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We propose and analyse a general tensor-based
framework for incorporating second-order features
into network measures. This approach allows us to
combine traditional pairwise links with information
that records whether triples of nodes are involved in
wedges or triangles. Our treatment covers classical
spectral methods and recently proposed cases from
the literature, but we also identify many interesting
extensions. In particular, we define a mutually-
reinforcing (spectral) version of the classical clustering
coefficient. The underlying object of study is a
constrained nonlinear eigenvalue problem associated
with a cubic tensor. Using recent results from
nonlinear Perron–Frobenius theory, we establish
existence and uniqueness under appropriate conditions,
and show that the new spectral measures can be
computed efficiently using a nonlinear power method.
To illustrate the added value of the new formulation,
we give an asymptotic analysis of a class of synthetic
networks. We also give computational results on
centrality and link prediction for real, large scale
networks

1. Introduction and motivation
The classical paradigm in network science is to analyse
a complex system by focusing on pairwise interactions;
that is, by studying lists of nodes and edges. However,
it is now apparent that many important features arise
through larger groups of nodes acting together [1].
For example, the triadic closure principle from the
social sciences suggests that connected node triples, or
triangles, are important building blocks [2–4]. Of course,
there is a sense in which many algorithms in network
science indirectly go beyond pairwise interactions by
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considering traversals around the network. However, recent work [4–7] has shown that there is
benefit in directly taking account of higher-order neighbourhoods when designing algorithms and
models.

From the point of view of algebraic topology, higher-order relations coincide with different
homology classes and the idea of exploring connections of higher-order in networks is analogous
to the idea of forming a filtered cell complex in topological data analysis [8]. Similarly to point
clouds, complex networks modeling various type of interactions (such as social, biological,
communication or food networks) have an intrinsic higher-order organization [1] and efficiently
accounting for higher-order topology can allow more robust and effective quantification of the
importance of nodes [9,10].

Our aim here is to develop and analyse a general framework for incorporating second-order
features; see Definition 3.1. This takes the form of a constrained nonlinear eigenvalue problem
associated with a cubic tensor. For specific parameter choices we recover both standard and
recently proposed network measures as special cases, and we also construct many interesting
new alternatives. In this eigenproblem-based setting, the network measures naturally incorporate
mutual reinforcement; important objects are those that interact with many other important objects.
The classic PageRank algorithm [11] is perhaps the best known example of such a measure.
Within this setting, in Definition 3.2 we define for the first time a mutually reinforcing version
of the classical Watts-Strogatz Clustering Coefficient [12]; here we give extra weight to nodes that
form triangles with nodes that are themselves involved in important triangles. We show that our
general framework can be studied using recent results from nonlinear Perron–Frobenius theory.
As well as deriving existence and uniqueness results we show that these measures are computable
via a nonlinear extension of the power method; see Theorem 4.1.

The manuscript is organized as follows. In section 2 we summarize relevant existing work
on spectral measures in network science. Section 3 sets out the general framework for combining
first and second order information through a tensor-based nonlinear eigenvalue problem. We also
give several specific examples in order to show how standard measures can be generalized by
including second order terms. In section 4 we study theoretical and practical issues. Section 5
illustrates the effect of using second order information through an asymptotic analysis on a
specific class of networks. In section 6 we test the new framework on real large scale networks in
the context of centrality assignment and link prediction. Conclusions are provided in section 7.

2. Background and related work
〈sec:bgr〉

(a) Notation
A network or graph G= (V,E) is defined as a pair of sets: nodes V = {1, 2, . . . , n} and edges E ⊆
V × V among them. We assume the graph to be undirected, so that for all (i, j)∈E it also holds
that (j, i)∈E, unweighted, so that all connections in the network have the same “strength", and
connected, so that it is possible to reach any node in the graph from any other node by following
edges. We further assume for simplicity that the graph does not contain self-loops, i.e., edges that
point from a node to itself.

A graph may be represented via its adjacency matrix, A= (Aij)∈Rn×n, where Aij = 1 if
(i, j)∈E and Aij = 0 otherwise. Under our assumptions, this matrix will be symmetric, binary
and irreducible. We write GA to denote the graph associated with the adjacency matrix A.

We let 1∈Rn denote the vector with all components equal to 1 and 1i ∈Rn denote the ith
vector of the standard basis of Rn.

(b) Spectral centrality measures
A centrality measure quantifies the importance of each node by assigning to it a nonnegative
value. This assignment must be invariant under graph isomorphism, meaning that relabelling
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the nodes does not affect the values they are assigned. We focus here on degree centrality and a
family of centrality measures that can be described via an eigenproblem involving the adjacency
matrix. This latter family includes as special cases eigenvector centrality and PageRank.

The degree centrality of a node is found by simply counting the number of neighbours that
it possesses; so node i is assigned the value di, where d=A1. Degree centrality treats all
connections equally, it does not take account of the importance of those neighbours. By contrast
eigenvector centrality is based on a recursive relationship where node i is assigned a value
xi ≥ 0 such that x is proportional to Ax. We will describe this type of measure as mutually
reinforcing, because it gives extra credit to nodes that have more important neighbours. Under
our assumption that A is irreducible, the eigenvector centrality measure x corresponds to the
Perron–Frobenius eigenvector of A. We note that this measure was popularized in the 1970s by
researchers in the social sciences, [13], but can be traced back to algorithms used in the 19th
century for ranking chess players, [14]. For our purposes, it is useful to consider a general class of
eigenvector based measures of the form

x≥ 0 such that Mx= λx, (2.1) eq:eig_linear

where M ∈Rn×n is defined in terms of the adjacency matrix A. For example, we may use the
PageRank matrix

M = cAD−1 + (1− c)v1T , (2.2) eq:pgmat

with c∈ (0, 1) and D the diagonal matrix such that Dii = di. With this choice, the eigenvector
solution of (2.1) is the PageRank vector [11].

