical phase velocity range of seismic surface waves). The space is transformed to an un-282

constrained space using equation (11). If, as in ADVI we assume a standard Gaussian283

distribution in the transformed space (blue area in Figure 2), the associated probabil-284

ity distribution in the original space is shown in orange in Figure 2. The actual shape285

of the distribution in the original space is not Gaussian but is determined by the trans-286

form T in equation (11). However, under this choice of T it is likely that the probabil-287

ity distribution in the original space is still unimodal. We thus see that ADVI provides288

a unimodal approximation of the target posterior pdf around a local optimal parame-289

ter estimate. This suggests that the method will not be effective for multimodal distri-290

butions, and the estimated probability distribution depends on the initial value of µ and291

Σ (Kucukelbir et al., 2017). However, since the maximum a posteriori probability (MAP)292

estimate has been shown to be effective for parameter estimation in practice, the ADVI293

method could still be used to provide a good approximation of the distribution around294

a MAP estimate.295

2.3 Stein variational gradient descent (SVGD)296

In practice most applications of variational inference use simple families of poste-297

rior approximations such as a Gaussian approximation (Kucukelbir et al., 2017), mean-298

field approximations (Blei et al., 2017; M. A. Nawaz & Curtis, 2018; M. Nawaz & Cur-299

tis, 2019) or other simple structured families (Saul & Jordan, 1996; Hoffman & Blei, 2015).300

These simple choices significantly restrict the quality of derived posterior approximations.301

In order to employ a broader family of variational approximations, variational methods302

based on invertible transforms have been proposed (Rezende & Mohamed, 2015; Tran303
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Figure 2. An illustration of the transform in equation (11). The original variable is in a con-

strained space between 0.5 and 3.0. The blue area shows a standard Gaussian distribution in

the transformed unconstrained space and the orange area shows the associated probability dis-

tribution in the original space. The probability distributions are estimated using Monte Carlo

samples.
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et al., 2015; Marzouk et al., 2016). In these methods instead of choosing specific forms304

for variational approximations, a series of invertible transforms are applied to an initial305

distribution, and these transforms are optimized by minimizing the KL-divergence. This306

provides a way to approximate arbitrary posterior distributions since a pdf can be trans-307

formed to any other pdf as long as the probability measures are absolutely continuous.308

Stein variational gradient descent (SVGD) is one such algorithm based on an in-309

cremental transform (Q. Liu & Wang, 2016). In SVGD, a smooth transform T (m) =310

m+εφ(m) is used, where m = [m1, ...,md] and mi is the ith parameter, and φ(m) =311

[φ1, ..., φd] is a smooth vector function that describes the perturbation direction and where312

ε is the magnitude of the perturbation. It can be shown that when ε is sufficiently small,313

the transform is invertible since the Jacobian of the transform is close to an identity ma-314

trix (Q. Liu & Wang, 2016). Say qT (m) is the transformed probability distribution of315

the initial distribution q(m). Then the gradient of KL-divergence with respect to ε can316

be computed as (see Appendix C):317

∇εKL[qT ||p] |ε=0 = −Eq [trace (Apφ(m))] (12)318

where Ap is the Stein operator such that Apφ(m) = ∇mlogp(m)φ(m)T + ∇mφ(m).319

This suggests that maximizing the right-hand expectation with respect to q(m) gives the320

steepest descent of the KL-divergence, and consequently the KL-divergence can be min-321

imized iteratively.322

It can be shown that the negative gradient of the KL-divergence in equation (12)323

can be maximized by using the kernelized Stein discrepancy (Q. Liu et al., 2016). For324

two continuous probability densities p and q, the Stein discrepancy for a function φ in325

a function set F is defined as:326

S[q, p] = arg max
φ∈F

{[Eqtrace (Apφ(m))]
2} (13)327

The Stein discrepancy provides another way to quantify the difference between two dis-328

tribution densities (Stein et al., 1972; Gorham & Mackey, 2015). However the Stein dis-329

crepancy is not easy to compute for general F . Therefore, Q. Liu et al. (2016) proposed330

a kernelized Stein discrepancy by maximizing equation (13) in the unit ball of a repro-331

ducing kernel Hilbert space (RKHS) as follows.332

A Hilbert space is a space H on which an inner product <,>H is defined. A func-333

tion is called a kernel if there exists a real Hilbert space and a function ϕ such that k(x, y) =<334
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ϕ(x), ϕ(y) >H (Gretton, 2013). A kernel is said to be positive-definite if the matrix de-335

fined by Kij = k(xi, xj) is positive definite. Assuming a positive definite kernel k(m,m′)336

on M×M, its reproducing kernel Hilbert space H is defined by the closure of the lin-337

ear span {f : f(m) =
∑n
i=1 aik(m,mi), ai ∈ R, n ∈ N ,mi ∈ M} with inner products338

〈f, g〉H =
∑
ij aibjk(mi,mj) for g(m) =

∑
i bik(m,mi). The RKHS has an impor-339

tant reproducing property, that is, f(x) =< f(x′), k(x′, x) >H, such that the evalua-340

tion of a function f at x can be represented as an inner product in the Hilbert space.341

In a RKHS, the kernelized Stein discrepancy can be defined as (Q. Liu et al., 2016)342

S[q, p] = arg max
φ∈Hd

{Eq [trace (Apφ(m))]
2
, s.t. ||φ||Hd ≤ 1} (14)343

where Hd is the RKHS of d-dimensional vector functions. The right side of equation (14)344

is found to be equal to,345

φ∗ = φ∗q,p(m)/||φ∗q,p(m)||Hd (15)346

where347

φ∗q,p(m) = E{m′∼q}[Apk(m′,m)] (16)348

and for which we have S[q, p] = ||φ∗q,p(m)||Hd . Thus the optimal φ in equation (12) is349

φ∗ and ∇εKL[qT ||p] |ε=0 = −
√
S[q, p].350

Given the above solution, the SVGD works as follows: we start from an initial dis-351

tribution q0, then apply the transform T ∗0 (m) = m + εφ∗q0,p(m) where we absorb the352

normalization term in equation (15) into ε; this updates q0 to q[T0] with a decrease in the353

KL-divergence of ε ∗
√
S[q, p]. This process is iterated to obtain an approximation of354

the posterior p:355

ql+1 = ql[T∗l ], where T
∗
l (m) = m + εlφ

∗
ql,p

(m) (17)356

and for sufficiently small {εl} the process eventually converges to the posterior pdf p. Note357

that a large stepsize may lead the Jacobian matrix of transform T to be singular, which358

in turn makes the approximation probability fail to converge to the true posterior (Q. Liu,359

