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Abstract: The capacity to randomly pick a unitary across the whole unitary group is a powerful tool
across physics and quantum information. A unitary t-design is designed to tackle this challenge in
an efficient way, yet constructions to date rely on heavy constraints. In particular, they are composed
of ensembles of unitaries which, for technical reasons, must contain inverses and whose entries are
algebraic. In this work, we reduce the requirements for generating an ε-approximate unitary t-design.
To do so, we first construct a specific n-qubit random quantum circuit composed of a sequence of
randomly chosen 2-qubit gates, chosen from a set of unitaries which is approximately universal on
U(4), yet need not contain unitaries and their inverses nor are in general composed of unitaries
whose entries are algebraic; dubbed relaxed seed. We then show that this relaxed seed, when used
as a basis for our construction, gives rise to an ε-approximate unitary t-design efficiently, where the
depth of our random circuit scales as poly(n, t, log(1/ε)), thereby overcoming the two requirements
which limited previous constructions. We suspect the result found here is not optimal and can be
improved; particularly because the number of gates in the relaxed seeds introduced here grows
with n and t. We conjecture that constant sized seeds such as those which are usually present in the
literature are sufficient.

Keywords: unitary t-design; relaxed seeds; approximately universal

1. Introduction and Summary of the Results

1.1. Unitary t-Designs

A unitary t-design is an ensemble of unitaries, which, when sampled, mimic sampling from
the ‘truly random’ Haar measure which chooses a unitary at random from the full continuous unitary
group [1]. The usefulness of a t-design is that it is much simpler and more efficient to produce
than sampling from the Haar measure (polynomial compared to exponential cost, respectively, [2]
and [3]), yet it retains many of the useful applications. These include, but are not limited to,
randomized benchmarking [4], estimating noise [5], private channels [6], photonics [7], quantum
metrology [8], modeling thermalization [9], black hole physics [10], and recently demonstrations of
quantum computational advantage [11–13].

More precisely, one can distinguish between two types of unitary t-designs, exact unitary
t-designs and approximate unitary t-designs [14]. An exact unitary t-design on the n-qubit unitary
group U(2n) is a set of couples (we will refer to this set of couples frequently as a random unitary
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ensemble) {pi, Ui}i=1,...D, where D is a positive integer and each Ui ∈ U(2n) is chosen with probability
pi (∑i=1,..,D pi = 1). An exact unitary t-design satisfies

∑
i

piP(t,t)(Ui) =
∫

U(2n)
P(t,t)(U)µH(dU), (1)

where µH denotes the Haar measure on the n-qubit unitary group U(2n), and P(t,t)(U) is any
polynomial of degree exactly t in the matrix elements of U, and of degree exactly t in the complex
conjugates of these matrix elements. It can be shown that an exact unitary t-design is also an exact
unitary t− 1 design [15] ( Note that this property also holds for approximate t-designs). Although
exact unitary t-designs exist for any t and any dimension of the unitary group [16], the search for exact
unitary t-designs on U(d) when t > 3 and d ≥ 3 appears to be a highly nontrivial task [17]. Therefore,
a natural step further is to consider a relaxation of the ’exact’ requirement and replace it with an
’approximate’ version, a so-called ε-approximate unitary t-design [2,14].More explicitly, the definition
of ε-approximate unitary t-design (or ε-approximate t-design for simplicity) is as follows.

Definition 1. [2] Let H be the n-qubit Hilbert space (C2)⊗n. A random unitary ensemble {pi, Ui} with
Ui ∈ U(2n) is said to be an ε-approximate t-design if the following holds:

(1− ε)
∫

U(2n)
U⊗tρU†⊗tµH(dU) ≤∑

i
piU⊗t

i ρU†⊗t
i ≤ (1 + ε)

∫
U(2n)

U⊗tρU†⊗tµH(dU) (2)

for all ρ ∈ B(H⊗t), where µH denotes the Haar measure on U(2n). For positive semidefinite matrices A and B,
B ≤ A means A− B is positive semidefinite, ε is a positive real, and t is a positive integer ( This definition is
referred to as the strong definition of an ε-approximate t-design. Other definitions of ε-approximate t-designs
exist, which are dependent on the application in mind, see for example [18] for an overview of these definitions.).

