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1 Introduction 

Local nonlinearities are pervasive in engineering applications (Shi and Atluri 1992; Fey et al. 1996; 

Wojtkiewicz and Johnson. 2011). In some cases, local nonlinearities are deliberately designed into the 

system to avoid excessively high responses or stresses (Fey 1992) and in others, they arise from large 

deformations or material stress (Clough and Wilson 1979). Examples include nonlinear bearings (Nelson 

and Nataraj 1989), dry friction damping (Ferri and Dowell 1988), local nonlinear springs and dampers (Qu 

2002), structural joints with an opening and closing ability (Niwa and Clough 1982), and concrete cracking 

(Atamturktur et al. 2013; Llau et al. 2015). 

In these systems, as the nonlinear effects are localized within a component of a larger linear system, 

the dynamic response tends to remain predominantly linear for small magnitude forces (Clough and Wilson 

1979). However, when sufficiently high magnitude forces are applied, the dynamic behavior becomes 

nonlinear and is governed by the interaction between the linear and nonlinear components. Hence, when 

developing numerical models to represent such systems, one must pay attention to accurate modeling of 

both the global system that exhibits the underlying linear behavior and the spatially local component that 

introduces nonlinearity. It is important to note that modeling error in the underlying linear behavior could 

degrade the prediction accuracy of the overall nonlinear behavior, resulting in large deviations from the 

measured dynamic response (Lenaerts et al. 2001; Kerschen et al. 2003; Kerschen et al. 2005; Hot 2012). 

As such, the accuracy with which model error in local, nonlinear components can be identified is naturally 

dependent on errors which may be associated with linear components.  

Common approaches for calibrating models of nonlinear dynamical systems can be grouped into 

two categories. The first category of approaches corrects errors in the representation of both the linear and 

nonlinear responses of the system simultaneously (Lenaerts et al. 2001; Meyer and Link 2003; Bellizzi and 

Defilippi 2003; Kerschen et al. 2005). These approaches may face the identifiability problem due to the 

large number of confounding parameters that need to be calibrated using an inevitably finite set of available 

measurements (Lenaerts et al. 2001; Kurt et al. 2005; Jaishi and Ren 2007; Van Buren and Atamturktur 
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2012). The second category of approaches, on the other hand, corrects the representation of only the 

nonlinear response, and therefore assumes the linear system to be modeled accurately. This assumption in 

turn mandates the availability of reliable a priori knowledge of the linear system (Kerschen et al. 2005; 

Isasa et al. 2011). Hence, this second approach risks that during calibration of the locally nonlinear 

component parameters errors in the linear system may be compensated for since the linear model accuracy 

is seldom guaranteed. Separately identifying the modeling errors that govern the system’s linear and 

nonlinear behavior offers a solution that can mitigate the issues related to identifiability faced by both of 

these categories of approaches (Lenaerts et al. 2001; Ewins et al. 2015). 

In this paper, a two-step process is presented for calibrating numerical models of dynamical systems 

with local nonlinearities. The process involves separately measuring the system’s predominantly linear and 

nonlinear dynamic response under periodic excitation at low and high force magnitudes, respectively. This 

is a development over other published approaches that face from the previously mentioned identifiability 

issues. From these response measurements, multi-harmonic coefficients, a commonly used set of features 

for characterization of nonlinear dynamical systems (Cardona et al. 1994), are extracted. When coupled 

with the extended constitutive relation error (ECRE), the multi-harmonic coefficients allow the calculation 

of the residual energy, which reflects the discrepancy between the model predictions and the experimental 

measurements (Isasa et al. 2011; Hu et al. 2017). In the first step of this study, the residual energy in the 

predominantly linear behavior is calculated for each discretized finite element allowing us to identify the 

model input parameters that need calibration. These input parameters, when combined with the poorly 

known parameters associated with the local nonlinearity constitute the total set of calibration parameters. 

Subsequently in the second step, the residual energy calculated under both the low magnitude 

excitation and the nonlinearity-inducing, higher magnitude excitation is minimized to update the calibration 

parameters. Thus, model parameter calibration becomes an optimization problem that is solved through an 

iterative approach combining the multi-harmonic balance method (MHB) and ECRE into a method 

henceforth referred to as Iterative Integrated MHB and ECRE (IIME). In this study, the performance and 

Page 2 of 50

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

3 

 

efficiency of IIME are compared against discrete, sampling-based optimal value searches that are 

commonly used for nonlinear model calibration.  

This paper is organized as follows. In Section 2, we briefly review the MHB-ECRE identification 

approach as applied to nonlinear dynamical systems. Section 3 describes the procedure for the two-step 

model calibration approach. In Section 4, the calibration approach is demonstrated on the finite element 

model of an academic example: a nonlinear beam with model error in both the linear and nonlinear 

components, using synthetically generated measurements. In this section, the efficacy of the proposed two-

step approach is evaluated by comparing the obtained results against those of a one-step MHB-ECRE 

nonlinear model calibration. In Section 5, the limitations of the proposed approach when implemented with 

reduced quantity (i.e. fewer measured degrees of freedom) and quality (i.e. higher noise levels) of 

measurements is discussed. Moreover, the effect of the location of the excitation force and model error on 

the performance of the proposed method is evaluated. Finally, Section 6 draws the conclusions of this paper 

and summarizes the benefits and drawback of the proposed nonlinear model calibration method compared 

to the conventional, single-step MHB-ECRE method. 

2 Background perspectives: nonlinear model calibration using the MHB-ECRE approach 

When calibrating numerical models of dynamical systems, the discrepancy between model 

predictions and experimental measurements can be calculated using response features in modal, time, or 

frequency domains (Atamturktur et al. 2012). In modal domain, nonlinear effects are projected into modal 

space in terms of nonlinear normal modes. Nonlinear normal modes are amplitude-dependent, however, 

which prevents the direct separation of space and time in the governing equations of motion (Vakakis 1997; 

Kerschen et al. 2009). This energy dependence complicates the analytical calculation of the nonlinear 

normal modes, and the model calibration using nonlinear normal models often becomes computationally 

demanding (Kerschen et al. 2006). The use of time domain response features is less computationally 

demanding than modal domain features as measurement devices directly provide the desired inputs (Masri 

and Caughey 1979; Gondhalekar et al. 2009). Nonetheless, time domain response features are large-
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dimensional and highly sensitive to measurement noise (Atamturktur and Laman 2012; Moaveni and 

Asgarieh 2012), which makes direct comparisons between the measurements and the model predictions in 

the time domain highly unreliable.   

Frequency domain response features are calculated by applying a transformation process on the 

time domain signals to separate the response into a series of harmonics (Meyer and Link 2003; Böswald 

and Link 2004). In frequency domain methods, the time and space in the governing equations of motion 

can be easily separated through linearization using Fourier series expansion. Thus, response features in 

frequency domain can be expressed as a function of excitation frequency and amplitude (Ferreira and Serpa 

2005). Furthermore, frequency domain features are less sensitive to noise and more compact compared to 

the time domain features (Kerschen et al. 2006; Atamturktur and Laman 2012). In this paper, we implement 

a class of frequency domain response features known as multi-harmonic coefficients calculated through the 

Multi-Harmonic Balance (MHB) method, chosen for their high accuracy (Ren et al. 1998) and 

computational efficiency (Huang et al. 2006). 

