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RESEARCH ARTICLE

Metafounders are related to Fst fixation 
indices and reduce bias in single‑step genomic 
evaluations
Carolina A. Garcia‑Baccino1,2, Andres Legarra3*  , Ole F. Christensen4, Ignacy Misztal5  , Ivan Pocrnic5  , 
Zulma G. Vitezica3   and Rodolfo J. C. Cantet1,2 

Abstract 

Background:   Metafounders are pseudo-individuals that encapsulate genetic heterozygosity and relationships 
within and across base pedigree populations, i.e. ancestral populations. This work addresses the estimation and use‑
fulness of metafounder relationships in single-step genomic best linear unbiased prediction (ssGBLUP).

Results:  We show that ancestral relationship parameters are proportional to standardized covariances of base allelic 
frequencies across populations, such as Fst fixation indexes. These covariances of base allelic frequencies can be 
estimated from marker genotypes of related recent individuals and pedigree. Simple methods for their estimation 
include naïve computation of allele frequencies from marker genotypes or a method of moments that equates aver‑
age pedigree-based and marker-based relationships. Complex methods include generalized least squares (best linear 
unbiased estimator (BLUE)) or maximum likelihood based on pedigree relationships. To our knowledge, methods 
to infer Fst coefficients from marker data have not been developed for related individuals. We derived a genomic 
relationship matrix, compatible with pedigree relationships, that is constructed as a cross-product of {−1,0,1} codes 
and that is equivalent (apart from scale factors) to an identity-by-state relationship matrix at genome-wide markers. 
Using a simulation with a single population under selection in which only males and youngest animals are geno‑
typed, we observed that generalized least squares or maximum likelihood gave accurate and unbiased estimates of 
the ancestral relationship parameter (true value: 0.40) whereas the naïve method and the method of moments were 
biased (average estimates of 0.43 and 0.35). We also observed that genomic evaluation by ssGBLUP using metafound‑
ers was less biased in terms of estimates of genetic trend (bias of 0.01 instead of 0.12), resulted in less overdispersed 
(0.94 instead of 0.99) and as accurate (0.74) estimates of breeding values than ssGBLUP without metafounders and 
provided consistent estimates of heritability.

Conclusions:  Estimation of metafounder relationships can be achieved using BLUP-like methods with pedigree and 
markers. Inclusion of metafounder relationships reduces bias of genomic predictions with no loss in accuracy.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Metafounders are pseudo-individuals that describe rela-
tionships within and across pedigree base populations. 
The concept of metafounders provides a coherent frame-
work for the theory of genomic evaluation [1]. Genomic 
evaluation in agricultural species often implies partially 

genotyped populations, i.e. some individuals are geno-
typed, using high-density genetic markers across the 
genome, others are not, and phenotypes may be recorded 
in either of the two subsets. An integrated solution called 
single-step genomic best linear unbiased prediction (ssG-
BLUP) has been proposed [2–4]. This solution uses the 
following integrated relationship matrix:

H =

(

A11 − A12A
−1
22

A21 + A12A
−1
22

GA
−1
22

A21 A12A
−1
22

G

GA
−1
22

A21 G

)

,
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with inverse:

where G is the genomic relationship matrix, A is the 
pedigree-based relationship matrix, and matrices 
A11,A12,A21,A22 are submatrices of A with labels 1 and 
2 denoting non-genotyped and genotyped individuals, 
respectively.

Because genotyped animals are often not a random 
sample from the analyzed populations (they tend to be 
younger or selected), it was quickly acknowledged that 
a proper analysis requires specifying different means for 
genotyped and non-genotyped individuals for the trait 
under consideration. These different means can be con-
sidered as parameters of the model, which are either fixed 
[4] or random [5, 6] effects. In the latter case, the random 
variables induce covariances between individuals, a situ-
ation that is informally referred to as “compatibility” of 
genomic and pedigree relationships. In fact, compatibility 
implies equality of the average breeding value of the base 
population and of the genetic variance [7] across the dif-
ferent measures of relationships. Numerically, the prob-
lem appears as follows. The formulae for matrix H and its 
inverse contain (G− A22) and (G−1

− A−1
22 ) (assuming G 

is full rank), respectively. This suggests that if G and A22 
differ too much, biases may appear.

Genomic relationships are usually computed in one of 
two manners: using “cross-products” [8] or “corrected 
identity-by-state (IBS)” [9]. Both depend critically on 
assumed allele frequencies at markers in the pedigree 
base population [10]. Base allele frequencies are often 
unavailable. However, for most purposes, allele fre-
quencies are not of interest per se and can be treated as 
nuisance parameters that can be marginalized. Chris-
tensen [11] achieved an algebraic integration of allele 
frequencies, leading to a very simple covariance struc-
ture with allele frequencies in genomic relationships 
fixed at 0.5 (e.g., using genotypes coded as {−1,0,1} in 
the cross-product method) and a parameter called γ 
that describes relationships between pedigree found-
ers i.e. A(γ)

base = I
(

1−
γ

2

)

+ 11′γ in the base population. 
A second parameter in Christensen’s marginalisation 
is s, which is a measure of marker heterozygosity in the 
base population. Therefore, instead of inferring (thou-
sands of ) base allele frequencies, inference can be based 
on two simple parameters γ and s. Both can be estimated 
by maximizing the likelihood of observed genotypes. In 
addition, this approach considers the fact that pedigree 
depth is arbitrary and mostly based on historical avail-
ability of records.

Legarra et  al. [1] showed the equivalence of the 
Christensen approach to the metafounder concept: 

H−1
= A−1

+

(

0 0

0 G−1
− A−1

22

)

,

pseudo-individuals that encapsulate three ideas: (a) 
separate means for each base population [4, 12, 13], (b) 
randomness of these means [5] and (c) propagation of 
the randomness of these means to the progeny [11], 
while accommodating several populations with complex 
crosses, e.g. [14]. Legarra et  al. [1] also generalized one 
relationship between founders (scalar γ) to several rela-
tionships between founders in the pedigree, i.e. ancestral 
relationships (matrix Ŵ), and suggested simple methods 
to estimate them. Legarra et al. [1] showed that construc-
tion of AŴ from Ŵ and a pedigree reduces to the use of 
the tabular rules [15] for construction of relationships, 
and its inversion is achieved by inversion of Ŵ followed by 
Henderson’s rules [16]. We provide an example of matri-
ces AŴ and Ŵ in “Appendix”. However, the performance of 
their model has not been tested so far, either for estima-
tion of ancestral relationships or for genomic evaluation.

