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Popular Summary

Bacterial motion determines the changing structure of microbial communities and controls infection spreading as well as
microbiota organization in ecosystems. E. coli bacteria explore their environment using a “run-and-tumble” strategy: a
sequence of straight paths (runs) and sudden changes in swimming direction (tumbles) that happen when motors driving the
cell’s tail-like flagellum change rotation direction for a short time. While this random walk is classically described as a
process with a single characteristic run time, the flagellar motor rotation switching, responsible for reorientations, displays a
wide distribution of times. To address this paradox, we built a 3D tracking microscope suited to follow swimming bacteria
for as long as tens of minutes.

Our results reconcile individual motor rotation and bacterial spatial exploration in three dimensions. We reveal a continuous
variation of exploration “moods” for individual bacteria, characterized by periods of frequent directional changes
alternating with periods of persistent swimming. The dynamics can be explained by important fluctuations in the number of
certain proteins inside the cell that are responsible for the motor switching.

Future research will address the importance of these realistic run-and-tumble statistics in the macroscopic transport of
bacteria. Bacterial persistent swimming may help to explain the onset of medical emergencies as well as bacterial
anomalous transport in confined environments, such as narrow capillaries and porous media. This knowledge could be
relevant to emerging technologies for targeted drug delivery or for understanding the spreading of biocontaminants in soils.
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14 Unraveling bacterial strategies for spatial exploration is crucial for understanding the complexity in the
15 organization of life. Bacterial motility determines the spatiotemporal structure of microbial and controls
16 infection spreading and the microbiota organization in guts or in soils. Most theoretical approaches for
17 modeling bacterial transport rely on their run-and-tumble motion. For Escherichia coli, the run-time
18 distribution is reported to follow a Poisson process with a single characteristic time related to the rotational
19 switching of the flagellar motors. However, direct measurements on flagellar motors show heavy-tailed
20 distributions of rotation times stemming from the intrinsic noise in the chemotactic mechanism. Currently,
21 there is no direct experimental evidence that the stochasticity in the chemotactic machinery affects the
22 macroscopic motility of bacteria. In stark contrast with the accepted vision of run and tumble, here we
23 report a large behavioral variability of wild-type E. coli, revealed in their three-dimensional trajectories. At
24 short observation times, a large distribution of run times is measured on a population and attributed to the
25 slow fluctuations of a signaling protein triggering the flagellar motor reversal. Over long times, individual
26 bacteria undergo significant changes in motility. We demonstrate that such a large distribution of run times
27 introduces measurement biases in most practical situations. Our results reconcile the notorious conundrum
28 between run-time observations and motor-switching statistics. We finally propose that statistical modeling
29 of transport properties, currently undertaken in the emerging framework of active matter studies, should be
30 reconsidered under the scope of this large variability of motility features.

DOI: Subject Areas: Biological Physics,
31 Interdisciplinary Physics, Soft Matter

I. INTRODUCTION

32 The run-and-tumble (R&T) strategy developed by bac-
33 teria for exploring their environment is a cornerstone of
34 quantitative modeling of bacterial transport. In this para-
35 digm, bacteria swim straight during a run time, undergo a
36 reorientation process during a tumbling time, and pursue
37 thereafter the next run in a different direction. The now
38 standard vision of the R&T strategy was established in the
39 1970s for swimming Escherichia coli by Berg and Brown
40 [1,2], based on 3D trajectories obtained via a Lagrangian

41tracking technique. They proposed that an adapted bacte-
42rium would perform, over long times, an isotropic random
43walk composed of the run-and-tumble phases, both dis-
44tributed in time as a Poisson process [1–5]. For quantitative
45analysis, the run-time and tumble-time distributions
46are often taken as Poisson processes with typical values
47τ̄run ∼ 1 s and τ̄tumble ∼ 1=10 s [2,6]. These values change
48in the presence of chemical gradients, leading to a biased
49random walk known as chemotaxis.
50Alongside the relevance of this result in the context of
51biology, medicine, or ecology, fluids laden with motile
52bacteria have become an epitome for active matter, where
53the organization of active particles recently led scientists to
54revisit many concepts of out-of-equilibrium statistical
55physics [7–10]. Suspensions of motile bacteria are systems
56of choice for these studies [11], and many original
57phenomena such as anti-Fick’s law migration [12], collec-
58tive motion [13], viscosity reduction [14–16], enhanced
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59 diffusion [7], or motion rectification [17–20] have been
60 discovered. Most recent theoretical studies on active matter,
61 aimed at understanding the emergence of collective motion
62 or other macroscopic transport processes in bacterial fluids,
63 assume uncorrelated orientational noise, which is the
64 direct consequence of the Poisson character of the R&T
65 process [9].
66 The simple approach of introducing a Poisson distribu-
67 tion for the run times, although useful for simple qualitative
68 interpretations, is not fully consistent with a growing
69 number of measurements performed on the individual
70 rotary motors [21–25] driving the helix-shaped flagella.
71 For E. coli, the forward (run) motion is associated with the
72 counterclockwise (CCW) rotation of the motors, and the
73 tumbles take place when the motors rotate clockwise (CW).
74 The CCW to CW transition is regulated by an internal
75 biochemical process associated with the phosphorylation of
76 the CheY protein.
77 In a seminal work, Korobkova et al. [21] brought
78 evidence for a heavy tail distribution for the duration of
79 CCW rotations. Importantly, this highlights possible cou-
80 pling between the stochastic fluctuations in the chemotactic
81 biochemical network and the emergent bacterial motility.
82 Its consequences could affect the macroscopic organization
83 of bacterial populations, chemotactic response to chemical
84 heterogeneity, and genetic and epigenetic feedback of
85 bacterial populations to environmental constraints.
86 Its potential importance in the context of active matter
87 studies remains overlooked. For multiflagellated bacteria,
88 the correspondence between switching statistics, motor
89 synchronization, flagellar bundling and unbundling dynam-
90 ics, and, finally, large-scale exploration properties remains
91 unclear. Recently, indirect experimental evidence suggested
92 that the macroscopic motility of free-swimming bacteria is
93 sensitive to the stochasticity borne by the chemotactic
94 biological circuit [26]. Here, we give direct evidence of this
95 sensitivity.
96 Conceptually, our analysis starts from the extreme
97 sensitivity of the rotational CCW → CW switching to
98 the abundance of the phosphorylated protein CheY-P in
99 the cell. This picture induces a timescale separation, since,