2017).360

To calculate the expectation in equation (16) we start from a set of particles (mod-361

els) generated using q0, and at each step the φ∗q,p(m) can be estimated by computing362

the mean in equation (16) using those particles. Each particle is then updated using the363

transform in equation (17), and those particles will form better approximations to the364

posterior as the iteration proceeds. This suggests the following algorithm which is schemat-365

ically represented in Figure 3:366
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Figure 3. An illustration of the SVGD algorithm. The initial pdf is represented by the den-

sity of a set of particles (red histogram) in the top plot. The particles are then updated using

a smooth transform T (x) = x + εφ∗(x), where φ∗ is found in a reproducing kernel Hilbert

space (RKHS). (a) An example of a posterior pdf (blue line) and an initial distribution (red

histogram). (b) The approximating probability distribution after 5 iterations. (c) The approxi-

mating probability distribution after 500 iterations.
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1. Draw a set of particles {m0
i }ni=1 from an initial pdf estimate (e.g., the prior).367

2. At iteration l, update each particle using:368

ml+1
i = ml

i + εlφ
∗
ql,p

(ml
i) (18)369

where370

φ∗ql,p(m) =
1

n

n∑
j=1

[
k(ml

j ,m)∇ml
j
logp(ml

j) +∇ml
j
k(ml

j ,m)
]

(19)371

and εl is the step size at iteration l.372

3. Calculate the density of the final set of particles {m∗i }ni=1 which approximates the373

posterior probability density function.374

For kernel k(m,m′) we use the radial basis function k(m,m′) = exp(− 1
h ||m −375

m′||2, where h is taken to be d̃2/log n where d̃ is the median of pairwise distances be-376

tween all particles. This choice of h is based on the intuition that
∑
j k(mi,mj) ≈ nexp(− 1

h d̃
2) =377

1, so that for particle mi the two gradient terms in equation (19) are balanced (Q. Liu378

& Wang, 2016). For the radial basis function kernel the second term in equation (19)379

becomes
∑
j

2
h (m −mj)k(mj ,m), which drives the particle m away from neighbour-380

ing particles for which the kernel takes large values. Therefore the second term in equa-381

tion (19) acts as a repulsive force preventing particles from collapsing to a single mode,382

while the first term moves particles towards local high probability areas using the kernel-383

weighted gradient. If in the kernel h → 0, the algorithm falls into independent gradi-384

ent ascent that maximizes logp for each particle.385

Note that since SVGD uses kernelized Stein discrepancy, the choice of kernels may386

affect the efficiency of the algorithm. In this study we adopted a commonly used ker-387

nel: a radial basis function. However, in some cases other kernels may provide a more388

efficient algorithm, for example, an inverse multiquadric kernel (Gorham & Mackey, 2017),389

a Hessian kernel (Detommaso et al., 2018) and kernels on a Riemann manifold (C. Liu390

& Zhu, 2018).391

In SVGD, the accuracy of the approximation increases with the number of parti-392

cles. It has been shown that compared to other particle-based methods, e.g., sequential393

Monte Carlo methods (Smith, 2013), SVGD requires fewer samples to achieve the same394

accuracy which makes it a more efficient method (Q. Liu & Wang, 2016). In contrast395

to sequential Monte Carlo which is a stochastic process, SVGD acts as a deterministic396

sampling method. If only one particle is used, the second term in equation (19) becomes397
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zero and the method reduces to a typical gradient ascent towards the model with the398

maximum a posterior (MAP) pdf value. This suggests that even for a small number of399

particles the method could still produce a good parameter estimate since MAP estima-400

tion can be an effective method in practice. Thus, in practice one could start from a small401

number of particles and gradually increase the number to find an optimal choice.402

In seismic tomography velocities are usually constrained to lie within a given ve-403

locity range. In order to ensure that velocities always lie within the constrains, we first404

apply the same transform used in ADVI (equation 11) so that the parameters are in an405

unconstrained space. We can then simply use equation (18) to update particles without406

explicitly considering the constrains on seismic velocities. The final seismic velocities can407

be obtained by transforming particles back to the constrained space.408

3 Synthetic tests409

We first apply the above methods to a simple 2D synthetic example similar to that410

in Galetti et al. (2015). The true model is a homogeneous background with velocity 2411

km/s containing a circular low velocity anomaly with a radius of 2 km with velocity 1412

km/s. The 16 receivers are evenly distributed around the anomaly approximating a cir-413

cular acquisition geometry with radius 4 km (Figure 4a). Each receiver is also treated414

as a source to simulate a typical ambient noise interferometry experiment (Campillo &415

Paul, 2003; Curtis et al., 2006; Galetti et al., 2015). This produces a total of 120 inter-416

receiver travel time data, each of which is computed using a fast marching method of417

solving the Eikonal equation over a 100×100 gridded discretisation in space (Rawlinson418

& Sambridge, 2004).419

For variational inversions we use a fixed 21×21 grid of cells to parameterize the420

velocity model m (Figure 4a). The noise level is fixed to be 0.05 s (< 5 percent of travel421

times) for all inversions. The prior pdf of the velocity in each cell is set to be a Uniform422

distribution between 0.5 km/s and 3.0 km/s to encompass the true model. Travel times423

are calculated using the same fast marching method as above over a 100×100 grid, but424

using the lower spatial resolution of model properties parameterized in m. The gradi-425

ents for velocity models are calculated by tracing rays backwards from receiver to (vir-426

tual) source using the gradient of the travel time field for each receiver pair (Rawlinson427

& Sambridge, 2004). For ADVI, the initial mean of the Gaussian distribution in the trans-428
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Figure 4. (a) The true velocity model and receivers (white triangle) used in the synthetic

test. Sources are at the same locations as receivers to simulate a typical ambient noise exper-

iment. Black dots indicate the locations of grid points used in the inversions. The histograms

show the initial distributions of a parameter in the (b) original space (velocity) and (c) trans-

formed unconstrained space for ADVI (blue) and SVGD (orange). In ADVI, the initial distribu-

tion is a standard Gaussian in unconstrained space. For simplicity we generated 5000 samples

from the standard Gaussian and transformed to the original space to show the initial distribution

in the original space. In SVGD the initial distribution is approximated using 800 particles gen-

erated from a Uniform distribution in the original space and transformed to the unconstrained

space.

formed space is chosen to be the value which is the transform of the mean value of the429

prior in the original space; the initial covariance matrix is simply set to be an identity430

matrix, which turns out to give a standard Gaussian in our case (see blue histogram in431

Figure 4c). The shape of the initial distribution in the original space is shown in Fig-432

ure 4b (blue histogram). We then used 10,000 iterations to update the variational pa-433

rameters (µ and Σ). In order to visualize the results, we generated 5,000 models from434

the final approximate posterior probability density in the original space and computed435

their mean and standard deviation. For SVGD, we used 800 particles generated from the436

prior pdf (orange histogram in Figure 4b) and transformed to an unconstrained space437

using equation 11 (orange histogram in Figure 4c). Each particle is then updated using438

equation (17) for 500 iterations, then transformed back to seismic velocity. The mean439

and standard deviation are then calculated using the values of those particles.440
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Figure 5. The mean (left), standard deviation (middle) and an individual realization from the

approximate posterior distribution (right) obtained using ADVI. The red pluses show locations

which are referred to in the main text.

