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Abstract—Regulating contact forces with high precision is
crucial for grasping and manipulating fragile or deformable
objects. We aim to utilize the dexterity of human hands to
regulate the contact forces for robotic hands and exploit human
sensory-motor synergies in a wearable and non-invasive way.
We extracted force information from the electric activities of
skeletal muscles during their voluntary contractions through
surface electromyography (sEMG). We built a regression model
based on a Neural Network to predict the gripping force from
the preprocessed sEMG signals and achieved high accuracy
(R2 = 0.982). Based on the force command predicted from human
muscles, we developed a force-guided control framework, where
force control was realized via an admittance controller that
tracked the predicted gripping force reference to grasp delicate
and deformable objects. We demonstrated the effectiveness of
the proposed method on a set of representative fragile and
deformable objects from daily life, all of which were successfully
grasped without any damage or deformation.

I. INTRODUCTION

HUMANS can grasp most delicate and soft objects thanks
to their adaptability of grasping forces through learned

motor skills. Compared to humans, robots have a relatively
limited grasping ability. Numerous deformable and fragile
objects with unknown shapes and material properties can be
found in daily life, manufacturing processes, agriculture, and
outer space. Since humans can grasp these objects without
causing damage, we are motivated to transfer this adaptability
skill to robots. To further extend robots’ existing capability
of manipulating rigid objects by adding the ability to grasp
delicate and deformable objects, we aim to combine the
humans’ adaptability of grasping force with robots’ ability to
complete repetitive and dangerous tasks with high precision.

Given the global demographic skew towards an aging pop-
ulation, it is highly probable that there will be a requirement
in the foreseeable future for service robots to assist in taking
care of the elderly [1]. Among the emerging concerns, safety
has the highest priority since robots will be involved in tasks
such as handling delicate objects in proximity to humans and
helping patients to move during rehabilitation. To address
these concerns when designing service robotic systems, at
the first stage of the development, the guidance/supervision
from human demonstrators/operators can be used for strict
contact force regulation to guarantee safety between humans
and robots during interactions.

Moreover, to assist forearm amputees with regaining their
upper extremities’ grasping ability (thus improving their life

(a) (b)

(c)

Fig. 1. Applications requiring delicate force controlled grasping. (a) an
agriculture robot for harvesting strawberries (image courtesy: Dogtooth Tech-
nologies Limited); (b)-(c) grasping fragile objects via the proposed force-
guided control system: a strawberry, an eggshell, an aluminum can and a
sponge.

quality), researchers have been working on building advanced
prosthetic devices. However, compared to humans’ upper
limbs, these prostheses currently cannot achieve the same level
of precise, adaptable control over contact forces to handle a
broad range of daily objects.

For mass production in agriculture and industry, teleoper-
ation techniques allow workers to be remotely involved in
the manufacturing process. Humans’ adaptation of grasping
force for different tasks can improve the robots’ manipulation
ability. Fig. 1(a) shows that a robot is harvesting strawberries
in a plantation and Fig. 1(b) shows that a Kinova arm is
teleoperated to pick up a ripe strawberry via a myoelectric
interface (sEMG). Both provide ideas for future working sce-
narios where workers can get involved in agriculture remotely
to pick up vegetables or fruits. Fig. 1(c) shows that the gripper
has successfully grasped representatives (a half eggshell, an
empty aluminum can, and a sponge) of extremely fragile and
deformable objects, indicating that the guidance from humans
can help industrial robots to grasp products made of very
fragile or deformable materials.

In the area of space robotics, shared autonomy between
humans and robots plays an essential role in achieving Level
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E1 autonomy for onboard spacecrafts defined by European
Cooperation for Space Standardization (ECSS) [2]. Teleop-
erated robots can act as human avatars working in environ-
ments that would be too dangerous or strenuous for humans.
Notable examples include executing tasks in outer space,
moving dangerous objects (e.g., explosive, nuclear, or toxic
materials), and rescuing victims in disaster response situations.
In these scenarios, precise contact force control for grasping
and manipulating deformable and fragile objects is crucial due
to the high costs of human life or equipment in case of failure.