This work has two objectives. The first is to show that 
the structure of the metafounder approach yields an 
alternative parameterization and method for estimation 
of ancestral relationships. By doing so, we found that 
ancestral relationships are generalizations of Wright’s Fst 
fixation index [17]. The second goal is to test, by simu-
lation, (1) methods to estimate ancestral relationship 
parameters, (2) the quality of genomic predictions using 
metafounders, and (3) the quality of variance component 
estimation. For the second goal, the simulated popula-
tion is undergoing selection and with a complete partially 
genotyped pedigree.

Methods
Relationship between metafounders and allele frequencies 
in the pedigree base population
Single population
Let M be a matrix of genotypes coded as gene con-
tent, i.e. {0,1,2} and the genomic relationship matrix 
G = (M − J)(M − J)′/s, with J a matrix of 1s, with ref-
erence alleles taken at random, so that the expected 
allele frequency p is 0.5 for a random locus [11]. In 
other words, the matrix Z = (M − J) contains values of 
{−1,0,1} for each genotype. In a single population, let γ 
be the relationship coefficient between pedigree founders 
or, equivalently, the self-relationship of the metafounder 
[1, 11]. Parameter s (defined above) is a measure of 
marker heterozygosity in the population. Ancestral rela-
tionships in γ explain, for instance, genomic relationships 
in G = (M − J)(M − J)′/s that are not captured by avail-
able pedigree; e.g. across nominally unrelated individuals. 
It will be shown later that this relationship γ is relative to 
a population with maximum heterozygosity and is analo-
gous to an Fst fixation index [18].

Christensen [11] estimated the two parameters, γ and 
s, using maximum likelihood, whereas [1] suggested 
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methods of moments. Closer inspection of Appendix A 
in [11] leads to the following developments that were not 
described in Christensen [11] (see “Appendix” of the pre-
sent paper for more details).

Parameter γ is such that γ =
4Var(pi)

2Var(pi)+E(2piqi)
 , 

with pi = 1− qi the allele frequency at a ran-
dom locus i. Parameter s = n(2Var(pi)+ E(2piqi)) , 
with n being the number of markers. However, 
E(2piqi) = 2E(pi)E(qi)− 2Var(pi) = 0.5− 2Var(pi), 
such that if reference alleles are chosen at random across 
loci, then E(pi) = E(qi) = 0.5. From this it follows that:

and the genomic relationship matrix is 
G = 2(M − J)(M − J)′/n. Interestingly, this matrix is 
similar to a matrix of IBS relationships, that can be writ-
ten as:

so that GIBS =
1
2
G+ 11′ (see proof in “Appendix”).

Substituting E(2piqi) = 0.5− 2Var(pi) into the expres-
sion γ =

4Var(pi)
2Var(pi)+E(2piqi)

 gives: γ = 8Var(pi) = 8σ 2
p , such 

that γ for a single population is eight times the variance 
of allele frequencies in the base population (this vari-
ance was described by Cockerham [19]). We stress that 
Var(pi) = σ 2

p  to imply that σ 2
p  (and γ) is a parameter, the 

variance of allele frequencies across markers [10, 11, 20, 
21]. However, s can be considered as equivalent to het-
erozygosity when all markers have an allele frequency of 
0.5, that is, the maximum possible heterozygosity.

Multiple populations
In an analogous manner, the relation-
ship between two metafounders b and b′ is: 
γb,b′ = 8Cov

(

pb,i, pb′,i
)

= 8σpb ,pb′, i.e., the covariance 
across loci between allele frequencies of two popu-
lations b and b′. This is almost tautological: the rela-
tionship (between two populations in this case) is the 
covariance between the gene content at a locus. Chris-
tensen et al. [6] implicitly show this in Appendix A of 
their paper. Cockerham [19] and Robertson [22] inter-
preted 4 σpb ,pb′ as the coancestry between two popu-
lations and Fariello et  al. [23] used σpb ,pb′ to describe 
the divergence of populations. Several measures of 
genetic distance between populations have been devel-
oped (e.g. [24]), and most of them contain a term that 
is related, implicitly or explicitly, to σpb ,pb′. In particu-
lar, the average square of the Euclidean distance can 
be written as D2

= E
(

(pb − pb′)
2
)

= −2σpb,pb′. Thus, 
γb,b′ = −4D2.

s =
n

2
=

number of markers

2
,

GIBS = (M − J)(M − J)
′

/n+ 11′,

Estimation
Estimation in a single population
Estimation of s is trivial, it is simply half the number of 
markers. Parameter γ is proportional to the variance of 
allele frequencies in the base population. If base popu-
lation individuals were genotyped, computing allele fre-
quencies and estimating γ would be trivial. In the next 
section, we propose methods when this is not the case, 
i.e. genotyped individuals are related and perhaps several 
generations away from the base population.

Assuming no pedigree structure i.e. naïve The simplest 
model assumes that genotyped individuals are unrelated 
and constitute the base population. For locus i, let mi 
be a vector of gene contents in the form {0,1,2}, defined 
as before. The mean of this vector is µi = 2pi. For each 
locus, µi is estimated as the observed mean of mi, then 
Var

(

µ̂
)

 is computed as the empirical variance across 
loci of µ̂ =

(

µ̂1, . . . , µ̂n

)

, and because pi = µi/2, then 
σ̂ 2
p = Var

(

µ̂
)

/4 and γ = 8σ̂ 2
p = 2Var

(

µ̂
)

.
Considering pedigree structure At locus i, gene content 

can be seen as a quantitative trait mean of mi in the base 
population equal to 2pi, where pi is the allele frequency in 
the base population and the genetic variance is 2piqi [25–
27]. Cockerham [19] showed that the covariance of gene 
content of marker i between individuals j and k is a func-
tion of their relationship (Ajk): Cov

(

mi,j ,mi,k

)