(c) Watts-Strogatz clustering coefficient
The Watts-Strogatz clustering coefficient was used in [15] to quantify an aspect of transitivity for
each node. To define this coefficient, we use 4(i) = (A3)ii/2 to denote the number of unoriented
triangles involving node i. Note that node i is involved in exactly di(di − 1)/2 wedges centred
at i, that is, paths of the form hij where h, i, j are distinct. Hence node i can be involved in at
most di(di − 1)/2 triangles. The local Watts–Strogatz clustering coefficient of node i is defined as the
fraction of wedges that are closed into triangles:

ci =

{
24(i)

di(di−1) if di ≥ 2

0 otherwise.
(2.3) eq:WSCC

It is easy to see that ci ∈ [0, 1] with ci = 0 if node i does not participate in any triangle and ci = 1

if node i has not left any wedges unclosed.
Related to this measure of transitivity for nodes there are two network-wide versions; the

average clustering coefficient

C =
1T c

n
=

1

n

n∑
i=1

ci =
2

n

∑
i:di≥2

4(i)

di(di − 1)

and the global clustering coefficient or graph transitivity [16]:

Ĉ =
6|K3|∑

i di(di − 1)
, (2.4) eq:gWSCC

where |K3| is the number of unoriented triangles in the network and the multiplicative factor of
6 comes from the fact that each triangle closes six wedges, i.e., the six ordered pairs of edges in
the triangle. This latter measure has been observed to typically take values between 0.1 and 0.5

for real world networks; see [17]. The global and average clustering coefficients have been found
to capture meaningful features and have found several applications [18,19];

FA♦ Need more references here..
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DJH♦ I think two is OK.

however, they have been observed to behave rather differently for certain classes of networks [20].
In this work, on the other hand, we focus our attention on the local measure defined in (2.3),
which describes a property of each individual node in the graph. Beyond social network analysis,
this index has also found application, for example, in machine learning pipelines, where nodes
features are employed to detect outliers [21] or to inform role discovery [22,23], in epidemiology,
where efficient vaccination strategies are needed, and in and in psychology [24], where it is
desirable to identify at-risk individuals.

We see from (2.3) that the Watts–Strogatz clustering coefficient may be viewed as a second-
order equivalent of degree centrality in the sense that it is not mutually reinforcing—a node is not
given any extra credit for forming triangles with well-clustered nodes. In Definition 3.2 below we
show how a mutually reinforcing clustering coefficient can be defined.

3. General eigenvector model
〈sec:model〉To incorporate second order information, given a tensor T ∈Rn×n×n and a parameter p∈R we

define the operator T p :Rn→Rn that maps the vector x∈Rn to the vector entrywise defined as:

T p(x)i =

n∑
j,k=1

T ijk µp(xj , xk), (3.1) eq:Tp

where µp(a, b) is the power (or binomial) mean:

µp(a, b) =

(
|a|p + |b|p

2

)1/p

.

Recall that the following well known properties hold for µ: i) limp→0 µp = µ0, where µ0(a, b) =√
|ab| is the geometric mean; ii) µ−1(a, b) = 2(|x|−1 + |y|−1)−1 is the harmonic mean; iii)

limp→+∞ µp =max{|a|, |b|} is the maximum function; whereas limp→−∞ µp =min{|a|, |b|} is the
minimum.

We may then define the following nonlinear network operator, and associated spectral
centrality measure, which combines first and second order interactions.

〈def:map〉Definition 3.1. Let α∈R be such that 0≤ α≤ 1, let p∈R and let M ∈Rn×n and T ∈Rn×n×n be
an entrywise nonnegative square matrix and an entrywise nonnegative cubic tensor associated with the
network, respectively. DefineM :Rn→Rn as

M(x) = αMx+ (1− α)T p(x). (3.2) eq:map

Then the corresponding first- and second-order eigenvector centrality of node i is given by xi ≥ 0,
where x solves the constrained nonlinear eiganvalue problem

x≥ 0 such that M(x) = λx. (3.3) eq:eig_gen

If we set α= 1 in (3.3) then only first-order interactions are considered, and we return to the
classical eigenvector centrality measures discussed in section 2. Similarly, with α= 0 only second-
order interactions are relevant.

In the next subsection we discuss specific choices for M and T .
We also note that in order for the measure in Definition 3.1 to be well defined, there must exist

a unique solution to the problem (3.3). We consider this issue in section 4.
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(a) Specifying M and T
〈ssec:choice_MT〉 In Definition 3.1, the matrix M should encode information about the first-order (edge)

interactions, with the tensor T representing the triadic relationships among node triples, that
is, second-order interactions.

Useful choices of M are therefore the adjacency matrix or the PageRank matrix (2.2). Another
viable choice, which we will use in some of the numerical experiments, is a rescaled version of
the adjacency matrix M =AD−1, which we will refer to as the random walk matrix.

We now consider some choices for the tensor T to represent second order interactions.

Binary triangle tensor. Perhaps the simplest choice of second order tensor is

(TB)ijk =

{
1 if i, j, k form a triangle

0 otherwise.
(3.4) eq:TB

As discussed, for example, in [25], we can build TB with worst case computational complexity of
O(n3) or O(m3/2). Moreover, in [26] the authors construct the triangles tensor of four large real-
world networks (EMAIL EUALL, SOC EPINIONS1, WIKI TALK, TWITTER COMBINED) and observe
that nnz(T ) =O(6m). Note also that this tensor is closely related to the matrix A ◦A2, where ◦
denotes the componentwise product (also called the Hadamaard or Schur product), as shown in
(3.10). It can be easily verified that, regardless of the choice of p, (TB(1))i = (A3)ii = 24(i) for all
i∈ V .

Random walk triangle tensor. A “random walk" normalization of the tensor T in (3.4), which
will be denoted by TW ∈Rn×n×n, is entrywise defined as

(TW )ijk =

{
1

4(j,k)
if i, j, k form a triangle

0 otherwise,
(3.5) eq:Tw

where 4(j, k) = (A ◦A2)jk is the number of triangles involving the edge (j, k). This is
reminiscent of the random walk matrix Mij = (AD−1)ij = δij∈E/dj (here δ denotes the
Kronecker delta) and this is the reason behind the choice of the name.

Clustering coefficient triangle tensor. A different normalization of the tensor in (3.4) is defined
as

(TC)ijk =

{
1

di(di−1) if i, j, k form a triangle and di ≥ 2

0 otherwise.
(3.6) eq:Tc

DJH♦ I added the di ≥ 2 condition to this definition. Is this OK?

This tensor incorporates information that is not used in (3.4) and (3.5)—the number of transitive
relationships that each node could be potentially involved in—while also accounting for the
second-order structure actually present. We refer to (3.9) as the clustering coefficient triangle
tensor because for any p we have (TC)p(1) = c, the WS clustering coefficient vector. We will
return to this property in subsection (c).

