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| GENOMIC SELECTION

The Dimensionality of Genomic Information and Its
Effect on Genomic Prediction

Ivan Pocrnic,*,1 Daniela A. L. Lourenco,* Yutaka Masuda,* Andres Legarra,† and Ignacy Misztal*
*Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, and †Institut National de la Recherche

Agronomique, Génétique, Physiologie et Systèmes d’Elevage, F-31326 Castanet-Tolosan, France

ABSTRACT The genomic relationship matrix (GRM) can be inverted by the algorithm for proven and young (APY) based on recursion
on a random subset of animals. While a regular inverse has a cubic cost, the cost of the APY inverse can be close to linear. Theory for
the APY assumes that the optimal size of the subset (maximizing accuracy of genomic predictions) is due to a limited dimensionality of
the GRM, which is a function of the effective population size (Ne). The objective of this study was to evaluate these assumptions by
simulation. Six populations were simulated with approximate effective population size (Ne) from 20 to 200. Each population consisted
of 10 nonoverlapping generations, with 25,000 animals per generation and phenotypes available for generations 1–9. The last 3
generations were fully genotyped assuming genome length L = 30. The GRM was constructed for each population and analyzed for
distribution of eigenvalues. Genomic estimated breeding values (GEBV) were computed by single-step GBLUP, using either a direct or
an APY inverse of GRM. The sizes of the subset in APY were set to the number of the largest eigenvalues explaining x% of variation
(EIGx, x = 90, 95, 98, 99) in GRM. Accuracies of GEBV for the last generation with the APY inverse peaked at EIG98 and were slightly
lower with EIG95, EIG99, or the direct inverse. Most information in the GRM is contained in �NeL largest eigenvalues, with no
information beyond 4NeL. Genomic predictions with the APY inverse of the GRM are more accurate than by the regular inverse.

KEYWORDS GenPred; shared data resource; genomic selection; genomic relationship matrix; inversion; recursion; effective population size; single-step GBLUP

WHENSNP information is available, genomicpredictions
most commonly use SNP-BLUP (and derivatives) or

genomic BLUP (GBLUP)models (Meuwissen et al. 2001; Van-
Raden 2008). In the first model SNP effects are fitted directly,
and the second model uses SNPs indirectly via a genomic
relationship matrix. While both models are equivalent theo-
retically, analyses with complex models (multiple traits, sev-
eral genetic effects, genotype-by-environment interactions)
are simpler with GBLUP. For populations where only a small
fraction of phenotyped animals are genotyped, there is a
modification of GBLUP called single-step GBLUP (ssGBLUP)
based on combining genomic and pedigree relationships
(Aguilar et al. 2010; Christensen and Lund 2010). The
ssGBLUP is becoming popular for commercial genetic evalu-
ations because of simplicity of use, as existing models can be

reused, and high accuracy due to joint modeling of pheno-
types, pedigrees, and genotypes (Legarra et al. 2014).

GBLUP-based methods require an inverse of the genomic
relationship matrix (GRM). A direct inverse has a cubic cost
and can be computed efficiently for perhaps up to 150,000
individuals. Due to the popularity of commercial genotyping,
some populations have .1 million genotyped animals (e.g.,
U.S. Holstein cattle), and computing an inverse would be
prohibitively expensive. Additionally, the GRM is not positive
definite for larger dimensions and additional steps (e.g.,
blending with a pedigree-based relationship matrix) are re-
quired to make the GRM positive definite (VanRaden 2008).

Misztal et al. (2014) postulated that the inverse can be
computed efficiently using recursion on a small subset of
animals (initially labeled as high-accuracy or “proven” in ear-
lier studies) and named the method the algorithm for proven
and young (APY). In this article, we refer to the inverse cal-
culated with this algorithm as the APY inverse and to animals
in the subset as core animals. While computing costs of APY
are cubic for the subset, they are only linear for animals out-
side the subset. Fragomeni et al. (2015) analyzed Holstein
data with 100,000 genotyped animals and found that any
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subset of animals containing at least 10,000 animals resulted
in an accurate inverse. The optimal subset size was estimated
as slightly .8000 for Angus cattle (Lourenco et al. 2015b).
The APY inverse was successfully computed for �570,000
genotyped Holsteins in ,2 hr of computing time on an aver-
age server (Masuda et al. 2016).More than 10,000 animals in
the recursion did not improve genetic predictions. A regular
inverse for 570,000 individuals would require weeks of com-
puting and require memory available only in the largest com-
puting clusters.