= Ajk2piqi. 
A linear model can therefore be written as:

where W is an incidence matrix relating individuals in the 
pedigree to observed genotypes, and ui is the deviation of 
each individual from the mean µi for all individuals [25–
27]. Assuming multivariate normality: µ ∼ N

(

0, Iσ 2
µ

)

 and 
ui ∼ N (0,A(2piqi)) = N

(

0,Aσ 2
mi

)

.
Equivalently, for the set of genotyped individu-

als (labelled as “2”), u2,i ∼ N (0,A22(2piqi)), where 
A22 = WAW′ is an additive relationship matrix that 
includes only the genotyped individuals. From this for-
mulation, there are two possible strategies to estimate σ 2

µ.
Generalized least squares (GLS) This ignores the prior 

distribution of µ and estimates each µi as a “fixed effect”, 
using best linear unbiased estimator (BLUE) (or, equiva-
lently, GLS) estimators of µi separately for each locus. 
One option is to use the A−1 spanning all the pedigree 
and mixed model equations [25–27]. Equivalently, the 
corresponding GLS expression is:

where 
(

1′A−1
22 1

)

 is the sum of elements of A−1
22 , 

σ 2
mi

= 2piqi and 1′A−1
22 mi is a weighted sum of genotypes. 

mi = 1µi +Wui + e,

µ̂i =

(

1
′
A
−1
22

σ−2
mi

1

)

−1

1
′
A
−1
22

miσ
−2
mi

=

(

1
′
A
−1
22

1

)

−1

1
′
A
−1
22

mi ,
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Then, σ 2
µ is estimated as Var

(

µ̂
)

, because pi = µi/2, 
σ̂ 2
p = σ 2

µ/4, and it follows that γ̂ = 2σ̂ 2
µ.

Maximum likelihood If allele frequencies in the base 
population have a distribution, µi can be considered 
as drawn from a normal distribution, µ ∼ N

(

0, Iσ 2
µ

)

 . 
Thus σ 2

µ is a variance component that can be esti-
mated by maximum likelihood (ML). The equa-
tions for given values of σ 2

µ and σ 2
mi

= 2piqi are 
(

1′A−1
22 σ

−2
mi

1+ σ−2
µ

)

µ̂i = 1′A−1
22 σ

−2
mi

mi. An expectation–
maximization scheme [28] to obtain ML is as follows. 
Pick starting values for σ 2

µ and σ 2
mi

. Iterate until conver-
gence on:

1.  For each marker i,

(a)	 estimate µ̂i =

(

1′A−1
22 σ

−2
mi

1+ σ−2
µ

)

−1

1′A−1
22 σ

−2
mi

mi,

(b)	 store PEVi

(

µ̂i

)

=

(

σ−2
µ + 1′A−1

22 σ
−2
mi

1
)

−1

,

(c)	 update σ 2
mi

 as σ̂ 2
mi

= 2p̂iq̂i with p̂i = µ̂i/2;

2. � Update σ 2
µ as σ̂ 2

µ =
1
n

(

µ̂
′
µ̂+

∑

PEVi

(

µ̂i

))

, where the 
second part of the expression corresponds to the trace 
tr(IC), I, the identity matrix, is the relationship struc-
ture across levels of µ and C is the prediction error 
covariance matrix of µ̂. As only the diagonal elements 
of C are needed in tr(IC), its elements PEVi

(

µ̂i

)

 can be 
obtained separately from each single locus analysis.

At convergence, the estimate is γ̂ = 2σ̂ 2
µ. This gives the 

same estimate as the method based on a Wishart likeli-
hood function [11] with s = n/2 (results not shown).

Estimation in multiple populations
If t base populations are considered, the vari-
ance component σ 2

µ generalizes to �0, a t × t matrix 
of variances and covariances between means µ

[b]
i  

for marker i in population b. Across populations, 

�0 =







σ 2
µ[1]µ[1] σµ[1]µ[2] . . .

. . . σ 2
µ[2]µ[2] . . .

. . . . . . . . .






 and Ŵ̂ = 2�̂0.

Assuming no pedigree structure
Naïve If relationships across individuals are ignored:

where Q is a matrix, the rows of which sum to 1, and that 
assigns individuals to fractions of populations, and µi is a 
vector with t elements for the average of each population. 
For each locus, µi can be estimated using least squares 

mi = Qµi + ei,

and the covariance matrix of µi across loci gives an esti-
mate of �0, e.g. for two populations �̂0 = Cov

(

µ
[1],µ[2]

)

, 
a two-by-two matrix.

Considering pedigree structure
If there are no crosses between individuals from different 
populations in the pedigree, the estimation of allele fre-
quencies in each base population can be split in separate 
analyses by population b: mb

i = 1µ
[b]
i +Wbubi + e , with 

ubi ∼ N
(

0,Ab(2pi(1− pi))
)

 and Ab the matrix of pedi-
gree-based relationships among individuals in population 
b, and the analysis proceeds as in a single population. 
Then, �̂0 is estimated as the observed matrix of covari-
ances for µ̂b

i  across loci.
When there are crosses, there are two alternatives.

Generalized least squares (GLS)
The first alternative [27] is to use a genetic groups model 
[12, 13], as mi = Qµi +Wui + e, where Qk ,b contains 
the fraction of ancestry b in individual k. This ignores 
the fact that the variance of gene content, (2piqi), differs 
between breeds and crosses. The second, and more exact 
alternative, is to use the representation where the breed-
ing values are split into within- and across-breed compo-
nents [29]:

with partial relationship matrices for vectors ubi  and ub,b
′

i  . 
The BLUE’s of µi can be obtained and then �̂0 estimated 
as above.