Local closure triangle tensor. The local closure coefficient [27] of node i is defined as

hi =
24(i)

w(i)
, (3.7) eq:local_closure

where
w(i) =

∑
j∈N(i)

dj − di =
∑

j∈N(i)

(dj − 1) (3.8) eq:local_closure

is the number of paths of length two originating from node i, and N(i) is the set of neighbours of
node i. We may also write w=Ad− d=A21−A1. The following result, which is an immediate
consequence of the definition of w(i), shows that we may assume w(i) 6= 0 when dealing with
real-world networks.
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Figure 1. Two toy network examples with the same number of edges (solid) and triangles. Left: node 1 can be involved in

five more undirected triangles according to the principle underlying the WS clustering coefficient. These are formed using

the dashed edges. Right: node 1 can only be involved in two more, formed using the dashed edges.

〈fig:toy_networks〉

DJH♦ Combined two propositions and omitted the proof, since it is straightforward.

〈prop:zero_w〉Proposition 3.1. Let G= (V,E) be an unweighted, undirected and connected graph. Then w(i) = 0 if
and only if all neighbours of node i have degree equal to one. Further, if w(i) = 0 for some i thenG is either
a path graph with two nodes or a star graph with n≥ 3 nodes having i as its centre.

We then define the local closure triangle tensor

(TL)ijk =

{
1

w(i)
if i, j, k form a triangle

0 otherwise.
(3.9) eq:Tl

It is easily checked that (TL)p(1) =h for all p.

Next, we briefly discuss the main difference, for the purposes of this work, among the four
tensorial network representations just introduced.

The binary triangle tensor (3.4) and random walk triangle tensor (3.5) provide no information
concerning the wedges involving each node, and hence the consequent potential for triadic
closure. Indeed, networks that have very different structures from the viewpoint of potential
and actual transitive relationships are treated alike. For example, consider the two networks
in Figure 1, where solid lines are used to represent the actual edges in the network. The two
networks are represented by the same tensors in the case of (3.4) and (3.5), but are not alike from
the viewpoint of transitive relationships. Indeed, by closing wedges in the network on the left-
hand side node 1 could participate in five more triangles, whilst in the graph on the right-hand
side it could participate in only two more. These are highlighted in Figure 1 using dashed lines.
On the other hand, the clustering coefficient triangle tensor defined in (3.6) encodes in its entries
the “potential" for triadic closure of node 1; indeed, for the network on the left-hand side it holds
that (TC)123 = (TC)132 = 1/12, while these entries are (TC)123 = (TC)132 = 1/6 for the network
on the right-hand side. These values show that there is a potential for node 1 to be involved in
respectively 12 and 6 directed triangles.

DJH♦ I deleted the last part of the sentence above—I wasn’t sure what it was adding?

The local closure triangle tensor defined in (3.9) encodes another type of triadic closure
property—the potential of a node to become involved in triangles by connecting to nodes that
are at distance two from it. In the networks depicted in Figure 2 it is clear that no such triangles
can be formed in the network in the left-hand side, while there is one that could be formed in
the graph on the right-hand side (dashed edge). For the entries of the associated tensor TL, the
left-hand network in Figure 2 has (TL)123 = (TL)132 = 1/2, and indeed node 1 is participating
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Figure 2. Two toy network examples with the same number of edges (solid) and triangles. Left: node 1 cannot be involved

in any more triangles, according to the principle underlying the local closure coefficient. Right: node 1 can only be involved

in one more, formed using the dashed edge.

〈fig:toy_networks2〉

in both possible directed triangles that can be formed according to the principals of local closure.
The network on the right-hand side has (TL)123 = (TL)132 = 1/3.

FA ♦ The fact that (TL)123 = (TL)132 = 1/3 I initially found rather confusing. The explanation that I
have (which may well be wrong) is as follows: It seems that the local closure coefficient accounts explicitly for
the directionality of the triangle, thus it expects node 1 to be involved in 1→ 2→ 3→ 1, 1→ 3→ 2→ 1
and 1→ 4→ 5→ 1, but not in 1→ 5→ 4→ 1. This somehow makes sense because the measure closes
paths of length two that originate at node 1. Therefore, the measure is “aware" that node 1 can reach node 5
in two steps, but it seems to be unable to then understand that adding (1,5) would form two triangles rather
than just one. It’s interesting because it is enforcing directionality in an undirected setting!

(b) The linear cases: α= 1 or p= 1
The map M defined in (3.2) becomes linear for particular choices of p and α. One case arises
when α= 1, whence it reduces to a standard matrix-vector product,M(x) =Mx, and (3.1) boils
down to a linear eigenvector problem (2.1). Using the particular choices of M described in the
previous subsection, it then follows that our model includes as a special case standard eigenvector
centrality and PageRank centrality.

Now let α∈ [0, 1) and p= 1. Then the mapping T p :Rn→Rn also becomes linear; indeed,
entrywise it becomes

T 1(x)i =
1

2

n∑
j,k=1

T ijkxk + T ijkxj =
1

2

{ n∑
j=1

(

n∑
k=1

T ikj)xj +

n∑
j=1

(

n∑
k=1

T ijk)xj

}
and T 1(x) reduces to the product between the vector x and the matrix with entries 1

2 (
∑
k T ijk +

T ikj). In particular, if the tensor T is symmetric with respect to the second and third modes, i.e.
T ijk = T ikj for all j, k, it follows that

T 1(x)i =

n∑
j=1

(

n∑
k=1

T ijk)xj .