To demonstrate the variational methods we compare the results with the fixed-dimensional441

Metropolis-Hastings McMC (MH-McMC) method (Metropolis & Ulam, 1949; Hastings,442

1970; Mosegaard & Tarantola, 1995; Malinverno et al., 2000) and the rj-McMC method443

(Green, 1995; Bodin & Sambridge, 2009; Galetti et al., 2015; Zhang et al., 2018). For444

MH-McMC inversion we used the same parameterization as for the variational methods445

(a 21×21 grid). A Gaussian perturbation is used as the proposal distribution used to446

generate potential McMC samples, for which the step length is chosen by trial and er-447

ror to give an acceptance ratio between 20 and 50 percent. We used a total of 6 chains,448

each of which used 2,000,000 iterations with a burn-in period of 1,000,000 iterations. To449

reduce the correlation between samples we only retain every 50th sample in each chain450

after the burn-in period. The mean and standard deviation are then calculated using those451

samples. For rj-McMC inversion we use Voronoi cells to parameterize the model (Bodin452

& Sambridge, 2009), for which the prior pdf of the number of cells is set to be a Uni-453

form distribution between 4 and 100. The proposal distribution for fixed-dimensional steps454

(changing the velocity of a cell or moving a cell) is chosen in a similar way as in MH-455

McMC. For trans-dimensional steps (adding or deleting a cell) the proposal distribution456

is chosen as the prior pdf (Zhang et al., 2018). We used a total of 6 chains, each of which457

contained 500,000 iterations with a burn-in period of 300,000. Similarly to the fixed-dimensional458

inversion the chain was thinned by a factor of 50 post burn-in.459
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Figure 6. The mean (left), standard deviation (middle) and an individual realization from the

approximate posterior distribution (right) obtained using SVGD. The red pluses show locations

which are referred to in the main text.

3.1 Results460

Figure 5 shows the mean, standard deviation and an individual realization from461

the approximate posterior distribution calculated using ADVI. The mean model success-462

fully recovers the low velocity anomaly within the receiver array except that the veloc-463

ity value is slightly higher (∼ 1.2 km/s) than the true value (1.0 km/s). Between the464

location of the central anomaly and that of the receiver array there is a slightly lower465

velocity loop. The standard deviation map shows standard deviations similar to that of466

the prior (0.72 km/s) outside of the array, and clearly higher uncertainties at the loca-467

tion of the central anomaly. The standard deviations around the central anomaly are slightly468

higher than those at the center. Figure 6 shows the results from SVGD. Similarly, the469

velocity of the low velocity anomaly (∼ 1.2 km/s) is slightly higher than the true value470

and a slightly lower velocity loop is also observed between the central anomaly and the471

receiver array. There is a clear higher uncertainty loop around the central anomaly; this472

has been observed previously and represent uncertainty due to the trade-off between the473

velocity of the anomaly and its shape (Galetti et al., 2015; Zhang et al., 2018). There474

is also another higher uncertainty loop associated with the lower velocity loop between475

the central anomaly and the receiver array. In contrast to this result, the loop cannot476

be observed in the results of ADVI.477

To validate and better understand these results, Figure 7 shows the results from478

MH-McMC. The mean velocity model is very similar to the results from ADVI and SVGD.479

For example, the velocity value of the low velocity anomaly is higher than the true value,480
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which suggests that the mean value of the posterior under the specified parameteriza-481

tion is genuinely biased towards higher values than the true value. A lower velocity loop482

is also observed between the circular anomaly and the receiver array. The standard de-483

viation map shows similar results to those from SVGD: there is a higher uncertainty loop484

around the central anomaly and another one associated with the lower velocity loop be-485

tween the circular anomaly and the receiver array. The latter loop suggests that this area486

is not well constrained by the data, and therefore the mean velocity tends towards the487

mean value of the prior which is lower than the true value. We do not observe the clear488

higher uncertainty loops in the result of ADVI which may be due to the Gaussian ap-489

proximation which is used to fit a non-Gaussian posterior. In Figure 8 we show the re-490

sults from rj-McMC. Compared to the results from the fixed-parameterization inversions,491

the mean velocity is a more accurate estimate of the true model and uncertainty across492

the model is also lower. For example, the middle low velocity anomaly has almost the493

same value as the true model and has standard deviation of only ∼ 0.3 km/s compared494

to values significantly greater than 0.3 km/s for all other methods. Between the mid-495

dle anomaly and the receivers, the model is determined better than in the fixed-paramterization496

inversions (with a standard deviation smaller than 0.1 km/s). This is because in rj-McMC497

the model parameterization adapts to the data which usually results in a lower-dimensional498

parameter space due to the natural parsimony of the method. For example, the aver-499

age dimensionality of the parameter space in the rj-McMC inversion is around 10; for500

comparison the fixed-parameterization inversions all have dimensionality fixed to be 441.501

The standard deviation map from the rj-McMC also shows a clear higher uncertainty502

loop within the array around the low velocity anomaly, and high uncertainties outside503

of the array where there is no data coverage.504

Note that individual models from fixed-parameterization inversions (ADVI, SVGD505

and MH-McMC) show complex structures because of their higher dimensionality and the506

simple Uniform prior distribution that we adopted (right panels in Figure 5, 6 and 7).507

This might not be appropriate since the real Earth may have a smoother structure (de508

Pasquale & Linde, 2016; Ray & Myer, 2019). In that case, more informative prior in-509

formation including some form of regularization might be used to produce smoother in-510

dividual models (MacKay, 2003).511

The results in Figure 8 do not show the double-loop uncertainty structure that is512

observed in the SVGD and MH-McMC results. The rj-McMC method contains an im-513
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Figure 7. The mean (left), standard deviation (middle) and an individual realization from the

approximate posterior distribution (right) obtained using MH-McMC. The red pluses show the

point location which are referred to in the text.

plicit natural parsimony – the method tends to use fewer rather than more cells when-514

ever possible. While this may be useful in order to reduce the dimensionality of param-515

eter space, it is also possible that it causes some detailed features of the velocity or un-516

certainty structure to be omitted, much like a smoothing regularization condition in other517

tomographic methods. Since the double-loop structure appears to be a robust feature518

of the image uncertainty, we assume that the parsimony has indeed regularised some of519

the image structure out of the rj-McMC results.520

Note that the result from rj-McMC is fundamentally different from results obtained521

using the fixed-parameterization inversions (ADVI, SVGD and MH-McMC) because of522

its entirely different parameterization. While the other inversion results are parameter-523

ized over a regular grid and can themselves be regarded as pixelated images, rj-McMC524

produces a set of models that are vectors containing positions and velocities of Voronoi525

cells, which can be transformed to an image on a regular grid (right panel in Figure 8).526