2.1  Multi-harmonic balance method 

The equation of motion of a nonlinear structure with local geometrical nonlinearity can be written 

as follows: 

           (1) 

where ,, , N NM C K  are the mass, damping and stiffness matrices, respectively, and N is the number of 

degrees of freedom (DOF) considered. The stiffness matrix is assumed to be positive definite. Here, ( )tp  

is the external force vector and ( )tx  is the displacement response vector of the N DOFs at time 𝑡. In 

Equation (1), a spatially localized, geometrical nonlinearity is represented by the cubic stiffness,
NLK , 

multiplied by the element-wise cube of the displacement of each DOF (Worden and Tomlinson 2000). 

 A local, cubic nonlinearity is used in this paper as it is one of the most common cases of nonlinearity 

in dynamic systems (Kerschen et al. 2006; Wilson et al. 1972). It is important to note, however, the approach 

presented herein can be used for a wide variety of nonlinear systems (not just local nonlinearities) where 
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the underlying system can be analyzed and calibrated first using intentionally low excitations to the system 

to isolate the predominately linear behavior of the system (Stricklin and Haisler 1977). 

In linear structural dynamics, the system is conveniently characterized by the structural modes and 

their associated resonant frequencies. In nonlinear dynamical systems, however, distinctly nonlinear 

features can be generated from a set of periodic response vectors. When a periodic excitation is applied to 

a nonlinear dynamical system, the input energy is concentrated at the excitation frequency making it 

relatively simple to generate nonlinear features through the transformation from time domain response into 

frequency domain response. This approach also yields higher signal-to-noise ratio compared to the response 

measured under random or transient excitations (Worden and Tomlinson 2000). Because of these benefits, 

solving the equation of motion of a nonlinear system under periodic excitation has become common practice 

for evaluating the dynamic behavior of nonlinear systems (Kerschen et al. 2006). 

Most early approaches for predicting the steady-state oscillation of a nonlinear system under 

periodic excitation were limited to approximate calculations of the fundamental harmonic coefficients. 

These fundamental harmonic coefficients were assumed to have a significantly larger value compared to 

higher order harmonic coefficients (Stoker 1950; Tondl 1974). However, in the early 1980s, researchers 

began to recognize that the higher order harmonic coefficients are also essential to accurately predict the 

steady state response (Tamura et al. 1981; Leung and Fung 1989). To include the higher order harmonics 

for steady-state oscillations of a nonlinear system, Tamura et al. (1981) suggested the multi-harmonic 

balance (MHB) method. As an extension of the fundamental harmonic balance approach, MHB operates in 

the frequency domain to solve nonlinear equations of motion under periodic excitation using a Fourier 

series approximation. MHB has proven capability solving the periodic response of nonlinear systems more 

efficiently than time domain integration methods, such as Newmark's, central difference, and Runge-Kutta 

methods (Cardona et al. 1994). 

In MHB, the periodic displacement response vector of a nonlinear system is expressed as a Fourier 

series: 
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0

1

( ) ( cos sin )
n

c s

j j j j

j

t m t m t 


  x Q Q Q                           (2) 

where 
0Q  is a constant; c

jQ  and s

jQ represent the jth cosine and sine multi-harmonic coefficients, 

respectively; 
jm is the harmonic of excitation frequency  ; and n is the number of harmonics included in 

the analysis. Usually, the multi-harmonic coefficients are obtained by directly applying a fast Fourier 

transform on the time history response of measured DOFs. If excitation frequency is constant, Fourier series 

and harmonic curve fitting tools can also be applied for calculating the multi-harmonic coefficients (Isasa 

et al. 2011).  

Introducing Equation (2) into the equation of motion for the nonlinear system given in Equation (1) 

results in the following expression: 

2 2

1 1

3

0

1

( ( ( ) cos ( ) sin )) ( ( sin cos ))

( ( cos sin )) ( ) ( )

n n
c s c s

j j j j j j j j j j j j

j j

n
c s

j j j j NL

j

m m t m m t m m t m m t

m t m t K t t

       

 

 



    

    

 



M Q Q C Q Q

K Q Q Q x p

   (3) 

Sequentially pre-multiplying all terms in Equation (3) by the harmonic functions

1 1(1,cos ,sin ...cos ,sin )n nm t m t m t m t     and integrating from zero to the fundamental period of the 

system, 2T 


 , the following frequency domain expression can be obtained (Isasa et al. 2011):  

(( )) , 0+ - = ω ωQ F Q P                                       (4) 

where 
0 1 2{ , ,..., }nQ Q QωQ  is the vector of harmonic coefficients with ,1N

iQ  . The matrix 

(2 1) ,(2 1)n N n N( )   is a matrix of structural system properties in the frequency domain and is 

expressed as: 
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        (5) 

The nonlinear force vector 3( )NLK tx  and periodic excitation force vector ( )tp  in Equation (3) are 

also transformed from nonlinear, time domain response into linearized, frequency domain response (see 

Equations (6) and (7)). It is seen that each harmonic of the periodic excitation yields corresponding sine 

and cosine functions not only for the excitation, P, but also for the force due to the localized nonlinearity,

( , )ωF Q . 

Nonlinear force vectors in frequency domain 
(2 1) ,1( , ) n N ωF Q  are then expressed as: 

0

1
0

1
0

0

0

( ( ))

( ( ))cos

( ( ))sin

( ( ))cos

( ( ))si

)

n

( ,

T

NL
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NL
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NL
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NL n
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NL n

f t dt

f t m tdt

f t m tdt

f t m tdt

f t m tdt























 
 
 
 
 
 
 

  
 
 
 
 
 
 
 











ωF
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x

x

x

Q

x

      where 3( ( )) ( )NL NLf t K tx x                (6) 

Periodic excitation force vectors in frequency domain (2 1) ,1n NP  are expressed as: 

0
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0
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t dt
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Equation (4) can be solved using the Newton–Raphson method (Ferri 1986). The number of 

harmonics included must be considered as it increases the size of Equation (4), and thus, increases the 

computation time. Models with prohibitively large linear system matrices can make use of reduction 

techniques (e.g. Guyan reduction) to reduce computational cost. 

2.2 The integrated MHB-ECRE approach 

When coupled with the extended constitutive relation error (ECRE), a method to measure the 

element-wise discrepancy between a model and a structure based on constitutive relations, the multi-

harmonic coefficients allow the calculation of the residual energy that reflects the discrepancy between 

predictions and measurements (Charbonnel et al. 2013; Deraemaeker et al. 2002; Hu et al. 2017; Ladevèze 

and Leguillon 1983). By integrating MHB and ECRE, we seek to minimize the constitutive error of the 

system. This constitutive error,
2

E
 , accounts for the uncertainties in both the model predictions and the 

experimental measurements and is expressed as: 

2
( ) ( )

T e T e

R
E
      

   r r HQ Q HQ Q               (8) 

where 
(2 1) ,(2 1)n N n N   is the multi-harmonic stiffness matrix (Isasa et al, 2011) and is expressed as:  

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 

K

K

K

K

             (9) 

In Equation (8), Q  is the multi-harmonic coefficient vector that is expanded from experimentally 

identified, multi-harmonic coefficients to the total number of DOFs in the numerical model; and 
e

Q  is the 

experimentally identified, multi-harmonic coefficient vector that is generated based on the experimentally 

measured time history response. In this study, only excitation with a constant frequency is considered; 

hence, 
e

Q  is obtained using a Fourier series expansion and harmonic curve fitting. In Equation (8), 

  
 r Q V  is the relative multi-harmonic coefficient vector that accounts for the discrepancy between 
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model predictions and experimental measurements. 
V  expresses the multi-harmonic coefficients obtained 

from model predictions. H is a transformation matrix that reduces the multi-harmonic coefficient matrix 

for all DOFs to the size of the measured DOFs.   is a weighting factor that accounts for the confidence 

level of experimental measurements (Deraemaeker et al. 2002). Finally, R is the (2n+1)Ne×(2n+1)Ne 

reduced multi-harmonic stiffness matrix of the numerical model obtained through Guyan model reduction 

(Guyan 1965), where Ne is the number of measured DOFs. 