Note that when ε = 0, one recovers a definition of an exact unitary t-design which is equivalent
to the definition in Equation (1) [19]. Moreover, most of the applications of exact unitary t-designs can
be adapted to use ε-approximate unitary t-designs, while retaining their efficiency [5,6,8,9,11,13,14].
Finally, efficient explicit constructions of ε-approximate unitary t-designs for any t are well-established
both in the circuit model [2,20] as well the measurement-based model of quantum computing [11,21,22].
For these reasons, in this work, we will focus on ε-approximate t-designs.

Due to the broad applications of unitary t-designs, one is interested in finding more efficient,
and in other ways ‘better’, ε-approximate t-designs—for example, limiting the unitary set according
to the proposed use or implementation [21]. A limiting factor in doing so is the rigid proof structure
that generally follows the proof of an ε-approximate t-design. It is thus of high interest to be able
to reduce the technical requirements involved in such a proof, which is the main topic of this work.
Indeed, such technical breakthroughs will likely have application beyond t-designs.

1.2. Comparison with Previous Work

In the seminal work of [2], it was shown that n−qubit random quantum circuits composed
of layers of nearest neighbor unitaries U ∈ U(4) drawn uniformly at random from a seed UB ⊂
U(4) (As mentioned in the abstract, a finite set of unitaries which is approximately universal in
U(4) will be referred to as a seed.), sampled from an ε-approximate unitary t-design [14] efficiently

in poly(n, t, log(
1
ε
)) depth. However, their proof relied on the following properties of the seed:

• Requirement (i): every U ∈ UB has an inverse U† ∈ UB .
• Requirement (ii): the unitaries U ∈ UB are composed entirely of algebraic entries.
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The authors [2] also conjectured that the algebraic entry requirement is a technical issue
(due mostly to using a result of [23]), and therefore could be dropped. Later on, in [11], it was
shown that these requirements can be reduced to seeds UB composed partially of a seed UM made up
of unitaries with algebraic entries and inverses in UM; and its complement in UB , denoted as UB/M,
which need not necessarily contain unitaries and their inverses nor be composed of algebraic entries
(see also [12,20]).

In this work, we completely remove the requirements (i) and (ii) by giving examples of seeds
in which every unitary in these seeds does not in general have an inverse in these seeds, nor are
the unitaries in these seeds composed of algebraic entries in general, and yet converge efficiently to
ε-approximate t-designs in a particular random circuit model which we will define explicitly below,
thereby proving the conjecture proposed in [2]. We will refer to these seeds as relaxed throughout this
work. However, it is to be noted that we do not mean relaxed in the sense that the unitaries making
up these seeds are chosen from the Haar measure on U(4). Indeed, because our proofs are based on
the partially invertible universal sets of [11], this endows the unitaries composing the relaxed seeds
with some structure which makes them different from Haar distributed unitaries.

1.3. Main Results

The notation we will use here is the same as that in [11], but we will restate it here for the sake of
using it in our proofs.