However, the Voronoi parametrization imposes prior restrictions on the pixelated form527

of models, for example all pixels within each Voronoi cell have idential vleocities. As a528

result rj-McMC produces very different results to those obtained using the other meth-529

ods. In fact the choice of parameterizaiton in rj-McMC can impose a variety of restric-530

tions on models, and different parameterizations can produce very different standard de-531

viation structures (Hawkins et al., 2019). Thus the results of rj-McMC must always be532

interpreted in the light of the specific prior information imposed by the parameteriza-533

tion deployed.534
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Figure 8. The mean (left), standard deviation (middle) and an individual realization from the

approximate posterior distribution (right) obtained using trans-dimensional rj-McMC. The red

pluses show the point location which are referred to in the text.

To further analyse the results, in Figure 9 we show marginal probability distribu-535

tions from the different inversion methods at three points (plus signs in Figure 5, 6, 7,536

and 8): point (0, 0) at the middle of the model, point (1.8, 0) at the boundary of the low537

velocity anomaly which has higher uncertainties, and point (3, 0) which also has higher538

uncertainties in the results from SVGD and MH-McMC. Due to symmetries of the model,539

marginal distributions at these three points are sufficient to reflect much of the entire540

set of single-parameter marginal probability distributions. At point (0, 0), the three fixed-541

parameterization methods produce similar marginal probability distributions. However,542

the marginal distribution from rj-McMC is narrower and concentrates around the true543

solution (1.0 km/s). This is likely due to the fact that in rj-McMC we have a much smaller544

parameter space than in the fixed-parameterization inversions. To assess the convergence545

we show the marginal distributions obtained by doubling the number of iterations in ADVI546

and SVGD with an red line in Figure 9a and b. The results show that increasing iter-547

ations only slightly improves the marginal distributions, suggesting that they have nearly548

converged. The black line in Figure 9b shows the marginal distribution obtained using549

more particles (1,600) with the same number of iterations (500). The result is almost550

the same as the result obtained using the original set of particles which suggests that 800551

particles are sufficient in this case. At point (1.8, 0), the marginal distributions from the552

three fixed-parameterization inversions become broader which explains the higher un-553

certainty loops observed in the standard deviation maps. The distribution from ADVI554

is more centrally focussed than the other two, which is again suggestive of the limita-555
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tions of that method caused by the Gaussian approximation. The distributions from SVGD556

and MH-McMC are more similar to each other and are close to the prior – a Uniform557

distribution – which suggests that the area is not well constrained by the data. By con-558

trast, the result from rj-McMC shows a clearly multimodal distribution with one mode559

centred around the velocity of the anomaly (1 km/s) and the other around the background560

velocity (2 km/s) as discussed in Galetti et al. (2015). This multimodal distribution re-561

flects the fact that it is not clear whether this point is inside or outside of the anomaly562

which produces the higher uncertainty loop in the standard deviation map. This sug-563

gests that there are different causes of the higher uncertainty loops in the different mod-564

els. In the fixed-parameterization inversions (ADVI, SVGD and MH-McMC) the higher565

uncertainty loops are mainly caused by the low resolution of the data at the boundary566

of the low velocity anomaly which produces broader marginal distributions. In the rj-567

McMC inversion, the higher uncertainty loops are mainly caused by multimodality in568

the posterior pdf. At point (3.0, 0) similarly to the point (0, 0), the marginal distribu-569

tions from the three fixed-parameterization inversions have similar shape and are much570

broader than the result from rj-McMC. Compared to the results from SVGD and MH-571

McMC, the result from ADVI again shows a more centrally-focussed distribution rem-572

iniscent of the Gaussian limitation implicit in ADVI. In the result of rj-McMC the marginal573

distribution concentrates to a very narrow distribution around the true value. Overall574

the marginal distributions from the fixed-parameterization inversions are broader than575

the result from rj-McMC due to their far larger parameter space. Note that although576

the marginal distributions from SVGD and MH-McMC have slightly different shape which577

causes differences in the magnitudes of their standard deviation maps, the maps are es-578

sentially similar from these quite different methods which suggests that the results are579

(approximately) correct.580

3.2 Computational cost581

Table 1 summarises the computational cost of the different methods. ADVI involves582

10,000 forward simulations which takes 0.45 CPU hours. However, note that in ADVI583

we used the full-rank covariance matrix which becomes huge in high dimensional param-584

eter spaces which could makes the method inefficient. SVGD involves 400,000 forward585

simulations which takes 8.53 CPU hours. This appears to make it less efficient than ADVI,586

however SVGD can produce a more accurate approximation to the posterior pdf than587
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Figure 9. The marginal posterior pdfs of velocity at three points (pluses in Figure 3,4,5,6)

derived using different methods. (a), (b), (c) and (d) show the marginal posterior distributions

of velocity at the point (0,0) from ADVI, SVGD, MH-McMC and rj-McMC respectively. (e),

(f), (g) and (h) show the marginal distributions at the point (1.8,0) from the four methods

respectively, and (i), (j), (k) and (l) show the marginal distributions at the point (3,0) from

the four methods respectively. The red lines in (a) and (b) are marginal distributions obtained

by doubling the number of iterations and the black line in (b) shows the marginal distribution

obtained using 1,600 particles. The number at the top-right of each figure shows the number of

Monte Carlo samples.
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ADVI which is limited by the Gaussian approximation. Note that SVGD can easily be588

parallelized by computing the gradients in equation (19) in parallel, making the method589

more time-efficient. For example, the above example takes 0.97 hours when parallelized590

using 10 cores. In comparison, MH-McMC requires 2,000,000 simulations for one chain591

which takes about 80.05 CPU hours, so for all 6 chains it requires 480.3 CPU hours in592

total. The rj-McMC run involved 500,000 simulations for one chain which takes about593

17.1 CPU hours, so 102.6 CPU hours in total for 6 chains. The Monte Carlo methods594

use evaluations of the likelihood and prior distribution at each sample whereas both vari-595

ational methods also deploy the information in the various gradients in equations 9, 10596

and 19. The number of simulations is therefore not a good metric to compare the four597

methods, since the gradients in this case are calculated by ray tracing which require more598

calculations per simulation in Table 1 compared to MC. CPU hours is a fairer metric for599

comparison, but of course this depends on the mechanism by which gradients are obtained:600

in other forward or inverse problems it is even possible that the variational methods take601

longer than Monte Carlo if estimating gradients requires extensive computation.602