To evaluate r  and Q , we solve the following minimization problem: 

Minimize cost function: 
2 ( ) ( )T e T e

RE         r r HQ Q HQ Q                              (10a) 

Subjected to constraint relationship: )( ,( ) + - =   Q F Q P r         (10b) 

The constraint in Equation (10b) can be dualized using a Lagrange multiplier to form an unconstrained 

minimization problem. 

3 Calibrating the models of nonlinear dynamical systems: Iterative Integrated MHB and 

ECRE (IIME) 

The two-step process presented herein is conceived to identify the residual errors in the underlying 

linear system and those in the nonlinear component. The strategy implemented involves measuring the 

dynamical system vibration response under low magnitude periodic excitation such that the system 

vibration response is predominantly linear. Using this low magnitude excitation (P1) data, the experimental 

multi-harmonic coefficients (
1

e

Q ) are first obtained. Next, model-predicted multi-harmonic coefficients (

1V ) are calculated and experimental multi-harmonic coefficients (
1Q ) are expanded to match the degrees 

of freedom of the numerical model. Through the error minimization step of ECRE, the difference between 

experimental multi-harmonic coefficient and model predicted multi-harmonic coefficient vectors (
1 1 VQ

) is calculated. The knowledge of this disagreement, combined with the stiffness matrix, allows us to 

calculate the elemental residual energy. The elements with high residual energy indicate the existence of 

higher model error (Hu et al. 2017), and thus, the model parameters associated with these elements are 
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selected for calibration. This model error localization step is useful for parameter selection (Larsson and 

Abrahamsson 1999; Kim and Park 2004; Hu et al. 2017), because the number of parameters that need to be 

calibrated can often be significantly reduced in this step, which in turn helps mitigate the risk of rank 

deficiency and ill-conditioning during calibration (Yu et al. 2007). 

In the second step, a higher magnitude periodic excitation is applied to obtain the nonlinear 

dynamic displacement response and the corresponding multi-harmonic coefficient is calculated (
2

e

Q ). 

Using both multi-harmonic coefficients, 
1Q  and 

2Q , linear and nonlinear model parameters are calibrated 

by minimizing the sum of the residual energy calculated for both excitation magnitudes (P1 and P2). This 

way the model error in the locally nonlinear component is accurately identified all while errors in the 

modeling of the underlying linear system are corrected. Figure 1 schematically shows the proposed method 

as divided into two steps: localization and parameter calibration. The details of these two steps are given 

below: 

 

Step 1. Model error localization using low magnitude excitation, P1 

 Based on the system response to low magnitude excitation, the optimization problem is formulated 

in Equation (11) that minimizes the residual energy between the numerical model and the measurements. 

To minimize the objective function, we formulate a saddle-point problem with the introduction of Lagrange 

multipliers. Equation (11) yields the system of the nonlinear equations shown in Equation (12), based on 

which the two unknown multi-harmonic coefficient vectors, 
1r and 

1Q , that represent the predominantly 

linear dynamic response features can be solved. The relative multi-harmonic coefficient vector 
1r , 

combined with elemental stiffness matrix, is then used for localizing the model error in the linear 

component. Therefore, the linear parameters that are associated with identified model error, 
LE , are 

selected from a large candidate set of parameters for the calibration in the next step.  

Minimize the cost function for force level P1:  

2

1 1 1 1 1 1 1
( ) ( )

T e T e

R
E
      

   r r HQ Q HQ Q                                                                  (11a) 
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Subjected to constraint relationship: ( , , )NL( ) + F -K =      Q Q P r                   (11b) 

Nonlinear matrix equation: 

1

1 1
1

1 1 1

( , , )
( ) 0

( , , )
( )

TNL T e
R R

NL

K

K



 


 


  




 
                       

F Q
H H r H Q

Q
Q F Q P

        (12) 

 The derivation of Equation (12) can be found by considering Equation (11a) as a saddle-point 

problem and applying Lagrange multipliers. The terms that compose Equation (11a) are classified as being 

“less reliable,” namely the error in the model (first term) and the mode shape expansion error (second term) 

that is introduced when the experimentally measured information is extrapolated to the N model DOFs 

(Zimmerman and Kaouk 1994; Charbonnel et al.  2013). By subsequently applying the constraint to the 

optimization problem that the solution must satisfy the more reliable equilibrium equation of Equation 

(11b), the errors in less reliable equations can be minimized. 

Step 2. Nonlinear model calibration using both low and high magnitude excitations, P1 and P2 

 In the second step, we combine the measurements of multi-harmonic coefficients for both low and 

high magnitude excitations. The sum of the residual energy for both excitation magnitudes is then 

minimized.  

Minimize the cost function for P1 and P2: 

  

2

_ 1 1 1 1 1 1

2 2 2 2 2 2

( ) ( )

( ) ( )

T e T e

combined R

T e T e

R

E      

     





   

   

r r HQ Q HQ Q

r r HQ Q HQ Q
                     (13a) 

Subjected to the following constraints: 

( , ), NL( ) + -K =      Q F Q P r                                                                                 (13b) 

2 2 2 2, )( , NL( ) + - =K   Q F Q P r           (13c) 

A new cost function gc is obtained after applying the Lagrange multipliers and is expressed as follows: 

 
1 1 1 1 1 1 1 1 1 1

2 2

1

22 2 2 2 2 2 2 2

( , ) )( ) ( ) ( ,

( ) ( ) ( ,( , ) )

T e T e

c R

T

N

T e T e

R

L

T

NL

K

K

g ( )

( )

        

        

  

  





       

      

r r HQ Q HQ Q r Q F Q P

r r HQ Q HQ Q r Q F Q P
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where  
1  and 

2 are the Lagrange multipliers for the constraint relationships for P1 and P2, respectively. 

Through the calculation of the stationary conditions of gc with respect to the unknowns r , Q , r , Q

, 
LE , 

NLK , 
1 , and 

2 , the solution of Equation (14) is calculated using the following matrix relationship: 
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where EL are the linear structural parameters corresponding to the identified model error in the linear 

component. 

All the above objective functions are convex, thus facilitating the use of efficient local optimization 

algorithms in the calibration process. A modified Newton-Raphson algorithm is chosen to solve this 

nonlinear problem due to its desirable convergence characteristics (Nocedal and Wright 2006; Stevens et 

al. 2017) and because the parameter gradients are calculated numerically. In each of the Newton-Raphson 

iterations, the parameters are calibrated and the residual error term is recalculated. A new iteration 

consisting of a localization step and a correction step is performed until the prescribed convergence criterion 

is satisfied. 

Instead of iteratively calibrating the parameters corresponding to linear and nonlinear behavior (i.e. 

using IIME), calibration can also be conducted based on a discrete set of inputs−henceforth referred to as 

Page 12 of 50

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

13 

 

Discrete Integrated MHB-ECRE (DIME). In the DIME approach, a sample set of values are generated for 

the poorly-known model input parameters and then used for calculation of the residual energy using 

Equation (13) and (14). As such, the minimum residual energy is expected to be achieved when the 

calibration parameters associated with the linear and nonlinear components are closest to the true parameter 

values. In DIME, a large number of instances must be calculated, which means the discrete approach is 

more computationally demanding than IIME. In the following section, the results obtained with the DIME 

approach are used as a reference to compare against those obtained with the proposed two-step IIME 

approach.  