Motivated by the unresolved problems in the aforemen-
tioned areas, in this paper, we propose a force-guided high-
precision control framework for fragile and deformable ob-
jects. While a human demonstrator is grasping objects, the
contact forces are predicted via a wearable, non-invasive
myoelectric interface realized by surface electromyography
(sEMG) and transmitted to a robot’s controller as force refer-
ences. Within its payload, a robot can grasp and manipulate
the same objects that a demonstrator can do.

The significance of this study is the development of an
effective force-guided control interface for shared telemanip-
ulation. Since there still remains substantial research to do
before realizing fully dexterous autonomous grasping, this
work provides human-in-the-loop solutions for safety-critical
grasping tasks requiring fine force control. Moreover, this
scheme and interface provide attractive ideas for transitional
technologies towards autonomous grasping: to build large data
sets of contact forces, spatial motions, and commands from
humans. All these data capture the sensory-motor synergies,
particularly high dimensional representations of motion and
force primitives that are critical for generating multi-contact
exploration and reactive behaviors. These useful data from
demonstrations can facilitate future researches on learning-
based autonomous grasping, e.g., training deep neural net-
works in a supervised manner to speed up the learning process.
In addition, our method can be applied to most robotic arms,
and upgrade the existing systems at a minimal hardware cost.

To build a gripping force prediction model, force sensors
were used to gather data which were fed to a supervised neural
network as labels. To realize force control on the robot, the
compliant contact surface between the rubber-coated gripper
and objects were modeled as a spring-mass-damper system,
where an admittance controller was designed to track the
predicted reference gripping forces.

The contributions of this work are summarized as follows:
• A force-guided control framework for grasping fragile

and deformable objects.
• Design of a real-time, online regression model from

sEMG signals to reference gripping forces.
• Handling noise from sEMG signals through a combina-

tion of signal processing and the intrinsic properties of
Neural Networks.

• Portable, wearable and low-cost Myo armband setup with
high prediction accuracy (R2 = 0.982).

• A hardware-independent framework for most robot plat-
forms’ development or existing systems’ upgrade.

The letter is organized as follows. Section II summarizes the
related works. In Section III, we overview the force-guided

grasping control framework and describe admittance control
for force tracking. In Section IV, we present details of the
prediction model and its real-time application. In Section V,
we explain the setup of sensors for data acquisition and the
robotic gripper for grasping tasks. In Section VI, we first
evaluate the performance of the prediction model, then further
evaluate the grasping performance. In Section VII, we discuss
the reasons for the success and the generalization on other
robot systems. We also analyze the limitations of this work
and investigate their potential solutions. In the last section,
we draw conclusions and propose some future works.

II. RELATED WORK

Fragile and deformable objects’ grasping and manipulation
need fine-tuned force control which cannot be achieved by
position controllers or traditional rigid end-effectors. In or-
der to control robots to grasp these objects while guaran-
teeing safety, a trade-off between maintaining intact shape
and avoiding slippage requires regulating the grasping force
through sophisticated controllers. Researchers have developed
slip and deformation (fracture) detection models with the aid
of tactile sensors [3]. The slip detection method needs the
prior knowledge of an object such as weight and involves
slip trials to estimate the friction coefficient of the contact
surface. To reduce deformation, an upper bound of the normal
force is also required [4], which is obtained through many
trials or set empirically and cannot be set to the same value
for all objects. The requirements and constraints make it
difficult and time costly to apply these detection methods to
unknown objects. From a bio-mimic perspective, soft actuator
techniques (fluid fingertips [5], pneumatic humanoid hand [6])
have also been introduced for these tasks. Soft actuators are
fabricated from flexible, soft and light materials. Compared
to rigid end-effectors, the softness and compliance of these
materials allow robots to interact safely with objects. The
inherent properties of soft actuators reduce the control com-
plexity and are advantageous for unknown objects, even with
odd geometries or unusual surfaces [7]. Due to their pneumatic
or fluidic driven methods, the challenges lie in slow response,
theoretical modeling, insufficient strength, system integration,
and miniaturization.