Maximum likelihood (ML)
Analogously to the single population case, an expecta-
tion–maximization updated estimate can be obtained 
using multiple-trait formulations [28], where PEC is 
the prediction error variance–covariance, e.g. with two 
populations:

Our implementation of this approach is as follows:

1.	 For each marker i:

(a)	 estimate µ̂i =

(

�−1
0

+Q′A−1
22

σ−2
mi

Q
)

−1

Q′A−1
22

σ−2
mi

mi
,

(b)	 store PECi

(

µ̂i

)

=

(

�−1
0 +Q′A−1

22 σ
−2
mi

Q
)

−1

,

(c)	 update σ 2
mi

 as σ̂ 2
mi

= 2p̂∗i
(

1− p̂∗i
)

 with 

p̂∗i =
1
Nb

∑

b=1,Nb
µ̂b
i
2

;

mi = Qµi +

∑

b

Wbubi +
∑

b,b′,b>b′

Wb,b′u
b,b′

i + e,

�0 =

(

µ
[1]′

µ
[1]

µ
[1]′

µ
[2]

µ
[2]′

µ
[1]

µ
[2]′

µ
[2]

)

.
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2.	 Update �0 using cross-products within and across 
populations as, e.g., with two populations:

Step 1 includes an approximation in (1c) because we 
assume that σ 2

mi
= 2piqi is the same for all base popu-

lations, as in the GLS above, which could be further 
improved by using partial relationship matrices. This 
point will be addressed in future research.

Simulation
To assess the quality of genomic predictions using one 
metafounder, we simulated data using QMSim [30]. The 
simulation closely followed that in [5] to mimic a dairy 
cattle selection scheme scenario. A historical population 
undergoing mutation and drift was generated, followed 
by a recent population undergoing selection.

First, 100 generations of the historical population were 
generated with an effective population size of 100 during 
the first 95 generations, followed by a gradual expansion 
during the last five generations to an effective population 
size of 3000. Thirty chromosomes of 100 cM and 40,000 
segregating biallelic markers distributed at random along 
the chromosomes in the first generation of the histori-
cal population were simulated. The 40,000 markers were 
resampled from a larger set of 90,000 markers in order 
to obtain allelic frequencies from a beta(2,2) distribu-
tion, similar to dairy cattle marker data, so that param-
eter γ had a true value around 0.40. There were 1500 QTL 
affecting the phenotype; QTL allele effects were sampled 
from a Gamma distribution with a shape parameter of 
0.4. Mutation rate at the markers (recurrent mutation 
process) and QTL was assumed to be 2.5  ×  10−5 per 
locus per generation [31]. We used a higher mutation 
rate than typical (10−8, [32, 33]) to overcome the fact that 
QMSim is not a coalescent simulator. Phenotypes for a 
trait recorded only on females with a heritability of 0.30 
were simulated.

Then, 10 overlapping generations of selection followed. 
In each generation, 200 males were mated with 2600 
females to produce 2600 offspring by a positive assorta-
tive mating design based on EBV. Within the simulation, 
individuals were selected according to estimated breed-
ing value (EBV) based on pedigree BLUP. In each genera-
tion, 40% of males and 20% of females were replaced by 
selected younger individuals. No restrictions were set to 
avoid or minimize inbreeding, so highly inbred individu-
als were found, as a result of strong selection and matings 
among highly-related individuals. A total of 100 individu-
als had an inbreeding coefficient higher than 0.20 (mainly 

�̂0 =
1

n





�

µ̂
[1]′

µ̂
[1]

µ̂
[1]′

µ̂
[2]

µ̂
[2]′

µ̂
[1]

µ̂
[2]′

µ̂
[2]

�

+

�

i=1,n

PECi



.

found in the last generation), with some individuals hav-
ing inbreeding coefficients higher than 0.40. True breed-
ing values (TBV) and pedigree information were available 
for all 10 generations (28,800 individuals in the pedigree), 
phenotypes were available for all females except in the 
last generation (14,300 records). The 840 sires of females 
with phenotypic records were genotyped, as well as 2600 
individuals in generation 9 (with records) and 2600 in 
generation 10 (without records). A total of 20 independ-
ent replicates were made. A two-step analysis was carried 
out using the simulated data. First, we compared several 
methods to estimate γ. Then, we tested the quality of 
genomic predictions using four methods (see section on 
genomic prediction methods), one of which included one 
metafounder.

Methods to estimate γ
Parameter γ was estimated using four estimation meth-
ods. First, the naïve method that does not consider the 
pedigree structure. Pedigree information was included in 
three methods: GLS, ML, and the method of moments 
(MM) in [1]. For a single population, the last method 
involves estimation of γ based on summary statistics of 
A22 (regular pedigree-relationship matrix for genotyped 
individuals) and G (the genomic relationship matrix).

Genomic prediction methods
The EBV of the selection candidates in generation 10 
(genotyped and without phenotype records) were esti-
mated using four methods. The first was the pedigree-
based BLUP (PBLUP) based on phenotype and pedigree 
information. The second method was ssGBLUP, in which 
genomic information is also taken into account. We 
used the correction of [34] to equate genomic and pedi-
gree average inbreeding and relationships, the default 
method used in most practical applications [34, 35]. 
However, the implementation that we used does not 
include inbreeding in the setup of A−1 [36], although 
it does consider inbreeding in A−1

22  (see below for use 
of these matrices). The third method was ssGBLUP 
that includes inbreeding in the setup of A−1 and of A−1

22  
(ssGBLUP_F). The fourth method was ssGBLUP with 
the metafounder (ssGBLUP_M), using γ estimated by 
GLS since it turned out to be an accurate method to 
estimate Ŵ (see the Results section). The four methods 
used the following inverse relationship matrices: PBLUP: 

A−1; ssGBLUP: H−1
= A−1

+

(

0 0

0 G−1
a − A−1

22

)

 

where Ga is as in [34] and A−1 is constructed ignor-
ing inbreeding [36]; ssGBLUP_F: same as ssGB-
LUP, with A−1 correctly constructed; ssGBLUP_M: 

H(γ )−1
= A(γ )−1

+

(

0 0

0 G−1
− A

(γ )−1
22

)

 where 
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G = (M − J)(M − J)′/s with s = n/2 (see the "Methods" 
section) and A(γ ) is as in [1]. More details are given in 
“Appendix”. For computation, we used blupf90 [37]. In 
the case of ssGBLUP_M, we constructed H(γ )−1 with own 
software and then used the option user_file in blupf90 
(http://nce.ads.uga.edu/wiki/doku.php).