Misztal (2016) proposed a theory for the APY inverse.
Assume that the additive information in a population is con-
tained in a limited number (say, n) of independent chromo-
some segments (Me) or effective SNPmarkers (ESM). IfMe or
ESM completely explain the additive variation, breeding val-
ues of n animals are linear functions of Me or ESM and con-
tain nearly all the information included in Me or ESM.
Treating any subset of n animals as core animals, a recursion
on any n animals is sufficient, because there is a high redun-
dancy in genomic information. Whereas the number of Me is
a function of effective population size, the number of ESM
could be computed as the number of eigenvalues explaining
nearly all the variation in G. Assuming that Me and ESM de-
scribe the same concept, the optimal subset size must be a
function of effective population size (Ne) and can be derived
from eigenvalue analysis of the GRM.

The purpose of this article was to test the theory of the APY
with simulated data. In particular, wewanted to findwhether
(1) the optimal size of the recursion is related to effective
population size, (2) the optimal size can be derived from
eigenvalue analysis of the GRM, and (3) genetic predictions
obtained with APY G21 are superior to those with a regular
inverse.

Materials and Methods

Data simulation

Data for this study were simulated using the QMSim software
(Sargolzaei and Schenkel 2009). The historical population
consisted of 1000 generations with a gradual increase in size
from 1000 to 100,000 breeding individuals, with equal sex
ratio, nonoverlapping generations, random mating, no selec-
tion, and no migration to create initial linkage disequilibrium
(LD) and establish mutation–drift balance in the population.
Six populations with different effective population size were
created by selecting different numbers of breeding animals
from the last generation of the historical population.Whereas
the number of breeding females per generation was kept
constant at 12,500, the number of males varied from 5 to
50 (5, 10, 20, 30, 40, and 50), aiming for approximate effec-
tive population sizes from 20 to 200 (data sets P20, P40, P80,
P120, P160, and P200). In each generation randomly se-
lected male offspring were used as sires for the next genera-
tion, while all the females were used as dams for the next
generation. Ten recent generations were simulated for each

population by random mating and with litter size of 2. All
75,000 individuals in generations 8–10 had genotypic infor-
mation available. The simulated genome was assumed to
have 30 chromosomes of equal length of 100 cM each, with
49,980 evenly allocated biallelic SNP markers and equal al-
lele frequencies in the first generation of the historical pop-
ulation. A total of 4980 biallelic and randomly distributed
QTL affected the trait, with allelic effects sampled from a
gamma distribution with a shape parameter of 0.4. The re-
current mutation rate of the markers and QTL was assumed
to be 2.5 3 1025 per locus per generation (Solberg et al.
2008). Phenotypes were simulated with an overall mean as
the only fixed effect and assuming heritability of 0.3. All
animals in the recent generations had phenotypes available,
except for animals in the last generation. The simulation was
replicated five times.

Matrices and models

The raw genomic relationship matrix was constructed as in
VanRaden (2008),

G0 ¼ ZZ9
2Spjð12 pjÞ;

where Z is the centered matrix of gene content adjusted for
gene frequencies, and pj is the gene frequency for SNP j. The
observed allele frequencies were used and calculated from
the genotyped animals. The eigenvalues of this matrix were
computed using subroutine DSYEV in LAPACK. Because G0

was not full rank, estimation of breeding values was based on
the inverse of a blended G defined as

G ¼ 0:95G0 þ 0:05A22

(VanRaden 2008), where A22 is a pedigree-based numerator
relationship matrix for genotyped animals. In preliminary
tests, the blending had very little impact on realized accura-
cies (Aguilar et al. 2010).

