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Abstract  29 

Porphyromonas gingivalis, like other bacteria belonging to the phylum Bacteroidetes 30 

synthesizes sphingolipids (SLs).  However, their exact roles in microbial physiology and their 31 

potential role in mediating interactions with their eukaryotic host are unclear.  Our working 32 

hypothesis for this study was that synthesis of SLs (host-like lipids) affords a mechanism that 33 

allows P. gingivalis to persist in homeostasis with its host. In a previous study, we deleted a gene 34 

(PG1780 in strain W83), predicted to encode a serine palmitoyl transferase (SPT), the enzyme 35 

that catalyzes the first conserved step in the synthesis of SLs, and we determined that the mutant 36 

was unable to synthesize SLs.  Here, we characterized the SPT enzyme encoded by PG1780,  37 

analyzed the impact SPT deletion on P. gingivalis gene expression (RNA-Seq analysis), and 38 

began to define the impact of SL synthesis on its interactions with host cells. Enzymatic analysis 39 

verified that the protein encoded by PG1780 is indeed an SPT.  RNA-Seq analysis determined 40 

that a lack of SL synthesis results in differential expression of extracytoplasmic function (ECF) 41 

sigma factors, components of the Type IX secretion system (T9SS), and CRISPR and cas genes. 42 

When human THP1 macrophage-like cells were challenged with the wild-type (W83) and the 43 

SL-null mutant (W83 SPT), our data demonstrate that the SL-null strain elicits a robust 44 

inflammatory response (elevated IL-1β, IL-6, IL-10, IL-8, RANTES, and TNFα) while the 45 

response to the parent strain W83 is negligible.  Interestingly, we also discovered that SLs 46 



produced by P. gingivalis can be delivered to host cells independent of cell-to-cell contact.  47 

Overall, our results support our working hypothesis that synthesis of SLs by P. gingivalis is 48 

central to its ability to manipulate the host inflammatory response and demonstrate the integral 49 

importance of SLs in the physiology of P. gingivalis. 50 

 51 

52 



Introduction 53 

 Sphingolipids (SLs) are a class of amphipathic lipids containing a long-chain amino 54 

alcohol backbone (also called a sphingoid base) attached via an amide linkage to a fatty acyl 55 

chain. The first committed step in the generation of SLs is the condensation of an amino acid, 56 

often serine, and palmitoyl CoA to form sphinganine by the enzyme serine palmitoyl transferase 57 

(SPT) (Harrison et al. 2018; Merrill and Carman 2015).  SLs play a prominent role in numerous 58 

eukaryotic cellular processes including inflammation, cell migration, adhesion, growth, and 59 

apoptosis (Hannun and Obeid 2008; 2018; Maceyka and Spiegel 2014; Merrill and Carman 60 

2015); and they have been linked to a growing number of inborn genetic diseases (Dunn et al. 61 

2019). 62 

 While SL synthesis is ubiquitous in eukaryotes, it is rare in prokaryotes. Intriguingly, a 63 

variety of bacteria belonging to the phylum Bacteroidetes that persist in the oral microbiome, 64 

including P. gingivalis, Tannerella forsythia, and Prevotella intermedia are proficient in SL 65 

synthesis  (Olsen and Jantzen 2001).  Although SLs produced by these bacteria are highly similar 66 

to the host SLs, these lipids are distinct in their head groups and an iso-methyl branch in both the 67 

long chain base and ceramide component (Harrison et al. 2018.).  Practically, these chemical 68 

distinctions are highly significant since they have been used to detect and distinguish bacterially-69 

derived SLs (Brown et al. 2019; Nichols et al. 2004).  In particular, the SLs produced by oral 70 

anaerobes, including P. gingivalis have been shown to permeate host tissues (Nichols 1998; 71 

Nichols and Rojanasomsith 2006; Nichols et al. 2011), and the types of SLs were found to be 72 

distinct in healthy versus diseased tissues (Nichols and Rojanasomsith 2006; Nichols et al. 73 

2011).  Given that P. gingivalis is strongly implicated in the etiology of periodontal disease 74 

(Byrne et al. 2009; Darveau 2010; Lamont and Jenkinson 1998; Socransky et al. 1998);  75 



understanding the impact of SLs on the physiology of this bacterium as well as defining their 76 

impact on the host as purified lipids have been investigated (Moye et al. 2016; Olsen and Nichols 77 

2018). Purified SLs derived from P. gingivalis induce a number of changes in the physiology of 78 

eukaryotic cells in vitro (Olsen and Nichols 2018), and often these effects are only observed for 79 

SLs bearing a particular headgroup. For example, phosphoglycerol dihydroceramide induce the 80 

RANKL-dependent pathway of osteoclastogenesis in osteoclasts (Kanzaki et al. 2017), initiate 81 

apoptosis in endothelial cells (Zahlten et al. 2007), and increase the generation of prostaglandin 82 