4 Benchmark beam model application 

4.1 The description of the numerical model 

The proposed approach is demonstrated on a simulated academic example based on the COST 

action F3 project benchmark structure developed at Ecole Centrale de Lyon (Thouverez 2003; Worden 

2003). The model consists of a main beam clamped to a thin, secondary beam with both ends of the structure 

clamped to fixed supports (see Figure 2). The main beam has a length of 0.7 m and a thickness of 0.014 m, 

whereas the secondary beam has a length of 0.04 m with a thickness of 5x10-4 m. Both beams have a width 

of 0.014 m and are comprised of steel with a Young’s modulus of 210 GPa and a Poisson’s ratio of 0.33. 

Table 1 lists the reference configuration of the F3 project benchmark model. The main beam is modeled 

with seven elements and the secondary beam with four elements as shown in Figure 2. The connection of 

the beams is modeled by a semi-rigid, rotational spring and a grounded, translational spring element with 

cubic stiffness such that the nodes are constrained to have the same translation displacement, but allowed 

to have different rotations. The value of the cubic stiffness (KNL) is set to be 6.1×109 N/m. 

Vibration response measurements are synthetically generated for 21 DOFs along the beam as 

shown in Figure 3. For the low magnitude excitation, a stepped sine force with a magnitude of 0.5 N and 

frequency of 32 Hz, selected based on the value of the fundamental frequency of the linear beam, is applied 

to the structure. For the high magnitude excitation, a stepped sine force with a magnitude of 5 N and 
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frequency of 32 Hz is applied to ensure sufficiently large deflections to observe the nonlinear dynamic 

effects. In addition, simulated measurement noise is introduced as an additive zero mean Gaussian 

white noise at a level of 5% of the maximum displacement time history response. The noise is added to the 

time history measurements before the experimental multi-harmonic coefficients vectors are calculated. 

The initial model is preset to have error in two distinct forms (recall Figure 2): (i) model error in 

the linear beam structure that is simulated by intentionally reducing the Young’s modulus for element 3 by 

50% (i.e. 105 GPa); (ii) model error in the nonlinear spring that is simulated by intentionally altering the 

stiffness coefficient with cubic nonlinearity by 50% (i.e. 3.05×109 N/m).  

4.2 The conventional approach: MHB-ECRE using only high magnitude excitation 

This section presents the results of the conventional, one-step MHB-ECRE approach in which the 

parameter of the nonlinear translational stiffness (KNL) is calibrated with the presumption that the model of 

the underlying linear system is error-free. The effect of the model error in the linear beam on the results of 

this conventional approach is evaluated using both a model with and without the manually introduced 

reduction in the Young’s modulus of element 3. 

Owing to the need that the structure’s dynamic response must exhibit nonlinear behavior for the 

one-step MHB-ECRE method, synthetic response measurements are generated by the model under the high 

amplitude excitation (5 N), using which the ECRE values are calculated by solving Equation (11).  

Figure 4 depicts the ECRE values obtained for a range of nonlinear stiffness values where the 

correction coefficient that multiplies the nonlinear stiffness parameter (KNL) varies from 0.5 to 1.5 with an 

interval of 0.1, essentially representing a correction of 50% below and above the nominal stiffness value. 

For this given range of nonlinear stiffness coefficients, the residual energy is calculated using both the 

‘exact’ linear model (the solid curve in Figure 4) and the ‘erroneous’ linear model (i.e. one with a reduced 

Young’s modulus in element 3; the dashed curve in Figure 4). The results shown in Figure 4 indicate that 

the linear model error leads to a 30% deviation from the true value for the identified nonlinear stiffness 

parameter. This difference is due to the fact that the ECRE values are biased by the model error present in 

the linear component and thus, the minima no longer corresponds to the true value of the nonlinear stiffness. 
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4.3 The two-step approach: MHB-ECRE using two excitation magnitudes 

In this section, the proposed, iterative, two-step approach is used to calibrate the model input 

parameters of both the Young’s modulus of element 3 and the nonlinear stiffness (KNL) and verify its ability 

to accurately calibrate the parameters without suffering the confounding effects of error in both the linear 

and nonlinear components of the structure. The efficiency of this iterative approach in its search algorithm 

to find the optimal input parameters is compared to the discrete (DIME) approach which tests over a grid 

sampling of possible parameters. 

The structure is excited at node 3 using the lower amplitude periodic force (0.5N) to obtain the 

synthetic structural vibration response with negligible nonlinear effects. As shown in Figure 5 (a), the 

nonlinear effects lead to only a 1.5% shift in the fundamental frequency of the structural system, while no 

significant distortion can be observed in the Frequency Response Function (FRF) of the nonlinear beam 

model with respect to the linear model. Hence, the obtained dynamic response is predominantly linear. The 

ECRE calculated for all beam elements is shown in Figure 6. From the figure, element 3 (EL) is identified 

with the highest ECRE value, which is consistent with the fact that an incorrect Young’s modulus value is 

assigned for this element.  

The structure is then excited at the same location using the higher amplitude periodic excitation 

(5N) to observe the synthetic nonlinear vibration. The FRF of the translational DOF associated with the 

nonlinear spring is presented in Figure 5 (b). A significant distortion of 12.5% in the FRF plots is observed 

where the peaks shift from 32 to 36 Hz under high magnitude excitation, confirming that a sufficiently high 

force is applied to observe the nonlinear response. 

Both IIME and DIME approaches are used to calibrate the selected model parameters as presented 

in the Figure 7. The IIME approach is applied by solving Equation (15) using the Newton-Raphson 

algorithm. The convergence threshold for the IIME approach is set to 10-10 for the norm of the relative 

solution vector between iterations. In Figure 7, it is noticed that the IIME approach is completed within 5 

iterations. The calibrated linear and nonlinear model parameters are 210.21 GPa and 6.08×109 N/m, 

respectively, which represent a 0.1% and 0.4% deviation from the true values, respectively. The detailed 
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calibration results for each iteration are also provided in Table 2. For the DIME approach, a range of 

coefficients that multiply the nonlinear stiffness (KNL) and Young's modulus in the linear component (EL) 

is created from 50% to 150% of the true value with an interval of 10%. These pre-defined sets of model 

parameters are substituted into Equation (15) and a surface plot of the residual energy is shown in Figure 

7. The detailed calibration results for each iteration are also provided in Table 2. 

5 Discussions on the performance of proposed method 

In this section, the impact of measurement noise, number of response measurement locations, and 

model error location on the accuracy of the proposed method is examined. The purpose of conducting these 

studies is to evaluate the proposed approach’s robustness and to understand how the method performs under 

a variety of realistic scenarios. All the calibration results presented in this section are obtained using an 

identical procedure as detailed in Section 4. 

5.1 Model calibration considering varying noise levels 

All practical experimental data is inevitably contaminated by noise to some degree (Modak et al. 

2002). To assess the impact of measurement noise, in this section, the performance of the proposed model 

calibration method is evaluated in the presence of varying levels of noise. Accordingly, the two-step model 

calibration process is applied in the presence of zero mean Gaussian white noise with varying standard 

deviations of 5%, 10%, 15%, and 20%. For each noise level, 10 random realizations of noise are generated 

to contaminate the time history data and the calibrated model parameters are obtained using these 

contaminated measurements.  