The APY for inversion of G is based on a recursion on a
subset of animals (Misztal et al. 2014; Misztal 2016). Split
animals arbitrarily into core (c) and noncore (n) such that the
number of core animals is close to the dimensionality of G or
the number of effective SNPs. Also denote

G ¼
�
Gcc Gcn
Gnc Gnn

�
:

Assume that the breeding values (BV) u for noncore animals
are linear functions of those for core animals,

un ¼ Pncuc þFn;

where Pnc is a matrix relating BV of noncore to core animals
and Fn is the error term. Then

�
uc
un

�
¼

�
I 0
Pnc I

��
uc
Fn

�
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and

varðuÞ ¼ GAPY ¼
�

I 0
Pnc I

��
Gcc 0
0 Mnn

��
I Pcn
0 I

�
;

where Mnn ¼ varðFnÞ: Subsequently,

G21
APY ¼

�
I 2Pcn
0 I

��
G21
cc 0
0 M21

nn

��
I 0

2Pcn I

�
:

Using conditional distributions, Pnc ¼ GncG21
cc ;

Mnn ¼ diagfmnn;ig ¼ diagfgii 2 gicG
21
cc gcig; and the final for-

mula is as originally defined in Misztal et al. (2014):

G21
APY ¼

�
G21
cc 0
0 0

�
þ
�
2G21

cc Gcn
I

�
M21

nn
�
2GncG21

cc I
�
:

In this algorithm, the direct inversion is only for Gcc and
computing Gnn is not needed.

Phenotypes were analyzed using the ssGBLUP model

y ¼ 1mþ Suþ e;

in which y is the observation vector for the first nine of the
recent generations, m is an overall mean, u is the vector of
additive animal effects, S is the incidence matrix relating
observations in y to additive genetic effects in u, and e is
the vector of random residuals. We assumed that the vari-
ances were

varðuÞ ¼ 0:3H and varðeÞ ¼ 0:7I;

where H is a matrix combining pedigree and genomic rela-
tionships, with its inverse as in Aguilar et al. (2010); i.e.,

H21 ¼ A21 þ
�
0 0
0 G21 2A21

22

�
;

where A21 is the inverse of a numerator relationship matrix
for all animals included in the analysis. The partition in
blocks refers to animals with/without genotypes.

Computations

Effective population size was calculated using two formulas.
Theoretical effective population size ðNeTÞ was calculated us-
ing the formula

NeT ¼
4NmNf

Nm þ Nf

(Wright 1931), whereNm andNf are the numbers of breeding
males and females per generation, respectively. Inbreeding
(or realized) effective population size ðNeFÞ was calculated
from the realized increase in inbreeding by generation, using
the formula by Falconer and Mackay (1996),

NeF ¼
1

2DF
;

where

DF ¼ Fn 2 Fn21

12 Fn21

Figure 1 Theoretical and realized effective population
size (Ne) as a function of breeding males per genera-
tion when the number of breeding females was
12,500 per generation.
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and Fn is the average inbreeding in the nth generation. The
observed average inbreeding coefficients per generation were
obtained fromQMSim software (Sargolzaei and Schenkel 2009).

Genomic estimated breeding values (GEBV) were calcu-
lated using either an explicit inverse of G or the APY inverse.
Core animals in the APY were selected randomly and their
number corresponded to the number of the largest eigen-
values in G0 that explained 90% (EIG90), 95% (EIG95),
98% (EIG98), and 99% (EIG99) of the retained variance.
Validation accuracies were computed only for animals in
the 10th generation (without phenotypes) and defined as
correlations between simulated breeding values and GEBV
computed with either the regular inversion (GEBVREG) or
the APY (GEBVAPY) and a different number of core animals.
All computations were applied to each of the six data sets.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results and Discussion

Figure 1 shows NeT and NeF with the different number of breed-
ing males per generation. Both NeT and NeF were very similar
and increased with the number of breeding males, from 20
and 19.3 to 199.2 and 188.1 for P20 and P200, respectively. If
we take into account family size and variation in family size