The seed UB ∈ U(4) is a partially invertible universal set composed of a seed UM, which contains
unitaries and their inverses, and is composed of unitaries with algebraic entries; and its complement,
the seed UB/M, which is not in general composed of unitaries and inverses, nor unitaries with algebraic
entries. Define the random unitary ensemble

B = { 1
|UB |

, Ui ∈ UB}. (3)

Denote the k-fold concatenation of B by

Bk = { 1
|UBk |

, ∏
j=1,...k

Uπ(j) ∈ UBk}, (4)

where Uπ(j) ∈ UB , π is a function acting on {1, ..., k} resulting in a set {π(1), ...π(k)}, where
π(j) ∈ {1, ..., |UB |}, the π(j)′s can be identical. There are |UB |k such functions π and the
k-fold concatenation includes all of them. UBk is the set of all unitaries of the form ∏j=1,...k Uπ(j),
with |UBk | = |UB |k. Define ( This definition of block(Bk) is for even n, the odd n case follows
straightforwardly. )

block(Bk) = { 1
|UBk |n−1 , (12×2 ⊗U j1

2,3 ⊗U j2
4,5 ⊗ ...⊗U

j n
2 −1

n−2,n−1 ⊗ 12×2)(U
j n

2
1,2 ⊗U

j n
2 +1

3,4 ⊗ ...⊗U jn−1
n−1,n) ∈ Ublock(Bk)}, (5)

where U j
i,i+1 ∈ UBk , i ∈ {1, ..., n− 1} and j ∈ {1, ..., |UBk |}. Let blockL(Bk) be the L-fold concatenation

of block(Bk), defined as

blockL(Bk) = { 1
|UBk |(n−1)L

, ∏
j=1,...,L

Uπ(j) ∈ UblockL(Bk)}, (6)

where π is also as defined previously and Uπ(j) ∈ Ublock(Bk). Finally, let

a =
|UM|
|UB |

. (7)
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The following theorem (Theorem 1), which holds for the above defined partially invertible
universal set UB , was one of the main results of [11], saying basically that one can
obtain efficient approximate unitary t-designs efficiently from partially invertible universal sets

in poly(n, t, log(
1
ε
′ ), log(

1
εd
)) = O(n3t12 + log(

1
ε
′ )log(

1
εd
)).

Theorem 1. [11] For any 0 < εd < 1, and for some 0 < C < 1, if

k ≥ 1
log2(

1
1+(C−1)a )

(10t + n2t− nt + n + log2(
1
ε
′ )) (8)

and
L ≥ 1

log2(
1

ε
′+P(t)

)
(4nt + log2(

1
εd
)), (9)

where

P(t) = (1 +
(425blog2(4t)c2t5t3.1/log(2))−1

2
)−1/3, (10)

ε
′
< 1− P(t), and n ≥ b2.5log2(4t)c, then blockL(Bk), formed from partially invertible universal set UB , is

an εd− approximate t-design on U(2n), for any t.

Here, b.c denotes the floor function. Define

U k = UBk −UMk (11)

to be the seed consisting of unitaries of the form

U = U1....Uk,

where for all j ∈ {1, ..., k}, Uj ∈ UB , and such that ∃ l ∈ {1, .., k} and Ul ∈ UB/M. k is as defined
in Equation (8) in Theorem (1). U k in Equation (11) is the relaxed seed we will consider in this work.

We will first show that, in general, U k truly is relaxed by proving the following theorem, which is
the first main result of this work.

Theorem 2. For a given value of k, there is a choice of the seed UB/M such that U k does not verify requirement
(ii) and completely violates requirement (i) .

What is meant by completely violates requirement (i) is that, for a choice of UB/M, every unitary
in U k does not have an inverse in U k. Then, as promised, we will show that a particular random

quantum circuit with seed U k converges to an ε-approximate t-design efficiently in O(nt + log(
1
ε
))

depth. But first, define the random unitary ensemble

B1 = { 1
|U k|

,U k}. (12)

It is straightforward to see that

|U k| = (1− ak)|UBk |, (13)

since
|UMk | = ak|UBk |, (14)
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and by looking at Equation (11). UMk is the set formed of unitaries of the form

W = W1....Wk, (15)

where Wi ∈ UM, ∀ i ∈ {1, ..., k}, and k is as defined in Equation (8). The random quantum circuits
considered will be random unitaries in blockL(B1) defined for the random unitary ensemble B1

