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CURRENT
OPINION Understanding and predicting the longitudinal

course of dementia

René J.F. Melisa, Miriam L. Haaksmaa, and Graciela Muniz-Terrerab

Purpose of review

To date, most research in dementia has focused either on the identification of dementia risk prediction or
on understanding changes and predictors experienced by individuals before diagnosis. Despite little is
known about how individuals change after dementia diagnosis, there is agreement that changes occur over
different time scales and are multidomain. In this study, we present an overview of the literature regarding
the longitudinal course of dementia.

Recent findings

Our review suggests the evidence is scarce and findings reported are often inconsistent. We identified
large heterogeneity in dementia trajectories, risk factors considered and modelling approaches employed.
The heterogeneity of dementia trajectories also varies across outcomes and domains investigated.

Summary

It became clear that dementia progresses very differently, both between and within individuals. This implies
an average trajectory is not informative to individual persons and this needs to be taken into account when
communicating prognosis in clinical care. As persons with dementia change in many more ways during
their patient journey, heterogeneous disease progressions are the result of disease and patient
characteristics. Prognostic models would benefit from including variables across a number of domains.
International coordination of replication and standardization of the research approach is recommended.
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INTRODUCTION

Dementia is a syndrome with a variable disease
course. The progression of dementia is the result
of complex mechanisms interacting across multiple
spatial and temporal scales that go from molecular
to societal scales and from dynamics that take sec-
onds to a lifetime to evolve [1]. To understand the
longitudinal course of dementia, it is essential to
recognize this hierarchy exists. This also required for
an accurate prediction of the patient journey. In
this, two remarks are noteworthy. First, over time
not only the dementia will progress but persons with
dementia (PWD), who are often older, may also
experience concomitant changes during their
patient journeys induced by other co-existing dis-
eases or syndromes. Second, that ageing and demen-
tia, which develops over 15–25 years from
preclinical to end stage and usually starts during
the second half of the lifespan, are closely inter-
twined and jointly impact on multiple life domains.

This explains why predictor research has
focused on so many aspects in the progression of
dementia. At the same time, each of these aspects is
a field of study in itself that a single review cannot
do justice to. Therefore, we do not strive for

comprehensiveness of our review at the level of
the individual processes involved in the progression
of dementia. They do serve, however, as ‘place hold-
ers’ to outline the multiscale processes involved
in the progression of dementia. Consequently,
we reviewed the latest evidence (2017–2018) on:

(1) The heterogeneity in the multidimensional lon-
gitudinal course of dementia from diagnosis
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onwards and whether clinically meaningful
clustering in growth curves can be identified.

(2) Baseline (static, between PWD) and time-vary-
ing (dynamic, within PWD) factors associated
with the heterogeneity in the longitudinal
course of dementia at multiple scales (disease
and patient and sociodemographics).

(3) The possibility to predict longitudinal course of
dementia, institutionalization and survival.

A description of the methodology and yield of
this result can be found in the Supplement, http://
links.lww.com/YCO/A46.

RECENT FINDINGS: HETEROGENEITY IN
THE MULTIDIMENSIONAL LONGITUDINAL
COURSE OF DEMENTIA

The studies reviewed confirm the earlier observation
that ‘the course of dementia is unpredictable and
varies greatly between individuals’ [2]. Researchers
took roughly three different approaches to study
this heterogeneity. First, PWD were categorized as
either fast or slower decliners based on their (initial)
change in outcomes [3]. Second, studies used indi-
vidual growth models applying linear mixed model-
ling to model the heterogeneity through random
intercepts and slopes [4]. Mostly, these studies
focused on trajectories in one phenotypical out-
come at a time [5

&&

]. Third, researchers identified
grouping in growth trajectories applying latent class
growth curve analysis or growth mixture modelling
(GMM) [6]. Multivariate GMM models simulta-
neously estimated trajectories of multiple outcomes
(mostly global cognition and daily functioning) in a

so-called ‘parallel process GMM’. The outcomes
most frequently involved are global cognition (Mini
Mental State Examination; MMSE) and dementia
severity (Clinical Dementia Rating scale – Sum of
the Boxes; CDR-SB) [7

&&

]. To a lesser extent, studies
modelled activities of daily living (ADL) and instru-
mental activities of daily, cognitive testing and neu-
ropsychiatric symptoms measures (NPS). Few studies
were identified that modelled (time-to) relevant
dichotomous outcomes such as institutionalization
and death, yet no studies combining trajectories on
continuous and dichotomous outcomes in a single
analysis (through so-called joint modelling) were
identified recently [8].