In the comparison in Table 1, rj-McMC is more efficient than MH-McMC due to603

the fact that rj-McMC explores a much smaller parameter space than the fixed param-604

eterization in MH-McMC. However, note that this might not always be true since trans-605

dimensional steps in rj-McMC usually have a very low probability of being accepted (Bodin606

& Sambridge, 2009; Zhang et al., 2018) and the method is generally significantly more607

difficult to tune (Green & Hastie, 2009). Overall, obtaining solutions from variational608

methods (ADVI, SVGD) is more efficient than Monte Carlo methods since they turn the609

Bayesian inference problem into an optimization problem. This also makes variational610

inference methods applicable to larger-datasets, and offers the advantage that very large611

datasets can be divided into random minibatches and inverted using stochastic optimiza-612

tion (Robbins & Monro, 1951; Kubrusly & Gravier, 1973) together with distributed com-613

putation. Monte Carlo methods are very computationally expensive for large datasets.614

Of course, the above comparison depends on the methods used to assess convergence for615

each method, which introduces some subjectivity in the comparison so that the abso-616

lute time required by each method may not be entirely accurate. Nevertheless, from all617

tests that we have conducted it is clear that variational methods produce solutions far618

more efficiently than Metropolis-Hastings and rj-McMC methods. Note that some other619

Monte Carlo sampling methods, e.g. Hamiltonian Monte Carlo, also use gradient infor-620
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Table 1. The comparison of computational cost for all 4 methods

Method Number of simulations CPU hours

ADVI 10,000 0.45

SVGD 400,000 8.53

MH-McMC 12,000,000 480.3

rj-McMC 3,000,000 102.6

mation and may be more efficient than Metropolis-Hastings methods (Neal et al., 2011;621

Sen & Biswas, 2017; Fichtner et al., 2018).622

4 Application to Grane field623

The Grane field is situated in the North sea, and contains a permanent monitor-624

ing system composed of 3458 four-component sensors measuring 3 orthogonal compo-625

nents of particle velocity and water pressure variations due to passing seismic waves. Zhang626

et al. (2019) used beamforming to show that the noise sources measured in the Grane627

field are nearly omnidirectional, which allows us to use ambient seismic noise tomogra-628

phy to study the subsurface of the field. To reduce the computational cost, in this study629

we down-sampled the number of receivers by a factor of 10 which results in 346 receivers,630

and we only used 35 receivers as virtual sources (Figure 10a). Cross-correlations are com-631

puted between vertical component recordings at pairs consisting of a virtual source and632

a receiver using half-hour time segments, and the set of correlations for each pair were633

stacked over 6.5 hours. This process produces approximate virtual-source seismograms634

of Rayleigh-type Scholte waves (Campillo & Paul, 2003; Shapiro et al., 2005; Curtis et635

al., 2006). Phase velocity dispersion curves for each (virtual) source-receiver pair are then636

automatically picked using an image transformation technique: for all processing details637

see Zhang et al. (2019) which presents a complete ambient noise analysis of the field and638

presents tomographic phase velocity maps at various frequencies as well as estimated shear-639

velocity structure of the near seabed subsurface. Here we use the recording phase veloc-640

ity data at 0.9 s period.641

We apply the variational inference methods ADVI and SVGD, and rj-McMC to the642

data to obtain phase velocity maps at 0.9 s and compare the results. For variational meth-643

–27–



manuscript submitted to JGR: Solid Earth

ods, the field is parametrized using a regular 26×71 grid with a spacing of 0.2 km at644

both x and y directions giving a velocity model dimensionality of 1846. Due to its com-645

putational cost in high dimensional spaces we do not apply MH-McMC. The data noise646

level is set to be 0.05 s, which is an average value estimated by the hierarchical Bayesian647

Monte Carlo inversion of Zhang et al. (2019). The prior pdf of phase velocity in each model648

cell is set to be a Uniform distribution between 0.35 km/s and 0.55 km/s, which is se-649

lected to be wider than the minimum (0.4 km/s) and maximum (0.5 km/s) phase veloc-650

ity picked from cross-correlations. The initial probability distribution for ADVI is cho-651

sen similarly to that in the synthetic tests: a standard Gaussian distribution in the un-652

constrained space (blue histogram in Figure 10c), and its shape in the original space is653

shown in Figure 10b (blue histogram). For SVGD, the initial distribution is approximated654

using 1000 particles generated from the prior in the original space (orange histogram in655

Figure 10b) and transformed to the unconstrained space (orange histogram in Figure 10c).656

We then applied 10,000 iterations for ADVI and 500 iterations for SVGD. Similarly to657

the synthetic test above for rj-McMC we use Voronoi cells to parameterize the model.658

The prior pdf of the number of cells is set to be a discrete Uniform distribution between659

30 and 200, and the data noise level is estimated hierarchically during the inversion (Zhang660

et al., 2018). Proposal distributions are the same as in the synthetic test above. We used661

a total of 16 chains, each of which contains 800,000 iterations including a burn-in period662

of 400,000. To reduce the correlation between samples we only retain every 50th sam-663

ple post burn-in for our final ensemble.664

Figure 11 shows the mean and standard deviation maps from ADVI. The mean phase665

velocity map shows a clear low velocity anomaly around the centre of the field from Y=6666

km to Y=10 km and another at the western edge between Y=8 km and Y=10 km. These667

were also observed by (Zhang et al., 2019) using Eikonal tomography, who showed that668

they are correlated with areas of higher density of pockmarks on the seabed, suggest-669

ing that they are caused by near surface fluid flow effects. At the western edge between670

Y=6 km and Y=8 km and at the northwestern edge there are high velocity anomalies671

which were also observed in the results of Zhang et al. (2019). In the north between Y=11672

km and Y=12 km and along the eastern edge between Y=7 km and Y=10 km the model673

shows some low velocity anomalies. Moreover, there are some small anomalies distributed674

across the field. For example, to the south of the central low velocity anomaly around675

Y=6 km there are several other low velocity anomalies. Similarly there is a small low676
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Figure 10. (a) The distribution of receiver (blue and red triangles) across the Grane field

used in this study. Red triangles show the receivers that were used as virtual sources. The blue

plus in the inset map shows the location of Grane field. The histograms show the initial distribu-

tions of a parameter in the (b) original (velocity) space and (c) transformed unconstrained space

for ADVI (blue) and for SVGD (orange). Similar to Figure 4, we used 5000 Monte Carlo samples

to show probability distributions in both the original and the unconstrained space for ADVI. The

initial distribution for SVGD is approximated using 1000 particles generated from the prior (a

Uniform distribution) in the original space and transformed to the unconstrained space.
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Figure 11. The mean (left) and standard deviation map (right) from ADVI.