(Equation (12)) in the exact same way as blockL(Bk) in Equation (6) is defined for the random unitary
ensemble Bk in Equation (4), and for the exact value of k as in Equation (8). We will show that
blockL(B1) is an ε-approximate t-design, first by showing that block(B1) ( This is defined for B1 of
Equation (12), in the exact same way as block(Bk) of Equation (5) is defined for the random unitary
ensemble Bk in Equation (4)) is an (η < 1, t)-tensor product expander (TPE) [24,25], which is defined
as follows:

Definition 2. [24,25] A random unitary ensemble {pi, Ui ∈ U} is said to be an (η, t)-TPE
if the following holds,

||Mt[µ]−Mt[µH ]||∞ ≤ η < 1, (16)

where Mt[µH ] =
∫

U(2n) U⊗t,tµH(dU), Mt[µ] = ∑i piU
⊗t,t
i , where µ is the probability measure ( As shown

in [26] one can shift between a probability distribution over a discrete ensemble {pi, Ui} and a continuous
distribution by defining the measure µ = ∑i piδUi .) over the set U , which results in choosing Ui ∈ U with
probability pi, U⊗t,t = U⊗t ⊗U∗⊗t, and U∗ is the complex conjugate of U. Mt[µH ] and Mt[µ] are called
moment superoperators.

Then, we will use the following proposition [20] to translate our TPE result into a result about
t-designs

Proposition 1. [11,20] If {pi, Ui ∈ U} is an (η < 1, t)-TPE [24,25], then the L-fold concatenation of {pi, Ui}:
{∏j=1,...,L pπ(j), ∏j=1,...,L Uπ(j)} is an ε-approximate t-design in the strong sense (Definition 1) when

L ≥ 1
log2(

1
η )

(4nt + log2(
1
ε
)). (17)

π is as defined previously in Equation (4).
We now state the three theorems which establish that relaxed seeds can give rise to efficient

approximate t designs—and are the second, third, and fourth main results of this work.

Theorem 3. block(B1) is an (η, t)− TPE with

η =
P(t) + ε

′

(1− ak)n−1 +
1− (1− ak)n−1

(1− ak)n−1 . (18)

Theorem (3) holds, as Theorem (1), when n ≥ b2.5log2(4t)c and P(t), ε
′
, and k, are exactly as

defined in Theorem (1). a is as defined in Equation (7).

Theorem 4. ∀ t, ∃ n0 ≥ b2.5log2(4t)c such that ∀ n ≥ n0,

P(t) + ε
′

(1− ak)n−1 +
1− (1− ak)n−1

(1− ak)n−1 ≤ 1. (19)

Theorem 5. ∀ t, ∃ n0 ≥ b2.5log2(4t)c such that ∀ n ≥ n0, blockL(B1) is an ε-approximate t-design in U(2n)

in the strong sense, with L given by Equation (17), and η given by Equation (18).
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Note that Theorem (5) means, as Theorem (1), that one can obtain efficient approximate t-designs
efficiently from relaxed seeds U k.

The intuition behind why Theorems (3)–(5) are true is quite straightforward. block(Bk) was shown
in [11] to be an (η ≤ 1, t)-TPE [24,25]. An overwhelmingly large fraction of random unitaries (tending
to one in the n, t→ ∞ limit, see Equation (13)) in block(Bk) are also contained in block(B1). Therefore,
one should expect block(B1) to be an (η ≤ 1, t)-TPE.

As a final remark in this section, note that Equations (13) and (8) tell us that the number of
unitaries in the relaxed seed U k (Equation (11)) grows with n and t. This technical issue is due to us
using the results on partially invertible universal sets [11] in our proofs. This is in contrast with the
seeds used in [2] and [11] where these seeds were finite and were composed of a constant number of
elements. We believe the results presented here are not optimal, and that finite constant-sized sets not
verifying requirement (ii) and completely violating requirement (i) are sufficient to give approximate
unitary t-designs in a random quantum circuit model efficiently in poly(n, t) depth.