When focusing on dementia or Alzheimer’s
dementia showing a rapidly progressing trajectory,
the lack of consistent definitions of disease stages
and PWD populations hampers the opportunity to
draw precise conclusions. Yet, there is large hetero-
geneity with considerable proportions of the sam-
ples analyzed showing rapid declines, but often the
majority shows slower decline [3,9–11]. Finally,
probabilities for increasing Alzheimer’s dementia
severity, institutionalization and mortality were cal-
culated and ranged much depending on age and
dementia stage [12

&

,13
&

].
Regarding the multidimensionality of dementia

disease course, a strong correlation between MMSE
and CDR-SB trajectories was found in a clinical
sample of persons with incident dementia [7

&&

],
which replicated the high correlations between
these measures’ trajectories reported earlier [14]. A
Dutch cohort of persons with new dementia diag-
nosis at a memory clinic (The Clinical Course of
Cognition and Comorbidity in Mild Cognitive
Impairment and Dementia Study; 4C study [15])
also showed that daily functioning (Disability
Assessment for Dementia; DAD) and cognition
(MMSE) correlate, but the correlation with neuro-
psychiatry symptoms was attenuated (NPS, mea-
sured with Neuropsychiatric Inventory; NPI) [16

&

].
This indicates within person heterogeneity, where
NPS outcomes over time do not follow the trajectory
of global cognitive decline. Although more coordi-
nated approaches and further replication of results
are needed [17], results to date indicate that the
trajectory of a single outcome fails to capture disease
progression comprehensively.

Clustering in longitudinal course of dementia

Several recent studies tried to understand the het-
erogeneity in dementia disease course through the
application of (parallel process) GMM. Growth clas-
ses were sought for MMSE (six classes) [18

&

], depres-
sive symptoms (three classes) [19

&

] and quality of life

KEY POINTS

� Dementia progression is heterogeneous within and
between persons with dementia and originates from
disease characteristics and characteristics of persons
with dementia.

� This heterogeneity is perhaps best explained by a
multiscale mixture of long and short-time trends
included in polyfactor prediction models.

� Data sharing, coordination and standardization of
explanatory and prognostic research of the patient
journey of persons with dementia is merited.

� Possible risk factors should not only be evaluated as
baseline (at diagnosis) exposures but also as (lagged)
time-varying exposures. Also longitudinal changes in
exposures can be evaluated against longitudinal
changes in outcomes. This requires the assessment of
risk factors at baseline and at the follow-ups.
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(three classes mainly characterized by baseline dif-
ferences, rather than slopes) [20

&

]. One study sought
to replicate the four classes of parallel growth in
MMSE and CDR-SB from a population-based sample
of incident Alzheimer’s dementia patients [14] in
the National Alzheimer’s Coordinating Center
(NACC) clinical sample of recently diagnosed Alz-
heimer’s dementia patients using MMSE and CDR-
SB [7

&&

]. Replication was partly possible: three
instead of four classes were identified, although class
distribution was comparable in the sense that most
individuals were members of a class with stable or
slow progression. Comparison to the six growth
classes for MMSE in the UK sample shows that some
of their classes had a much lower MMSE already at
baseline [18

&

] than classes identified in Cache
County Dementia Progression Study [14], NACC
and 4C [7

&&

]. Perhaps this reflects that the UK study
did not synchronize trajectories on the basis of
dementia onset. As dementia has an insidious onset,
it is very difficult to identify a single point in the
patient journey to synchronize all trajectories on
[21]. Compared to cases identified systematically in
a cohort at risk for dementia, trajectory analysis
in clinical samples is especially sensitive to this
heterogeneity that occurs, amongst other reasons,
because not everybody is referred for diagnosis at the
same disease stage.

The results of each of these clustering exercises
are relevant in that they redirect the attention from
the average trajectory to the heterogeneity both
between and within the PWD’s journey. All consis-
tently show that there is an – often large – group of
dementia patients who follow a slower trajectory
than typically reported based on the average
decline, and this can help to communicate accu-
rately with patients and caregivers about their prog-
nosis. Moreover, deciphering slow progression
mechanisms may point at new preventive and
therapeutic options.

Beyond this, the purpose of GMM is to uncover
distinct (but a priori unknown, thus latent) subpo-
pulations showing different trajectories of change.
From the studies reviewed here it is clear that clus-
tering can be identified, but to which extent these
clusters of trajectories are meaningful remains to be
elucidated. A direct comparison of results is ham-
pered because of different analytical choices. Hence,
a consistent replication of the subpopulations across
multiple datasets is crucial and lacking.