velocity anomaly and a small high velocity anomaly in the south of the field around Y=2.5677

km, and a small high velocity anomaly in the north around Y=10.5 km.678

Overall the standard deviation map shows that uncertainty in the west is lower than679

in the east. At the western edge there are some low uncertainty areas which are asso-680

ciated with velocity anomalies. For example, the low uncertainty area between Y=6 km681

and Y=8 km is associated with the high velocity anomaly at the same location. Sim-682

ilarly the high velocity anomaly at the northwestern edge around Y=12 km shows a lower683

uncertainty, and the middle low velocity anomaly also shows slightly lower uncertain-684

ties. This might suggest that these velocity structures are well-constrained by the data.685

However, in the synthetic tests we noticed that the ADVI can produce biased standard686
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Figure 12. The mean (left) and standard deviation map (right) from SVGD.

deviation maps due to the Gaussian approximation, so these uncertainty properties may687

not be robust.688

We show the mean and standard deviation maps obtained using SVGD in Figure689

12. The mean velocity map shows very similar structures to the result from ADVI, ex-690

cept that the velocity magnitudes are slightly different. For example, we observe the cen-691

tral low velocity anomaly and one at the western edge which appeared in the mean ve-692

locity map from ADVI and are related to the density distribution of pockmarks. Sim-693

ilarly there are high velocity anomalies at the western edge and a low velocity anomaly694

at the eastern edge. Even for more detailed structure, e.g., the low velocity anomalies695

at the north (Y ¿ 10 km), the low velocity anomalies around Y=6 km and the small ve-696

locity anomalies around Y=2.5 km, the two results show highly consistent properties be-697
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Figure 13. The mean (left) and standard deviation map (right) from rj-McMC.
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Figure 14. The mean (left) and standard deviation map (right) obtained using Eikonal to-

mography by Zhang et al. (2019).
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tween the two methods. This suggests that we have obtained accurate mean phase ve-698

locity maps given the fixed, gridded model parameterization and the observed data.699

Despite the similarity in the mean results, the standard deviation map from SVGD700

is quite different from the results from ADVI, which is consistent with similar variations701

that we observed in the synthetic tests. For example, there is no clear magnitude dif-702

ference between the west and the east as appeared in the result from ADVI. There is a703

clear low uncertainty area associated with the central low velocity anomaly, which is slightly704

lower in magnitude than the result from ADVI. Similarly there is a slightly lower un-705

certainty area at the western edge associated with the low velocity anomaly at the same706

location. The south-central low velocity anomaly around Y=6 km also exhibits relatively707

lower uncertainties, which suggests that those small low velocity anomalies in this area708

may reflect true properties of the subsurface. Similarly there are some low uncertainty709

structures at the north around Y= 11 km which are associated with low velocity anoma-710

lies. Note that due to the Gaussian approximation in ADVI, the standard deviation re-711

sults from SVGD show different magnitudes as we saw in the synthetic tests.712

Figure 13 shows the mean and standard deviation maps obtained from rj-McMC.713

The mean velocity map shows broadly similar structures to the results from ADVI and714

SVGD. For example, we also observed the middle low velocity anomaly, the low veloc-715

ity anomalies at the western and eastern edges and the high velocity anomalies at the716

western edge. However, compared to the previous results these structures are smoother717

which is probably caused by the natural parsimony that is implicit within the rj-McMC718

inversion method (Green, 1995; Bodin & Sambridge, 2009) similarly to the synthetic tests719

above. The small velocity anomalies in the previous results disappear in the result from720

rj-McMC; this may also be caused by the natural parsimony of rj-McMC, or by overfit-721

ting of data in the variational methods due to the fixed parameterization. However, the722

small high and low velocity anomalies around Y=2.5 km and around Y=10.5 km still723

exist, which suggests that these detailed velocity structures may represent real proper-724

ties of the subsurface (or are caused by a consistent bias in the data).725

Similarly to the synthetic tests, the standard deviation map from rj-McMC shows726

significantly smaller uncertainties (< 0.01 km/s) than the results from ADVI (∼ 0.04727

km/s) and SVGD (∼ 0.055 km/s), which is probably caused by a lower dimensional-728

ity of parameter space used in rj-McMC (around 60 Voronoi cells were used) than in vari-729
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ational methods (1846), resulting in fewer trade-offs between parameters. However, there730

are higher uncertainties at the location of the small velocity anomalies at Y=2.5 km and731

at Y=10.5 km, which is probably due to the fact that not all chains found these small732

structures.733

To compare our results with traditional methods, Figure 14 shows the mean and734

standard deviation maps obtained using Eikonal tomography by Zhang et al. (2019) us-735

ing all of the available data (3458 virtual sources and 3458 receivers). The mean veloc-736

ity model shows similar but slightly smoother structures compared to those obtained us-737

ing ADVI and SVGD. This may be because the larger quantity of data used in Eikonal738

tomography reduces the noise and stabilizes the results, or because the interpolation used739

in Eikonal tomography regularizes (smooths) small scale structure. The standard devi-740

ation map shows lower uncertainties at the location of the middle low velocity anomaly741

which is similar to that obtained using SVGD. This again suggests that SVGD can pro-742

duce a more accurate standard deviation estimate than ADVI. The mean velocity model743

from rj-McMC shows smoother structures than that from Eikonal tomography, which744

may suggest that rj-McMC omits small scale structure due to its implicit parsimony. The745

standard deviation map from rj-McMC also does not show similar structures to those746

obtained using Eikonal tomography or SVGD due to the completely different parame-747

terizations employed.748

In the inversion, ADVI involved 10,000 forward simulations which took 5.1 CPU749

hours and SVGD involved 500,000 forward simulations which required 141.8 CPU hours.750

By contrast the rj-McMC involved 12,800,000 forward simulations to obtain an accept-751

able result which required 1,866.1 CPU hours. In real time, SVGD was in fact parallelised752

using 12 cores which took 12.1 hours to run, while rj-McMC was parallelised using 16753

cores which therefore took about 5 days. We conclude that, although the variational meth-754

ods produce higher uncertainty estimates, they can produce similar parameter estimates755

(mean velocity) at hugely reduced computational cost, and indeed our synthetic tests756

suggest that the variational SVGD image uncertainty results may in fact be more cor-757

rect.758
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5 Discussion759

We have shown that variational methods (ADVI and SVGD) can be applied to seis-760

mic tomography problems and provide efficient alternatives to McMC. ADVI produces761

biased posterior pdfs because of its implicit Gaussian approximation, and cannot be ap-762

plied to problems with multi-modal posteriors. However, it still generates an accurate763

estimate of the mean model. Given that it is very efficient (only requiring 10,000 forward764

simulations) the method could be useful in scenarios where efficiency is important and765

a Gaussian approximation is sufficient for uncertainty analysis. Alternatively a mixture766

of Gaussians approximation might be used to improve the accuracy of the algorithm (Zobay767

et al., 2014; Arenz et al., 2018). In a very high dimensional case, ADVI could become768

less efficient because of the increased size of the Gaussian covariance matrix. In that case769

one could use a mean-field approximation (setting model covariances to zero), or use a770

sparse covariance matrix to reduce computational cost since seismic velocity in any cell771

is often most strongly correlated with that in neighbouring cells.772

SVGD can produce a good approximation to posterior pdfs. However, since it is773

based on a number of particles, the method is more computationally costly than ADVI.774