1.4. Example: Implementation of Our Construction as a Random Quantum Circuit

In the previous subsection, we presented the main results of this work, Theorems (2)–(5), which
show a mathematical construction of an ε-approximate unitary t-design, blockL(B1), from relaxed
seeds. In practice, one can design a random quantum circuit which samples from this ε-approximate
unitary t-design. An example of such a construction sampling from blockL(B1) is shown in Figure 1.
This construction is similar to the random circuit construction in [11]. In this example, L is the depth
of this circuit, whereas k controls the number of elements of the relaxed seed, which depends on
the number of inputs n of the circuit as well as the order t of the design. One could also think of a
translation to a measurement-based version of this random quantum circuit along the lines of work
done in [11].

1 

2 

n-1 

3 

5 

4 

6 

. 

. 

. 

n 

7 

. . . 

𝐿 𝑡𝑖𝑚𝑒𝑠  

Figure 1. Part of the random quantum circuit sampling from the random unitary ensemble blockL(B1).
The horizontal black lines numbered from 1 to n represent the n input qubits of the random quantum
circuit. The colored boxes touching two horizontal lines each represent a two-qubit unitary which is
chosen with uniform probability from U k (Equation (11)). These two-qubit unitaries act nontrivially
only on the horizontal lines (qubits) they touch. The order in which these unitaries are applied is
from left to right. Unitaries (boxes) aligned on the same vertical level are applied simultaneously
(depth-one). The depth-two unitary shown in this figure is sampled from block(B1). In order to sample
from blockL(B1), the ε-approximate t-design, the random circuit shown in this figure is repeated L
times, with L given by Equation (17) (see also Theorem (5)). This figure is for n-even, the odd n case
follows straightforwardly.
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An important point to consider is the dependence of the circuit depth of our random circuit
construction on the figure of merit a, defined in Equation (7). For fixed t and n, the value of η

(Equation (18)) increases as a increases, meaning that the depth L of our construction increases with
increasing a, from Equation (17). However, for large values of t or n, (1− ak)n−1 approaches unity,
meaning that η scales asymptotically (for large t or n) as η ∼ P(t) + ε

′
(see Equation (18)). Therefore,

in the limit of large t and n, the depth L of our random circuit construction is practically independent
of a. (Although the value of k in Equation (8), which determines the cardinality of U k, will still depend
on a, but only up to a constant factor (see Equation (8)).) The extremal values of a (i.e., a = 0 and
a = 1) are not applicable to our construction since, when a = 0, the lower bound on k (Equation (8)) is
not defined, whereas when a = 1, block(B1) is the empty set. However, it should be noted that when
a = 1, Theorem (1) of [11], which is the basis of the construction in this work, gives a lower bound
which is in line with the lower bound on the circuit depth of the construction of approximate t-designs
in [2] (see Theorem (1)). ( The lower bound of Theorem (1) however is not as tight as that shown in [2],
where the dependence on n in their result is linear, whereas that in Theorem (1) is cubic. Indeed, one
of the open questions in [11] was whether this cubic lower bound on n could be reduced to a linear
lower bound, which is the best one can hope to achieve for 1D random quantum circuits [2,18].)

In the next section, we present the proofs of Theorems (2)–(5).

2. Proofs

2.1. Proof of Theorem (2)

Proving requirement (ii) which is not verified by U k is straightforward. By our definition of the
relaxed seed U k (Equation (11)), any unitary U ∈ U k can be written as a product of k unitaries in UB
(with k defined in Equation (8)), U = U1...Uk with at least one Uj ∈ UB/M; and since in general UB/M
contains unitaries with nonalgebraic entries, then the unitaries U ∈ U k are in general composed of
nonalgebraic entries. To see this more clearly, let k be odd, and consider for example

U = U1....U k−1
2

.U k−1
2 +1...Uk−1Uk ∈ U k,

where U k−1
2 +i = U†

k−1
2 −i+1

for i ∈ {1, ..., k−1
2 } and Uk ∈ UB/M is a unitary with nonalgebraic entries.