100 at short times, the alternation of CCW and CW rotations
101 keeps a memory of a quasifixed level of CheY-P. This
102 memory is erased at longer times, and we thus expect
103 very different run times and motility features at the
104 macroscopic level.
105 For the first time, we link the individual motor rotation
106 statistics to the global motility features that we observe in a
107 large number of 3D trajectories of wild-type E. coli
108 bacteria. At short observation times, the time persistence
109 of the swimming orientations displays an exponential
110 decay as classically admitted, but with a large distribution
111 of characteristic times within a population of monoclonal
112 bacteria. However, when tracking the cells individually
113 over several tenths of minutes, we identify for each

114cell a large behavioral variability. The motility data are
115quantitatively analyzed through a simple model initially
116proposed by Tu and Grinstein [27] involving the fluctua-
117tions of CheY-P triggering the tumbling events. The model
118is here adapted to render the spatial exploration process.
119It now explains the occurrence of a large behavioral
120variability of swimming direction and also why, at short
121observation times, a large distribution of these is expected
122over a population. The central outcome of this model is that
123the persistence time durations naturally follow a log-normal
124distribution, instead of a standard Poisson distribution.
125Importantly, we identify a source of measurement bias
126introduced in most practical situations that is a consequence
127of such a large distribution of run times. Finally, we discuss
128the consequences of measuring averaged quantities over a
129population displaying a large distribution of motility
130features. This source of measurement bias is relevant in
131the general framework of experiments on statistical physics
132of active matter.

133II. VARIABILITY OF BACTERIAL
134MOTILITY IN A POPULATION

135To characterize the bacterial motility, we build an auto-
136mated tracking device suited to follow fluorescent objects
137and record their 3D trajectories. A swimming bacterium is
138kept automatically in the center of the visualization field and
139at the focus of an inverted microscope by a visualization
140feedback loop acting horizontally on a mechanical stage and
141vertically on a piezo stage. The method is fully detailed in
142Ref. [28] byDarnige et al. (see also Sec. VI) andwas recently
143used to investigate the swimming of bacteria in a Poiseuille
144flow [29].
145We first monitor more than 100 swimming E. coli
146from different strains (see Sec. VI) in homogeneous
147diluted suspensions (concentration ∼105 bactmL) con-
148fined between two horizontal glass slides, 250 μm apart.
149Figure 1(a) shows two typical trajectories from the same
150batch of monoclonal wild-type E. coli. We center our
151analysis on pieces of tracks exploring the bulk [Fig. 1(b)],
152i.e., in a measurement region located 10 μm above the
153surface and of maximum height H ¼ 130 μm. For this
154series of experiments, the duration of a track is at minimum
1558 s. We name these experiments I.
156The bacterial velocities V⃗ðtÞ at each point of the
157trajectories are obtained by fitting the sequence of coor-
158dinates, along X, Y, and Z independently, over segments
159spanning 0.1 s, using a second-order polynomial. The first
160derivative of the polynomial evaluated at the center of the
161segment provides the velocity component. Figure 2 shows
162an example of a 3D trajectory and its velocity. Typically, the
163velocity curves for each track are irregular [Fig. 2(b)]. For a
164single track, the velocity distribution [Fig. 2(c)] shows a
165peak corresponding to the run phase and a low-velocity tail
166that might correspond to tumbling events. For the wild-type
167strain RP437 in a motility buffer, the average of the peak
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168 values for V ¼ jV⃗ðtÞj over the different tracks is hVi ¼
169 27� 6 μm=s.
170 Standard analysis to extract run-time distributions relies
171 on the identification of tumbling events, usually done by
172 detecting velocity drops and/or abrupt changes in the
173 swimming direction [2,6,30]. However, as shown in
174 Figs. 2(a) and 2(b), abrupt direction changes can take
175 place without a representative velocity decrease, and
176 velocity drops are sometimes not associated with reorien-
177 tation. This observation is consistent with results from
178 Refs. [30,31]. Moreover, by directly monitoring the flag-
179 ellar dynamics, Turner et al. [31] identify partial flagellar
180 debundling inducing weak velocity drops and directional
181 changes. We find that, without a direct observation of the
182 flagella, run-and-tumble detection requires the choice of
183 arbitrary criteria. We demonstrate this arbitrariness in the
184 Appendix A.
185 Here, in order to characterize the motility features, we do
186 not seek to explicitly identify the tumbling events. Instead,
187 we use the orientation correlation functionCðΔtÞ as a direct
188 measurement of the swimming direction persistence. The
189 director vectors pointing along the track are determined as
190 p⃗ ¼ V⃗ðtÞ=VðtÞ for each track. For each trajectory, we
191 compute CðΔtÞ¼ hp̂ðtÞ · p̂ðtþΔtÞi¼ hcos½θðΔtÞ�i, where