Note that this is the case for all the tensors defined in subsection (a).
We now explicitly compute (

∑
k T ijk) for some of the tensors T presented in subsection (a). If

T = TB is the binary triangle tensor in (3.4), it follows that
n∑
k=1

(TB)ijk = (A ◦A2)ij (3.10) eq:TA

and hence
(TB)1(x) = (A ◦A2)x.
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Overall, the mapM then acts on a vector x as follows

M(x) = αMx+ (TB)1(x) =
(
αA+ (1− α)(A ◦A2)

)
x,

and so the solution to the constrained eigenvector problem (3.3) is the Perron–Frobenius
eigenvector of the matrix αA+ (1− α)(A ◦A2). This has a flavour of the work in [1], where
the use of A ◦A2 is advocated as a means to incorporate motif counts involving second-order
structure. Other choices of the tensor T yield different eigenproblems. For example, when T = TC
in (3.6) we have

n∑
k=1

(TC)ijk =


(A◦A2)ij
di(di−1) if di ≥ 2

0 otherwise

and hence (3.2) becomes

M(x) = αMx+ (1− α)(TC)1(x) =
(
αA+ (1− α)(D2 −D)†(A ◦A2)

)
x,

where † denotes the Moore-Penrose pseudo-inverse. If we let T = TL, as defined in (3.9), we
obtain

n∑
k=1

(TL)ijk =


(A◦A2)ij
w(i)

if dj ≥ 2

0 otherwise
. (3.11) eq:tmp

Note that, in formula (3.11), w(i) = 0 may hold for some i even though dj ≥ 2. However, as
observed in Proposition 3.1, in that case i cannot form any triangle and thus (A ◦A2)ij = 0 and
we have

∑n
k=1(TL)ijk = 0 as well. Using (3.11) we obtain

(TL)1(x) =W †(A ◦A2)x,

where W = diag(w(1), . . . , w(n)). The eigenvector problem (3.3) then becomes

M1,α(x) = αMx+ (1− α)(TL)1(x) =
(
αA+ (1− α)W †(A ◦A2)

)
x= λx.

(c) Spectral clustering coefficient: α= 0
〈ssec:spectral_CC〉While the choice of α= 1 yields a linear and purely first-order map, the case α= 0 corresponds

to a map that only accounts for second-order node relations. In particular, this map allows us
to define spectral, and hence mutually reinforcing, versions of the Watts–Strogatz clustering
coefficient (2.3) and the local closure coefficient (3.8). We therefore make the following definition.

〈def:spec_clus〉Definition 3.2. Let T ∈Rn×n×n be an entrywise nonnegative cubic tensor associated with the network.
The spectral clustering coefficient of node i is the ith entry of the vector x≥ 0 which solves the eigenvalue
problem (3.3) with α= 0 in (3.2); that is,

T p(x) = λx . (3.12) eq:spectral_clustering_coeff

The solution for T = TC ∈Rn×n×n in (3.6) will be referred to as the spectral Watts–Strogatz clustering
coefficient, and the solution for T = TL ∈Rn×n×n in (3.9) will be referred to as the spectral local
closure coefficient.

The power mean parameter p in (3.1) controls how the clustering coefficients of neighbouring
nodes are combined. However, some properties are shared by all possible choices of p. In
particular, for all values of p we have (TC)p(1) = c and (TL)p(1) =h, where c and h are the
vectors of Watts-Strogatz clustering coefficients and local closure coefficients, as defined in (2.3)
and (3.8), respectively.

More generally, T p(1) defines a “static” counterpart of the spectral clustering coefficient
obtained as the Perron–Frobenius eigenvector x of T p. This may be viewed as a second-order
analogue of the dichotomy between degree vector and eigenvector centrality, the former being
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Figure 3. C. Elegans neural network data: scatter plots showing correlation of static clustering coefficients vs H-

eigenvector coefficients

〈fig:corr_centrality〉

Figure 4. Top 10 nodes identified on the Karate Club network by different tensor H-eigenvector clustering coefficients,

solution to T p(x) = λx, for p= 0, and the four triangle tensor choices T ∈ {T ,TC ,TL,TW }.

〈fig:karate〉

defined as A1 and the latter as the Perron–Frobenius eigenvector of A. As in the first-order case,
even though the spectral coefficient x∝ T p(x) carries global information on the network while
the static version T p(1) is highly local, the two measures can be correlated. An example of this
phenomenon is shown in Figure 3, which scatter plots T p(1) against T 0(x), for different choices
of T , on the unweighted version1 of the neural network of C. Elegans compiled by Watts and
Strogatz in [15], from original experimental data by White et al. [28]. In Table 1 we summarize the
number of nodes n, edges m, triangles4 and the global clustering coefficient Ĉ of this network.

We also remark that our general definition of spectral clustering coefficient in Definition 3.2
includes in the special case p→ 0 the Perron H-eigenvector of the tensor T [29]. Indeed, it is easy
to observe that the change of variable y2 =x yields

T 0(x) = λx ⇐⇒ Tyy= λy2,

where Tyy is the tensor-vector product (Tyy)i =
∑
jk T ijkyjyk. This type of eigenvector has

been used in the context of hypergraph centrality in, for example, [6].
Note that if node i is not part of any triangle, then the summation describing the corresponding

entry in T p(x) is empty, and thus the spectral clustering coefficient for this node is zero, as
expected. Moreover, the converse is also true, since T ≥ 0 and x≥ 0. On the other hand, since
the spectral clustering coefficient x is defined via an eigenvector equation for T p, it follows
that it cannot be unique as it is defined only up to a positive scalar multiple. Indeed, we
have T p(βx) = βT p(x) for any β ≥ 0. Hence, when T = TC , unlike the standard Watts-Strogatz
clustering coefficient, it is no longer true that a unit spectral clustering coefficient identifies nodes
that participate in all possible triangles. However, we will see in the next section that once we have
a solution x of (3.12), then any other solution must be a positive multiple of x. More precisely, we
will show that under standard connectivity assumptions on the network, the spectral clustering
coefficient and, more generally, the solution to (3.3) is unique up to positive scalar multiples.
This fosters the analogy with the linear setting (2.1). Therefore, it is meaningful to normalize
the solution to (3.3) and compare the size of its components to infer information on the relative
importance of nodes within the graph.

1We are binarizing the original weighted network by assigning weight one to every edge.
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Figure 5. Correlation of different tensor H-eigenvector clustering coefficients with node degree on four networks. We

group nodes by logarithmic binning their degree and plot the average degree versus the average clustering coefficients in

each bin.

〈fig:correlation_clustering_coeff〉

The choice of the tensor T affects the way the triangle structure is incorporated in our
measure. An example of the differences that one may obtain is displayed in Figure 4. Here we
plot the KARATE network and highlight the ten nodes which score highest according to the
spectral clustering coefficient for different choices of T . This is a social network representing
friendships between the 34 members of a karate club at a US university [30]; see Table 1 for
the network statistics. In this experiment we select p= 0, and thus we are actually computing
the Perron H-eigenvector of the corresponding tensors. The size of each of the top ten nodes in
Figure 4 is proportional to their clustering coefficients. In Figure 5, instead, we show how the H-
eigenvectors corresponding to different triangle tensors correlate with the degree of the nodes. We
group nodes by logarithmic binning their degree and plot the average degree versus the average
clustering coefficients in each bin. As expected, the Watts–Strogatz spectral clustering coefficient
may decrease when the degree increases, in contrast with other choices of the triangle tensor. A
similar phenomenon is observed for example in [27].