A human’s central nervous system (CNS) is capable of
a fast trial-by-trial adaptation to changes in a manipulation
context, e.g., object weight, surface friction, and weight distri-
bution [8]. Demonstration-based robotic control can integrate
humans’ sensory-motor memory and decision intelligence into
robots. For force-guided grasping control, it is crucial to
get the control strategy from human demonstrators, such as
the estimation of stiffness for variable impedance learning
[9]. Computer vision (CV) techniques have been applied
to get motion information such as joint positions, moving
trajectories and interaction forces [10], [11]. In addition, haptic
feedback provides a solution for obtaining the demonstrators’
stiffness and contact force. In [12], an interface for teaching
compliance variations via haptic feedback is presented. In
[14], the stiffness was modulated online through human-
robot interaction to achieve object-level impedance control for
dexterous manipulation.
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Fig. 2. Force-guided grasping control framework with Fre f predicted from the multichannel sEMG signals.

The movements of the joints are driven by skeletal muscles,
which work as actuators and receive the control commands
from CNS. The contact force measured by haptic devices or
estimated by CV techniques between the fingertips and objects
is the execution result of skeletal muscles. Therefore, for real-
time applications, predicting the movement information from
skeletal muscles can compensate for the electromechanical
delay (EMD) between the human and robot side. Moreover,
haptic gloves constrain the fingers’ moving range and lose
the periphery feedback from skins, thus influencing humans’
decision process. CV-based contact force estimation technique
limits humans’ activity space due to cameras’ effective range.
It also requires structural environments and the aid of markers
to achieve better performance, which is not ideal in such ap-
plications, e.g., estimating contact forces to control prosthetic
hands, teleoperating robots in an unknown environment such
as in outer space. Estimating the contact force from skeletal
muscles can free human demonstrators’ hand movements, and
does not put limitations on their activity range.

Surface electromyography (sEMG) can be used to predict
the contact force from skeletal muscles, which is a non-
invasive procedure that involves the detection, recording, and
interpretation of myoelectric activities [15]. It has wide appli-
cations in robotics such as advanced prostheses [16] and ex-
oskeletons [17]. In [18], under conditions of severely impaired
feedback, a robotic hand achieved variable-stiffness grasps of
small-fruit containers, where the stiffness was acquired via
sEMG from hand muscles. Compared to the task of grasping
containers, our work includes a wider range of common
delicate and deformable objects, which require fine-tuned force
controllers. A regression model from sEMG signals to fingertip

Fref

Freal

Admittance Force Controller

      PD 

Controller

Z-1

e

∆e
∆Pdes

Fig. 3. Block diagram of the admittance force controller.

forces needs to be built to predict the contact forces. In [19],
the extreme learning machine (ELM) was applied to predict
handgrip force from sEMG where a dynamometer was used to
measure the force. However, the dynamometer constrains the
fingers’ movement, making it difficult to directly transfer the
force from humans to the robotic gripper. Therefore, a new

data acquisition procedure is needed to gather the gripping
forces, which will be used to build the regression model in a
supervised manner.

III. FORCE-GUIDED HIGH-PRECISION GRASPING
CONTROL FRAMEWORK

We will overview the force-guided control framework for
high-precision grasping and illustrate the realization of an
admittance controller for force tracking.

A. Overview

The overview of the proposed framework is shown in Fig.
2. Inputs of the system are the multichannel sEMG signals
measured by electrodes placed on the forearm. To manipulate
the objects, the interaction between the robotic gripper and
objects can be modeled as a series-elastic system, in which a
change in position (deformation) results in a change of force
[13]. Hence, an incremental change of force can be mapped
to a position command to the gripper. The force control is
implemented by an admittance controller that transforms the
force reference to a position command for the inner loop
[20]. We obtain a force-controlled gripper with an inner
position loop, where the force reference is predicted from the
multichannel sEMG signals by a neural network.