If no latent grouping of trajectories is apparent
from these replications, this may essentially mean
that the heterogeneity in the data does not arise
from the presence of subpopulations of patients
exhibiting typical trajectories, but – at the level of
the whole group – behaves in a seemingly random

fashion (adequately described with random inter-
cepts and slopes [6]) around a single mean growth
curve.

RECENT FINDINGS: BASELINE AND TIME-
VARYING PREDICTORS OF LONGITUDINAL
COURSE OF DEMENTIA

A large number of studies have looked into possible
predictors for a range of outcome trajectories.
Although some studies evaluated characteristics of
the dementia, others focused on the person with the
dementia, and a few both. Mostly, baseline exposure
levels of predictors were evaluated, but some studies
also evaluated the association with time-varying
exposures.

Disease level

At disease level, the syndrome diagnosis was an
important target, where these were either compared
for their impact on outcomes over time or were
evaluated – in those persons receiving multiple syn-
drome diagnoses – for how the co-occurrence of
dementia syndromes interact. A comparison of Alz-
heimer’s dementia and Lewy Body Dementia (LBD)
patients found little support for a faster decline in
neuropsychological outcomes in LBD patients over
four year after diagnosis [22]. Yet, when persons have
both Alzheimer’s dementia and LBD, this resulted in
faster decline than each apart [23]. Comparably,
when LBD patients had a CSF Alzheimer’s dementia
profile, this also resulted in a more severe manifesta-
tion of the disease and a higher risk of institutionali-
zation and mortality [24].

Another study found that patients with a behav-
ioural variant frontotemporal dementia worsened in
frontal symptoms such as disinhibition and apathy,
whereas these symptoms were rather stable in other
neurodegenerative disorders and even improved in
primary psychiatric disorders [25]. In contrast, a
comparison of Alzheimer’s dementia and behaviou-
ral variant frontotemporal dementia patients
showed strongly overlapping longitudinal trajecto-
ries in executive functioning, memory and orienta-
tion measures [26]. Finally, a specific sample of
young onset dementia patients showed that on
the Global Deterioration Scale, Alzheimer’s demen-
tia patients progressed faster than patients with VaD
and frontotemporal dementia [27].

Neuropsychological assessments

Performance on neuropsychological assessments
(NPA) also was an important disease characteristic
evaluated as a predictor of dementia progression.
In Alzheimer’s dementia patients, free recall and

The longitudinal course of dementia Melis et al.
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category fluency at diagnosis were the most predic-
tive of rapid cognitive [28], as was a low MMSE
[11,29], high CDR [30] and worse Trail Making B
[3]. In another study, patients with a non-memory
impairments profile showed faster disease progres-
sion and higher risk of mortality than patients with
most prominently memory impairment [31]. More
novel neuropsychological assessments targets may
be ‘selective attention toward novel stimuli,’ or
‘novelty preference,’ which was associated with a
greater decline in cognition [32], and the semantic
memory processes which predicted global cognition
at one year in Alzheimer’s dementia patients [33].
Finally, (Instrumental)ADLs were over time corre-
lated with time-varying measures of executive func-
tion and visuoconstructive skills in Alzheimer’s
dementia patients [34

&

] and NPS changes were
explained by MMSE [5

&&

].

Neuropsychiatric symptoms

Three recent studies suggested that baseline neuro-
psychiatric symptom burden may be related to
aggravated decline in dementia [11,27,29].

Blood-based biomarkers

Regarding blood-based biomarkers, only one recent
study was identified, which suggested higher plasma
clusterin levels were associated to rate of cognitive
decline in Alzheimer’s dementia patients, whereas
plasma Ab in ApoE4-positive Alzheimer’s dementia
patients could predict long-term agitation/aggres-
sion symptoms [35]. As such, this study adds to the
emerging field of neurochemical biomarkers for
dementia and Alzheimer’s dementia [36].

Imaging biomarkers

Imaging biomarkers are an established and active
field of study, though traditionally more focused on
dementia onset prediction than dementia progres-
sion. Imaging, however, has the continued interest
of the field to serve as a proxy outcome in clinical
trials in dementia and Alzheimer’s dementia. Sev-
eral studies looked at structural MRI brain atrophy
patterns and white matter changes to reveal patterns
related to faster progression [37–39]. Similarly, arte-
rial spin labelling measured cerebral blood flow
acted as a marker of MMSE decline [40]. Finally,
PET imaging biomarkers t and amyloid-b burden
and microglial activation were related to dementia
progression [41,42].

Patient level

At patient level studies continue to be added to the
literature regarding the age at presentation and
speed of decline, often explicitly defined as early

vs. late onset dementia or early onset Alzheimer’s
disease (EOAD) vs. late onset Alzheimer’s disease
(LOAD). These studies showed faster progression
with younger age [43,44] and higher mortality risk
in EOAD [45]. However, findings also contradict
each other suggesting virtually no effect of age
[46] or higher age being related to faster decline
[5

&&

,30]. Related is the finding that earlier diagnosed
Alzheimer’s dementia patients experienced similar
progression in MMSE, but slower progression in
CDR [47].