The mean and standard deviation for the calibrated stiffness coefficients for these ten realizations 

are shown in Figure 8. The solid line in Figure 8 shows that the linear stiffness parameter is estimated with 

less than 1% deviation from the true value when the noise level is less than 15%. With 20% noise, the 

calibrated linear stiffness parameter deviates by 5.6%. The calibrated nonlinear stiffness parameter is 

observed to be more sensitive to the measurement noise. The dashed line in Figure 8 shows that the 

nonlinear stiffness parameter is accurately estimated with less than 1% deviation when the noise level is 
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less than 10%. As the noise level increases to 15% and 20%, the calibrated nonlinear stiffness parameter 

deviates by 6.1% and 11.2%, respectively. 

5.2 Model calibration with reduced set of measurements 

In practical application, the number of measured response locations is limited by the feasible 

number of sensors, measurement channels available, and the inaccessibility of some measurement locations 

(Majumder and Manohar 2003). To assess the effect of such limitations, this section evaluates he 

performance of the proposed two-step model calibration approach by hypothetically reducing the set of 

measured DOFs. Three reduced sets of measurements are used to obtain the multi-harmonic coefficient 

vectors as shown in Figure 9. The first two measurements are with 10 (Figure 9 (a)) and 5 (Figure 9 (b)) 

translational DOFs including the DOF at the nonlinear spring, while the last set of measurements is with 5 

(Figure 9 (c)) translational DOFs excluding the DOF at the nonlinear component. Using the reduced set of 

measurements, the residual energy plot for model error localization is shown in Figure 10. 

As seen in Figure 11, the calibrated values for the nonlinear stiffness coefficient match the true 

parameter values even when the number of measurements is as low as 5 DOFs. The value of the parameter 

associated with the linear element with error is correctly calibrated with 10 measured DOFs, while an 8% 

deviation from the true values is present when only 5 DOFs are measured. When the DOF at the nonlinear 

spring is not included in the measurement, Figure 12 shows that the linear calibrated stiffness coefficient 

has a 12.3% deviation from the true value, and the nonlinear calibrated stiffness coefficient has a 26.1% 

deviation from the true value. The calibration of the nonlinear stiffness coefficient parameter is less affected 

by a reduced set of measurements as long as the response associated with the nonlinear spring is measured. 

It is concluded that it is important to measure the response as close to where local nonlinearity is present as 

possible to ensure the accuracy of the results of the proposed model calibration method.  

5.3 The effect of model error location 

The objective of this section is to investigate the effect the spatial distribution of modeling error on 

the linear system on the obtained results for the calibrated model. Specifically, we introduced model error 
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to 7 different elements (elements 1 to 7) of the main beam, simulated by reducing the Young’s modulus by 

50%. The model error in the nonlinear component is kept the same as defined in Section 4 for the seven 

sets of calibration cases. The proposed approach is applied to calibrate the linear and nonlinear structural 

component parameters, and the calibration results are plotted in Figure 13 (a) and (b), respectively. As 

shown in the Figure 13 (a) and (b), the convergence rate to the true value for the linear and nonlinear 

stiffness parameters is similar (five iterations) for all seven cases regardless of the model error location. 

5.4 The effect of excitation force location 

In this section, the effect of the location of the excitation force, and thus the distance between the 

applied force location and nonlinear spring component on the performance of model calibration results is 

evaluated (see Figure 14). Similar to the calibration results presented in Section 5.3, the unknown structural 

parameters mostly converge to the true value with the proposed calibration approach. The calibration results 

for all seven force locations are presented in Figure 13 (c) and (d). Figure 13 (c) shows that the averaged 

calibrated nonlinear stiffness coefficient relative to the true value for different locations is 0.9992 with a 

standard deviation of 0.0029.  

Compared to the calibration of the nonlinear structural parameter, the average calibrated linear 

stiffness coefficient is 1.0232, which deviates slightly from the true parameter value (see Figure 13 (d)). 

Also, a larger standard deviation of 0.0362 is observed relative to the nonlinear stiffness 

calibration. Moreover, it can be concluded from Figure 13 (b) and (d) that the calibration of linear model 

parameters is affected by the location of the excitation force relative to the location of the model error. As 

the excitation force moves from the left end of the beam to the right end, the calibrated linear parameters 

deviate more from the true parameter value. This effect may be because as the magnitude of response 

becomes larger as the distance between force location and nonlinear spring element decreases, the total 

response is more likely to be dominated by the nonlinear effect. Thus, the accuracy of the linear parameter 

calibration results is influenced. 
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6 Conclusion 

This paper presents a two-step, nonlinear model calibration framework referred to as IIME that 

simultaneously corrects modeling error in both linear and nonlinear components based on the combined 

MHB-ECRE algorithm. An appealing feature of this approach is that modeling errors in the underlying 

linear model can be isolated and corrected, reducing their degrading effects in the model calibration of the 

nonlinear component. For this, the modeling errors in the linear system are localized by applying low 

magnitude excitation that ensures the dynamic response of the system remains predominantly linear. 

Accordingly, subsequent optimization step for parameter calibration is formulated to determine both the 

parameters associated with poorly modeled linear components and those associated with the nonlinear 

components without making any assumptions regarding initial linear model accuracy. 

The proposed method has been demonstrated on a numerical example (the F3 project benchmark 

structure) using synthetic measurements. The results show that the Integrated MHB-ECRE method is 

capable of calibrating nonlinear models with model error in both linear and nonlinear components. When 

model error is present in both linear and nonlinear components, this two-step integrated MHB-ECRE 

calibration approach has shown superiority to the conventional one-step MHB-ECRE approach of previous 

literature, while providing more reliable calibration of the nonlinear component parameter with less 

dependency on a priori knowledge of the accuracy of the associated linear system. An iterative optimization 

process is developed for solving the calibration problem so that the model parameters can be calibrated 

with less computational cost and more accurate results compared to a discretized approach.  

Work has also been conducted to quantify the influence of measurement noise, a reduced set of 

measurements, and model error location on the proposed method. These studies show that the method is 

quite robust against introduced measurement noise, especially in the calibration of the linear component 

parameter to the true value. In addition, as long as the structural response is measured close to the location 

of the nonlinearity, the method has shown calibration capability with a relatively scarce set of measured 

data points. The proposed method has been evaluated for a case that entails a spatially localized 

nonlinearity, there is room for further work in testing the approach in calibrating other types of nonlinearity, 
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such as nonlinear material properties. One area for further work includes the natural extension of this 

approach in increasing the applied excitation in a gradual manner and assessing the residual energy between 

model predictions and the experimental measurements. This extension would expand the proposed 

approach from a “two-step” method to an iterative, multi-step approach. The authors believe that 

complicated systems could benefit from this iterative series of increasing excitations to gradually improve 

the predominately linear and then nonlinear model accuracy if the two responses cannot be clearly 

distinguished from one another with a single excitation step. This is certainly an area of further research in 

the development of a more universally-applicable framework for nonlinear system identification and 

calibration. 
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Table 1. Reference configuration of the benchmark beam model 