192θ is the angle between swimming directors separated by a
193time lagΔt [Fig. 1(b)]. The brackets denote an average over
194a time window sliding along the track. To ensure good
195statistics, the maximum lag time Δt is chosen as one-tenth
196of the total track duration. The orientation correlation
197reflects the R&T statistics but advantageously does not
198require an ad hoc criterion. In Fig. 3(a), 30 orientation
199correlation functions obtained from separate tracks of
200different bacteria (RP437 wild type in M9G) are displayed
201as a function of Δt.
202From the classical picture of an exponential distribution
203of run times, the orientation correlation function is expected
204to decay exponentially with a typical decay time of τp,
205defining the persistence time of the trajectory. For a
206characteristic run time of τ̄run ¼ 1 s and a distribution of
207reorientation angles of mean value θm ¼ 51° [1], one finds
208τp ¼ ðτ̄run=1 − hcosðθÞiÞ ¼ 1.5 s [32]. Recently, a slight
209dependence of this angle on the swimming speed was
210demonstrated [33] but is neglected in our study. Taking into
211account rotational Brownian diffusion during the run phase
212also leads to an exponential decaying correlation function
213(see Appendix B). Its contribution represents a slight
214modification to τp due to the much longer timescales of
215Brownian diffusion. The predicted correlation function is

(a) (b)

F1:1 FIG. 1. Lagrangian 3D tracking of bacteria and analysis conditions. (a) RP437 wild-type E. coli displaying very different typical
F1:2 trajectories: persistent trajectory (bact 1: τp ¼ 12 s) and nonpersistent trajectory (bact 2: τp ¼ 0.7 s). (b) Sketch of the part of the track
F1:3 used for analysis and angles used for computing CðΔtÞ ¼ hp̂ðtÞ · p̂ðtþ ΔtÞi ¼ hcos θðΔtÞi, using a sliding window for an average on
F1:4 time t.

T

(a) (b) (c)

F2:1 FIG. 2. Details of a typical trajectory. (a) 3D trajectory and its projection on the x-y plane, (b) velocity vs time, and (c) velocity
F2:2 distribution. The marks every 5 s in the 3D track are references for comparison with (b).
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216 represented by the dotted line in Fig. 3(a). Strikingly, the
217 experimental curves display a broad scattering, indicating a
218 very large distribution of persistence times within this
219 monoclonal population of bacteria.
220 By fitting the correlation functions with an exponential
221 decay expð−τ=τpÞ, we determine the persistence times τp
222 for each track. In Fig. 3(b), we display them on a
223 logarithmic vertical axis for the strain RP437 in a motility
224 buffer (MB) and a MB supplemented with serine (MB-S).
225 In addition, persistence times obtained in a richer medium
226 (M9G) and for a different wild-type strain AB1157 in

227MB-S are shown. The results prove that the distribution of
228orientation persistence times for wild-type bacteria is very
229large. Within statistical errors, they are independent of the
230chemical environment (poor or rich), but they could depend
231on the strain, being larger in average for the 11 measure-
232ments performed on AB1157. For the very persistent
233tracks, the observed decorrelation remains weak over the
234accessible time lags. The obtained persistence times thus
235have a significant uncertainty, but we can be sure that their
236decorrelation time will be at least bigger than the time span
237of the track (τp > 8 s). Finally, we consider the strain
238CR20, a smooth swimmer that tumbles only very rarely.
239In this case, the time distribution is gathered around the
240average τp ¼ 25� 10 s, which is close to the Brownian
241rotational diffusion constant τp ¼ τB¼ 1=2DB

r , as expected.
242This value is, however, strongly dependent on the bacterial
243dimensions and aspect ratio [34,35]. A bacterium modeled
244as an ellipsoid of semiaxes a ¼ 4 μm and b ¼ c ¼ 0.4 μm
245has a persistence time τp ∼ 22 s, while with a ¼ 6 μm it
246has a persistence time 3 times larger, τp ∼ 66 s [36].
247Therefore, the wide distribution of persistence times
248for CR20 could arise from the bacterial size distribution.
249A possible origin of this dispersion on the measurement
250protocol is discussed in Sec. IV C.

251III. VARIABILITY OF INDIVIDUAL
252BACTERIAL MOTILITY OVER TIME

253The large diversity of trajectories here observed over
254short times in bacterial populations leads to the question of
255its origin. The diversity could arise from a phenotype
256multiplicity present in the monoclonal population [37,38],
257where each bacterium is characterized by a mean run time;
258alternatively, it could be due to temporal variability of the
259bacterial behavior, with mean run times varying over the
260course of time. To determine which scenario is taking place,
261we perform a second series of measurements, experiments
262II, where we follow individual bacteria over very long times
263(up to 20 min). In the new configuration, the top and bottom
264of the measurement chamber are within the observation
265range or the 3D tracker device. We follow individual
266bacteria as they alternate between the surfaces and the
267bulk, as sketched in Fig. 4(a). For the analysis, individual
268tracks are cut in pieces localized entirely in the bulk (10 μm
269away from the walls). For each piece, we extract the
270persistence time from the correlation function. Finally,
271for each bacterium, we obtain a list of persistence times
272as a function of time. If the population displayed a large
273distribution of fixed run-times, one would expect for each
274bacterium a sequence of persistence times narrowly dis-
275tributed around a characteristic value, but this value would
276be different for different bacteria. Figure 4(b) carries a very
277different message. For each of the tracks tested, the
278persistence times span a range of the same magnitude as

p =1.5 s

p =1.5 s

0 1 2 3 4 5
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F3:1 FIG. 3. Swimming orientation correlations. Experiments I.
F3:2 (a) Correlation function CðΔtÞ obtained for 30 tracks of different
F3:3 RP437 bacteria in M9G, showing a large distribution of persist-
F3:4 ence times. The correlation functions are fitted with an expo-
F3:5 nential decay expð−τ=τpÞ to extract the persistence times τp. The
F3:6 dotted line corresponds to τp ¼ 1.5 s as expected from Ref. [1].
F3:7 Inset: Correlation functions as a function of Δt rescaled by τp.
F3:8 The dashed line is expð−xÞ. (b) Persistence times for individual
F3:9 bacteria of wild-type strains RP437 and AB1157 and smooth