E2 by gingival fibroblasts (Nichols et al. 2004). In model systems of disease, 83 

phosphoethanolamine dihydroceramides induced inflammation in a murine model of 84 

experimental autoimmune encephalomyelitis (Nichols et al. 2009). Thus, SLs synthesized by P. 85 

gingivalis profoundly impact a variety of eukaryotic signaling pathways in a highly cell-specific 86 

and lipid-specific manner and may form a link to systemic conditions. 87 

 While there are few reports describing the role of bacterially-derived SLs in bacterial 88 

physiology or membrane structure and function, the data indicate that they may function in 89 

similar ways as in eukaryotic cells (Heaver et al. 2018). Studies with B. fragilis have 90 

demonstrated the formation of SL-dependent membrane microdomains, similar to eukaryotic 91 

lipid rafts and that SLs are essential for mounting a stress response and long-term survival, 92 

suggesting that SLs play a role in regulating gene expression (An et al. 2011).  We recently 93 

demonstrated that SLs are essential for P. gingivalis survival under oxidative stress. Also, we 94 

determined that select SLs are present in outer membrane vesicles (OMVs) thereby identifying a 95 

potential mechanism of SL-secretion (Moye et al. 2016). Here, we define the enzyme kinetics of 96 

the SPT produced by P. gingivalis and describe a working model where SLs regulate gene 97 

expression via ECF sigma factors.  Further, we show a hyper inflammatory response of 98 



macrophage-like cells when cultured with the SL null mutant.  Interestingly, we also discovered 99 

that P. gingivalis can deliver its SLs to host cells in a contact-independent manner.  Overall, our 100 

studies exemplify the integral importance of SLs in the physiology of P. gingivalis and provide 101 

new evidence supporting the concept that like other members of the Bacteroidetes, synthesis of 102 

SLs by P. gingivalis is likely central to its ability to manipulate the host inflammatory response. 103 

 104 

Methods (see appendix for details) 105 

Purification and characterization of SPT enzyme 106 

The PG1780 gene (strain W83) was cloned into expression plasmids which contained either a C-107 

terminal stop codon in lieu of a tag (PgSPT), a C-terminal ten-histidine tag 108 

(pEBSRCTEVC10HIS), or an N-terminal six-histidine tag (pEHISTEV).  Constructs were 109 

transformed into E. coli BL21 (DE3) competent cells. PgSPT was purified either by nickel 110 

affinity column chromatography (His-tagged) or by HiTrap anion exchange chromatography 111 

(non-tagged), followed by gel-filtration chromatography. Purification was monitored by SDS-112 

PAGE and size characterized by LC-ESI-MS. Dissociation constants (Kd) were determined by 113 

UV-visible absorbance spectrophotometry.  Kinetic experiments were performed using a 5,5’-114 

dithiobis-2-nitrobenzoic acid (DTNB) assay and resultant products were measured using 115 

MALDI-TOF-MS. 116 

 117 

RNA-Seq Analysis  118 

P. gingivalis strain W83 was used in this study along with the matching SPT mutant (W83 119 

ΔPG1780), which was generated and characterized previously (Moye et al. 2016).  RNA was 120 

extracted from cells grown anaerobically in TSBHK to an O.D.600 of 1.0, the quality was then 121 



assessed and sequencing was performed and analyzed as previously described (Moradali et al. 122 

2019; Moye et al. 2019). 123 

 124 

Host cell cytokine/chemokine profiling 125 

The human cell line THP-1 was maintained in RPMI-1640+10%FBS and differentiated for 48h 126 

into macrophage-like cells using 100nM phorbol 12-myristate 13-acetate (PMA), and 5x105 cells 127 

were seeded into 24-well tissue culture plates.  Parent or ΔSPT mutant P. gingivalis (cultured as 128 

above) were added to THP-1 cells (MOI 100) and following 2 h, 6 h and 24 h of incubation cell 129 

culture supernatant fluids were collected and cytokine and chemokine levels were determined by 130 

Milliplex Multiplex Assays using a Luminex 200® system.  THP-1 cell viability was assessed by 131 

MTT assay. 132 

 133 

P. gingivalis sphingolipid labeling and tracking 134 

SL-labeling was performed as previously described for Bacteroides thetaiotamicron (Johnson et 135 

al. 2019) with slight modifications.  Briefly, P. gingivalis strains were cultured for 24hrs in rich 136 

medium and transferred into chemically defined medium (Vermilyea et al. 2019) supplemented 137 

with chemically modified palmitic acid containing an alkyne (PAA).  PMA-differentiated THP-1 138 

cells were placed in the bottom wells of 24-well plates containing sterile glass coverslips.  Sterile 139 

0.4m pore-size transwell inserts were placed into the wells of the cell culture dishes and 1x109 140 

bacteria were then placed in the upper chamber.  After 24hr of culture at 37°C + 5% CO2, 141 

coverslips were removed, washed then Click-labeled with an azide-488 fluorophore using 142 

manufacturers specifications.  Coverslips were mounted onto slides with a DAPI-containing 143 



medium and were imaged by fluorescence microscopy.  W83 parent and SPT mutant +PAA were 144 

Click-labeled directly to validate PAA incorporation and labeling only in the parent. 145 

 146 

Results 147 

SPT sequence comparisons 148 

All bacterial SPTs are members of the pyridoxal-5’phosphate(PLP)-dependent α-oxoamine 149 

synthase (AOS) family, catalyzing Claisen-like condensation reactions between acyl-CoA 150 

substrates and amino acid to form different -oxoamine products (Harrison et al. 2018). In the 151 

case of SPT, this would be ketodihydrosphingosine (KDS). The average amino acid sequence 152 

similarity across the AOS enzymes is ~30-35%, depending on different functions (see 153 