 
Symbol Parameter Value 

L1 

L2 

Length of Main Beam 

Length of Thin Beam 

0.7 m 

0.04m 

b Width of Cross Section 0.14 m 

h1 

h2 

Height of Main Beam 

Height of Thin Beam 

0.14 m 

0.0005 m 

ρ Density 7830 kg/m3 

E Young’s modulus 210 GPa 

ν Poisson’s ratio 0.33 

Nnode Node Number 12 

Ndof DOF Number 21 

Ne Beam Element Number 11 

Nm Measured Dofs 21  
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Table 2. Model calibration results using IIME approach 
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Figure 1. The calibration procedure for the proposed method 
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Figure 2. A linear beam model with local nonlinearity under periodic excitation   
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Figure 3. The experimentally measured translational and rotational DOFs 
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Figure 4. Nonlinear parameter identification result when the linear stiffness coefficient is 0.5 and 1 
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 5

Figure 5. Comparison of FRFs at node 8 for the linear beam model with and without the nonlinear spring: 

(a) a low magnitude excitation of 0.5 N is applied; (b) a high magnitude excitation of 5 N is applied 
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Figure 6. The ECRE localization of model error in linear component  
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Figure 7. The calibration result for the linear and nonlinear parameters 
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Figure 8. Mean and standard deviation error bars illustrating the calculated value of the calibrated linear 

and nonlinear stiffness parameters under a variety of noise levels using the proposed approach. The true 

values of both parameters correspond to a stiffness coefficient value of 1.  
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Figure 9. Three sets of reduced DOF measurements 
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Figure 10. The ECRE localization of linear model error using reduced sets of measurements 
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Figure 11. Calibration results with fewer measured DOFs (the nonlinear DOF is included) 
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Figure 12. Calibration results with 5 measured DOFs (not including the nonlinear DOF) 
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Figure 13. Calibration results considering the effect of model error location and excitation force location 
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Figure 14. Seven locations for applied excitation force  
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Response to Reviewers’ Comments 

EC-10-2017-0419: Model Calibration of Locally Nonlinear Dynamical Systems: Extended Constitutive 

Relation Error with Multi-Harmonic Coefficients 

Based on the comments provided, the authors have revised the manuscript accordingly. The authors 

would like to thank the reviewers for their recommendations; the authors believe they have helped to 

improve the paper.  

Below, the comments of the reviewers are shown in black. The authors’ responses are given in blue 

italics. The paragraphs modified or added in the manuscript to address the reviewer’s comments are 

shown in red italics. 

Comments from the Editor: 

I am somewhat concerned with how similar certain sections of the paper are to the work of Isasa et al. 

(Model updating of locally non-linear systems based on multi-harmonic extended constitutive relation 

error, 2011), in particular sections 2 and 3 of the manuscript. While this paper is cited on numerous 

occasions throughout the manuscript, and the sections of concern are not claimed to be new material, I 

still found the similarity to be closer than one might normally expect. Hence I ask the authors to take 

this into account when revising your manuscript. 

Isasa et al.’s work focused on detecting the error between a nonlinear system and its numerical model. 
Such modeling error may originate from the global system that exhibits the underlying linear behavior 
and/or the spatially local component that introduces nonlinearity.  In our study, we go a step further. We 
not only detect the model error, but also distinguish the sources of the error (e.g. global, linear component 
and local, nonlinear component) and provide a framework for model calibration.  

Our method consists of a two-step approach to first, under low amplitude excitation, calibrate the linear 
aspects of the model and then, under high amplitude excitation, identify and calibrate individual elements 
of the model that specifically cause error in the nonlinear response of the system. Isasa et al. do not 
consider model errors that may be present in the modeling of the linear components. This distinction is 
important because errors associated with the global, linear and local, nonlinear components, if not 
distinguished, may compensate and lead to misleading outcomes.   

In addition, our use of an iterative approach to algorithmically identify the best values for model 
parameters is a significant improvement over the fact that the method of Isasa et al. is “used as an error 
localization indicator, and gives no explicit clues as to what model characteristics (mesh refinement, 
element formulation, mechanical properties, etc.) are erroneous. In practice, this is determined by trial and 
error.” This framework for iterative and more efficient model calibration allows for improved 
computational cost in the effort to match finite element models to structural measurements accurately.   

 

Comments from Reviewer #1: 

1. The novelty of the manuscript and presented work is unclear. The authors need to articulate 

clearly the novel elements of their work/study as compared with the published literature. 
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Previous work focused on detecting the error between a nonlinear system and its numerical model. Such a 
modeling error may originate from the global system that exhibits the underlying linear behavior and/or 
the spatially local component that introduces nonlinearity.  In our study, we go a step further. We not only 
detect the model error, but also distinguish the sources of the error (e.g. global, linear component and 
local, nonlinear component) and provide a framework for model calibration.  

Our method consists of a two-step approach to first, under low amplitude excitation, calibrate the linear 
aspects of the model and then, under high amplitude excitation, identify and calibrate individual elements 
of the model that specifically cause error in the nonlinear response of the system. Published work does not 
consider model errors that may be present in the modeling of the linear components. This distinction is 
important because errors associated with the global, linear and local, nonlinear components, if not 
distinguished, may compensate and lead to misleading outcomes.   

In addition, our use of an iterative approach to algorithmically identify the best values for model 
parameters is a significant improvement over methods in the published literature, which are “used as an 
error localization indicator, and gives no explicit clues as to what model characteristics (mesh refinement, 
element formulation, mechanical properties, etc.) are erroneous. In practice, this is determined by trial and 
error” (Isasa et al.). This framework for iterative and more efficient model calibration allows for improved 
computational cost in the effort to match finite element models to structural measurements accurately.   

2. The submission does not include an abstract. 

The online submission system appears to separate the title page (which contains the journal-specified, 
structured abstract and author/institution information) from the rest of the manuscript to maintain 
anonymity. The text of the structured abstract is included below for your review: 

Purpose: This paper presents an approach for calibrating the numerical models of dynamical systems that 

have spatially localized nonlinear components. The approach implements the Extended Constitutive 

Relation Error method using multi-harmonic coefficients, and is conceived to separate the errors in the 

representation of the global, linear and local, nonlinear components of the dynamical system through a two-

step process. 

Design/methodology/approach: The first step focuses on the system’s predominantly linear dynamic 

response under a low magnitude periodic excitation. In this step, the discrepancy between measured and 

predicted multi-harmonic coefficients are calculated in terms of residual energy. This residual energy is in 

turn used to spatially locate errors in the model, through which one can identify the erroneous model inputs 

which govern the linear behavior that need to be calibrated. The second step involves measuring the 

system’s nonlinear dynamic response under a high magnitude periodic excitation. In this step, the response 

measurements under both low and high magnitude excitation are used to iteratively calibrate the identified 

linear and nonlinear input parameters. 

Findings: When model error is present in both linear and nonlinear components, the proposed Iterative 

Combined MHB-ECRE calibration approach has shown superiority to the conventional MHB-ECRE method, 

while providing more reliable calibration results of the nonlinear parameter with less dependency on a priori 

knowledge of the associated linear system. 

Originality/value: This two-step process is advantageous as it reduces the confounding effects of the 

uncertain model parameters associated with the linear and locally nonlinear components of the system. 