F3:10 swimmer mutant CR20 in different media (MB, MB-S, and
F3:11 M9G). Circles and uncertainty bars correspond to the mean and
F3:12 68% confidence intervals for each group. The blue background
F3:13 region designates the cutoff from Brownian diffusion. The dotted
F3:14 line corresponds to the expected τp ¼ 1.5 s also represented in
F3:15 (a). Uncertainty bars indicate the mean and confidence interval
F3:16 at 68%.
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279 for the whole population using shorter tracking times
280 (see Fig. 3).
281 Previous studies based on 3D Eulerian tracking tech-
282 niques [33,39], i.e., on a fixed reference frame, or even the
283 Lagrangian tracking technique [6] were limited to short
284 observation times and, consequently, were not able to catch
285 such slow fluctuations of the run time. The fact that for a
286 given bacterium the sequence of persistence times is largely
287 distributed confirms the importance of behavioral variabil-
288 ity in the motility process. However, due to tracking time
289 limitations imposed by the bleaching of the fluorescent
290 signal, we are not able to test precisely to what extent the
291 behavioral variability contains features which could vary
292 from one bacterium to the other, stemming from inherent
293 phenotype variations, as identified, for example, by Dufour
294 et al. [40].

295 IV. MOTILITY AND MOTOR ROTATION
296 STATISTICS

297 The presence of a behavioral variability, as identified
298 earlier, raises the question of its biochemical origins.
299 Previous results point toward a definite influence of a
300 stochastic process in the chemotactic sensory circuit. At the
301 end of the biochemical cascade, there is a phosphorylation
302 of a CheY protein (CheY-P) promoting a switch in the
303 motor rotation from the CCW state (run phase) to the CW
304 state (tumbling phase). The most accepted picture render-
305 ing the CCW⇌CW transition is a two-state model initially
306 proposed by Khan and Macnab [41], which considers the

307switching of the rotation direction CCW → CW (equiv-
308alently, CW → CCW) as an activated process regulated by
309the presence of CheY-P. The double-well Gibbs free energy
310associated with the transition CCW⇌CW depends in a
311very sensible way on the CheY-P ([Y]) concentration values
312near the motor, as shown by Cluzel, Surette, and Leibler
313[42]. This strong sensitivity leads naturally to behavioral
314variations, as slow fluctuations around the mean value can
315change the motility features from preferentially tumbling
316(high CheY-P) to preferentially running (low CheY-P). It
317also means that at short times the CheY-P level does not
318change significantly and motility features remain constant.
319Therefore, at a given moment, the motility features should
320be largely distributed in a population of bacteria bearing
321different CheY-P concentrations. This large distribution
322is in essence what is observed in our experiments in
323Figs. 3 and 4.

324A. Quantitative description of the
325behavioral variability model

326To rationalize and quantify our experimental findings,
327we adapt the simple but enlightening physical model
328proposed by Tu and Grinstein [27]. The behavioral vari-
329ability (BV) model we present here quantifies the role of
330fluctuations of the phosphorylated protein CheY-P in the
331regulation of the motor-switching statistics. The key idea is
332that the observed typical switching time at a given moment
333depends on the instantaneous CheY-P concentration ½Y�ðtÞ.
334Then, considering concentration fluctuations around a
335mean value (δYðtÞ ¼ ½Y�ðtÞ − ½Y0�), one obtains a two-state
336model with a time-varying barrier describing the CCW →
337CW switching process. Tu and Grinstein model the δY
338fluctuations as an Ornstein-Uhlenbeck process with a
339memory (relaxation) time TY , hence yielding a Gaussian
340distribution for δY values. Note that TY is considered to be
341larger than typical motor-switching times [see Fig. 5(a) for
342the relevant timescales].
343For small fluctuations of concentration, the average
344switching time can be written as

τs ¼ τ0e−ΔnδX: ð1Þ

345346Here, δX corresponds to the fluctuations in concentration
347normalized by the δY standard deviation σY ; τ0 is a typical
348switching time corresponding to the mean concentration
349½Y0� and Δn ¼ αðσY=Y0Þ. The parameter α is positive [42]
350and measures the sensitivity of the switch to variations in
351[Y], which means that higher concentrations of CheY-P
352lead to shorter run times. Note that, in principle, the two
353switching times describing CCW → CW (run times) or
354CW → CCW (tumbling times) could be modeled with
355corresponding parameters τ0 and Δn. However, as the
356results from Korobkova et al. [21] show that, in contrast
357with run times, the distribution of tumble times is expo-
358nential, meaning that the equivalent of Δn for tumbles is
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F4:4 from the same trajectories, for 33 different RP437 bacteria in
F4:5 MB-S. The color represents the starting time of the measurement.
F4:6 Each bacterium displays a large variation of persistence times.
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359 small. Hence, we consider the tumbling times as a
360 Poissonian process, well described by a single timescale.
361 Let us first consider the CCW → CW switching time
362 distributions. Each observed time belongs to a Poisson
363 distribution with a typical time τs set by the current CheY-
364 P concentration ½Y�ðtÞ [see Eq. (1)]. As a consequence, the
365 observed switching statistics for an individual bacterium,
366 when observed over a time interval shorter than the memory
367 time, should approximately appear as an effective Poisson
368 process, which is indeed the case, as shown from the collapse
369 of the rescaled orientation correlation functions onto a single
370 exponential decay shown in Fig. 3(a). The model provides a
371 second important outcome. A random choice of a bacterium
372 in a population is like a random choice of δX, hence defining
373 a typical switching time τs for this bacterium. A Gaussian
374 distribution for δX, as assumed by the BV model, leads to a
375 Gaussian distribution of lnðτsÞ characterized by an average