(Laporte and Charlesworth 2002), the Ne values would be in
the same range (20–200) as in the simulation. Thus, the
simulation scheme was effective in creating populations with
close to the desired Ne. For simplicity, all graphs and discus-
sions use rounded NeT :

The number of eigenvalues of G0 that accounted for 90%,
95%, 98%, and 99% of the original variation is shown in
Figure 2 and Appendix Table A1. Accounting for 90% of the
original variation (EIG90) required 814 6 14 eigenvalues in
population P20 and 5512 6 19 eigenvalues in population
P200. Accounting for 99% of the original variation (EIG99)
required 6523 6 68 eigenvalues in population P20 and
20,786 6 29 eigenvalues in population P200. Thus, increas-
ing Ne �10 times increased the number of selected eigen-
values by 6.8 for EIG90 and by 3.2 for EIG99. While the
number of eigenvalues increased with Ne, the increase was
less than proportional especially for higher Ne. Graphically
(Figure 2), the increases in the number of eigenvalues corre-
sponding to 90% and 95% were close to linear, but less so
corresponding to 98% and especially for 99% past Ne = 120.
The total number of positive eigenvalues in G is bounded by
the number of SNPs (49,980 in this study) and the number of
genotyped individuals (75,000 in this study). Subsequently,
steeper declines from a linear trend when the number of
eigenvalues is very high could be due to a limited number
of SNPs and individuals used in the simulation.

The number of eigenvalues can also be expressed in terms
of Ne and genome length L (L = 30). The value of EIG90

Figure 2 Number of largest eigenvalues that explain
90%, 95%, 98%, and 99% of variation in the geno-
mic relationship matrix for populations with different
effective population sizes (Ne). Solid lines show NeL,
2NeL, and 4NeL, where L = 30 M.

576 I. Pocrnic et al.



varies from �40Ne (P20) to 27Ne (P200), the value of EIG95
varies from 80Ne (P20) to 46Ne (P200), and the value of
EIG98 varies from �185Ne (P20) to 75Ne (P200). Assum-
ing that the increase in the number of eigenvalues is indeed
linear with Ne but affected by limited number of SNPs and
genotyped individuals, the approximate values would be
EIG90 � NeL, EIG95 � 2NeL, and EIG98 � 4NeL.

Figure 3 shows the correlation between GEBVREG and
GEBVAPY for validation animals with variable numbers of core
animals (from EIG90 to EIG99). Populations with greater Ne

required a larger number of core animals to reach equivalent
correlations. For all populations, the correlations were.0.99
with the number of core animals equal to EIG99 and .0.98
with the number of core animals equal to EIG98. Figure 4
shows the results as in Figure 3 but with the percentage of
explained variance on the abscissa. The curves are linear and
nearly identical. This means that the correlations between
GEBVREG and GEBVAPY are nearly a linear function of the
percentage of the explained variance, regardless of Ne. The
correlations are slightly higher than the percentage of ex-
plained variance, probably because GEBV contain not only
contributions due to genomics but also some due to parent
average (VanRaden 2008; Lourenco et al. 2015a).

Figure 5 shows true accuracies (defined as the correlation
between simulated breeding value and GEBV) across the six
simulated populations as a function of the number of eigen-
values explaining the given amounts of variance. All SDs of
accuracies across replicates were #0.01. The accuracy is in-
versely related to Ne as it was highest for population P20