Then,
U = Uk ∈ U k,

and is thus composed of nonalgebraic entries.
We will now prove that (i) is completely violated in general by U k, this proof will be done

by contradiction. Suppose, by contradiction, that ∀ choices of UB/M and for a fixed choice of
UM, ∃ U, U

′ ∈ U k such that
U
′
= U†. (20)

Without loss of generality, we can write

U = ∏
i=1,..,k

Vmi
i Wni

i , (21)

U
′
= ∏

j=k+1,..,2k
V

mj
j W

nj
j , (22)

where Vi, Vj ∈ UB/M, and Wi, Wj ∈ UM for i ∈ {1, .., k}; and where mi, mj, ni, nj ∈ {0, 1} with ni 6= mi
and nj 6= mj, ∀ i ∈ {1, ...k}, ∀ j ∈ {k + 1, .., 2k}, and such that ∃ i1 ∈ {1, .., k} and j1 ∈ {k + 1, .., 2k}
such that mi1 = mj1 = 1. Equations (20)–(22) imply

Vj1 = ∏
j=j1−1,...,k+1

W
†nj
j V

†mj
j ∏

i=k,...,1
W†ni

i V†mi
i ∏

j=2k,...,j1+1
W

†nj
j V

†mj
j . (23)
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Now, we will prove that Equation (23) does not hold for a general choice of UB/M, thereby
establishing a contradiction. We will consider all the possible cases as follows.

• Case 1: Vj 6= Vj1 ∀ j 6= j1 in Equation (23).
Without loss of generality, let UM = {W1, ..., Wn} and UB/M = {V1, ...., Vm}, with m, n ∈ N;
and let Vj1 = Vm. Fix {W1, ..., Wn, V1, ..., Vm−1}, and list all the possible relations of the form of
the right-hand side of Equation (23), where Wj ∈ {W1, ..., Wn}, ∀j ∈ {k + 1, .., 2k}, and Vi, Vj ∈
{V1, ..., Vm−1}, ∀i ∈ {1, ..., k}, ∀j ∈ {k + 1, ..., j1 − 1, j1 + 1, ...2k}. Since there are countably many
relations of the form of the right-hand side of Equation (23) (and uncountably many choices of
Vm.), choose Vj1 = Vm such that it is not equal to any of the listed relations of the right-hand side
of Equation (23). Therefore, Equation (23) does not hold in general in Case 1.

• Case 2: ∃ j 6= j1 such that Vj = Vj1 in Equation (23).
Here, it will be convenient to rewrite Equation (23) as

Vj1 = ∏
i=1,...,2k−1

Cπ(i)
i (V†

j1)
1−π(i), (24)

where again we take that Vj1 = Vm, Ci ∈ {V†
1 , ..., V†

m−1, W†
1 , ..., W†

n}, and {V†
1 , ..., V†

m−1, W†
1 , ..., W†

n}
are fixed (as in Case 1). π(.) is a map

i = {1, ..., 2k− 1} → π(i) ∈ {0, 1}.

We consider the two following subcases
• Case 2a: π(i) = 0, ∀i ∈ {1, ..., 2k− 1}.

Equation (24) becomes, in this case,
Vj1 = (V†

j1)
2k−1. (25)

Equation (25) does not hold exactly for general choices of Vj1 = Vm, since products of the form
of the right-hand side of Equation (25) can only approximate Vj1 up to a given precision in
general [24].