376 lnðτ0Þ and a standard deviation σln τp ¼ Δn, yielding natu-
377 rally a large log-normal distribution of τs provided the switch

378sensitivity α is large. Note that the power law distribution
379discussed by Tu and Grinstein [27] is obtained in the limit of
380very large Δn and not in contradiction with the above
381statement. As τs and τp are proportional, the distribution
382of lnðτpÞ should also be Gaussian.
383To illustrate this idea, a very long 3D trajectory is
384synthesized numerically using the switching statistics from
385the BV model. Figure 5(b) shows a 2D projection (see
386Sec. VI for technical details and Sec. IV C for the parameter
387values). The simulated trajectory contains very persistent
388(inset I) and very nonpersistent (inset II) parts. The colors
389represent the local values of δX illustrating the direct
390influence of the slow variations of CheY-P concentration
391on the bacterial motility, hence explaining the observed
392behavioral variability.

393B. Memory time

394The evolution of persistence times τp along individual
395trajectories displays large variations. It is shown in Fig. 6(a)

CCW

CW

(a) (b)

F5:1 FIG. 5. Heuristic view of the behavioral variability model. (a) Timescales of the tumbling process and the CheY-P concentration
F5:2 governing them. The switching time τs represents the local average of the stochastic run times τCCW. The switching time τs stays
F5:3 relatively constant during the memory time TY and evolves as a function of the normalized CheY-P concentration:
F5:4 δX ¼ ð½Y� − ½Y0�Þ=σY . (b) 2D projection of the simulated 3D trajectory where the δX fluctuations drive the tumbling process. The
F5:5 insets correspond to different levels of [δX]: Inset I depicts a low CheY-P level, and inset II depicts a high CheY-P level.
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396 for the case of two different bacteria continuously tracked
397 for 11 and 17 min. The values of τp for each track are
398 extracted from intervals of span 20 s shifted 5 s along the
399 trajectory. Gaps larger than 5 s between consecutive points
400 correspond to lapses in which the bacterium is swimming
401 close to a surface. Analyzing, for example, the bacterium of
402 the blue longer trajectory, at time 300 s (5 min) it displays a
403 persistence time close to 0.1 s, in contrast with a persistence
404 time close to 5 s around time 1000 s (∼17 min). This
405 temporal variation of τp is considered in the framework of
406 the BV model. The memory time TY is then a central
407 parameter of the BV model, as it provides a natural
408 separation between short-time measurements and long-time
409 measurements. Therefore, for a correct statistical interpre-
410 tation of the results, τp values must be extracted from
411 pieces of tracks not longer than the memory time TY .
412 We estimate the memory time TY from the long-time
413 tracking data in experiments II, using the following pro-
414 cedure. For each bacterial trajectory, we compute a sequence
415 of τp using intervals of a specific duration. For each sequence
416 of τp, we compute the self-correlation function of persistence
417 times,CpðtÞ ¼ hln τpðtþ t0Þ ln τpðt0Þi − hln τpi2, where the
418 average is done over t0. The average ofCp over the ensemble
419 of trajectories is fitted with an exponential, giving the
420 correlation time [Fig. 6(b)]. With this procedure, we
421 investigate different lengths of intervals [Fig. 6(c)], finding
422 that the correlation times grow with the duration of the
423 interval until saturation at the value of the memory time
424 TY ≈ 19.0� 1.3 s.

425 C. Comparison with the model

426 The BV model depends on several parameters: the
427 memory time TY , the mean switch time and sensitivity
428 τ0 and Δn, respectively, the rotational diffusion coefficient
429 DB

r , and the dimensionless rotational diffusion coefficient
430 D̃eff

r used to model the reorientation during tumble (see
431 Sec. VI for details). We determine TY from the experi-
432 ments, while the rest of the parameters are fitted using the
433 following protocol. A long simulated trajectory is gener-
434 ated and cut in pieces of duration 20 s, similar to the
435 analysis of the experimental tracks, and the persistence time
436 is computed for each piece. We look for the values of the
437 parameters that best agree with the experimental values of
438 the first four moments of the distribution of ln τp. The result
439 is τ0¼ 1.53 s, Δn¼ 1.62, DB

r ¼ 0.025 s−1, and D̃eff
r ¼ 3.86.

440 Note that the velocity does not appear in the fit, because we
441 compare simulations and experiments using the persistence
442 times, which depend only on the orientations.
443 Figure 7(a) compares the experimental distribution of
444 ln τp with the results from simulations using the optimal
445 parameters. The agreement is very good, with two features
446 that need discussion. First, in agreement with the BV
447 model, the distributions are not exactly Gaussian but

448present a negative excess kurtosis. With 63% probability,
449the switch times are in the range ½τ0e−Δn ; τ0eΔn � ¼
450½0.30 s; 7.7 s�. Hence, there is no complete separation of
451timescalewithTY . As a consequence, in each piece, δX is not
452constant, and the measured and simulation distributions
453result from the mixture of different values of τs. Note that
454shorter pieces would imply too few tumble events and would
455make it unreliable to use the orientation correlation function.
456A perfect log-normal distribution could be observed if there
457was a good separation of timescales, allowing a choice of
458intervals such that τ0 ≪ T interval ≪ TY .
459The second feature is the small peak at ln τp ≈ 3 in the
460simulations. This peak corresponds to pieces of the
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461 trajectory where no single tumble took place. The change in
462 orientation is due only to rotational diffusion during a run.
463 Because τB ¼ 1=2DB