(0.896 0.01) and lowest for P200 (0.776 0.01). In simulated
populations, Muir (2007) and Goddard (2009) showed that
accuracy of GEBV decreases as Ne increases. Smaller Ne means
fewerMe or ESM to estimate and subsequently smaller predic-
tion error variance of these effects. The accuracies were only
�0.03 below the peak level with the number of core animals
corresponding to EIG90; the accuracies increase by �0.02 at
EIG95, peaking at EIG98; and they are slightly lower at EIG99.
The accuracies with the regular inverse (noted as 100% in the
graph) were slightly lower than with EIG99. The results indi-
cate that the majority of the information for GEBV is provided
by EIG90 largest eigenvalues. The accuracy provided by eigen-
values present beyond EIG95 in EIG98 was small but required
almost doubling the number of core animals. Eigenvalues
corresponding to the last 2% variation do not provide any in-
formation and in fact slightly reduce the accuracies, which
shows that the genomic information may be redundant and
in fact overfitted the data. Subsequently we can conclude that
the dimensionality of the genomic information (defined as
the number of the larger, informative eigenvalues) in this
study does not exceed EIG98. For genomic prediction, using
the number of core animals corresponding to EIG98 is suffi-
cient, with reduction to EIG95 when computing is expensive.

The theory for the APY was developed either based on the
dimensionality ofG as computed from eigenvalues or based on
the independent chromosome segments (Me) (Misztal 2016).
Both concepts may be closely related. In particular, the number
of Me is similar to the number of core animals beyond which
the accuracy of GEBV does not increase. In this study, such a

Figure 3 Correlations between genomic estimated
breeding values obtained with the direct inverse
(ssGBLUP) and the inverse with the algorithm for
proven and young (APY) of the genomic relationship
matrix for six simulated populations as a function of
the number of core animals.
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number corresponded to EIG98. Stam (1980) derived a prob-
ability density function for a size of an independent chromo-
some segment, which leads to the expected number of
segments Me = 4NeL, where L is the size of the genome in
morgans. With L=30 in this study,Me = 120Ne, which is close
to an estimate of 140Ne for EIG98. The approximate values in
this study, EIG90� 35Ne, EIG95 � 70Ne, and EIG98 � 140Ne,
could be simplified to EIG90 � NeL, EIG95 � 2NeL, and
EIG98 � 4NeL, respectively. As the segments are of variable
size, Goddard (2009) argued that a more relevant formula is
2NeL/log(4NeL), which is equivalent toMe = 8Ne (Ne = 20) to
6Ne (Ne = 200). Both numbers are well below EIG90. Several
formulas forMe were compared in a meta-analysis by Brard and
Ricard (2015), and none were found satisfactory. Such conclu-
sions could be due to several factors. First, their study looked at
realized accuracies, and these are strongly affected by selection
(Bijma 2012; Lourenco et al. 2015a). Second, the implicit as-
sumption was of segments of equal size, while segment sizes
were variable (Stam 1980). Third, Brard and Ricard (2015)
pointed out that part of the difficulty resided in getting good
estimates of Ne, a parameter that is not always well defined
and that changes over time. We can posit that in genomic selec-
tion we can estimate the effects of the largest chromosome seg-
ments well and those of smaller segments not as well but they
are still useful for prediction, and the remaining smallest seg-
ments provide insufficient accuracy for prediction. Compared
to methods reviewed by Brard and Ricard (2015), the possible
definition of Me by EIG98 does not depend on realized accu-
racies or trait definition, but does require genotype collection.

This study focusedondimensionality of theGRM. In fact, the
eigenvalue distribution of a SNP BLUP matrix (Z9Z, where Z is
gene content) is the same as both share the same singular
values from singular value decomposition of Z. Therefore, the
dimensionality of the GRM can be defined as dimensionality of
the SNP genomic information in general. In this study, the ei-
genvalueswere computed from theGRMexplicitly constructed.
However, for large data sets, it is possible to compute them from
the singular value decomposition of matrix Z, with a cost qua-
dratic in the number of markers and only linear in the number
of individuals (e.g., by subroutine DGESVD in LAPACK).

Some results of this study could be influenced by simulation
parameters. In particular, a larger number of genotyped animals
and the number of SNP markers could have increased the
dimensionality especially for higher Ne. Genotypes by simula-
tion are perfect while in real data they are affected by quality
control and possibly imputation. In addition, the simulated
population was not selected and the number of genotyped gen-
erationswas small. Further studieswill showapplicability of the
results of this article to real populations undergoing selection.