• Case 2b: ∃ i1 such that π(i1) = 1.
Equation (24) can be rewritten in this case as

Ci1 = ∏
i=i1−1,...,1

V1−π(i)
j1

C†π(i)
i Vj1 ∏

i=2k,...,i1+1
V1−π(i)

j1
C†π(i)

i . (26)

Since Ci1 ∈ {V
†
1 , ..., V†

m−1, W†
1 , ..., W†

n}, and these unitaries are fixed, Equation (26) therefore cannot
hold for a general choice of Vj1 = Vm.
In order to complete the proof of Theorem (2), we should show that a Vm exists which
simultaneously violates the relations imposed in Case 1 and Case 2. For a given fixed integer
k and fixed {W1, ..., Wn, V1, ..., Vm−1}, there is only a finite number of unitaries Vm satisfying
Equation (23) in Case 1. Unitaries Vm satisfying Equations (25) and (26) (Case 2a and 2b) also
satisfy the relation

det(Ci1 − ∏
i=i1−1,...,1

V1−π(i)
j1

C†π(i)
i Vj1 ∏

i=2k,...,i1+1
V1−π(i)

j1
C†π(i)

i ) = 0. (27)

Using the analysis of [27], the set of unitaries Vm satisfying relations of the form Equation (27) has
zero Haar measure on U(4). This follows from the fact that one can show that there is a one-to-one
mapping between these (nonidentically zero) polynomial equations in the matrix elements of
Vm, and the intersection ( Corresponding to partitioning the determinant into real and imaginary
parts, each of which can be expressed as a trigonometric function of 16 real valued angles in [0, 2π]
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parametrizing Vm [27].) of the zero sets of two real analytic functions on R16. Each such zero
set has a Lebesgue measure zero, therefore, their intersection (which is a subset of the two) also
has Lebesgue measure zero (see [27] for more details). Therefore, the set of unitaries generated
by relations of the form of Equation (27) has Haar measure zero [27]. The number of possible
relations of the form of Equation (27) is countable (for fixed k and fixed {W1, ..., Wn, V1, ..., Vm−1}),
thus the Haar measure of the set of unitaries Vm satisfying Equations (25) or (26) is also zero, as
the countable union of measure zero sets is also measure zero. This means that we can choose
Vm to be outside a measure zero set (which is the set of unitaries satisfying Equations (23) in
Case 1, (25), and (26)), and we would therefore have that Vm simultaneously violates the relations
imposed by Case 1 and Case 2. This completes the proof of Theorem (2).

2.2. Proof of Theorem (3)

Define the moment superoperators

Mt[µblock(Bk)] = ∑
i=1,...|UBk |n−1

1
|UBk |n−1 U⊗t,t

i , (28)

where Ui ∈ Ublock(Bk); and

Mt[µblock(B1)
] = ∑

i=1,...|U k |n−1

1
|U k|n−1 V⊗t,t

i , (29)

where Vi ∈ Ublock(B1)
. Let

Mt[µblock(B2)
] = ∑

i=1,...|Ublock(B2)
|

1
|Ublock(B2)

|W
⊗t,t
i , (30)

where Wi ∈ Ublock(B2)
. Note that Ublock(B2)

is the complement of Ublock(B1)
in Ublock(Bk). Straightforward

calculation using Equation (13) leads to the following relation

Mt[µblock(Bk)] = (1− ak)n−1Mt[µblock(B1)
] + (1− (1− ak)n−1)Mt[µblock(B2)

]. (31)

Recalling from [11] that Mt[µblock(B1)
] is an (η, t)-TPE if [24,25]

||Mt[µblock(B1)
]−Mt[µH ]||∞ ≤ η, (32)

where Mt[µH ] =
∫

U(2n) U⊗t,tµH(dU) and µH is the Haar measure on U(2n); using Equation (31) and a
triangle inequality for norms we get

||Mt[µblock(B1)
]−Mt[µH ]||∞ ≤

1
(1− ak)n−1 ||Mt[µblock(Bk)]−Mt[µH ]||∞+

1− (1− ak)n−1

(1− ak)n−1 ||Mt[µblock(B2)
]−Mt[µH ]||∞. (33)