Supplemental Table 1 and Supplemental Figure 1A). The amino acid sequence alignment 154 

between Sphingomonas paucimobilis SPT (SpSPT, Q93UV0) (Yard et al. 2007) Bacteroides 155 

fragilis SPT (BfSPT, Q5LCK4) and P. gingivalis SPT (PgSPT, W1R7E5) shows high sequence 156 

homology, with conservation of key residues involved in PLP-binding and catalysis. Moreover, 157 

gut human microbial BfSPT shares the highest amino acid sequence identity (76%) with PgSPT. 158 

 159 

Expression and purification of recombinant P. gingivalis SPT 160 

Recombinant PgSPT was prepared in a manner similar to that described for S. paucimobilis SPT 161 

(SpSPT;(Raman et al. 2009; Yard et al. 2007)). Briefly, the PgSPT gene (PG1780 from strain 162 

W83) was cloned and expressed in E. coli from plasmid pET-28a/PgSPT with a 6His-affinity tag 163 

at the C-terminus. A combined HisTrap column and size-exclusive chromatography (GE 164 

Heatlhcare Sephadex HR S200) approach was used to isolate the dimeric, PLP-bound, holo-form 165 



of the enzyme, and 10% glycerol was added to avoid PgSPT precipitation.  The purity of the 166 

protein was assessed by SDS-PAGE (Supplemental Figure 1B). 167 

 168 

Spectroscopic properties of C’ terminal-tagged PgSPT  169 

The UV-visible spectrum of a PLP-dependent enzyme such as SPT usually shows two absorption 170 

maxima at 335 nm and 425 nm, due to the properties of the two forms of the internal aldimine 171 

PLP Schiff base – enolimine and ketoenamine.  In contrast to the SpSPT enzyme, the UV-visible 172 

spectrum of PgSPT displays an absorbance maximum at 425 nm suggesting that the PLP 173 

cofactor was present predominantly as the ketoenamine form (Figure 1A). By analyzing the 174 

change in the absorbance at 425 nm with varying changes in the concentration of L-serine, the 175 

dissociation constant (Kd
Ser) was determined to be 5.46 ± 0.60 mM (Figure 1B). This value is 176 

approximately 5 times weaker than was determined for SpSPT (Kd
Ser = 1.1 mM) (Raman et al, 177 

2009). 178 

 179 

C’ terminal PgSPT activity and kinetics 180 

In order to find the optimal conditions for PgSPT activity, the enzyme was initially tested in 181 

buffers of different pH and the highest reaction rate was observed in 100 mM HEPES at pH 7.0. 182 

Here we used a convenient coupled assay which uses 5, 5’-dithiobis-2-nitrobenzoic acid (DTNB) 183 

reagent which reacts with the CoASH product. The resulting TNB thiolate anion absorbs 184 

strongly at 412 nm (max = 14,150 M-1, cm-1) (Raman et al. 2009).  The enzyme was analyzed 185 

with both substrates, L-serine and palmitoyl-CoA to obtain the kinetic parameters, and 186 

Michaelis-Menten plot for C’ terminal his-tagged PgSPT (Figure 1C and 1D) showed that the 187 



enzyme bound L-serine and palmitoyl-CoA with Km values of 0.52 ± 0.06 mM and 84 ± 11.7 μM 188 

, respectively. The enzyme turned over with a kcat of 43.5 ± 0.4 x 10-3  s−1 and an efficiency 189 

(kcat/Km) for L-Ser = 84.6 M−1s−1 and 524 M−1s−1 for pimeloyl-CoA. This compares to similar 190 

values determined for SpSPT with respect to substrate binding but with the PgSPT turning over 191 

much slower. 192 

 193 

Identification of KDS Formation by PgSPT  194 

Since the kinetic assay is indirect and only measures CoASH release, we confirmed that PgSPT 195 

catalysed conversion of L-serine and palmitoyl-CoA to the product KDS. For this we used 196 

MALDI-TOF MS analysis of the PgSPT assay to detect the formation of the molecular ion 197 

related to the product C18:0 KDS [C18H37NO2, M+H] + (m/z 300.290) (Figure 2A). A series of 198 

controls (Figure 2B-D) confirmed the KDS was only formed in the presence of the enzyme and 199 

both substrates.   200 

 201 

RNA-Seq analysis.  202 

The rigid structural characteristic of SLs serves an important functional role in eukaryotic cells 203 

by condensing around signaling proteins in the cell membrane and forming densely packed 204 

regions of the membrane known as lipid rafts. These puncta of closely-associated lipids and 205 

proteins are thought to increase the efficiency of cellular signaling pathways by bringing 206 

signaling proteins into close proximity. This information led us to hypothesize that a 207 

sphingolipid null mutant may possess a defect in gene expression. Transcriptomic analysis of the 208 