Although the largest population size simulated in this study
had Ne = 200, the dimensionality of the GRM can be extrap-
olated for populations with a larger Ne. In general, the di-
mensionality of the genomic information (G or Z9Z) is #min
(Me, Nsnp, Nind), where Nsnp is the number of SNPs and Nind is
the number of genotyped individuals. In this study, Nsnp and
Nind were several times larger than Me although the dimen-
sionality of the GRM was depressed by limited Nsnp and Nind

especially for a large Ne. It appears that the dimensionality of

Figure 4 Correlations between genomic estimated
breeding values obtained with the direct inverse
(ssGBLUP) and the inverse with the algorithm for
proven and young (APY) of the genomic relationship
matrix for six simulated populations where the number
of core animals is defined as the number of eigen-
values that explain 90%, 95%, 98%, and 99% of
original variability.
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the GRM is close to Me when Nsnp and Nind are a few times
larger than Me. In fact, MacLeod et al. (2005) found that
detection of 90% of junctions between independent chromo-
some segments required �12 times as many markers as the
number of junctions (�Me). Assume Ne = 3000 and Me =
360,000. If Nind or Nsnp is low in comparison to Me, dimen-
sionality will be close to min (Nind, Nsnp). The dimensionality
will reach Me only when both Nind and Nsnp are ..Me. For
polygenic traits, Nsnp determines a fraction of the additive
variance explained by the genomic information (Jensen
et al. 2012). Hypothesizing that in fact it is the ratio of Ne

to Me that is important, even a large Nsnp can create a “miss-
ing heritability” problem in humans where Ne and subse-
quently Me are large (Yang et al. 2010).

Simulations in this study assumed a polygenic model with an
equal variance of each SNP. Heterogeneous SNP variance can be
incorporated via weights for each trait separately as discussed in
Misztal (2016). In particular, if positions of all causative SNPs
were known, the rank of G would be equal to the number of
causative SNPs (Misztal 2016); with 200 causative SNPs the
rank ofGwould be 200. If only a few causative SNPs are known
and their position/variance is not knownprecisely,we can expect
the rank of G to be lower than that estimated from the effective
population size but larger than the number of causative SNPs.

Results of this study may be applicable toward understand-
ing the limits of genome-wide association studies (GWAS)
resolution.Wang et al. (2012) found in a simulation study that
the highest correlation of a simulated QTL value was not with
the SNP effect closest to the QTL but with the average of 8–16

adjacent SNP markers. Su et al. (2014) investigated individual
or block variances on 50,000 SNPs in Holstein cattle and found
that slightly higher accuracy was obtained when the same var-
iances were imposed on a block of 30 SNPs, which corresponds
to 2Mbor�15Ne segments (assumingNe=100 forHolsteins).
In a simulation study, Hassani et al. (2015) found that QTL
effects were better predicted by averages of 6100 flanking
markers than by an average of a smaller number of flanking
markers. The resolution of GWASmay be limited to a size of an
individual chromosome segment and subsequently by Ne.

In summary, when the number of SNPmarkers and genotyped
animals is large, the dimensionality of the SNP genomic in-
formationdefinedbytheeigenvalueof theGRMisapproximately
a linear function of effective population size. Subsequently, an
inverse of the GRMbased on limited recursion can be computed
inexpensively for a large number of individuals. Such an inverse
results in more accurate estimation of GEBV than a direct inverse.
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Table A1 Number of largest eigenvalues (mean6 SE) explaining a given percentage of variation for populations with
different effective population sizes Ne (Px means effective population size x)

Ne 90% 95% 98% 99%

P20 814 6 14 1,611 6 26 3,701 6 48 6,523 6 68
P40 1,540 6 8 2,954 6 16 6,226 6 29 10,006 6 37
P80 2,749 6 14 5,026 6 25 9,622 6 40 14,226 6 47
P120 3,844 6 14 6,769 6 22 12,169 6 31 17,163 6 34
P160 4,760 6 7 8,151 6 12 14,058 6 15 19,253 6 15
P200 5,512 6 19 9,245 6 25 15,483 6 29 20,786 6 29
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