Thus, block(B1) is an (η, t)− TPE with

η =
1

(1− ak)n−1 ||Mt[µblock(Bk)]−Mt[µH ]||∞ +
1− (1− ak)n−1

(1− ak)n−1 ||Mt[µblock(B2)
]−Mt[µH ]||∞. (34)

From a result in [11],
||Mt[µblock(Bk)]−Mt[µH ]||∞ ≤ P(t) + ε

′
, (35)
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where P(t) and ε
′

are as defined in Theorem (1). In addition, because Ublock(B2)
is approximately

universal on U(2n) (because it is composed of unitaries which are approximately universal on U(4)),
then by a result of [26],

|Mt[µblock(B2)
]−Mt[µH ]||∞ ≤ 1. (36)

Replacing Equations (35) and (36) in Equation (34) allows to obtain the value of η in Theorem (3).

2.3. Proof of Theorem (4)

The proof of Theorem (4) will also proceed by contradiction.
Suppose ∃ tm , such that ∀ n ≥ b2.5log2(4t)c,

P(tm) + ε
′

(1− ak)n−1 +
1− (1− ak)n−1

(1− ak)n−1 > 1. (37)

Notice that
lim

n→∞
(1− ak)n−1 = 1, (38)

with a and k as given in Equations (8) and (7), and t replaced by tm. Thus, for large enough n, and by
using Equation (38), Equation (37) reduces to

P(tm) + ε
′ ∼> 1. (39)

Equation (39) leads to a contradiction, since by Theorem (1), P(t) + ε
′ ≤ 1, ∀ t. This concludes the

proof of Theorem (4).

2.4. Proof of Theorem (5)

The proof of Theorem (5) follows directly from applying Theorems (3) and (4) in Proposition (1).

3. Conclusions

In this work, we have shown that one can obtain efficient approximate unitary t-designs from
random quantum circuits with support over families of seeds which are relaxed in the sense that any
unitary in the seed need not in general have its inverse in the seed, nor are the seed unitaries composed
entirely of algebraic entries. This result proves and extends the scope of a conjecture proposed in [2].
The relaxed seeds presented here have a cardinality which increases with n and t (see Equation (13)).
These seeds, we believe, are not optimal, and we conjecture that relaxed seeds with a constant number
of elements as in [2,11] suffice to get efficient t-designs.

Such relaxations have natural importance when the choice of the seed is not free for various
reasons; for example, in the measurement-based approach to implementing t-designs [11,21,22]
(see also [12,13]). There, the random selection of the unitary in the ensemble is made via a
measurement—that is, relying on quantum randomness, not classical randomness. This has several
potential advantages, including nonadaptivity of the setup, true randomness (which may even
be beyond efficient classical randomness [28]), as well as the potential for verification [29,30] and
integration to broader quantum information tasks through the graph state approach [31]. A difficulty
in proofs in this approach is that the strict restrictions of previous approaches [2] heavily limited
the allowed measurement-based structures. Indeed, this is what motivated previous works in this
direction [11,12,22]. To this end, we expect that our relaxations will allow for more diverse constructions
of t-designs, broadening their potential implementability and integrability into quantum information
networks. Furthermore, given the natural use of graph states [32] for error correction and fault
tolerance [33,34], this approach may lead to much better designs of quantum advantage tolerant
to noise.
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Another possible application to our result is making progress towards an inverse-free version
of the Solovay–Kitaev (SK) theorem [35]. Indeed, there are already hints at relations between the
SK construction and unitary t-designs [36] (We are grateful to Michał Oszmaniec for pointing us to
this result.), and our construction is the first (to our knowledge (A work which is expected to appear
shortly by Oszmaniec, Horodecki, and Sawicki also manages to remove the need for inverses and
algebraic entries in the seed.)) to remove the need for inverses in the base set generating the t-design
(see technical draft for details [11]).
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