SL-null strain in comparison with the parent strain identified 120 genes that were differentially 209 



expressed (2-fold, q-value <0.01).  Of the 120 genes, the expression of 61 genes were lower; 210 

while expression of 59 genes was higher in the SL-null strain.  Most notably, three 211 

extracytoplasmic function (ECF) sigma factors were found to be differentially expressed: one 212 

gene (PG0985) was 3.2-fold lower while the other two (PG0162 and PG0214) were expressed at 213 

2.2-fold and 6.1-fold higher, respectively.  In addition, the data show that all of the genes 214 

harbored in two distinct loci encoding CRISPR-associated genes (PG1981-PG1989 and PG2013-215 

PG2020) were lower; while genes encoding type IX secretion structural and cargo proteins were 216 

among the most over-expressed. As expected, numerous genes encoding hypothetical proteins 217 

were differentially expressed (23 reduced and 21 over expressed; Tables 1A and 1B).  218 

 219 

Synthesis of SLs by P. gingivalis limits the host capacity to mount a robust pro-inflammatory 220 

response. 221 

To examine the contribution of SL-synthesis to the host inflammatory response, we cultured 222 

macrophage-like THP-1 cells with P. gingivalis wild-type (WT) and the corresponding SPT 223 

mutant for up to 24 hours and measured cytokine and chemokine levels.  THP-1 is a transformed 224 

cell line of human origin. It is a frequently used model cell for investigating macrophage 225 

function, a cell that is central to periodontal disease. Our data show that THP-1 cells cultured 226 

with the SPT mutant produced a robust immune response which was not observed from cells 227 

cultured with the WT (Figure 3).  Even as rapidly as 2h after initiation of co-culture, significant 228 

increases in the levels of TNF-, IL-1, and IL-10 were measured from the cultures infected 229 

with the SL-null mutant compared with levels elicited by parent W83 (p<0.05 for all by T-230 

test).  By 6h, the signature of elevated inflammation initiated by the SPT mutant accelerated, 231 

with the addition of a significant increase in IL-6 and RANTES also observed (Figure 3).  The 232 



trend of lower cytokine and chemokine production in response to the WT remained evident at 233 

24h of co-culture but trended lower than observed at 6h.  No significant differences in THP-1 234 

cell viability was observed between cells cultured with SPT mutant or wild type  using MTT 235 

assay (p>0.05 by ANOVA; Supplemental Table 2).  These findings support our hypothesis 236 

that in the context of live bacteria, synthesis of SLs limits and/or suppresses the host capacity to 237 

mount a robust pro-inflammatory response to this organism. 238 

 239 

Transfer of SLs from P. gingivalis to THP-1 cells in a transwell system. 240 

Lastly, we assessed whether SLs could be transferred from P. gingivalis to THP-1 macrophages. 241 

Employing a 0.4 m pore transwell system, metabolically-labeled P. gingivalis (grown in the 242 

presence of PAA, to allow for specific click labeling of SLs with a fluorophore) were placed in 243 

the upper-well of the transwell, with THP-1 cells placed in the lower well.  After 24h of 244 

transwell co-culture, click chemistry verified that P. gingivalis SLs were transferred to THP-1 245 

cells without physical contact (Figure 4).  246 

 247 

Discussion 248 

 P. gingivalis can be present in subgingival plaque even during periodontal health (Griffen 249 

et al. 1998), suggesting that the host does not always respond to this bacterium as a 250 

pathogen.  While other members of the phylum Bacteroidetes, in particular members of the 251 

genus Bacteroides are viewed as symbiotic or pathobionts, this framework of a symbiotic 252 

relationship with the host is not typically applied to P. gingivalis. Our view of P. gingivalis as a 253 

pathobiont (Cugini et al. 2013), led us to consider its unusual ability to synthesize lipids almost 254 

identical to its host as a strategy to evade host immune activation. 255 



To evaluate function,  gene PG1780, encoding a predicted SPT was cloned and the 256 

recombinant protein was isolated, characterized and confirmed as an SPT (PgSPT) by 257 

determining the kinetics of the reaction using the canonical substrates L-serine and palmitoyl-258 

CoA. Formation of the KDS product was confirmed by MALDI-TOF-MS analysis. This allowed 259 

a comparison with another well characterized bacterial SpSPT from S. paucimobilis (Harrison et 260 

al. 2019). The PgSPT bound both substrates with a similar affinity to SpSPT but in contrast to 261 

this isoform PgSPT displayed much slower kinetics. The molecular details of these differences 262 

may be revealed by a comparative x-ray structural analysis and, to that end, crystal trials of 263 

PgSPT enzyme is underway. Once the protein structure is known, a comparative evolutionary 264 

study of the microbial SPTs will be carried out to explore the species-specific features of the 265 

bacterial and eukaryotic SPTs (Harrison et al. 2018; Heaver et al. 2018). 266 

  Lipid microdomains are known to position proteins associated with signal transduction, 267 

membrane trafficking (protein secretion systems) and regulation of metabolism (protease 268 

complexes) in close proximity (Bramkamp and Lopez 2015; Lopez 2015). Given their known 269 

function in protein secretion systems, it is tempting to speculate that a subset of the SLs may 270 

support T9SS machinery. Furthermore, our RNA-Seq analysis indicates that SLs may indeed 271 

stabilize certain proteins involved in signal transduction, in particular sequestration of anti-sigma 272 