r ≈ 20 s is similar to TY , no complete
464 reorientation occurs in the interval, resulting in a distribu-
465 tion of τp for nontumbling swimmers. In fact, the persist-
466 ence times for the nontumbling bacteria [strain CR20 from
467 experiments I, Fig. 3(b)] coincide with this peak. This
468 feature should also be present in experiments, but, as
469 discussed in Sec. II, DB

r depends strongly on the bacterial
470 dimensions, which vary within the population. This
471 dispersion of rotational diffusion and other imperfections
472 blur this peak in the experiments, contrary to the simu-
473 lations, where all swimmers are identical. Note that, despite
474 of the diversity, the fitted value of DB

r matches closely the
475 prediction made in Sec. II for ellipsoidal swimmers.
476 Since the pieces of trajectories are of a finite length, the
477 orientation correlation function is not perfectly sampled,
478 and, even for a constant switch time τs, the persistence
479 times τp obtained from an exponential fit would present
480 some dispersion. To test whether the observed dispersion is
481 due only to the data analysis protocol, we perform
482 simulations with a Poisson model. For this test, we look
483 for the best parameters to reproduce the first fourth
484 moments of the distribution of ln τp, setting Δn ¼ 0. The
485 result is τ0 ¼ 1.18 s, DB

r ¼ 0.026 s−1, and D̃eff
r ¼ 1.61.

486 Figure 7(a) presents the resulting distribution, which is far
487 from the experimental one. We conclude that a Poisson
488 process cannot explain the broad distribution of persistence
489 times observed experimentally.
490 Finally, for consistency, we return to the persistence
491 times obtained in Fig. 3 from experiments I. In this
492 experimental protocol, the trajectories are selected within
493 a certain height (10–140 μm from the surface) and longer
494 than 8 s. The corresponding experimental distribution of
495 lnðτpÞ for RP437 bacteria in all media [Fig. 7(b)] displays a
496 clear positive skewness, which differs strikingly from the
497 experimental measures of Fig. 7(a), done using the same
498 bacterial strain and confinement and a similar chemical
499 environment. This difference originates from a measure-
500 ment bias built into the analysis of Fig. 7(b) (and Fig. 3).
501 The bias is a consequence of a preferential selection of long
502 trajectories staying essentially in the x-y plane, with limited
503 bounds in the vertical direction. The skewness is enhanced
504 by the broad distribution of run times, since very persistent
505 swimmers will likely quit the measurement region in a very
506 short time, hence privileging small persistence times. The
507 curve “BVmodel” represents the distribution of persistence
508 times from simulations of the BV model that fit the
509 experiments in Fig. 7(a) (experiments I). When this same
510 simulation is analyzed by taking pieces following strictly
511 the experimental constraints, on both duration and vertical
512 spatial exploration, the resulting distribution (“BV model
513 experiment constraints”) compares very well and notice-
514 ably without any additional fitting parameter, to the
515 experimental curve in Fig. 7(b) (experiments II).

516V. CONCLUSIONS

517We have shown that the 3D spatial exploration of an
518adapted E. coli reflects a behavioral variability that we
519associate with intrinsic noise in the chemotaxis pathway
520controlling the run-and-tumble sequence. Our results for
521free-swimming bacteria are consistent with models describ-
522ing motor-switching dynamics based on tethered cell
523measurements. We identified a large log-normal distribu-
524tion of persistent times stemming from the slow fluctua-
525tions of an internal variable accounting for the CheY-P
526concentration near the motors. In the context of many
527recent works on statistical physics of active matter, we
528suggest that this large variability should be included in the
529description of bacterial fluids. This variability is expected
530to influence the computation of averaged quantities like
531diffusivity, viscosity, or any constitutive relations of macro-
532scopic transport processes.
533The broad distribution of run times is likely to introduce
534measurement biases in practical situations. Here, we reduce
535the bias by taking pieces of trajectories of equal length, not
536larger than the memory time. Mixing trajectories of different
537lengths can result in highly distorted distributions.
538The large distribution of motility features has been related
539to the time bacteria spend close to surfaces. As an example,
540the existence of a large distribution of motor-switching
541statistics was found crucial to understand large-scale
542upstream bacterial contamination of narrow channels [26],
543where substantial transport occurs along surfaces [43–46].
544We expect the chemotactic drift to be sensitive to the
545distribution of CheY-P concentrations, since a nonlocal
546spatiotemporal coupling will take place between chemical
547gradients and bacterial concentration. This sensitivity
548should be taken into account in future motility modeling.
549Finally, these findings may also impact quantitative mod-
550eling on how bacterial populations react to environmental
551changes, colonize space, swarm in a biofilm [47], or
552interact with other communities.

553VI. MATERIALS AND METHODS

554A. Bacterial strains and culture

555We use the wild-type strains RP437 and AB1157 and a
556smooth swimmer mutant strain CR20 (ΔCheY) expressing
557yellow fluorescent protein (YFP) from a plasmid. Bacteria
558are grown overnight at 30 °C in M9Gmedium [M9 minimal
559medium supplemented with glucose (4 g=L), casamino
560acids (1 g=L), MgSO4 (2 mM), and CaCl2 (0.1 mM)] plus
561the corresponding antibiotics, up to optical density ¼ 0.5 at
562595 nm. Cells are then washed 3 times by centrifugation at
5632000 g for 5 min and suspended in a motility buffer (10 mM
564potassium phosphate buffer pH ∼ 7.0, 0.1 mM EDTA,
5651 μM L-methionine, and 10 mM sodium L-lactate), sup-
566plemented with polyvinylpyrrolidone (PVP-360 kDa
5670.002%) and, when indicated, with L-Serine (0.04 g=mL).
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568 B. The 3D Lagrangian tracker