3. What is the real-world application of the proposed method (aside from academic examples)? 

This approach will hold for any problem with a local nonlinearity as part of a predominately linear system. 
In engineering systems, many sources of spatially localized nonlinear effects exist, including nonlinear 
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material behavior, second-order geometric effects, and complex boundary conditions (Gaurav et al. 2011; 
Shi and Atluri 1992; Fey et al. 1996), which necessitate the development, analysis, and updating of 
nonlinear numerical models. Local nonlinearities can also be introduced deliberately by designers to 
improve the engineering performance of a system by being able to avoid excessively high responses or 
stress (Fey 1992). One example of such applications is in rotating mechanical systems that contain 
nonlinear bearings, which are often modeled as structural systems with many degrees of freedom and 
local nonlinearities excited by periodic external loads (Yamauchi 1983; Natara and Nelson 1989). Dry 
friction damping elements, such as local non-linear components, have also been applied for the purpose 
of increasing the passive damping of various linear structural systems, such as large space structures and 
turbomachinery blades (Ferri and Dowell 1988). In these cases, the nonlinear effects are localized in a 
component of a larger system, and the main structural system remains linear for small deformations 
(Clough and Wilson 1979). The consistency between all of these types of systems and problems is that 
when the system undergoes low amplitude excitations, the linear response of the system can be isolated 
and calibrated independent of any influence from the nonlinear response. 

The approach is presented as a two-step process in this paper. However, it can be implemented with more 
steps to more clearly differentiate the amplitude-dependent nonlinear responses; complicated systems 
could benefit from an iterative series of increasing excitations to gradually improve predominately linear 
and then nonlinear model accuracy. 

The presented approach can also be applied to problems with nonlinear elements that are not necessarily 
confined in a local, geometric region. Once low amplitude excitations allow the analysis and calibration of 
the linear system parameters, increasingly higher excitation(s) can draw out the nonlinear response for 
subsequent calibration. This segmented approach can be applied to all nonlinear dynamics problems; the 
particular equations (equilibrium equations, etc.) would need to be revisited. 

4. How can this approach be applied to other nonlinear dynamic systems, aside from geometrically 

nonlinear systems as shown in Eq. 3? 

The nonlinear system does not necessarily need to be a geometrically (or even locally) nonlinear system. 
The only requirement is proper parameterization to describe a property of the elements in the structural 
model that, when calibrated, can reduce the residual error between the model predictions and the 
experimental measurements. This parameterized property could represent any number of aspects of a 
finite element model, such as the stiffness coefficients, mass, density, etc., that describe the nonlinear 
behavior of the actual system. The response to Question 3 above presents several real-world cases where 
this approach could be applied to designed systems. In all of these cases, a representative finite element 
model of the system would contain parameters to represent these components that introduce nonlinear 
response and could be calibrated using the proposed method. 

An additional explanation to this effect has been added to Section 2: 

A local, cubic nonlinearity is used in this paper as it is one of the most common cases of nonlinearity in 

dynamic systems (Kerschen et al. 2006; Wilson et al. 1972). It is important to note, however, the approach 

presented herein can be used for a wide variety of nonlinear systems (not just local nonlinearities) where 

the underlying system can be analyzed and calibrated first using intentionally low excitations to the system 

to isolate the predominately linear behavior of the system (Stricklin and Haisler 1977). 

5. How the term x3 is defined in Eq. 1, where x is a Nx1 vector? 
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The term x3 is defined as an element-wise power applied to each element of the vector (cubing the 
displacement of each DOF of the system). The explanation of that equation has been similarly clarified. 

“In Equation (1), a spatially localized, geometrical nonlinearity is represented by the cubic stiffness,
NLK , 

multiplied by the element-wise cube of the displacement of each DOF (Worden and Tomlinson 2000).” 

6. Please provide a reference for Eq. 4. 

The reference for that equation formulation is (Isasa et al. 2011) and has been added to the manuscript 
accordingly. 

“…following frequency domain expression can be obtained (Isasa et al. 2011):  

( ) ( , ) 0+ - = ω ωQ F Q P                                       (4)” 

7. What is the “constitutive error of the system” on page 7, line 50? 

The constitutive relation error (CRE) of the system is an element-wise measure of the residual energy due 
to the discrepancy between model predictions and the structure (Charbonnel et al. 2013; Deraemaeker et 
al. 2002; Ladevèze and Leguillon 1983). These discrepancies are commonly calculated based on 
constitutive relations of the structure or material, such as the relationship between elemental stress and 
strain or the multi-harmonic coefficients described in this paper. 

This method was developed into the “extended constitutive relation error” (ECRE) as a way to provide a 
framework for the use of CRE for not only error detection, but also model improvement. This expansion 
integrates the mechanistic principles (e.g. load-displacement relationships) underlying the behavior of the 
system during the comparison of model predictions against experiments (Chouaki et al. 1998; Hu et al. 
2017; Ladevève et al. 1999). This expansion then allows for pinpointing the elemental contributions to the 
total error considering both model and experimental errors.  

This explanation has been added to the introduction to aid in understanding of this topic, along with the 
cited references. 

“When coupled with the extended constitutive relation error (ECRE), a method to measure the element-

wise discrepancy between a model and a structure based on constitutive relations, the multi-harmonic 

coefficients allow the calculation of the residual energy that reflects the discrepancy between predictions 

and measurements (Charbonnel et al. 2013; Deraemaeker et al. 2002; Hu et al. 2017; Ladevèze and 

Leguillon 1983). 

8. On page 8, line 39, how KR is obtained through mode reduction?  

The term KR is obtained through model reduction using the Guyan reduction technique (Guyan 1965). This 
clarification has been added to the manuscript. More specifically, the Guyan model reduction technique is 
applied to each stiffness matrix (N by N) in Equation (9). Then, the reduced stiffness matrix (Ne by Ne) is 
reassembled into the multi-harmonic stiffness matrix with a resulting dimension of ((2n+1)Ne by (2n+1)Ne). 

Finally, 
R

 is the (2n+1)Ne×(2n+1)Ne reduced multi-harmonic stiffness matrix of the numerical model 

obtained by Guyan model reduction, where Ne is the number of measured DOFs. 
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9. The reviewer could not follow Eq. 12. 

The minimization problem that results in Equation 12 can be considered a saddle-point problem that can 
then be formulated with the introduction of Lagrange multipliers. The cost function for a specific value of 
P1 is as follows, and it is this specific error that the approach seeks to minimize: 

2

1 1 1 1 1 1 1( ) ( )T e T e

RE r r HQ Q HQ Q           

The terms that compose this equation are classified as being “less reliable,” namely the error in the model 
(first term) and the mode shape expansion error (second term) that is introduced when the experimentally 
measured information is extrapolated to the N model DOFs (Zimmerman and Kaouk 1994). By 
subsequently applying the constraint to the optimization problem that the solution must satisfy the more 
reliable equilibrium equation, the errors in less reliable equations can be minimized. This constraint 
equation is shown below: 

( , , )1 1 NL 1 1Z( )Q +F Q K - P = r     

Table 1 below presents several common equations that may be considered reliable or less reliable in 
numerical models and experimental measurements (Charbonnel et al.  2013; Deraemaeker et al. 2002). 

Table 1: Common reliable and less reliable equations 

 Numerical Model Experimental Campaign 

Reliable Equations and 
Quantities 

Geometric Information 
Kinematic Equations 
Equilibrium Equations 

Measured Natural Frequencies 
Sensor Locations and Directions 
Excitation Force Locations and 
Directions 

Less Reliable Equations and 
Quantities 

Constitutive Equations Measured Mode Shapes 

Through the use of Lagrange multipliers, the optimization function and the constraint can be incorporated 
into the single minimization function h below, where the vector λ represents the Lagrange multipliers. 