FA ♦ The idea of following a less conventional structural approach to the paper instead of the usual
"introduction - theory - experiment" structure is quite nice. However, our concern is that it may not be ideal
for the standards of the journal. Moreover, there is some work to be done, meaning that should probably
move table 1 here and describe the datasets. If we move everything to section 6, there is some rearranging
to do (doable) but this subsection will end up becoming rather short.

Francesco and I briefly discussed this point and we decided to leave the final decision to you, Des. We are
happy to move all the experiments to section 6, if you feel that this would be better. Or rearrange the material
in order to keep the current structure, but also introduce all the needed information here.

In the next section we proceed to discuss existence and uniqueness, up to scalar multiples, of
a solution to (3.3). We also describe a power-iteration algorithm for its computation.

4. Existence, uniqueness, maximality and computation
〈sec:theory〉We begin by discussing the linear case where α= 1 or p= 1, so that the nonnegative operator

M :Rn→Rn is an entrywise nonnegative matrix B. Here, results from Perron–Frobenius theory
provide conditions on M that guarantee existence of a solution to (3.3) and computability of
this solution via the classical power method. These conditions are typically based on structural
properties ofM and of the associated graph. We review below some of the best known and most
useful results from this theory.

First, given the entrywise nonnegative matrix B ∈Rn×n, let GB be the adjacency graph of B,
with nodes in {1, . . . , n} and such that the edge i→ j exists in GB if and only if Bij > 0. Now,
recall that a graph is said to be aperiodic if the greatest common divisor of the lengths of all cycles
in the graph is one. Also, the matrix B is primitive if and only if there exists an integer k≥ 1 such
that Bk > 0, and, moreover, B ≥ 0 is primitive if and only if GB is aperiodic.
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It is well known that when GB is strongly connected, then there exists a unique (up to
multiples) nonnegative eigenvector of B, and such vector is entrywise positive. Moreover, this
eigenvector is maximal, since the corresponding eigenvalue is the spectral radius of B and, if
GB is aperiodic, the power method iteration xk+1 =Bxk/‖Bxk‖ converges to it for any starting
vector x0 ∈Rn.

In the general case, we will appeal to nonlinear Perron–Frobenius theory to show that the
properties of existence, uniqueness and maximality of the solution to (3.3) carry over to the
general nonlinear setting almost unchanged, and to show that an efficient iteration can be used to
compute this solution. We first note that for any α∈ [0, 1], any p∈R and any θ > 0 we have

M(θx) = αM(θx) + (1− α)T p(θx) = θM(x) ,

thus if x≥ 0 solves (3.3), then any positive multiple of x does as well. Therefore, as for the linear
case, uniqueness can only be defined up to scalar multiples. We continue by introducing the graph
ofM.

〈def:A_M〉Definition 4.1. Given a matrix M ∈Rn×n and a cubic tensor T ∈Rn×n×n, both assumed to be
nonnegative, we define the adjacency graph GM of M in (3.2) as the pair GM = (V,EM) where
V = {1, . . . , n} and, for all i, j ∈ V , (i, j)∈EM if and only if (AM)ij = 1, where AM is the adjacency
matrix entrywise defined as

(AM)ij =

{
1 if αMij + (1− α)

∑n
k=1(T ijk + T ikj)> 0

0 otherwise
(4.1) ?eq:graphM?

We now state and prove our main theorem.

DJH♦ I think we need to clear about symmetry. Is it correct that the results below do not require M to be
symmetric, but are only going to use the results in the case where the network is undirected and for choices
where M is symmetric?

〈thm:theory〉Theorem 4.1. Given the nonnegative matrix M ∈Rn×n and the nonnegative tensor T ∈Rn×n×n, let
M be defined as in (3.2) and let GM be its adjacency graph, as in Definition 4.1. If GM is strongly
connected, then

(i) There exists a unique (up to multiples) positive eigenvector ofM, i.e. a unique positive solution
of (3.3).

(ii) The positive eigenvector ofM is maximal, i.e. its eigenvalue is ρ(M) =max{|λ| :M(x) = λx}.
(iii) If x is any nonnegative eigenvectorM(x) = λx with some zero entry, then λ< ρ(M).

If moreover GM is aperiodic, then

(iv) For any starting point x0 ≥ 0, the nonlinear power method{
yk+1 = αMxk + (1− α)T p(xk)
xk+1 = yk+1/‖yk+1‖

converges to the positive eigenvector ofM. Moreover, for all k= 0, 1, 2, ... it holds

min
i=1,...,n

(yk)i
(xk)i

≤ min
i=1,...,n

(yk+1)i
(xk+1)i

≤ ρ(M)≤ max
i=1,...,n

(yk+1)i
(xk+1)i

≤ max
i=1,...,n

(yk)i
(xk)i

(4.2) eq:CW

with both the left and the right hand side sequences converging to ρ(M) as k→∞.

Proof. The proof combines several prior results from nonlinear Perron–Frobenius theory.
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First, note that M is homogeneous of degree one and order preserving. Indeed, if x≥ y≥ 0

entrywise, then it is easy to verify that

M(x) = αMx+ (1− α)T p(x)≥ αMy + (1− α)T p(y) =M(y)≥ 0 .

ThusM has at least one entrywise nonnegative eigenvector that corresponds to the eigenvalue
λ= ρ(M) (see, e.g., [31, Theorem 5.4.1]).

Second, we may use [32, Theorem 1] to show that there exists at least one positive eigenvector
ofM. Let 1j denote the jth vector of the canonical basis of Rn. Then let yj(β) = 1+ (β − 1)1j
be the vector whose jth component is the variable β ∈R while all the other entries are equal to
one. Thus note that if AMij = 1, then limβ→∞M(yj(β)i) =∞. Since GM is strongly connected,
[32, Theorem 1] implies that M has at least one entrywise positive eigenvector u> 0 such that
M(u) = λ̃u, with λ̃ > 0.