factors.  Anti-sigma factors are known to be localized to the inner membrane where they bind 273 

their target ECF sigma factors preventing transcription.  Our working model is when SLs are not 274 

produced, the targets are over expressed, because the ECF sigma factors are free to interact with 275 

target promoters.  Some T9SS genes have been shown to be regulated via ECF sigma factors, 276 

and we identified fourteen T9SS genes that are expressed at higher levels in the SPT mutant, 277 

some as much as 20-fold.  Importantly, the genes encoding gingipains were not differentially 278 



expressed in the mutant. Our prior studies showed that the SL-null mutant actually demonstrated 279 

elevated secreted gingipain activity, not less, suggesting that the higher levels of cytokines is not 280 

due to a lack of gingipain activity. That being said, since these proteases are proficient at 281 

degrading cytokines, studies are on-going to further evaluate a link between SL synthesis and 282 

secreted gingipain activity.   283 

Our cell infection modeling shows that SL synthesis leads to a reduced inflammatory 284 

response, suggesting that synthesis supports homeostasis. This discovery in some ways 285 

contradicts published results. Prior studies using purified P. gingivalis SLs point to TLR-2 286 

inducing activity (Nichols et al. 2009), stimulation of cellular inflammatory responses (Nichols 287 

et al. 2001), and driving of apoptosis (Zahlten et al. 2007).  Yet, our findings parallel studies on 288 

SL function in other members of the Bacteroidetes that strongly support a role for SLs in 289 

immune suppression (An et al. 2011; An et al. 2014; Brown et al. 2019; Heaver et al. 2018). 290 

Specifically, a study focused on inflammatory bowel disease (IBD) reported that there is an 291 

inverse relationship between SL synthesis by Bacteroides and IBD, indicating that bacterial SLs 292 

can serve as key factors that mechanistically promote intestinal homeostasis (Brown et al. 2019).  293 

As gingival tissues from periodontally healthy and diseased individuals contain SLs, yet the SL 294 

types are distinct; our working model has been that SL synthesis not only plays a central role in 295 

membrane trafficking in P. gingivalis, the secreted SLs may also directly influence host cell 296 

function. Our in vitro findings agree with clinical findings that P. gingivalis releases and/or 297 

secrets its SLs; moreover, our findings support that P. gingivalis SLs are transferred to host 298 

cells.  This later discovery is particularly compelling as transfer of SLs from bacteria to host 299 

suggests an intriguing interplay, which may serve an important role by which host and microbe 300 

interact which in turn, may control oral inflammation as has been shown for B. 301 



thetaiotamicron in the gut (Johnson et al. 2019).  Lastly, our results show that the absence of SLs 302 

elicited high levels of pro- inflammatory cytokines, as well as IL-10, a highly expressed anti-303 

inflammatory cytokine.  Our findings of the presence of both pro- and anti-inflammatory 304 

cytokines occurring concurrently is not fully understood; however, these results are consistent 305 

with clinical profiles observed in inflamed periodontal tissues. The ultimate outcome of this 306 

unusual inflammatory pattern requires further evaluation. 307 

In summary, P. gingivalis is often described as a master manipulator of the immune 308 

response (Hajishengallis and Lamont 2014), primarily due to its ability to degrade 309 

immunoglobulins, complement, and cytokines via its repertoire of secreted proteases 310 

(Hajishengallis and Lambris 2012). We posit that SL-synthesis is another mechanism of control.  311 

Future studies testing these findings in the context of periodontal disease may identify novel 312 

approaches to control SL production by P. gingivalis and thus shift the balance of inflammation 313 

elicited by the subgingival biofilm to a more homeostatic state. 314 
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Figure legends 337 

Figure 1.  Characterization of recombinant P. gingivalis SPT.  (A) Absorption UV-visible 338 

spectrum of PLP-dependent P. gingivalis SPT. Upon addition of L-serine the enzyme (20 μM) 339 

converts from the internal aldimine to the external aldimine form, performed in 20 mM 340 

potassium phosphate, 250 mM NaCl, pH 7.5, at 25°C.  Solid line (0 mM L-serine), or dashed 341 

lines in the presence of 0.1 -100 mM L-serine. (B) Analysis of L-serine binding to C-terminal 342 

PgSPT by monitoring the change in absorbance at 425 nm. (C) Michaelis-Menten kinetic 343 

analysis of SPT with substrates L-serine (0.1-100 mM) and palmitoyl-CoA (250 μM) with 1 μM 344 

enzyme, 100 mM HEPES, pH 7.0, 250 mM NaCl and 0.2 mM DTNB and measured 345 

spectrophotometrically at 412 nm. (D) The concentration of L-serine (20 mM) with different 346 

palmitoyl-CoA concentrations (1-1000 μM).  All data are plotted as mean readings ± 2SD error 347 

bars. 348 

 349 

Figure 2.  MALDI-ToF mass spectra analysis of the PgSPT reaction between L-serine and 350 

palmitoyl-CoA.  Each assay contained with 1 μM enzyme, 100 mM HEPES, pH 7.0, 250 mM 351 

NaCl, 0.2 mM DTNB and 20 mM L-serine or 250 μM palmitoyl-CoA was added dependent on 352 

samples. All reaction samples were eluted with 100 % ACN by C4 zip-tip and mixed with 353 