Quality of genomic prediction
Prediction quality was evaluated for all 2600 selection 
candidates in generation 10. The accuracy of the meth-
ods was measured as the Pearson correlation between 
TBV and EBV. Bias was calculated as the difference 
between the average TBV and average EBV with respect 
to the base population (i.e. to the solution of the meta-
founder for ssGBLUP_M or to 0 for the other meth-
ods). Thus, bias is related to estimated genetic progress 
in the selection candidates. The inflation (often also 
called bias) of the prediction method was quantified by 
the coefficient of regression of TBV on EBV. These two 
statistics correspond to the coefficients b0 and b1 in the 
Interbull validation method [38], which uses the regres-
sion TBV = b0 + b1EBV + e. The mean square error 
(MSE) of prediction of EBV was calculated as the mean of 
the squared difference between TBV and EBV. An ideal 
method should have maximum accuracy, minimum MSE, 
zero bias, and a regression coefficient of 1. These are not 
only elegant statistical properties but also have relevance 
in livestock selection [39–41]. Changes in ranking of the 
selection candidates were also assessed by calculating the 
Spearman’s rank correlation coefficients between EBV 
across methods.

In addition, the quality of variance component estima-
tion was assessed by comparing estimated and simulated 
heritabilities. For this purpose, variance components 
were estimated by REML with remlf90 [37] based on 
the four methods (PBLUP, ssGBLUP, ssGBLUP_F, 
ssGBLUP_M).

Results
Estimation of γ
Figure  1 shows boxplots of the differences between the 
estimates of γ based on the four methods (MM, Naïve, 
ML and GLS) and the true values obtained by simula-
tion, for each of the 20 replicates. The simulations were 
tailored to produce γ = 0.40. Methods ML and GLS 
estimated γ very accurately. Method MM clearly under-
estimated γ, whereas the Naïve method overestimated it. 
Based on these results, we used γ estimated by GLS for 
ssGBLUP_M for prediction. The effect of employing dif-
ferent values of γ in genomic prediction was assessed to 
quantify its impact on predictions. Using estimates of γ 
based on MM only slightly changed results. For example, 

the accuracies and slopes of ssGBLUP_M were not 
affected up to the 4th digit (not shown).

Quality of genomic prediction
Correlations between TBV and EBV of candidates in 
generation 10 for each prediction methods are in Table 1 
and Fig.  2a. Compared with PBLUP, ssGBLUP_F and 
ssGBLUP_M increased accuracy by approximately 23 
absolute points. This shows an important improvement 
by including marker information in the prediction and 
the possibility of generating a small extra gain when also 
including the metafounder. Method ssGBLUP resulted 
in a small loss of accuracy compared to ssGBLUP_F and 
ssGBLUP_M.

Table  1 and Fig.  2b display the regression coefficient 
of TBV on EBV, which measures the degree of infla-
tion for each prediction method and should be close to 
1. PBLUP and ssGBLUP_F produced values closest to 1. 
Including genomic data in the prediction based on ssGB-
LUP resulted in regression coefficients lower than 1, but 
including the metafounder in ssGBLUP_M gave values 
closer to 1. Methods ssGBLUP_M and ssGBLUP_F dis-
played a lower standard deviation compared to the other 
two methods. Again, method ssGBLUP showed the high-
est variability.

Biases of EBV obtained with each prediction method 
are in Table 1 and Fig. 2c. Both PBLUP and ssGBLUP_M 
were unbiased, whereas ssGBLUP and ssGBLUP_F 
were biased. The bias was higher for ssGBLUP than for 
ssGBLUP_F, which was largely due to a single outlier; 
the median bias was roughly the same for ssGBLUP and 
ssGBLUP_F. The bias with ssGBLUP_F was equivalent to 
roughly 0.5 generations of genetic improvement or 0.4 
standard genetic deviations. Finally, ssGBLUP_M had 
the lowest MSE (closer to zero), followed by ssGBLUP_F 
(Table 1).

Ranking of EBV
The methods were also compared based on rank corre-
lations of EBV with TBV and between methods. A rank 
correlation of 1 implies that the same candidates would 
be selected. Results are in Table 2. Rank correlations with 
TBV were similar to the Pearson correlations in Table 1. 
Selection decisions differed only slightly when using 
ssGBLUP, ssGBLUP_F or ssGBLUP_M. Note, however, 
that this table reports rank correlations among young 
selection candidates in the last generation and does not 
address comparisons across generations (e.g. old vs. 
young animals), which is sensitive to the biases that are 
reflected in Table 1 [41]. For instance, all young animals 
would be overestimated by 0.11 with ssGBLUP_F, which 
results in these young animals looking better than proven 

http://nce.ads.uga.edu/wiki/doku.php
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sires, which had an accuracy of essentially 1 and no bias. 
Depending on the selection scheme, this may lead to less 
than optimal selection decisions.

Estimation of variance components
Figure  3 shows estimates of heritability obtained with 
three of the four methods (PBLUP, ssGBLUP_F and 
ssGBLUP_M). The estimates obtained using ssGBLUP 

did not converge for six of the 20 simulation replicates. 
Convergence was achieved in those cases by weighting 
the submatrix A−1

22  in H−1 by ω = 0.7 instead of 1 [42] but 
poor quality estimates were obtained and are, therefore, 
not reported.

Estimates were generally lower than the simulated true 
heritability (0.30). The lowest estimates were obtained 
with ssGBLUP_F. Including the metafounder improved 
estimates compared to ssGBLUP_F and reduced variabil-
ity of estimates compared to PBLUP.

Discussion
In this work, we have addressed the complex issue of con-
ciliation of marker and pedigree information in genetic 
evaluation. Powell et  al. [43] argued that both IBS (at 
the markers) and identity-by-descent (IBD) are compat-
ible notions because they are both measures of identity 
at causal genes. However, incompatibility appears when 
mixing both types of relationships [5, 34, 44, 45]. Legarra 
[7] suggested that, in order to compare genetic vari-
ance across IBD, IBS or other measures of relationships, 

Fig. 1  Differences between estimated and true Gamma, across 20 simulation replicates. Gamma was estimated by generalized least squares (GLS), 
maximum likelihood (ML), method of moments (MM) and the Naive method

Table 1  Accuracy (correlation between  TBV and  EBV), 
inflation (regression coefficient of TBV on EBV), bias [aver-
age (EBV–TBV)] and mean square error (MSE) for each pre-
diction methods