Third, we show uniqueness and maximality. Note that for any positive vector y> 0 and any
p≥ 0 we have that if GM is strongly connected then the Jacobian matrix ofM evaluated at y is
irreducible. In fact

∂

∂xj
M(y)i = αMij + (1− α)yp−1j

∑
k

(T ijk + T ikj)µp(yj , yk)
1−p .

Therefore, [31, Theorem 6.4.6] implies that u is the unique positive eigenvector ofM. Moreover,
[31, Theorem 6.1.7] implies that for any other nonnegative eigenvector x≥ 0 withM(x) = λx we
have λ< ρ(M). As there exists at least one nonnegative eigenvector corresponding to the spectral
radius, that must be u and we deduce that λ̃= ρ(M).

This proves points (i)− (iii). For point (iv), we note that if GM is aperiodic then AM is
primitive and this implies that the Jacobian matrix of M evaluated at u> 0 is primitive as
well. Thus Theorem 6.5.6 and Lemma 6.5.7 of [31] imply that the normalized iterates of the
homogeneous and order preserving mapM converge to u. Finally, [33, Theorem 7.1] proves the
sequence of inequalities in (4.2) and the convergence of both the sequences

αk = min
i=1,...,n

M(xk)i
(xk)i

and βk = max
i=1,...,n

M(xk)i
(xk)i

towards the same limit limk αk = limk βk = ρ(M).

To confirm the relevance of this result, the next lemma shows that for all choices of M and T
in subsection (a), the graph GM is undirected and coincides with the underlying network. Thus
we may conclude that Theorem 4.1 applies whenever the original graph is connected.

Lemma 4.1. Let α 6= 0 and M and T be defined according to any of the choices in subsection 3(a). Then
M and AM have the same sparsity pattern; that is, Mij > 0 if and only if (AM)ij = 1.

Proof. If (i, j)∈E is an edge in the graph associated withM , i.e.Mij > 0, then clearly (AM)ij = 1

as the tensor T has nonnegative entries. If (i, j) 6∈E, then from the possible definitions of the
tensor T listed in Subsection 3(a) it follows that T ijk = T ikj = 0, for all k. Thus (AM)ij =Mij =

0. Vice versa, if (AM)ij = 0, then αMij + (1− α)
∑n
k=1(T ijk + T ikj) = 0. Since we are summing

two nonnegative terms, it follows that both are zero and, in particular, Mij = 0. If (AM)ij = 1, on
the other hand, this implies αMij + (1− α)

∑n
k=1(T ijk + T ikj)> 0 and hence at least one of the

two terms has to be positive; however, from the possible definitions of T it is clear that T ijk and
T ikj cannot be nonzero unless (i, j)∈E, i.e., unless Mij > 0.

5. Example network with theoretical comparison
〈sec:as〉 In this section we describe theoretical results on the higher order centrality measures. Our overall

aim is to confirm that the incorporation of second order information can make a qualitative
difference to the rankings. We work with networks of the form represented in Figure 6. These
have three different types of nodes: i) node 1, the center of the wheel, that has degree m and
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Figure 6. Toy network used to prove asymptotic results. Here m= 5 and k= 3.

〈fig:asymptotic_network〉

connects to m nodes of the second type, ii) m nodes attached to node 1 and interconnected via a
cycle to each other. Each type (ii) node also connects to k nodes of the third type, and iii) mk leaf
nodes attached in sets of k to the m nodes of type (ii). Figure 6 shows the case where m= 5 and
k= 3. We will use node 2 to represent the nodes of type(ii) and nodem+ 2 to represent the nodes
of type (iii).

The network is designed so that node 1 is connected to important nodes and is also involved in
many triangles. Node 2, by contrast, is only involved in two triangles and has connections to the
less important leaf nodes. If we keep m fixed and increase the number of leaf nodes, k, connected
to node 2, then eventually we would expect the centrality of node 2 to overtake that of node 1.
We will show that this changeover happens for a larger value of k when we incorporate second
order information. Our goal is to show that including the higher order information drawn from
the triangle. More precisely, we set p= 1 and show that node 1 is identified by the higher-order
measure as being more central than node 2 for larger values of k when compared with standard
eigenvector centrality.

With this labeling of the nodes, the adjacency matrix A∈RM×M of the network has the form

A=


0 1Tm 0 · · · 0

1m C Im ⊗ 1Tk
0
... Im ⊗ 1k
0

 , C =


0 1 1

1
. . .

. . .
. . .

. . . 1

1 1 0

∈Rm×m .

The unit 2-norm eigenvector associated to the leading eigenvalue λ= 1 +
√
1 +m+ k of A has

the form v= [x y1Tm z1Tmk]
T , where

x=
m√

m(m+ λ2 + k)
y=

λ√
m(m+ λ2 + k)

z =
1√

m(m+ λ2 + k)
,

and thus x> y if and only if m>λ. It can be verified that this is equivalent to requiring

k <m(m− 3).
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We now move on to the higher order setting. We begin by specifying the tensor T = (T ijk)

defined in (3.4). It is clear that T ijk = 0 for all i=m+ 2, . . . ,mk +m+ 1. Moreover,

T 1jk =

{
1 if j, k= 2, . . . ,m+ 1 are such that (j, k)∈E
0 otherwise,

and for i= 2, . . . ,m+ 1

T ijk =

{
1 if either j = 1 and (i, k)∈E or k= 1 and (i, j)∈E
0 otherwise.

Using the definition of T p(v) it follows that, if we call v= [x y1Tm z1Tmk]
T then

(T p(v))1 = 2my, (T p(v))2 = 4µp(x, y), (T p(v))m+2 = 0

and hence, for γ = 1, equation (3.3) boils down to
λx= (2− α)my
λy= α(x+ 2y + kz) + 4(1− α)µp(x, y)
λz = αy

+normalization.

Imposing p= 1, after some algebraic manipulation it turns out that x> y for α 6= 0 if and only if

k <
(2− α)
α2

(
(2− α)m2 + (α− 4)m

)
.

The areas for which x> y in the two settings (standard eigenvector centrality α= 1 and higher
order centrality α= 0.2, 0.5) are shaded in Figure 7 (left). It is readily seen that even for small
values of m, k needs to become very large (when compared to m) in order for the centrality
of nodes i= 2, . . . ,m+ 1 to become larger than that of node 1 when higher-order information
is taken into account. In the standard eigenvector centrality setting we observe a very different
behaviour (see Figure 7, left, α= 1).