CHCA matrix dissolved in 50% ACN within 0.25% TFA. The spectrum was analysed on 354 

positive ion mode in triplicates. (A) Observation of the product KDS with m/z = 300.290 during 355 

a sweep of masses (m/z = 100-800 amu). (B-D) Negative controls. (E) Full assay with PgSPT, L-356 

serine and P-CoA with a mass range of m/z = 292-304). (F) Theoretical mass spectrum based on 357 

the KDS formula (M+H)+. 358 

 359 



Figure 3.  The inability of P. gingivalis to synthesize SLs leads to an enhanced cytokine and 360 

chemokine response.  PMA-treated human macrophage-like THP-1 cells were directly cultured 361 

with P. gingivalis W83 (WT; gray bars) or the P. gingivalis W83 SL-null mutant (SPT; black 362 

bars) at MOI 100.  Cell culture supernatant fluids were collected at 2, 6 and 24h of co-culture, 363 

and the levels of TNFα, IL-1β, IL-6, IL-10, RANTES, and IL-8 were measured by multiplex 364 

immunoassay.  Medium alone (M; white bars) served as unchallenged control.  Data are 365 

presented as mean +/- SEM (n = 8 independent experiments); * = P <0.05, and ** = P <0.01 vs. 366 

WT P. gingivalis using unpaired t-tests. 367 

 368 

Figure 4.  SLs transfer from P. gingivalis to THP-1 cells in a transwell system.  (A) 369 

Epifluorescent image of wild-type W83 bacterial cells showing detection of palmitic acid alkyne 370 

(PAA) when bacteria were grown with addition of PAA (green–azide Fluor 488) by click-371 

chemistry. (B) As expected, the SPT-null mutant did not incorporate PAA. (C) Bright field 372 

image of THP-1 cells on cover slip in the lower well of a transwell system after 24hr co-culture 373 

with strain W83 (D) Epifluorescent image of same THP-1 cells showing DAPI (blue) staining of 374 

nucleus, and (E) THP-1 cells incorporated the the P. gingivalis alkyne tagged SLs (green) that 375 

were transferred from W83 constrained to the upper well of the transwell system.  (F) Click-376 

labeling of THP-1 cells co-cultured with W83 grown in medium without PAA using the 377 

transwell system, no green–azide Fluor 488 detected.  378 



Table 1A.  Genes expressed at lower levels in the SPT mutant when compared to the parent 379 
strain W83.  380 