B. Force Regulation via Admittance Control

By using force measurements, we design a controller that
can achieve an outer closed-loop control of the contact forces,
as shown in Fig. 3.

The tracking control law of the contact force is formulated
as follows:

∆Pdes(N) = Kp · e(N)+Kd ·∆e(N)

Pdes(n) = Pdes(N−1)+∆Pdes(N)
, (1)

where e = Fre f −Freal is the force error and Pdes denotes the
desired position which will be sent to the inner position loop.
This principle is similar to the force control using series elastic
actuators.

IV. GRIPPING FORCE PREDICTION BASED ON SEMG

The sEMG-based gripping force prediction model was built
by following the steps shown in Fig. 4, including data acqui-
sition, preprocessing, and model training.
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Step 1: Data acquisition Step 2: Windowing

Training set:
trial 1-9

Test set: 
trial 10

splitting

synchronization

raw data from10 trials

Step 3: Filter, rectify, envelope

Step 4: NN training

...

N

N: the number of windows

...

high pass filter

rectify

normalize

RMS

for each channel

...

...

input_layer: 8 nodes
middle_layer: m nodes
output_layer: 1 node

Fig. 4. Framework of the sEMG-based gripping force prediction, including sEMG and force data acquisition, sequence windowing, envelop extraction and
neural network training.

A. Data Acquisition

To build the prediction model, we gathered raw multi-
channel sEMG signals as the inputs and forces measured
from the thumb and index fingertips as the labels. Because
sEMG measures the electric potential generated by multiple
activated muscle cells, it is a non-stationary stochastic process.
Considering its time-variant feature even for the same task,
we gathered data from 10 trials. Before each trial, the subject
was seated in a chair facing the computer monitor with the
thumb and index fingertips touching the force sensors, forearm
muscles in a rest state, and fingertips not generating any force.
During each trial, the subject performed an increasing force
exertion as smooth as possible to the maximum force (without
reaching muscular fatigue) within 10 s by observing the force
curves on the screen.

B. Maximum Voluntary Contraction

For EMG normalization, the maximum voluntary contrac-
tion (MVC) task was performed via three trials. Each trial
involved a gradual increasing process of the contact force.
Forces were exerted by the thumb and index fingers to the
sensors in the normal direction to the contact surface. The
force amplitude went up from baseline to peak in 3-4 s and
then was kept for approximately 2 s. If the difference of the
peak forces between two trials exceeded 5%, a subsequent trial
would be performed. Between trials, there was a rest period
of 1 min. To get the MVC profile of the sEMG, a 400 ms
window centered at the time when the force reached the peak
was chosen. For each channel of sEMG signals, the MVC
profile was defined as the root mean square (RMS) amplitude
within the window, calculated as follows:

RMS =

√
1
N

N

∑
n=1

x2
n, (2)

where N denotes the number of samples within each sliding
window and xn denotes the nth sample.

C. Preprocessing

First, multichannel sEMG signals and the force data from
the thumb and index fingertips were synchronized. Then, for
the raw sEMG signal from each trial, we did segmentation
using a sliding window with a 10 ms increment. Raw sEMG
signals (Step 2 in Fig. 4) contain noise from moving artifacts,
baseline, electrocardiogram and power line hum. To eliminate
the DC component, each channel of the sEMG signals was
first high pass filtered by a Butterworth filter (4th order, cutoff
frequency of 5 Hz). Each channel was rectified and then
normalized by the MVC profile, as shown in (3).

xhp(t) = H (x(t))

xrect(t) = |x(t)|

xnorm(t) =
xrect(t)

xmvc

, (3)

where x(t) is the tth sample within each processing window,
H denotes the Butterworth high pass filter, | · | is the absolute
function, and xmvc is the MVC profile of sEMG.

Fig. 5. Power Spectral Density of the grasping force using FFT.

The RMS value was considered to reflect the physiological
correlation of the motor unit behavior during contraction,
which has a quasi- or curvilinear-relationship with the force
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exerted by a muscle [15]. Moreover, it can be easily imple-
mented in both digital and analog systems, defined by (2).