Averages across 20 replicates with standard deviations in parenthesis

Prediction 
method

Accuracy Inflation Bias MSE

PBLUP 0.51 (0.05) 0.98 (0.06) −0.0003 (0.03) 0.206 (0.01)

ssGBLUP 0.72 (0.03) 0.89 (0.19) 0.2169 (0.04) 0.159 (0.03)

ssGBLUP_F 0.74 (0.02) 0.99 (0.04) 0.1167 (0.04) 0.141 (0.01)

ssGBLUP_M 0.74 (0.02) 0.94 (0.04) 0.0094 (0.03) 0.125 (0.01)
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a common reference must be chosen. Similar (but not 
identical) to [43], in this work we used a fixed reference 
(G constructed as a cross-product of {−1,0,1} genotypic 
codes) and tailored A (IBD, pedigree) to fit G (IBS, mark-
ers). Compared to previous approaches, using a fixed 
reference has the advantage that genomic relationships 
are immutable (i.e. adding more genotyped individuals 
to the database does not change the existing relation-
ships) and they do not depend on pedigree depth, which 
by construction is always limited and, in animal breed-
ing, often heterogeneous. Our approach is in fact very 
similar to using IBS as measure of identity. We used a 
genomic relationship matrix G = 2(M − J)(M − J)′/n , 
whereas the matrix of IBS is GIBS = G/2+ 11′ (see proof 
in “Appendix”). In GBLUP with associated variance 
component estimation, when all animals are genotyped, 
using a model with GIBS or the G matrix proposed here 

yields identical EBV, as the term ½ in G/2 gets absorbed 
into the variance component and the constant 11′ gets 
absorbed into the fixed part of the linear mixed model [7, 
46]. However, matrix G rather than GIBS must be used in 
ssGBLUP_M because GIBS is not compatible with pedi-
gree relationships. In [4], the (fixed effect) intercept term 
µg models, identical to [5], the difference between genetic 
values of individuals in the base and genotyped individu-
als. These intercept terms play therefore a similar role as 
metafounders.

Easy estimation of ancestral relationships
Derivations in the Theory section show that estimation of 
ancestral relationships based on γ (one base population) 
and Ŵ (several base populations) can be framed within 
the classic linear model approach of quantitative genet-
ics [19], which has recently been used for gene content 
[14, 25–27]. This approach is easy to understand and 
compute. Also, Ŵ can be understood, just like heritability, 
as an unobserved base population parameter that does 
not change with additional data (although its estimate 
may change). Therefore, an accurate estimate of Ŵ can be 
used repeatedly without the need for re-estimation, as is 
customary in livestock genetic evaluation. This contrasts 
with “centering” of marker covariates, which changes 
with every new genotype. If all base allele frequencies 
were known exactly, then there should be no need to use 
metafounders, as relationship matrices can be appropri-
ately constructed [14].

Fig. 2  a Correlation of TBV with EVB for each prediction method (accuracy). b Regression slope of TBV on EBV (overdispersion). c Bias [average 
(EBV–TBV)]

Table 2  Spearman correlations among  TBV and  the four 
EBV for each prediction methods

Averages across 20 replicates with standard deviations in parenthesis

EBV PBLUP EBV ssGB-
LUP

EBV 
ssGBLUP_F

EBV 
ssGBLUP_M

TBV 0.49 (0.06) 0.71 (0.02) 0.72 (0.03) 0.73 (0.02)

EBV PBLUP 0.56 (0.05) 0.62 (0.04) 0.64 (0.04)

EBV ssGBLUP 0.99 (0.01) 0.98 (0.01)

EBV 
ssGBLUP_F

0.99 (0.002)
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In the work presented here, the simplest methods 
(Naïve and method of moments) yielded biased (upwards 
and downwards, respectively) estimates of γ; the naïve 
method because it ignores that allele frequencies tend to 
drift to their extreme values as generations progress, and 
the method of moments because it implicitly assumes 
that genotyped individuals are a random sample from a 
particular generation.

Equivalence of ancestral relationships with second 
moments of allele frequencies also shows a strong rela-
tion with population genetics theory, which will be 
detailed in the next paragraph.

Relationship between metafounders parameter γ and Fst 
fixation index
The fixation index Fst [17] is a measure of diversity of a 
set of populations with respect to a reference population, 
usually the pool of all populations. In this approach, each 
population is assumed to be a random sample from all 
possible populations that could be sampled according to 

the evolutionary process described by Fst. Conceptually, 
Fst is a parameter to be estimated [18, 19], and it is not a 
statistic computed from the data. The usual definition of 
Fst for a particular biallelic locus is:

where σ 2
p  is the variance of allelic frequencies across pop-

ulations and p̄ is the allele frequency of the conceptual 
combined population. If we consider that the variance of 
allele frequencies applies across loci and not across popu-
lations, it follows that p̄ = 0.5 because reference alleles 
are taken at random. In this case:

Our interpretation of this link between Fst and γ is as 
follows. Jacquard [47] called γ

2
 the “inbreeding coefficient 

Fst =
σ 2
p

p̄(1− p̄)
,

Fst =
σ 2
p

p̄(1− p̄)
=

σ 2
p

0.52
= 4σ 2

p =
γ

2
.

Fig. 3  Estimated heritability for PBLUP, SSGBLUP_F and SSGBLUP_M considering the 20 replicates. The dotted line shows the simulated heritability of 
0.30
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of a population”. Cockerham [16] modelled γ
2
= θl = Fst 

as an intraclass correlation, “the coancestry of the line 
with itself”, in other words, the probability that two gam-
etes taken at random from the population are identical. 
Thus, it makes perfect sense to consider that the addi-
tive relationship (which is twice the coancestry value) of 
a group with itself is γ = 2θl = 8σ 2

p . This is the interpre-
tation of the γ

2
 coefficient in Legarra et al. [1]. Note that 

the assumption that p̄ = 0.5 is automatically fulfilled if 
reference alleles are chosen at random across loci (i.e., 
they are neither the most frequent nor the least observed 
allele).

Alternatively, [1] showed that for a population with 
self-relationships equal to γ, the average heterozygosity 
is 1− γ

2
, i.e. the variance is reduced by an amount equal 

to γ
2
 from the conceptual population with heterozygosity 

1. Thus γ
2
 can be interpreted as Fst if the Fst is taken as a 

measure of homozygosity.