  381 

Name  Gene ID  Product  q-value   
Fold 

Change   

SPT  PG1780  serine palmitolytransferase  0  0.01  

Proteolysis and amino acid metabolism  

pepD-2  PG0537  aminoacyl-histidine dipeptidase  1.30E-216  0.17  

pruA  PG1269  delta-1-pyrroline-5-carboxylate dehydrogenase  2.01E-35  0.38  

-  PG1270  PLP-dependent aminotransferase  3.38E-35  0.37  

-  PG1271  acetylornithine aminotransferase  2.92E-13  0.38  

Transposon  

-  PG0549  ISPg1, transposase  4.72E-19  0.45  

-  PG0872  mobilizable transposon, Xis protein  1.20E-09  0.50  

-  PG1480  conjugative transposon protein TraI  1.68E-07  0.50  

-  PG1482  conjugative transposon protein TraF  1.62E-13  0.33  

-  PG1483  conjugative transposon protein TraE  6.11E-11  0.50  

Hypothetical  

-  PG0354  hypothetical protein  1.26E-07  0.50  

-  PG0554  hypothetical protein  7.25E-13  0.46  

-  PG0609  hypothetical protein  6.13E-15  0.50  

-  PG0617  hypothetical protein  7.14E-14  0.41  

-  PG0727  hypothetical protein  7.89E-57  0.28  

-  PG0835  hypothetical protein  2.58E-26  0.33  

-  PG0914  hypothetical protein  1.54E-29  0.40  

-  PG0986  hypothetical protein  4.38E-24  0.37  

-  PG0987  hypothetical protein  1.42E-125  0.21  

-  PG1229  hypothetical protein  1.68E-09  0.50  

-  PG1268  hypothetical protein  1.54E-53  0.32  

-  PG1494  hypothetical protein  5.30E-05  0.50  

-  PG1508  hypothetical protein  0.003359  0.35  

-  PG1510  hypothetical protein  1.57E-21  0.40  

-  PG1511  hypothetical protein  2.39E-21  0.37  

-  PG1512  hypothetical protein  2.21E-18  0.36  

-  PG1516  hypothetical protein  2.53E-06  0.48  

-  PG1547  hypothetical protein  7.02E-06  0.50  

-  PG1549  hypothetical protein  4.25E-17  0.33  

-  PG1795  hypothetical protein  0.005  0.38  

-  PG1798  hypothetical protein  1.79E-12  0.44  

-  PG1871  hypothetical protein  7.38E-05  0.33  

-  PG1908  hypothetical protein  2.23E-04  0.44  

CRISPR loci  

cas2-1  PG1981  CRISPR-associated Cas2 family protein  2.67E-11  0.42  

-  PG1982  CRISPR-associated Cas1 family protein  2.27E-12  0.44  



-  PG1983  CRISPR-associated Cmr5 family protein  2.25E-06  0.50  

-  PG1984  hypothetical protein  1.27E-19  0.33  

-  PG1985  CRISPR-associated Cmr4 family protein  1.13E-20  0.42  

-  PG1986  CRISPR-associated Cmr3 family protein  2.10E-32  0.35  

-  PG1987  CRISPR-associated Csm1 family protein  4.80E-30  0.29  

-  PG1988  hypothetical protein  2.31E-40  0.24  

-  PG1989  hypothetical protein  6.29E-65  0.27  

cas2-2  PG2013  CRISPR-associated Cas2 family protein  2.73E-12  0.47  

cas1  PG2014  CRISPR-associated Cas1 family protein  5.31E-31  0.39  

cas4  PG2015  CRISPR-associated Cas4 family protein  1.92E-26  0.40  

cas3  PG2016  CRISPR-associated helicase Cas3  5.50E-09  0.33  

-  PG2017  hypothetical protein  4.44E-14  0.33  

-  PG2018  hypothetical protein  3.10E-11  0.33  

-  PG2019  hypothetical protein  6.56E-22  0.31  

  PG2020  CRISPR-associated Cas5e family protein  ?  0.39  

Redox homeostasis  

-  PG0616  Thioredoxin   0.003  0.38  

Cell wall  

-  PG0726  putative lipoprotein, s-layer  8.42E-08  0.25  

Transcription  

-  PG0985  ECF subfamily RNA polymerase sigma factor  3.41E-68  0.29  

-  PG1535  transcriptional regulator  1.88E-10  0.50  

Metabolism  

hprA  PG1190  glycerate dehydrogenase   8.69E-12  0.49  

-  PG1504  NAD dependent protein   0.009  0.33  

-  PG1509  HAD superfamily hydrolase  3.63E-24  0.34  

-  PG1514  glycerol dehydrogenase  3.16E-11  0.44  

-  PG1515  ribulose bisphosphate carboxylase-like protein  1.01E-14  0.45  

Biosynthesis of cofactors  

-  PG1505  radical SAM domain-containing protein   3.28E-15  0.32  

  382 
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 384 
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Table 1B.  Genes expressed at higher levels in the SPT mutant when compared to the 386 
parent strain W83.  387 