For force data, a Fast Fourier Transform (FFT) was used to
analyze the power spectral density (PSD) during the grasping
process. The result is shown in Fig. 5, which indicates force
signals are low-frequency signals, therefore, we used a low
pass filter with the cutoff frequency of 15 Hz to remove
the white noise while keeping the most useful information.
Moreover, considering EMD between the start of the muscular
activation and the force generation at the fingertip, forces at
the end of each window were used as the labels corresponding
to the preprocessed sEMG signals within the same window.

D. Offline Neural Network Training
The muscular activity and the gripping force have a non-

linear relationship, therefore, the prediction was modeled
as a nonlinear regression problem which can be solved by
supervised learning with EMG data as inputs and measured
gripping forces as labels. A multi-layer perceptron (MLP)
as a feedforward neural network with multiple layers uses
backpropagation algorithm to minimize the errors between the
prediction and the measured gripping force. In this work, a
three-layer neural network using ReLU (rectified linear unit)
as the activation function with eight input nodes and one output
node was trained in a mini-batch by the ADAM optimizer, the
structure of which is illustrated in Fig. 6.

The mathematical representation of the neural network is:

h(1)j = g(∑
i=0

w(1)
i j xi),

h(2)k = g(∑
j=0

w(2)
jk h(1)j ),

f = ∑
k=0

w(3)
k hk,

(4)

where xi is the i th input node, and g(·) = max(0, ·) represents
the ReLU activation function.

. .
 .

sEMG1

f
predicted

force

x1

x8

x2

. .
 .

. .
 .

hw(1)(x)

W Σ

Σ

Σ

Σ

Σ

Σ

Σ

input nodes
hidden nodes

(1) W
(2)

sEMG2

sEMG8

output
node

W
(3)

hw(2)(x)

Fig. 6. Neural network based force prediction from sEMG.

The loss function is defined as the mean squared error
between the predicted and measured force, where L2 regu-
larization is used to prevent overfitting:

J =
1
N

N

∑
n=1

( fn− yn)
2,

L = J(WWW ;xxx,yyy)+λ ‖WWW‖2 ,

(5)

where N is the batch size, ‖·‖ is the L2 norm, WWW is the weight
matrix, and λ is the regularization parameter.

TABLE I
HYPERPARAMETERS OF THE FORCE-GUIDED GRASPING SYSTEM

Parameters Search space Selected Value
batch size 32, 64, 128 64
learning rate 0.01, 0.005, 0.001, 0.0001 0.001
weight decay 0.05,0.01,0.005 0.01
num of hidden nodes 10,15,20 15
num of epoch [0,500] 50
Kp — 0.1
Kd — 0.002

The weights were updated for each batch via backpropa-
gation. To optimize the hyperparameters including batch size,
learning rate, weight decay and the number of hidden layer
nodes, we run 10-fold cross-validation with grid search on the
searching space as shown in Table I. Early stopping technique
was also used to prevent overfitting the model.

E. Prediction Model Assessment

The performance of the offline trained neural network is
assessed by the coefficient of determination (R2) index which
is defined as follows:

R2 = 1−

M

∑
i=1

(yi− ŷi)
2

M

∑
i=1

(yi− ȳ)2

,

where yi and ŷi denote measured and predicted gripping force
values for the ith sample in the data set, and ȳ is the mean of
the measured force over all the samples.

F. Online Gripping Force Prediction

Using the offline trained neural network, the force reference
was predicted in real time by Algorithm 1, where FIFO rep-
resents the first-in-first-out buffer. Considering the frequency
feature of the human’s gripping force, we set the control
frequency of the outer force loop to 20 Hz, which was adjusted
by the size of the EMG and force data buffer.

V. EXPERIMENTAL SETUP

Before conducting the grasping tasks of fragile and de-
formable objects, two parts – sensors for data acquisition and
the robotic gripper for grasping – need to be set up.