Consequences of using metafounders in genomic 
evaluation
Genomic estimates of breeding values are invariant to 
allele coding [46] when all individuals are genotyped. 
However, this is not the case when pedigree and marker 
informations are combined, as in ssGBLUP. In this work, 
we have shown that, even in the presence of complete 
pedigree and a single base population, use of metafound-
ers in ssGBLUP_M leads to slightly more inflated and less 
biased EBV, lower MSE, and nearly unbiased estimates 
of heritability compared to ssGBLUP_F. Bias, defined as 
E(EBV–TBV), is typically overlooked in genomic predic-
tion, but in an example of biased evaluation, Henderson 
[48] recognized that “sires of later generations appeared 
to be under-evaluated relative to older sires”. Overdisper-
sion, also called bias in recent literature (e.g. [38]), may 
also have a dramatic impact in practice [39–41] and the 
trade-off between bias and variance needs further study. 
For instance, Vitezica et  al. [5] found that ssGBLUP_F 
was unbiased but had some overdispersion, which likely 
depends on the data structure, including which individu-
als are genotyped.

In addition, use of metafounders allows a clear defini-
tion of genomic relationships because relationships do 
not depend on pedigree depth or completeness or on 
changes in allele frequencies as new data is added. In 
addition, a high-dimensional parameter (i.e. base allele 
frequencies) is substituted by a low-dimensional one 
(matrix Ŵ).

The poor performance of ssGBLUP compared to 
ssGBLUP_F is likely due to the presence of highly inbred 
individuals because ssGBLUP ignored inbreeding in 
the setup of A−1. This relates to the interpretation of 

parameter ω, as used in early studies of ssGBLUP [42]. 
An application of ssGBLUP for type traits in Holstein 
[42] experienced convergence problems, which were 
eliminated when A−1

22  was multiplied by ω = 0.7 and 
which increased accuracy of predictions. However, the 
nature of parameter ω was not known [49]. In those stud-
ies, the inverse of the numerator relationship matrix A−1 
was constructed using Henderson’s rules while ignor-
ing inbreeding [36], while the submatrix A−1

22  included 
inbreeding. As a result, the elements in the latter matrix 
were too large. In addition, genotyped animals were on 
average unrelated in G but not in A22, which can be cor-
rected by scaling G, as in [5]. However, this resulted in 
the elements in A−1

22  to be too large for younger animals 
relative to G. Both these problems are partially circum-
vented by putting a weight ω < 1 on A−1

22 . When A−1 was 
constructed while considering inbreeding, the optimal 
value of ω in an analysis of Holstein dairy cattle increased 
from 0.7 to 0.9 (Masuda, personal communication, 2016). 
However, the metafounder approach provides a more 
principled solution to this problem. Also, following these 
experiences, A−1 should always be constructed while 
considering inbreeding to avoid infrequent but patholog-
ical problems.

Conclusions
Metafounders have relationships that are closely related 
to Fst fixation indices and proportional to covariances 
of allele frequencies in base populations. Use of meta-
founders can be simplified by new methods to estimate 
the covariance of base allele frequencies. We verified by 
simulation of a selected population that, in a single popu-
lation, both GLS and ML are unbiased and computation-
ally efficient. In the same simulation, use of metafounders 
in ssGBLUP led to more accurate and less biased evalu-
ations, and also to more accurate estimates of genetic 
parameters. We propose a genomic relationship matrix 
that refers to a population with ideal base allele frequen-
cies equal to 0.5. This matrix is similar to an IBS relation-
ship matrix (up to scale factors), does not change with 
new data, and is compatible with pedigree data if meta-
founders are used. In the simulated data, pedigrees were 
perfectly known. Future work with real datasets in more 
complex settings—purebreds and their crosses [50, 51], 
and selected populations with unknown parent groups 
[13] will investigate the feasibility and accuracy, in prac-
tice, of using metafounders in ssGBLUP.
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Appendix
The appendix contains examples, details and algebraic 
developments that were not detailed in the main text.

Example of relationship matrix with one metafounder
Consider the pedigree:

where 1 is a metafounder with γ = a1,1 = 0.2. Using 
the tabular method [15], a2,2 = 1+ a1,1/2 = 1.1 and 
a1,2 = 0.5

(

a1,sire(2) + a1,dam(2)

)

= 0.5
(

a1,1 + a1,1
)

= 0.2. 
Proceeding with the tabular method, A(γ ) is:

with inverse A(γ )−1, that can be obtained by inverting γ 
and using Henderson’s rules [1, 16]:

1 0 0

2 1 1

3 1 1

4 2 3

5 2 4

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 1.1000 0.2000 0.6500 0.8750

0.2000 0.2000 1.1000 0.6500 0.4250

0.2000 0.6500 0.6500 1.1000 0.8750

0.2000 0.8750 0.4250 0.8750 1.3250

7.2222 −1.1111 −1.1111 0.0000 0.0000

−1.1111 2.2222 0.5556 −0.5556 −1.1111

−1.1111 0.5556 1.6667 −1.1111 0.0000

0.0000 −0.5556 −1.1111 2.7778 −1.1111

0.0000 −1.1111 0.0000 −1.1111 2.2222

These compare with regular A that can be obtained by 
setting γ = 0. In this case, individual 1 is an unknown 
parent group and its “relationships” have been set to 0 for 
presentation:

and the inverse relationship matrix including the 
unknown parent group [13] is A−1:

Analytical derivation of γ and s
For a particular population, the genetic variance–covari-
ance structure is a function of two parameters η1 and η2
: γ =

4η1
2η1+η2

 and s = n(2η1 + η2) (n being the number of 
markers) which depend on the allelic frequencies Appen-
dix A in [11]. With pj being the allelic frequencies across 
the j = 1 . . . n loci, these parameters do not depend on j 
and are equal to:

with q = 1− p.
 Now, we use the following developments.