In this study we parallelized the computation of gradients to improve the efficiency, and775

for large datasets further improvements can be obtained by using random minibatches776

to perform the inversion (Q. Liu & Wang, 2016). Such a strategy can be applied to any777

variational inference method (e.g. also ADVI) since variational methods solve an opti-778

mization rather than a stochastic sampling problem. In comparison, this strategy can-779

not easily be used in McMC based methods since it may break the detailed balance re-780

quirement of McMC (Blei et al., 2017). Though it has been shown that SVGD requires781

fewer particles than particle-based sampling methods (e.g., sequential Monte Carlo) in782

the sense that it reduces to finding the MAP model if only one particle is used, the op-783

timal choice of the number of particles remains unclear, especially for very high dimen-784

sional spaces. In the case of very high dimensionality another possibility is to use nor-785

malizing flows – a variational method based on a series of specific invertible transforms786

(Rezende & Mohamed, 2015).787

Monte Carlo and variational inference are different types of methods that solve the788

same problem. Monte Carlo simulates a set of Markov chains and uses samples of those789

chains to approximate the posterior pdf, while variational inference solves an optimiza-790
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tion problem to find the closest pdf to the posterior within a given family of probabil-791

ity distributions. Monte Carlo methods provide guarantees that samples are asymptot-792

ically distributed according to the posterior pdf as the number of samples tends to in-793

finity (Robert & Casella, 2013), while the statistical properties of variational inference794

algorithms are still unknown (Blei et al., 2017). It is possible to combine the two meth-795

ods to capitalise on the merits of both. For example, the approximate posterior pdf from796

an efficient variational method (e.g. ADVI) can be used as a proposal distribution for797

Metropolis-Hastings (De Freitas et al., 2001) to improve the efficiency of McMC, or McMC798

steps can be integrated to the variational approximation to improve the accuracy of vari-799

ational methods (Salimans et al., 2015).800

We used a fixed regular grid of cells to parameterize the tomographic model in the801

variational methods, which might introduce overfitting of the data. For example, the mean802

velocity models in the synthetic tests show a slightly lower velocity loop between the low803

velocity anomaly and the receivers, and the uncertainties obtained from fixed-parameterization804

inversions are significantly higher than the results from rj-McMC. However, although rj-805

McMC produces lower uncertainty estimates, small scale structures can be omitted in806

the results of rj-McMC due to their implicitly imposed parsimony. For example, in our807

real data example, small scale structures in the results of variational inference methods808

and Eikonal tomography are smoothed out in the results of rj-McMC. Indeed the param-809

eterization used in rj-McMC imposes restrictions on models, and different parameter-810

izations can produce different uncertainties (Hawkins et al., 2019). This makes the in-811

terpretation and use of uncertainties from rj-McMC difficult.812

It is not easy to determine an optimal grid in variational inference methods since813

this introduces a trade off between resolution of the model and overfitting of the data.814

Therefore, it might be necessary to use a more flexible parameterization, e.g., Voronoi815

cells (Bodin & Sambridge, 2009; Zhang et al., 2018) or wavelet parameterization (Fang816

& Zhang, 2014; Hawkins & Sambridge, 2015; Zhang & Zhang, 2015). It may also be pos-817

sible to apply a series of different parameterizations and select the best one using model818

selection theory (Walter & Pronzato, 1997; Curtis & Snieder, 1997; Arnold & Curtis, 2018).819

Note that it would make the methods less computationally efficient to find an optimal820

parameterization because we may need to run a series of optimization problems with dif-821

ferent parameterizations. However, in cases with very large datasets which may more822

suitably be solved by variational inference methods, it might instead be sufficient to use823
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a parameterization with the highest resolution that the frequency of the data could re-824

solve. Instead some more informative prior or regularization may be used to reduce the825

magnitude of uncertainty estimates and to better constrain the model (MacKay, 2003;826

Ray & Myer, 2019).827

In our experiments the results from rj-McMC are significantly different from the828

results obtained using variational methods or MH-McMC. This is essentially caused by829

different parameterizations. In ADVI, SVGD and MH-McMC we invert for a pixelated830

image, while in rj-McMC we invert for a distribution of parameters that represent lo-831

cations and shapes of cells and their constant velocities, the pointwise spatial mean of832

which is visualized as an image. Therefore even though we visualized them in the same833

way, the results are essentially not directly comparable. Nevertheless, the comparison834

with rj-McMC is interesting because until now a quite different alternative probabilis-835

tic method was never used to estimate the posterior of images from the same realistic836

tomography problem. The results here demonstrate that the rj-McMC method as ap-837

plied in most tomography papers gives significantly different solutions than we might pre-838

viously have thought; specifically, it does not produce the posterior distribution of the839

pixelated image that is usually shown in scientific papers (e.g., Bodin & Sambridge, 2009;840

Zulfakriza et al., 2014; Galetti et al., 2015; Crowder et al., 2019). Rather, it samples a841

probability distribution in a particular irregular and variably parametrized model space842

and results should be interpreted as such. Note that some other methods, e.g. rj-McMC843

with Gaussian processes, may provide results that can be compared between all sampling844

methods, and provide a means of injecting prior information with adaptable complex-845

ity into the sampling scheme (Ray & Myer, 2019).846

In this study we used a fixed data noise level in the variational methods. It has been847

shown that an improper noise level can introduce biases in tomographic results (Bodin848

& Sambridge, 2009; Zhang et al., 2019), so in our example we used the noise level esti-849

mated by hierarchical McMC. It can also be estimated by a variety of other methods (Bensen850

et al., 2009; Yao & Van Der Hilst, 2009; Weaver et al., 2011; Nicolson et al., 2012, 2014),851

and maximum likelihood methods (Sambridge, 2013; Ray et al., 2016; Ray & Myer, 2019).852