In Figure 7 (right) we display the areas for which x> y for different values of α when TC ∈
Rn×n×n is used in (3.3). Indeed, specializing the definition in (3.6) to this example, it is easy to
see that

((TC)p(v))1 =
2y

m− 1
, ((TC)p(v))2 =

4µp(x, y)

(k + 3)(k + 2)
, ((TC)p(v))m+2 = 0,

and the solution to (3.3) has to satisfy
λx=

(
αm+

2(1−α)
m−1

)
y

λy= α(x+ 2y + kz) +
4(1−α)

(k+3)(k+2)
µp(x, y)

λz = αy

+normalization.

Then x> y if and only if αm+
2(1−α)
m−1 >λ, where, for p= 1, λ satisfies

λ2 − (2α+ c1)λ− (α+ c1)(αm+ c2)− kα2 = 0 (5.1) eq:lambda_toy

with c1 =
2(1−α)

(k+3)(k+2)
and c2 =

2(1−α)
m−1 .

Remark 5.1. Working with TL leads to x> y if and only if αm+
2(1−α)
k+2 >λ where now λ satisfies

(5.1) for c1 =
2(1−α)
m+2k+3 and c2 =

2(1−α)
k+2 . There seems to be no appreciable difference between the profiles

for α= 0.2, 0.5, 1.
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Figures/km_area_both2-eps-converted-to.pdf

Figure 7. Values of m and k for which x> y (shaded in blue) for different values of α, p= 1 and tensors TB (left) and

TC (right).

〈fig:shadeT〉

6. Applications and numerical results
〈sec:numerical〉

(a) Centrality measures
?〈ssec:num_cen〉? In the previous subsection we observed that different values of α led to different node rankings.

Results were shown for TB and TC , p= 1 and α= 0.1, 0.5, 1. In this subsection we test those
findings on real network data. We use α= 0.5 and α= 1 (corresponding to eigenvector centrality)
and p= 0 in (3.3), and combine the adjacency matrix A and the binary tensor TB . The centrality
vectors have been normalized in the infinity norm. The tests were performed on four real-world
networks, available online at [34]. In Table 1 we report the number of nodes n, (undirected) edges
m and of triangles4= trace(A3)/6, and the global clustering coefficient Ĉ for the four networks.
We further display the average clustering coefficient c and the average spectral clustering
coefficient xC as well as the average local closure coefficient w [27] and its spectral counterpart
xL; see Defintion 3.2. The two spectral measures were both computed with p= 0 and the solution
to (3.12) was normalized in the infinity norm.
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Name n m 4 Ĉ c xC w xL

KARATE 34 78 45 0.26 0.57 0.12 0.22 0.23
CHESAPEAKE 39 170 194 0.28 0.45 0.41 0.25 0.38

ADJNOUN 112 425 284 0.16 0.17 0.18 0.09 0.18
C. ELEGANS 277 1918 2699 0.19 0.28 0.05 0.15 0.20

Table 1. Description of the dataset: n is the number of nodes, m is the number of edges, 4 is the number of triangles,

Ĉ is the global clustering coefficient of the network, as defined in (2.4), c is the average clustering coefficient, xC is the

average spectral clustering coefficient, w is the average local closure coefficient, and xL is the average spectral local

closure coefficient.

〈tab:data〉

All networks in the dataset are undirected and unweighted, so CELEGANS has been
symmetrized and made binary.

The selected real-world networks are often used as benchmarks in the graph clustering and
community detection communities [34]. The KARATE network is a social network while C.
ELEGANS is a neural network, as described in section (c). The network ADJNOUN is based
on common adjective and noun adjacencies in the novel “David Copperfield” by Charles
Dickens [35]. CHESAPEAKE represents the interaction network of the Chesapeake Bay ecosystem.
Here, nodes represent species or suitably defined functional groups and links create the food
web [36].
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Figure 8. Scatter plot of the solution to (3.3) for α= 0.5 and p= 0 versus standard eigenvector centrality, i.e., (3.3) for

α= 1.

〈fig:scatter〉

Figure 8 scatter plots the newly introduced measure against eigenvector centrality for the four
different networks. As the figure shows, for the network KARATE there is very poor correlation
between the two measures. Stronger correlation is displayed for the other networks, but it is still
to be noted that the top ranked nodes (corresponding to the nodes with largest centrality scores)
differ for the two measures in all but one network, namely ADJNOUN. Hence, using second-order
information can alter our conclusions about which nodes are the most central.

(b) Link Prediction
?〈ssec:num_link〉? Link prediction is a fundamental task in network analysis: in this setting we are given a network

G0 = (V,E0) and asked to identify edges, i.e., pairs of nodes, that are not in E0 but should
be there. This problem typically arises in two settings: (a) in a dynamic network where new
connections appear over time, and (b) in a noisily observed network, where it is suspected that
edges are missing [37–39].

For convenience, let us assume that E0 is the set of edges that we observe and that E1 with
E1 ∩ E0 = ∅ is the set of edges that should be predicted, i.e., those that will appear in an evolving
network or that are missing in a noisy graph. A standard approach for link prediction is to create a
similarity matrix S, whose entries Sij quantify the probability that (i, j)∈E1. It is worth pointing
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out that since E0 ∩ E1 = ∅, then the nonzero pattern of S will be complementary to that of the
adjacency matrix of G0. Over the years, several similarity measures have been proposed in order
to quantify which nodes are most likely to link to a given node i. While classical methods usually
exploit the first-order structure of connections around i, there is a growing interest in second-
order methods that take into account, for example, triangles.

In this context, we propose a new similarity measure based onM and its Perron eigenvector.
This measure is a generalization of the well-known technique known as seeded (or rooted) PageRank
[40,41], which we now describe. Given a seed node `∈ V and the teleportation coefficient 0≤ c <
1, let x(`) be the limit of the evolutionary process

xk+1 = cPxk + (1− c)1`, k= 0, 1, 2, . . . (6.1) eq:pr_link

where P is the random walk matrix P =AD−1. As 0≤ c < 1, it is easy to show that the limit exists
and that it coincides with the solution to the linear system

(I − cP )x(`) = (1− c)1` . (6.2) eq:lsys

The seeded PageRank similarity matrix SPR is then entrywise defined by

(SPR)ij = (x(i))j + (x(j))i .