  388 

Name  Gene ID  Product  q-value   Fold change   

Type IX Secretion System  

-  PG0027  hypothetical protein  1.81E-28  2.83  

porP  PG0287  hypothetical protein porP  3.33E-56  2.58  

porK  PG0288  putative lipoprotein porK  1.24E-32  2.65  

porL  PG0289  hypothetical protein porL  1.14E-40  2.56  

porM  PG0290  hypothetical protein porM  8.78E-20  2.21  

porN  PG0291  hypothetical protein porN  2.53E-29  2.58  

porT  PG0751  porT protein  8.54E-30  2.00  

sov  PG0809  hypothetical protein  3.61E-10  2.10  

  PG0810  hypothetical protein  4.20E-55  2.60  

tpr  PG1055  thiol protease   0  8.00  

-  PG1947  hypothetical protein  1.48E-17  2.00  

TapA  PG2100  TapA  0  10.88  

TapB  PG2101  TapB  0  20.33  

TapC  PG2102  TapC  0  20.33  

Hypothetical and other  

ispF  PG0028  
2-C-methyl-D-erythritol 2,4-cyclodiphosphate 

synthase  
1.19E-28  2.20  

-  PG0161  hypothetical protein  1.58E-134  3.34  

-  PG0216  hypothetical protein  1.49E-182  4.80  

-  PG0217  hypothetical protein  1.57E-298  4.69  

-  PG0218  hypothetical protein  0  5.00  

-  PG0241  putative lipoprotein  2.60E-05  2.07  

-  PG0297  hypothetical protein  1.52E-18  2.00  

-  PG0323  hypothetical protein  2.96E-36  2.31  

-  PG0419  hypothetical protein  7.47E-20  2.27  

-  PG0606  hypothetical protein  2.13E-29  2.25  

-  PG0607  hypothetical protein  3.11E-13  2.44  

clpB  PG1118  clpB protein  9.12E-23  2.28  

-  PG1374  hypothetical protein  6.87E-16  2.51  

-  PG1527  hypothetical protein  1.39E-19  2.00  

-  PG1571  metallo-beta-lactamase superfamily protein  5.44E-10  2.00  

-  PG1625  hypothetical protein  1.62E-11  2.17  

-  PG1626  hypothetical protein  3.75E-17  2.32  

-  PG1634  hypothetical protein  3.84E-20  2.16  

-  PG1662  hypothetical protein  7.73E-27  2.12  

-  PG1682  glycosyl transferase  8.04E-54  2.44  

-  PG1683  hypothetical protein  2.03E-26  2.10  

-  PG1684  hypothetical protein  5.65E-42  3.20  

udk  PG1781  uridine kinase  2.11E-30  2.30  



-  PG1835  putative lipoprotein  3.05E-10  2.12  

aroA  PG1944  3-phosphoshikimate 1-carboxyvinyltransferase  1.40E-20  2.04  

-  PG1945  hypothetical protein  3.76E-34  2.31  

-  PG1967  hypothetical protein  2.07E-34  2.33  

-  PG2103  hypothetical protein  1.68E-37  2.30  

Transport  

-  PG0064  CzcA family heavy metal efflux protein  3.76E-42  2.29  

-  PG0280  ABC transporter permease  1.97E-11  2.00  

-  PG0281  ABC transporter permease  2.05E-14  2.00  

-  PG0282  ABC transporter ATP-binding protein  4.46E-13  3.00  

-  PG0680  RND family efflux transporter MFP subunit  3.77E-07  2.00  

-  PG1010  ABC transporter ATP-binding protein  5.74E-33  2.00  

-  PG1117  MATE efflux family protein  1.10E-07  2.00  

-  PG1176  ABC transporter ATP-binding protein  0.001661967  2.00  

-  PG1663  ABC transporter ATP-binding protein  6.34E-34  2.05  

-  PG1664  ABC transporter permease  2.07E-33  2.11  

-  PG1665  ABC transporter permease  3.06E-24  2.00  

-  PG1946  ABC transporter  1.56E-25  2.25  

Transcription  

-  PG0162  ECF subfamily RNA polymerase sigma factor  4.84E-10  2.10  

-  PG0214  ECF subfamily RNA polymerase sigma factor  0  5.87  

-  PG0215  Putative anti-sigma factor  1.25E-199  4.46  

-  PG1007  GntR family transcriptional regulator  9.11E-24  2.10  
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Figure 1. Characterization of recombinant P. gingivalis SPT. (A) Absorption characteristics (UV-visible spectrum) of PLP-dependent P. 
gingivalis SPT. Upon addition of L-serine the enzyme (20 μM) converts from the internal aldimine to the external aldimine form, assay 
performed in 20 mM potassium phosphate, 250 mM NaCl, pH 7.5, at 25 °C. Solid line (0 mM L-serine), or dashed lines in the presence 
of 0.1 -100 mM L-serine. (B) Analysis of L-serine binding to C-terminal PgSPT by monitoring the change in absorbance at 425 nm. (C) 
Michaelis-Menten kinetic analysis of SPT with substrates L-serine (0.1-100 mM) and palmitoyl-CoA (250 μM) with 1 μM enzyme, 100 
mM HEPES, pH 7.0, 250 mM NaCl and 0.2 mM DTNB and measured spectrophotometrically at 412 nm. (D) The concentration of L-
serine (20 mM) with different palmitoyl-CoA concentrations (1-1000 μM). All data are plotted as mean readings ± 2SD error bars.

420 nm

425 nm
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Figure 2. MALDI-ToF mass spectra analysis of the PgSPT reaction between L-serine and palmitoyl-CoA. Each assay contained 
with 1 μM enzyme, 100 mM HEPES, pH 7.0, 250 mM NaCl, 0.2 mM DTNB and 20 mM L-serine or 250 μM palmitoyl-CoA was 
added dependent on samples. All reaction samples were eluted with 100 % ACN by C4 zip-tip and mixed with CHCA matrix 
dissolved in 50% ACN within 0.25% TFA. The spectrum was analysed on positive ion mode in triplicates. (A) Observation of the 
product KDS with m/z = 300.290 during a sweep of masses (m/z = 100-800 amu). (B-D) Negative controls. (E) Full assay with 
PgSPT, L-serine and P-CoA with a mass range of m/z = 292-304). (F) Theoretical mass spectrum based on the KDS formula (M+H)+.
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Figure 3. The inability of P. gingivalis to synthesize SLs leads to an enhanced cytokine and chemokine response. PMA-treated human 
macrophage-like THP-1 cells were directly cultured with P. gingivalis W83 (WT; gray bars) or the P. gingivalis W83 SL-null mutant (SPT; black 
bars) at MOI 100. Cell culture supernatant fluids were collected at 2, 6 and 24h of co-culture, and the levels of TNFα, IL-1β, IL-6, IL-10, 
RANTES, and IL-8 were measured by multiplex immunoassay. Medium alone (M; white bars) served as unchallenged control. Data are
presented as mean +/- SEM (n = 8 independent experiments); * = P <0.05, and ** = P <0.01 vs. WT P. gingivalis using unpaired t-tests.
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Figure 4. SLs transfer from P. gingivalis to THP-1 cells in a transwell system. (A) Epifluorescent image of wild-type W83 bacterial 
cells showing detection of palmitic acid alkyne (PAA) when bacteria were grown with addition of PAA (green–azide Fluor 488) by 
click-chemistry. (B) As expected, the SPT-null mutant did not incorporate PAA. (C) Bright field image of THP-1 cells on cover slip in the 
lower well of a transwell system after 24hr co-culture with strain W83 (D) Epifluorescent image of same THP-1 cells showing DAPI 
(blue) staining of nucleus, and (E) THP-1 cells incorporated the the P. gingivalis alkyne tagged SLs (green) that were transferred from 
W83 constrained to the upper well of the transwell system. (F) Click-labeling of THP-1 cells co-cultured with W83 grown in medium 
without PAA using the transwell system, no green–azide Fluor 488 detected.
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