1 1 1 1 1 1 1 1 1 1(( )) ( ) ( , , )T e T e T

R NLh r r HQ Q HQ Q r Z( )Q F Q K P                     

Finally, by taking the derivative of h with respect to rw, Qω1, and λ and setting those equations equal to 
zero, h can be rewritten as the following system of nonlinear equation to solve: 

1

1 1
1

1 1 1

( , )
( ) 0

( , )
( )

Tw T e
R w R w

w

w w

F Q
Z H H r H Q

Q
Q F Q P

Z


  




 
                       

 

 

Comments from Reviewer #2: 
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1. While the method is tested for a simple problem with relatively few degrees of freedom, could 

the authors comment on how the computational cost would be expected to scale as the number 

of degrees of freedom increases? 

As the number of degrees of freedom increases, the size of the stiffness and mass matrices, as well as the 
potential number of parameters to calibrate, would increase. Thus, it is expected that the computational 
cost would also increase. However, since the computational cost strongly depends on the number of 
parameters to calibrate and the effect of increased size of the nonlinear equation matrix, the authors are 
unaware of an approach that can predict how the computational cost would increase when the proposed 
method is applied to a more complex problem. While work has been done to try and predict the 
convergence of nonlinear systems of equations (Guo 2011; Lin et al. 2010), the equations to solve would 
depend on the system in question and its particular form of nonlinearity. 

The authors would also like to highlight that the proposed iterative optimization in the model calibration 
process, compared to the discrete approach utilized in previous literature (Silva et al. 2008; Isasa et al. 
2011), can significantly reduce the computational cost by achieving an optimal solution (closest to the true 
parameter value) with a far fewer number of iterations.  

2. Could the authors comment further on the types of nonlinear systems for which this method 

should be expected to work? For example, are there nonlinear systems for which harmonic 

responses at only two amplitudes would be insufficient? 

The method would be expected to work on a wide array of nonlinear systems, not necessarily just 
geometrically nonlinear systems. The only requirement is proper parameterization to describe a property 
of the elements in the structural model that, when calibrated, can reduce the residual error between the 
model predictions and the experimental measurements. This parameterized property could represent any 
number of aspects of a finite element model, such as the stiffness coefficients, mass, density, etc., that 
describe the nonlinear behavior of the actual system. In the response to Reviewer #1 above, several 
common, real-world engineering applications are presented to which this method can be applied. 

A natural extension of this approach is increasing the applied excitation in a gradual manner and 
evaluating the residual energy between the model predictions and the experimental measurements to 
assess the error that can be minimized through calibration of the parameters that control the nonlinear 
behavior. This extension would expand the proposed approach from a “two-step” method to an iterative, 
multi-step approach. The authors believe that complicated systems could benefit from this iterative series 
of increasing excitations to gradually improve the predominately linear and then nonlinear model accuracy 
if the two responses cannot be clearly distinguished from one another with a single excitation step. This is 
certainly an area of further research in the development of a more universally-applicable framework for 
nonlinear system identification and calibration. 

This further explanation has been added to the conclusion as an area for further work in improving the 
robustness and applicability of this approach: 

“One area for further work includes the natural extension of this approach in increasing the applied 

excitation in a gradual manner and assessing the residual energy between model predictions and the 

experimental measurements. This extension would expand the proposed approach from a “two-step” 

method to an iterative, multi-step approach. The authors believe that complicated systems could benefit 

from this iterative series of increasing excitations to gradually improve the predominately linear and then 
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nonlinear model accuracy if the two responses cannot be clearly distinguished from one another with a 

single excitation step. This is certainly an area of further research in the development of a more universally-

applicable framework for nonlinear system identification and calibration.” 

3. Section 2.1: starts with an example of a very specific form of nonlinearity. It might be better to 

start with a more general nonlinear system, so that the readers are not given the impression 

that the present method should only work for cubic nonlinearities of the form given here. 

The local, cubic nonlinearity presented is this paper was chosen for being one of the most common cases 
of nonlinearity in dynamic systems (Kerschen et al. 2006; Wilson et al. 1972). The approach, however, can 
be used for any nonlinear system (not necessarily just local nonlinearities) where the underlying linear 
system can be analyzed and calibrated first using intentionally low excitations to the system (Stricklin and 
Haisler 1977). 

The authors thank the reviewer for this advice and have included an explanation of the applicability of this 
method to other nonlinear systems into the paper: 

“A local, cubic nonlinearity is used in this paper as it is one of the most common cases of nonlinearity in 

dynamic systems (Kerschen et al. 2006; Wilson et al. 1972). It is important to note, however, the approach 

presented herein can be used for a wide variety of nonlinear systems (not just local nonlinearities) where 

the underlying system can be analyzed and calibrated first using intentionally low excitations to the system 

to isolate the predominately linear behavior of the system (Stricklin and Haisler 1977).” 

4. In equations 6 and 7, should m_1 be inside the sine and cosine functions? 

Yes, those equations should be corrected as you suggested. Both have been adjusted and below is the 
corrected version of Equation 6: 

0

1
0

1
0

0

0

( ( ))

( ( ))cos

( ( ))sin
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5. It is interesting that figure 8 seems to show a bias error in the estimation of the stiffness 

coefficients due to noise (i.e., noisy data seems to give an overestimation of the stiffness).  

Could the authors comment on this phenomenon, and its implications for using this method to 

obtain accurate parameter estimates from noisy data? The authors comment in the conclusion 

that “These studies show that the method is quite robust against introduced measurement 

noise”, but this plot seems to indicate that, for certain noise levels, even taking the average over 

multiple trials will not give an accurate estimate of the parameters, no matter how many 
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trials/noise realizations are taken. Perhaps it should also be reemphasized in the caption of 

figure 8 that the error bars are based on the variance across multiple noise realizations, rather 

than representing an accurate estimate of the range that the true value could take based on 

measurements (if the latter were the case, then one would expect the error bars to include the 

true stiffness values). 

 

Figure 8. Mean and standard deviation error bars illustrating the calculated value of the calibrated linear 

and nonlinear stiffness parameters under a variety of noise levels using the proposed approach. The true 

value of both parameters correspond to a stiffness coefficient value of 1. 

For each noise level, 10 random realizations of noise are generated to contaminate the time history data 
and, subsequently, 10 sets of calibrated model parameters are obtained using the contaminated 
measurements. The error bars in Figure 8 illustrate the standard deviation around the mean of the 
obtained 10 sets of calibrated parameters.  

Using the contaminated measurements, it is expected that the calibrated parameters would deviate from 
the true stiffness values. This is because the proposed method is searching for a set of parameters that 
minimize the residual energy between the numerical model and the physical structure. When the 
introduced measurement noise is significant enough, it can become another source of the calculated 
residual energy that the approach will attempt to account for using the calibration parameters, and thus 
affect their calculated values (Hu et al. 2017). 

The proposed approach can achieve less than 1% error in the calibrated nonlinear parameter when the 
random noise level is set to 10%, and less than 1% error in the calibrated linear parameter when the noise 
level is at 15%. The authors believe these introduced noise levels are high enough to verify the proposed 
method’s robustness against measurement noise. The objective of including higher noise levels (15-20%) 
is to further test the capability of the proposed method. Even at 20% noise, the calibrated nonlinear 
stiffness is varied only approximately 12% from an original error of 50%.  

The caption for Figure 8 has been clarified using the reviewer’s suggestion. 

6. In Section 5.2, the paper by Majumder and Manohar (2003) is referred to, but it does not appear 

in the reference section. 
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We thank the reviewers for pointing out this omission. This reference has been added to the reference 
section in the appropriate location. 

 Majumder, L., Manohar, C.S. (2003). A time-domain approach for damage detection in beam 

structures using vibration data with a moving oscillator as an excitation source. Journal of Sound and 

Vibration, 268(6), 699-716. 
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