569 We develop a device for keeping individual microscopic
570 objects—as swimming bacteria—in focus, as they move in
571 microfluidic chambers [28]. The system is based on real-
572 time image processing, determining the displacement of the
573 stage to keep the chosen object at a fixed position in the
574 observation frame. The z displacement of the stage is based
575 on the refocusing of the fluorescent object that keeps the
576 moving object in focus. The algorithm for z determination
577 is designed for not being affected by photobleaching.
578 The instrument is mounted on an epifluorescent inverted
579 microscope (Zeiss-Observer, Z1) with a high magnification
580 objective (100 × =0.9 DIC Zeiss EC Epiplan-Neofluar), an
581 x-y mechanically controllable stage with a z piezomover
582 from Applied Scientific Instrumentation (ms-2000-flat-top-
583 xyz), and a digital camera ANDOR iXon 897 EMCCD.
584 The device works nominally at 30 frames per second on a
585 512 × 512 pix2 matrix, but a faster tracking speed of 80 Hz
586 can be achieved by reducing the spatial resolution to
587 128 × 128 pix2. It provides images of the object and its
588 track coordinates with respect to the microfluidic device.
589 The tracking limitations come essentially from the z
590 exploration range, restricted by the working distance of
591 150 μm of the objective. In the x-y plane, the spatial
592 limitations are virtually nonexistent, since the stage dis-
593 placement can be as long as 15 cm, which is much bigger
594 than the typical sizes of the sample (a few millimeters).
595 Details of the apparatus are given in Ref. [28], as well as an
596 exhaustive explanation of a method for correcting the
597 mechanical backlash typically affecting these systems and
598 a discussion of the device’s performance and limitations.

599 C. Experimental geometries and bacteria tracking

600 Wemonitor hundreds of singleE. coli in a drop of a diluted
601 homogeneous suspension (concentration ∼105 bact=mL)
602 squeezed between two horizontal glass slides. The drop
603 has typically a diameter of 1 mm. The gap between the two
604 glass plates is 250 μm. For experiments I, displayed in
605 Fig. 3, only pieces of 3D trajectories remaining between the
606 vertical bounds zm ¼ 10 μm from the bottom surface and
607 zM ¼ 140 μm, the highest possible height, and lasting more
608 than 8 s are taken into account. For the set of very long tracks
609 in Fig. 4, experiments II, the gap between the glass plates is
610 also 250 μm, but the whole trajectories are captured, as they
611 alternate between the bottom and top. For the analysis, only
612 pieces farther than 10 μm from the surfaces are taken into
613 account.
614 The velocities are determined from second-order
615 Savitzky-Golay filtering of the coordinates over 0.1 s,
616 resulting in uncertainties close to 5% [36]. For each track,
617 the velocity distribution shows a peak corresponding to the
618 mean run velocity and a low-velocity tail corresponding to
619 the contribution of sudden velocity drops (Fig. 2). Peak

620velocities are on average hVi ¼ 27� 6 μm=s. To compute
621the correlation function CðΔtÞ, the average is made over
622time, and the lag time is offset by 0.2 s to avoid the short-
623time decorrelation due to wobbling [36,48]. The correlation
624function is then normalized by its value at 0.2 s to yield 1 at
625the lag time origin.

626D. Track simulations using the BV model

627Swimmers are described by their position r⃗, orientation
628p̂, and the instantaneous value of the normalized fluctua-
629tions of the CheY-P concentration δX ¼ ð½Y� − ½Y0�Þ=σY .
630During the run phase, they obey the equations

_r⃗ ¼ Vp̂; ð2Þ
631632_̂p ¼

ffiffiffiffiffiffiffi
DB

r

p
ðI − p̂ p̂Þη⃗ðtÞ; ð3Þ

633634_δX ¼ −δX=TY þ
ffiffiffiffiffiffiffiffiffiffiffi
2=TY

p
ξðtÞ; ð4Þ

635636where V is the swim velocity, DB
r is the rotational diffusion

637coefficient, TY is the memory time, ðI − p̂ p̂Þ is a projector
638orthogonal to p̂, ξ is a white noise of zero mean and
639correlation hξðtÞξðsÞi ¼ δðt − sÞ, and η⃗ is a white noise
640vector of zero mean, where the components have correla-
641tions hηiðtÞηkðsÞi ¼ δikδðt − sÞ.
642The BV model yields a relation between the character-
643istic switching time for the transition CCW → CW (run to
644tumble) and the CheY-P concentration. As a simplification,
645we assume that, due to the small cellular dimensions, all six
646flagella operate at the same CheY-P concentration and that
647the reverse of the rotation direction of a single flagellum is
648enough to trigger a tumble. Hence, the probability to
649tumble in Δt would be 6Δt=τs. To simplify notation, we
650absorb the factor 6 into τ0, resulting in a tumble proba-
651bility ΔteΔnδX=τ0.
652The BV model predicts that the characteristic switching
653time for the transition CCW → CW (tumble to run) is also
654given from an activated process. But, as the corresponding
655value of Δn is small, the tumble duration is given by a
656Poisson process with characteristic time τ1. In addition, the
657reorientation dynamics during a tumble needs to be
658modeled. A priori, the link between motor switch and
659tumble is far from being trivial, as, in principle, one needs
660to account for the hydrodynamically complex bundling and
661unbundling process of the multiflagellated E. coli bacteria
662[49,50]. Here, we rather follow a simple effective approach
663inspired by Saragosti, Silberzan, and Buguin [51]. We
664model the reorientation dynamics during tumbling as an
665effective rotational diffusion process with a coefficientDeff

r .
666Defining the dimensionless combination D̃eff

r ¼ Deff
r τ1, the

667dimensionless tumble durations are sorted from an expo-
668nential distribution with a typical time equal to one, and,
669during a tumble, the dynamics is
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_r⃗ ¼ 0; ð5Þ
670671

_̂p ¼
ffiffiffiffiffiffiffiffi
D̃eff

r

q
ðI − p̂ p̂Þη⃗ðtÞ; ð6Þ

672673 _δX ¼ 0: ð7Þ

674675 After the tumble phase, a new run phase starts.
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698 APPENDIX A: RUN DURATION ANALYSIS

699 Figure 8 displays a series of analyses on a single
700 trajectory, evidencing that tumble detection is criterium
701 dependent. Here, we set a threshold velocity, cutoff V, and
702 identify as runs all the continuous parts of the track where
703 the bacterial velocity is above the prescribed threshold. The
704 plot demonstrates that, by changing the cutoff value for the
705 velocity, we can obtain average run times of duration 1–8 s.