Genetic factors and family history

As there are a number of genetic risk factors for
Alzheimer’s dementia [48], interest is also raised
for their involvement in the progression of demen-
tia and Alzheimer’s dementia. This ranges from
known genes [30,49] and polymorphisms [50] to
polygenic risk scores [51] and a positive family
history [11].

Comorbidity

A systematic review into the impact of comorbidity
on late onset Alzheimer’s dementia suggested a
dynamic relation between medical comorbidity
and Alzheimer’s dementia decline, because time-
varying comorbidity burden more than baseline
comorbidity burden was associated with cognitive
decline [52

&&

]. The possibility that medical comor-
bidities may impact progression was supported by
the finding that dementia patients in primary care
die younger when having more comorbidities [53

&

].
The observation that comorbidity changed over
time and had predictive value for institutionaliza-
tion and mortality in the short but not in the long
term, may support the suggested hypothesis of a
dynamic relation between dementia progression
and comorbidity [54]. As separate conditions,
mainly cardiovascular comorbidities were tested
and found to be related to dementia progression
in including NPS [5

&&

,55,56]. However, other studies
found no or only modest relations of vascular risk
factors and vascular diseases with progression in
Alzheimer’s dementia [57] and LBD [58].

Frailty and accelerated aging biomarkers

Like comorbidities, frailty levels are likely to change
during dementia progression, and perhaps also have
predictive value in the short but not in the long term
[54]. Further support for an influence of frailty
biomarkers came from a study identifying an asso-
ciation between baseline gait speed and cognition
[59] and between malnutrition and rapid decline
[11]. A longitudinal association between advanced
glycation end products – which may signal acceler-
ated aging – and ADL and mobility declines could

Neurocognitive disorders
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not be evidenced in persons with Alzheimer’s
dementia or mixed dementia [60].

Physical activity

Several recent studies suggested less and decreasing
physical activity is associated with faster decline and
mortality [61,62].

Sociodemographics

Sociodemographic factors such as geographic area of
residence in the United States and being community
dwelling were found to be related to dementia pro-
gression [5

&&

], but another study suggested their
impact may disappear with increasing severity
[63

&

]. Therefore, the results implied ‘that the poten-
tial for extending community living for people with
dementia is likely to be difficult through modifica-
tion of their socio-demographic and economic envi-
ronments’ [63

&

].

RECENT FINDINGS: PREDICTION MODELS

Despite a rich, though sometimes conflicting, liter-
ature on dementia progression predictors and the
importance of adequate prognostic information for
patients [2], the body of evidence for prediction
models for dementia progression is still sparse, even
with the latest studies added [7

&&

,64,65
&&

]. The
approaches to their development were heteroge-
neous and involved very different risk factors. The
risk factors focused either on clinical attributes and
patient characteristics [7

&&

], imaging biomarkers in a
machine learning framework [64] and an approach
combining both fixed and time-varying covariates
covering multiple domains including cognitive,
functional, behavioural and other symptoms/signs
[65

&&

]. We suggest that more coordination in their
development and evaluation is merited, in which a
promising approach may be to combine baseline as
well as time-varying predictors across multiple
scales in one model as has been suggested by a
number of authors [52

&&

,65
&&

].

CONCLUSION

Though clustering of dementia time course is
revealed, its relevance needs to be verified and find-
ings replicated across multiple studies with compa-
rable approaches to the analysis, for example,
coordinated analysis [17], before we can really draw
robust inferences. At this point the relevance of
clustering exercises is that they point at the hetero-
geneity and spread in the longitudinal course of
dementia that is not fully described by the average.
It was also seen that this heterogeneity is perhaps
best explained by a mixture of long and short-time

trends: for example, the presence of EOAD has in
comparison to LOAD a sustained effect on speed of
decline, but on top of that the time course is shaped
by co-existing syndromes such as frailty that are
more variable in their presence across the patient
journey and thus have predictive value in the short,
but not in the long run. Exposures which are bound
to change over the course of dementia may still have
relevance to predict outcome in the short run, but
require frequent updates of predictor exposures and
prediction models that allow for updates.

Multiple differences in the methodology,
including different psychometric properties of
the outcomes analyzed, became also apparent
and this hampers their comparison. Polyfactor pre-
diction models combining relevant predictors at
different hierarchical (spatial and time scales) may
provide further insight in the natural progression
of dementia.
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