The idea behind (6.1) is that the sequence xk is capturing the way a unit mass centered in ` (the
seed or root of the process), and represented in the model by 1`, propagates through the network
following the diffusion rule described by P . This diffusion map is a first-order random walk on
the graph.

In order to propose a new, second-order, similarity measure, we replace this first-order
map with the second-order diffusion described by M= αM + (1− α)T p and we consider the
associated diffusion process. We begin by observing that independently of the choice of the
starting point x0 in (6.1), this diffusion process will always converge to x(`) that satisfies
‖x(`)‖1 = 1. Indeed, (6.2) yields

‖x(`)‖1 = (1− c)‖
∑
k≥0

ckP k1`‖1 = (1− c)
∑
k≥0

ck = 1 .

As a consequence, the limit of the sequence (6.1) coincides with the limit of the normalized
iterates x̂k+1 = cPxk + (1− c)1`, with xk+1 = x̂k+1/‖x̂k+1‖1. On the other hand, when the
linear process P is replaced by the nonlinear map M, the unnormalized sequence may not
converge. We thus need to impose normalization of the vectors in our dynamical process defined
in terms ofM and seeded in node `:

ŷk+1 = cM(yk) + (1− c)1` k= 0, 1, 2, . . .

yk+1 = ŷk+1/‖ŷk+1‖1.
(6.3) eq:us_link

Note that, for α= 1 and M = P in (3.2) we retrieve exactly the rooted PageRank diffusion
(6.1). Unlike the linear case, the convergence of the second-order nonlinear process (6.3) is not
straightforward. However, similarly to the matrix case, Theorem 4.1 allows us to show that the
convergence is guaranteed for any choice of the tensor T , of the matrix M , and of the starting
point y0 ≥ 0, provided that graph GM is aperiodic.

Corollary 6.1. Let M :Rn→Rn be as in Definition 3.1 and let GM be its adjacency graph, as per
Definition 4.1. If GM is aperiodic and y0 ≥ 0, then the process {yk}k defined in (6.3) for a given seed `
converges to a unique stationary point y(`) ≥ 0.

Proof. Let F :Rn→Rn be the map F(y) = cM(y) + (1− c)‖y‖11`, where we have omitted the
dependency of the map on ` for the sake of simplicity. Note that the limit points of (6.3) coincide
with the fixed points of F on the unit sphere ‖y‖1 = 1. Note moreover that F is homogeneous,
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Figure 9. Link prediction performance comparison on two network dataset: UK FACULTY dataset (top) and SMALL

WORLD CITATION network (bottom). The plots show means and quartiles of the ratio between the fraction of correctly

predicted edges using SM and the one obtained using SPR, over ten random trials for different values of p and α in

(3.2).

〈fig:linkprediction〉

i.e., F(θy) = θF(y), for all θ > 0. Finally, notice that the j-th column of the Jacobian matrix of F
evaluated at z is

∂

∂yj
F(z) = c

∂

∂yj
M(z) + (1− c)1` ,

which shows that if the Jacobian matrix ofM is irreducible, the same holds for the one of F . With
these observations, the thesis follows straightforwardly using the same arguments as in the proof
of Theorem 4.1, applied to F .

As for the linear dynamical process, the stationary distributions of (6.3) computed for different
seeds allow us to define the similarity matrix SM:

(SM)ij = (y(i))j + (y(j))i.

In Figure 9 we compare the performance of the link prediction algorithm based on the standard
seeded PageRank similarity matrix SPR (6.1) and the newly introduced similarity matrix SM
(6.3) induced byM with M = P and T = TW , the random walk triangle tensor. The tests were
performed on the real-world networks UK FACULTY and SMALL WORLD CITATION. The network
UK FACULTY [42] represents the personal friendships network between the faculty members of a
UK University. It contains n= 81 vertices and m= 817 edges.

FA ♦ Please check these as the data that I’ve found refers to this as a weighted digraph. Did you
symmetrize/make everything binary?

The network SMALL WORLD CITATION .....

FA♦ Couldn’t find this network!

The experiments were performed as follows. We start with an initial network G= (V,E) and
we randomly select a subset of its edges, which we call E1, of size |E1| ≈ |E|/10. We then define
G0 = (V,E0) to be the graph obtained from G after removal of the edges in E1, so that E0 =

E \ E1. Thus, working on the adjacency matrix of G0, we build the two similarity matrices SPR
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and SM. Then, given similarity matrix S, we select from V × V \ E0 the subset ES containing
the |E1| edges with the largest similarity scores Sij . A better performance corresponds to a larger
size of E1 ∩ ES , since this is equivalent to detecting more of the edges that were originally in
the graph. To evaluate the performance of the two similarity matrices, we thus computed the
ratio |ESM ∩ E1|/|ESPR

∩ E1|. In Figure 9 we boxplot this quantity over 10 random runs where
E1 is sampled from the initial E with a uniform probability. Whenever the boxplot is above the
threshold of 1, our method is outperforming standard seeded PageRank. The middle plots in the
figure display the results for the two networks when α= 0.5 in (3.2) and we let p vary. On the
other hand, the plots on the right display results for varying values of α and p= 0, which was
observed to achieve the best performance in the previous test. Overall, the plots clearly show that
the link prediction algorithm based on the similarity matrix SM typically outperforms the one
based on SPR, especially for small values of p.

DJH♦ I changed “below” to “above” in the description of the box plots!

7. Conclusion
〈sec:conc〉After associating a network with its adjacency matrix, it is a natural step to formulate eigenvalue

problems that quantify nodal characteristics. In this work we showed that cubic tensors can
be used to create a corresponding set of nonlinear eigenvalue problems that build in higher
order effects; notably triangle-based motifs. Such spectral measures automatically incorporate
the mutually reinforcing nature of eigenvector and PageRank centrality. As a special case, we
specified a mutually reinforcing version of the classical Watts–Strogatz clustering coefficient.

We showed that our general framework includes a range of approaches for combining first-
and second-order interactions, and, for all of these, we gave existence and uniqueness results
along with an effective computational algorithm. Synthetic and real networks were used to
illustrate the approach.

Given the recent growth in activity around higher-order network features [6,7,26,27,43,44],
there are many interesting directions in which this work could be further developed, including
the design of such centrality measures for weighted, directed and dynamic networks, and the
study of mechanistic network growth models that incorporate higher-order information.
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