706APPENDIX B: PERSISTENCE CORRELATION
707FUNCTION

708The orientation correlation function is defined as

CðτÞ ¼ hp̂ðtÞ · p̂ðtþ τÞi ¼ hcos½θðτÞ�i; ðB1Þ

709710where p̂ is the director vector and the average is done over
711time t.
712To compute the correlation function, we use a kinetic
713theory approach. The object under study is the distribution
714function fðp̂; tÞ, which gives the probability that a bacte-
715rium has an orientation p̂ at time t. In this context, the
716correlation function is obtained assuming that the initial
717condition at t ¼ 0 is with the bacterium pointing in a
718specific direction, say, p̂0. Hence, we have to compute
719CðτÞ ¼ hp̂ðτÞ · p̂0i, where now the average is over the
720distribution function. At the end, another average, over p̂0,
721should be done. In practice, this last average is unnecessary
722by the isotropy of space, because the first average gives
723already a value independent of p̂0.
724The distribution function obeys the kinetic equation
725[52,53]

∂f
∂t ¼ −Lf; ðB2Þ

726727with

fðp̂; 0Þ ¼ δðp̂ − p̂0Þ ðB3Þ

728729and L the evolution operator. Two models must be
730considered. In the case of Brownian rotational diffusivity,

Lf ¼ −DB
r∇2

p̂f; ðB4Þ

731732where DB
r is the rotational diffusion coefficient and ∇2

p̂ is
733the angular part of the Laplacian. In the case of tumbling
734with a characteristic switch time τs,

Lf ¼ 1

τs

�
f −

Z
dp̂0Wðp̂0; p̂Þfðp̂0Þ

�
: ðB5Þ

735736The kernel Wðp̂0; p̂Þ gives the probability that for a
737swimmer with director p̂0, after tumbling, the new director
738is p̂. It is normalized to

R
dp̂Wðp̂0; p̂Þ ¼ 1, indicating that

739some director p̂ must be chosen. If the space is isotropic,
740the kernel depends only on the relative angle between the
741directors, that is,Wðp̂0; p̂Þ ¼ wðp̂0 · p̂Þ. Finally, if tumbling
742and diffusion are present, the operator is just the sum
743of both.
744If the space is isotropic, the evolution operator is also
745isotropic, which in this case implies that it commutes with
746the angular Laplacian ∇2

p̂. Therefore, both operators share
747eigenfunctions, which are the spherical harmonics Ylmðp̂Þ.
748Then, there are eigenvalues λl,
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F8:1 FIG. 8. Average run duration as a function of the threshold in
F8:2 bacterial velocity (cutoff V). The runs are identified as continuous
F8:3 parts of the track where V > cutoff V. The plot demonstrates that
F8:4 an arbitrary choice of velocity drops along the trajectory leads to
F8:5 arbitrary run-time duration. Inset: Log-normal plot.
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LYlm ¼ λlYlm; ðB6Þ

749750 that, by isotropy, do not depend on the second indexm. For
751 the diffusion case, the eigenvalues are known exactly, while
752 for tumbling they are proportional to 1=τs and depend on
753 the kernel model. In summary,

λl ¼ DB
r lðlþ 1Þ þ 1=ðalτsÞ; ðB7Þ

754755 where al are dimensionless parameters of the order of 1 that
756 depend on the kernel w.
757 Using the basis of the spherical harmonics, the solution
758 of the kinetic equation (B2) is

fðp̂; tÞ ¼
X
lm

flmð0ÞYlmðp̂Þe−λlt; ðB8Þ

759760 where flmð0Þ depend on the initial condition (B3).
761 Now, the correlation function is

CðtÞ ¼ hp̂ðtÞ · p̂0i ðB9Þ
762763

¼
Z

dp̂p̂0 · p̂fðp̂; tÞ ðB10Þ

764765
¼

X
lm

flmð0Þe−λltp̂0 ·
Z

dp̂ p̂ Ylmðp̂Þ: ðB11Þ

766767 Using that p̂ can be written as a linear combination of Y1m,
768 with m ¼ 0;�1 and the orthogonality of the spherical
769 harmonics, it is obtained that the integral is not vanishing
770 only for l ¼ 1. Combining factors, one obtains

CðtÞ ¼ C0e−t=τp ; ðB12Þ

771772 where

τp ¼ a1τs
1þ a1τs=τB

ðB13Þ

773774 and τB ¼ 1=ð2DB
r Þ is the Brownian decorrelation time.

775 In the classical picture, where all bacteria have a single
776 value for τs, the decorrelation time τp is single valued also.
777 When τs is broadly distributed, the decorrelation time τp
778 also follows a broad distribution for τp ≪ τB, and it is
779 bounded from above by τB. Finally, in the description of
780 Berg and Brown [1], the tumble angles are distributed with
781 a peak at 63°. In this case, a1 ¼ 1=ð1 − hcos θiÞ [51].
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