A. Setup of Data Acquisition

Thalmic Myo armband was a myoelectric device with eight
embedded electrodes for gathering sEMG data of a group of
forearm muscles. Two OptoForce OMD-30-SE-100N 3D force
sensors fixed on a 3D printed cube were used to measure the
magnitude and direction of the force applied by the fingertips.
The subject applied forces at the poles of two semi-spherical
sensors in the normal direction to the contact surface. The
monitor displaying the force amplitude helped the subject to
generate forces as smoothly as possible (Fig. 7(a)).
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Algorithm 1 Online Force Prediction
Input:

Multichannel EMG signals
Output:

Gripping force reference
1: Initialize an empty EMG FIFO buffer.
2: Initialize an empty Force buffer.
3: if EMG buffer not full then
4: Append the EMG data to the head of the EMG buffer.
5: else
6: Preprocess the data in the EMG buffer and predict the

force using the trained NN model.
7: if Force buffer is not full then
8: Append the predicted force to the head of the Force

buffer.
9: else

10: Calculate the mean of the force value in the Force
buffer as the gripping force reference.

11: Empty the Force buffer.
12: end if
13: Discard the EMG data at the buffer tail.
14: end if

Myo Armband

(a) (b)

Fig. 7. The experimental setup of data acquisition for building sEMG-based
force prediction model and the coordinate frames. (a) the data acquisition
setup; (b) the world and sensor coordinate frame (WCF, SCF).

B. Setup of Grasping Tasks

We used a 6-DOF Kinova Arm with a two-finger gripper
(KG-2), of which each finger is composed of a proximal and
distal phalanx. The opening and closing movements of the two
fingers are driven by two linear actuators, one for each finger,
which controls the movement of the distal phalanx. To measure
the magnitude and direction of the contact force between the
fingertip and the objects, two OptoForce OMD-30-SE-100N
3D force sensors were fixed on the grippers by the 3-D printed
adapters, which were specially designed so that the z-axis was
horizontal and the x-axis pointed downwards when the gripper
was at the posture shown in Fig. 7(b).

In this paper, we discuss the force in two coordinate frames.
At the human side, since the prediction model was trained in
the world coordinate frame (WCF), the gripping force was
predicted in WCF. At the robot side, the contact force was
measured in the sensor coordinate frame (SCF). We simplified
the grasping tasks by placing each object at a fixed place on the
table and hard-coding the reaching to the pre-grasp position.

Fig. 8. Loss curve during the training of sEMG-based gripping force
prediction model.

Fig. 9. Curve of the coefficient of determination (R2) during the training of
sEMG-based gripping force prediction model. R2 reached 0.95 both on the
training and validation set after 700 iterations.

To address the mismatch of the contact points between the
human and robot side during grasping, the force vectors
measured in SCF were transformed to WCF.

At the human side, the Myo armband was worn on the
forearm at the same position as that in the training session.
The image of the Kinova gripper was transmitted to the human
side in real time for visual feedback.

VI. EXPERIMENTAL VALIDATION OF THE FORCE-GUIDED
HIGH-PRECISION GRASPING CONTROL FRAMEWORK

In this section, the results of both the sEMG-based force
prediction model and the grasping tasks of fragile and de-
formable objects will be presented and analyzed.

A. Prediction Model

To evaluate the performance of the neural network, the data
set was split into a training (#1− #7), a validation (#8, #9)
and a test set (#10), as illustrated in Step 4 (Fig. 4). The loss
and R2 curves during the training process with the optimized
hyperparameters (shown in Table I) are shown in Fig. 8 and
Fig. 9.

The root mean squared error (RMSE) between the labels
and predicted values was calculated after each iteration on the
training and validation sets, shown in Fig. 8.

The R2 index on both data sets went up soon after the
training started and fluctuated around 0.95 after 700 iterations.
R2 on the validation set did not have a salient difference from
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Fig. 10. Comparison of raw/filtered predicted force against the ground truth.

that on the training set, indicating that the proposed prediction
model has a good generalization performance. The test set was
then used to further evaluate the performance of the prediction
model (shown in Fig. 10). By applying a moving average
window to smooth the raw predicted force, R2 of the prediction
model had an increase from 0.9795 to 0.9820.