In future it might also be possible to include the noise parameters in variational meth-853

ods in a hierarchical way.854
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In this study we applied variational inference methods to simple 2D tomography855

problems, but it is straightforward to apply the methods to any geophysical inverse prob-856

lems whose gradients with respect to the model can be computed efficiently. For exam-857

ple, variational methods can be applied to 3D seismic tomography problems to provide858

efficient approximation, which generally demands enormous computational resources us-859

ing McMC methods (Hawkins & Sambridge, 2015; Zhang et al., 2018, 2019). The meth-860

ods also provide possibilities to perform Bayesian inference for full waveform inversion,861

which is generally very expensive for McMC (Ray et al., 2017) and suffers from noto-862

rious multimodality in the likelihoods. SVGD provides a possible way to approximate863

these complex distributions given that theoretically it can approximate arbitrary distri-864

butions.865

6 Conclusion866

We introduced two variational inference methods to geophysical tomography – au-867

tomatic differential variational inference (ADVI) and Stein variational gradient descent868

(SVGD), and applied them to 2D seismic tomography problems using both synthetic and869

real data. Compared to the Markov chain Monte Carlo (McMC) method, ADVI provides870

an efficient but biased approximation to Bayesian posterior probability density functions,871

and cannot be applied to find multi-modal posteriors because of its implicit Gaussian872

assumption. In contrast, SVGD is slightly slower than ADVI but produces a more ac-873

curate approximation. The real data example shows that ADVI and SVGD produce very874

similar mean velocity models, even though their uncertainty estimates are different . The875

mean velocity models are very similar to those produced by reversible jump McMC (rj-876

McMC), except that the mean model from rj-McMC is smoother because of the much877

lower dimensionality of its parameter space. Variational methods thus can provide ef-878

ficient approximate alternatives to McMC methods, and can be applied to many geo-879

physical inverse problems.880
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Appendix A The entropy of a Gaussian distribution1153

The entropy H [q(θ;φ)] of a Gaussian distribution N (θ|µ,LLT ) is:1154

H [q(θ;φ)] = −Eq[logq(θ)]1155

= −
∫
N (θ|µ,LLT )logN (θ|µ,LLT )dθ1156

=
k

2
+
k

2
log(2π) +

1

2
log|det(LLT )|1157

where k is the dimension of vector θ. The gradients with respect to µ and L can be eas-1158

ily calculated (see Appendix B).1159

Appendix B Gradients of the ELBO in ADVI1160

We first describe the dominated convergence theorem (DCT) (Çınlar, 2011):1161

Theorem Assume X ∈ X is a random variable and f : R×X → R is a function1162

such that f(t,X) is integrable for all t and ∂f(t,X)
∂t exists for each t. Assume that there1163

is a random variable Z such that |∂f(t,X)
∂t | ≤ Z for all t and E(Z) <∞. Then1164

∂

∂t
E(f(t,X)) = E(

∂

∂t
f(t,X))1165

The proof of this theorem is given in Çınlar (2011).1166

We then calculate the gradients in equation (9) and (10) based on Kucukelbir et1167

al. (2017). The ELBO L is:1168

L = EN (η|0,I)

[
logp

(
T−1

(
R−1φ (η)

)
,dobs

)
+ log|detJT−1

(
R−1φ (η)

)
|
]

+ H [q(θ;φ)]1169

where H [q(θ;φ)] = Eq [logq(θ] is the entropy of distribution q. Assume ∂
∂φ logp is bounded1170

where φ represents variational parameters µ and L, then the gradients can be computed1171

by exchanging the derivative and the expectation using the dominated convergence the-1172

orem (DCT) and applying the chain rule:1173

∇µL = ∇µ

{
EN (η|0,I)

[
logp

(
T−1

(
R−1φ (η)

)
,dobs

)
+ log|detJT−1

(
R−1φ (η)

)
|
]

+ H [q(θ;φ)]
}

1174
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Applying the DCT and since H does not depend on µ,1175

∇µL = EN (η|0,I)

[
∇µ

{
logp

(
T−1

(
R−1φ (η)

)
,dobs

)}
+∇µ

(
log|detJT−1

(
R−1φ (η)

)
|
)]

1176

Applying the chain rule,1177

∇µL = EN (η|0,I)

[
∇mlogp(m,dobs)∇θT

−1(θ)∇µR
−1
φ (η) +∇θlog|detJT−1(θ)|∇µR

−1
φ (η)

]
1178

= EN (η|0,I)
[
∇mlogp(m,dobs)∇θT

−1(θ) +∇θlog|detJT−1(θ)|
]

1179

The gradient with respect to L can be obtained similarly,1180

∇LL = ∇L

{
EN (η|0,I)

[
logp

(
T−1

(
R−1φ (η)

)
,dobs

)
+ log|detJT−1

(
R−1φ (η)

)
|
]

1181

+
k

2
+
k

2
log(2π) +

1

2
log|det(LLT )|

}
1182

Applying the DCT1183

∇LL = EN (η|0,I)
[
∇L

{
logp

(
T−1

(
R−1φ (η)

)
,dobs

)}
+∇L

(
log|detJT−1

(
R−1φ (η)

)
|
) ]

1184

+∇L
1

2
log|det(LLT )|1185

and applying the chain rule we obtain1186

∇LL = EN (η|0,I)

[
∇mlogp(m,dobs)∇θT

−1(θ)∇LR
−1
φ (η) +∇θlog|detJT−1(θ)|∇LR

−1
φ (η)

]
+ (L−1)T1187

= EN (η|0,I)
[(
∇mlogp(m,dobs)∇θT

−1(θ) +∇θlog|detJT−1(θ)|
)
ηT
]

+ (L−1)T1188

Appendix C Gradients of KL-divergence in SVGD1189

We calculate the gradient in equation (12) following Q. Liu and Wang (2016). De-1190

note T−1 as the inverse transform of T . Then by changing the variable,1191

KL[qT ||p] = KL[q||pT−1 ]1192

and hence1193

∇εKL[qT ||p] |ε=0 = ∇εKL[q||pT−1 ] |ε=01194

= ∇ε [Eqlogq(m)− EqlogpT−1(m)]1195

and since q(m) does not depend on ε1196

∇εKL[qT ||p] |ε=0 = −Eq [∇εlogpT−1(m)]1197

where pT−1(m) = p(T (m)) · |det (∇mT (m)) |. Therefore1198

∇εlogpT−1(m) = (∇mlog (p(m)))
T∇εT (m) + trace

(
(∇mT (m))

−1 · ∇ε∇mT (m)
)

1199
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where T (m) = m + εφ(m), ∇εT (m = φ(m) and ∇mT (m)|ε=0 = I, and so1200

∇εKL[qT ||p] |ε=0 = −Eq

[
(∇mlog (p(m)))

T
φ(m) + trace (∇mφ(m))

]
1201

= −Eq
[
trace

(
∇mlog (p(m))φ(m)T

)
+ trace (∇mφ(m))

]
1202

= −Eq [trace (Apφ(m))]1203

where Apφ(m) = ∇mlogp(m)φ(m)T +∇mφ(m) is the Stein operator.1204
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