Since we have Var(p) = E
(

p2
)

− E(p)2, we obtain 
E
(

p2
)

= Var(p)+ E(p)2. We also have E(q) = 1− E(p). 
Substituting E

(

p2
)

 in Eq. (1) gives:

If markers are biallelic and labeled at random 
E(p) = E(q) = 0.5. So the equation above gives 
E(pq) = 0.25− Var(p). From this we obtain:

and therefore

or, in other words, s is half the number of markers. 
Furthermore,

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.5000 0.7500

0.0000 0.0000 1.0000 0.5000 0.2500

0.0000 0.5000 0.5000 1.0000 0.7500

0.0000 0.7500 0.2500 0.7500 1.2500

2.0000 −1.0000 −1.0000 0.0000 0.0000

−1.0000 2.0000 0.5000 −0.5000 −1.0000

−1.0000 0.5000 1.5000 −1.0000 0.0000

0.0000 −0.5000 −1.0000 2.5000 −1.0000

0.0000 −1.0000 0.0000 −1.0000 2.0000

η1 = Var
(

pj
)

,

η2 = E
(

2pjqj
)

,

(1)E(pq) = E(p(1− p)) = E(p)− E
(

p2
)

.

E(pq) = E(p)− Var(p)− E(p)2

= E(p)(1− E(p))− Var(p) = E(p)E(q)− Var(p).

2η1 + η2 = 2Var
(

pj
)

+ 0.5− 2Var
(

pj
)

= 0.5,

(2)s = n(2η1 + η2) =
n

2
,

https://github.com/alegarra/metafounders
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so that γ for a single population is eight times the vari-
ance of allelic frequencies at the base population.

Equivalences of genomic relationship matrices
The matrix G described in [11] and in this paper can be 
written as:

where M contains genotypes coded as {0,1,2} and J is a 
matrix of 1s. The purpose of this paragraph is to show the 
linear relationship of this matrix with a matrix describing 
IBS coefficients, in fact GIBS =

1
2
G+ 11′. The terms in 

GIBS are usually described in terms of identities or count-
ings (i.e. [9, 10, 52]):

where Ikl measures the identity (with value 1 or 0) of 
allele k in individual i with allele l in individual j, and 
single-locus identity measures are averaged across k loci.
There is an algebraic expression for this “counting”. Toro 
et al. [10] in their Eq. (1) show that, for biallelic markers, 
for a locus k (omitted in the notation for clarity):

for coancestry (half relationship) fMij of individuals i 
and j, where m/2 is the “gene frequency” of the individ-
ual (half the gene content (m), i.e. {0,1/2,1} for the three 
genotypes).

In order to prove GIBS =
1
2
G+ 11′, first we translate 

the equation in [10] to the more familiar scale of relation-
ships gIBSij = 2fMij and gene contents m. Thus:

This expression can be easily verified in a table with the 
nine possible genotypes:

AA Aa aa

AA 2 1 0

Aa 1 1 1

aa 0 1 2

Also,

(3)γ =
4η1

2η1 + η2
=

4η1

0.5
= 8Var

(

pj
)

= 8σ 2
p ,

G =
2

n
(M − J)(M − J)′,

GIBSij =
1

n

n
∑

m=1

2

∑2
k=1

∑2
l=1 Ikl

4
,

(4)fMij =
mi

2

mj

2
+

(

1−
mi

2

)(

1−
mj

2

)

,

gIBSij = 2fMij = 2

(

mi

2

mj

2
+

(

2

2
−

mi

2

)(

2

2
−

mj

2

))

gIBSij = mimj −mi −mj + 2.

gIBSij = mimj −mi −mj + 2 = (mi − 1)
(

mj − 1
)

+ 1,

which extends to all individuals and averaged across loci 
can be written as:

Thus, matrix GIBS =
1
n (M − J)(M − J)′ + 11′ 

and because G =
2
n (M − J)(M − J)′ it follows that 

GIBS =
1
2
G+ 11′. The equivalence can also be verified 

by noting that, for all nine genotypes, the cross-product 
(mi − 1)

(

mj − 1
)

 in the following table is identical to 
gIBSij − 1 in the previous table.

AA Aa aa

AA 1 0 −1

Aa 0 0 0

Aa −1 0 1

Computation of the different H matrices
For ssGBLUP and ssGBLUP_F, matrix H−1 is constructed 
as follows [2, 3]:

with G∗

a = 0.95Ga + 0.05A22 = 0.95(a+ bG)+ 0.05A22 
and G =

(M−P)(M−P)
2
∑

piqi
 as in [8], M contains genotypes 

coded as {0,1,2} and P contains twice allelic frequencies 

pi. These are computed from the observed genotypes so 
that 2pi is equal to the mean of the i-th column of M. 
Constants a and b are such that the full-matrix and diag-
onal averages of Ga and A22 are the same [34] in order 
to make the two matrices compatible. The use of the 
weights 0.95 and 0.05 is in order to make Ga invertible. 
Matrix A−1 should be constructed using contributions 
with values described in the table below (i.e. [53]):

No parent known 1

One parent known (

0.75−
Fknown

4

)

−1

Two parents known (

0.5−
Fsire
4

−
Fdam
4

)

−1

Or, in a more compact way 
(

0.5−
Fsire
4

−
Fdam
4

)

−1

 with 
Funknown = −1.

ssGBLUP uses the defaults in blupf90 suite of programs 
(random_type add_animal). ssGBLUP uses the simple 
method to create A−1, a method which pretends that, in 
all cases, inbreeding in expressions above is F = 0.

ssGBLUP_F uses H−1 as above but constructs A−1 cor-
rectly (blupf90 random_type add_an_upginb), using the 
rules above.

GIBS =
1

n
(M − J)(M − J)′ + 11′.

H−1
= A−1

+

(

0 0

0 G∗−1
a − A−1

22

)

,
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ssGBLUP_M uses the blupf90 random_type user_file 
to consider the following relationship matrix, which was 
constructed externally:

with G∗
= 0.95G+ 0.05A

(Γ )
22  (basically to make G invert-

ible), G =
1
s (M − J)(M − J)′ and s = n/2, M contains 

genotypes coded as {0,1,2}, n is the number of markers, 
A(Γ )−1 and A(Γ )−1

22  are constructed with own programs 
as in [1] using the estimated value of Ŵ. Inbreeding is 
fully considered in both matrices A(Γ )−1 and A(Γ )−1

22 . The 
constant k = 1−

γ
2
 puts the genetic variance associated 

to metafounders (i.e. to “related” founders) on the same 
scale as regular “unrelated” founders in A or H [1].
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