B. Grasping Tasks with the Proposed Method

To validate the performance of the proposed force-guided
grasping framework, three deformable (fruit pepper, full plastic
bottle, empty aluminum can) and five fragile (ripe tomato, ripe
strawberry, half eggshell, 0.5 mm thin glass slice, wine glass)
objects were tested. With the experimental setup, the robotic
gripper successfully grasped all objects without deforming or
breaking them by tracking the guided force predicted from
sEMG of the subject when executing the same tasks on the
other side. The success of these tasks was verified by lifting
the object, which occurred once the difference between the
predicted and measured force was less than a threshold of
0.01 N (Fig. 11). The predicted force, the measured force and
its percentage of gripper’s maximum force (20 N) at the end
of the grasping phase, are shown in Table II. Without the
predicted force as the reference, it will take a long time to
learn the correct contact force, and meanwhile causing many
inevitable failures, either deforming or damaging the objects.
On the other hand, using our proposed method, the operator
had one-shot success for all the tasks within the test sets of
studied objects, which was attributed to the guided force and
prior human grasping synergies of regulating motion and force
profiles.

VII. DISCUSSION

The success of the force-guided grasping control framework
is attributed to the high accuracy of the sEMG-based force pre-
diction model and the admittance controller for force tracking.
We applied an incremental control law on the tracking error
in the inner position loop, which can have improved control
bandwidth using a torque-controlled robotic hand. In addition,
the uncertainty during the grasping can be compensated by the
human operator from the visual feedback via video streaming.
In this regard, the framework fulfills the goal of utilizing
the human capability of motion-force synergies to adjust the

TABLE II
PREDICTED FORCE, REAL FORCE AND ITS PERCENTAGE OF THE

GRIPPER’S MAXIMUM FORCE.

Objects Predicted (N) Real (N) Max (%)
Fruit pepper 1.140 1.133 5.67
Ripe tomato 0.239 0.231 1.16
Wine glass 5.932 5.922 29.61
Aluminum can 0.216 0.214 1.07
Thin glass (0.5mm) 0.826 0.826 4.13
Strawberry 0.039 0.040 0.20
Full plastic bottle 6.770 6.774 33.87
Egg shell 0.010 0.008 0.04

contact forces, which can be further used to collect data of
human grasping demonstrations as future work. Our work also
has some limitations: in order to generate suitable contact
forces to guide the robotic grippers, humans need to have
physical access to the duplicated mock-up objects to sense the
weight and texture. Humans have the ability to learn and adjust
the gripping force by manipulating virtual objects. The devel-
opment of virtual reality techniques can render the collision
between human fingers and objects, through which humans
can learn contact forces with haptic feedback. Therefore, the
necessity of the mock-up objects is eliminated. The guided-
force reference can be obtained without causing any damage
to real objects. Moreover, our method can be applied to build
large data sets of the contact force profile for the objects where
the force sensors cannot be easily installed.

To obtain the contact force feedback, we integrated the
OptoForce sensors on the grippers of the Kinova Arm platform
through 3-D printed adapters, which is not necessary for
grippers with force measurements. There are also commercial
substitutes for Thalmic Myo armband (Delsys, Ottobock, etc).
Therefore, the proposed method is not specifically bounded
to the hardware of this study and can be transferred to other
robotic platforms as well.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a force-guided framework for
fragile and deformable objects via a myoelectric interface.
The proposed method predicts the guiding forces from sEMG
on the forearms of human demonstrators using an artificial
neural network, and does not require any prior knowledge of
objects regarding shape, weight and surface friction. The force
commands were then tracked by an admittance controller. The
performance was validated by successfully grasping more than
eight fragile and deformable objects. Under the teleoperation
framework, our method utilized humans experience of grasp-
ing through kinesthetic feedback and visual feedback.

For future work, the proposed framework can be used as
an equivalent perception-action interface between the human
operator and the robot for realizing autonomous grasping using
the machine learning approach. It can provide a large amount
of useful human demonstration data to develop data-efficient
learning via such human-robot apprenticeship.
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