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Erysipelothrix spp. comprise a group of small Gram-positive bacteria that can infect a

variety of hosts including mammals, fish, birds, reptiles and insects. Among the eight

Erysipelothrix species that have been described to date, only Erysipelothrix rhusiopathiae

plays a major role in farmed livestock where it is the causative agent of erysipelas. E.

rhusiopathiae also has zoonotic potential and can cause erysipeloid in humans with a

clear occupational link tomeat and fish industries.While there are 28 known Erysipelothrix

serovars, over 80% of identified isolates belong to serovars 1 or 2. Vaccines to protect

pigs against E. rhusiopathiae first became available in 1883 as a response to an epizootic

of swine erysipelas in southern France. The overall vaccine repertoire was notably

enlarged between the 1940s and 1960s following major outbreaks of swine erysipelas in

the Midwest USA and has changed little since. Traditionally, E. rhusiopathiae serovar 1a

or 2 isolates were inactivated (bacterins) or attenuated and these types of vaccines are

still used today on a global basis. E. rhusiopathiae vaccines are most commonly used in

pigs, poultry, and sheep where the bacterium can cause considerable economic losses.

In addition, erysipelas vaccination is also utilized in selected vulnerable susceptible

populations, such as marine mammals in aquariums, which are commonly vaccinated

at regular intervals. While commercially produced erysipelas vaccines appear to provide

good protection against clinical disease, in recent years there has been an increase in

perceived vaccine failures in farmed animals, especially in organic outdoor operations.

Moreover, clinical erysipelas outbreaks have been reported in animal populations not

previously considered at risk. This has raised concerns over a possible lack of vaccine

protection across various production species. This review focuses on summarizing the

history and the present status of E. rhusiopathiae vaccines, the current knowledge on

protection including surface antigens, and also provides an outlook into future directions

for vaccine development.

Keywords: Erysipelothrix spp., history, immune protection, vaccines, review
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INTRODUCTION

Erysipelas in animals and erysipeloid in people are both caused
by infection with the Gram positive bacteria Erysipelothrix
spp. which belong to the family Erysipelothrichaceae, order
Erysipelotrichales, class Erysipelotrichia and phylum Firmicutes
(1). Erysipelothrix spp. can be divided into eight different
species: Erysipelothrix rhusiopathiae (2, 3), Erysipelothrix
tonsillarum (4), Erysipelothrix species 1, Erysipelothrix species
2, and Erysipelothrix species 3 (5), Erysipelothrix inopinata (6),
Erysipelothrix larvae (7) and Erysipelothrix piscisicarius sp. nov.
(8). Isolates associated with these species were identified in
mammals, birds and fish (E. rhusiopathiae, E. tonsillarum and
E. species 1, 2, and 3; E. piscisicarius), a vegetable peptone broth
(E. inopinata) or insects (E. larvae). Erysipelothrix spp. have
a worldwide distribution and are considered ubiquitous with
most identified isolates belonging to E. rhusiopathiae (9). The
most important reservoir for E. rhusiopathiae are pigs, where an
estimated 30-50% of healthy pigs appear to harbor the organisms
in tonsils or lymphoid tissues (10).

Erysipelas describes an acute bacterial disease in pigs and
other species, often characterized by raised, red skin patches (11).
Not surprisingly, the term “erysipelas” is derived from the ancient
Greek “ερυσíπελας” which means “rose” or “red skin” (12, 13).
While skin discoloration in pigs may occur due to various
etiologies and the term “swine erysipelas” is not very specific, it
has still become a synonym for Erysipelothrix spp. infection in

FIGURE 1 | Timeline and milestones in Erysipelothrix spp. nomenclature and research.

pigs and is well-known by veterinarians and other occupations
connected to the food animal industry (14). Today, erysipelas is
also used to describe clinical manifestations associated with this
bacterium in other species including mammals, fish, birds and
reptiles (15, 16). In humans, where the disease was first described
in 1870 (17) since 1909 the term “erysipeloid” is used (18).

Prior to successful bacterial isolation and characterization,
erysipelas was thought to be anthrax of swine as it resembled
some of the clinical manifestations in cattle (9). During 1877–
1878 the “great swine plague” (i.e., classical swine fever) moved
through the United States, England and Scandinavian countries
before entering and spreading through mainland Europe (14).
Losses associated with these epidemics likely prompted early
bacteriologists to investigate swine diseases (14). In 1876,
Robert Koch successfully isolated a bacterium from a mouse
inoculated with putrefying blood (19). Koch initially designated
the bacterium “Bacillus of mouse septicemia” (19). Since Koch’s
discovery, the bacterium changed its name a total of 36
times; Erysipelothrix rhusiopathiae was officially designated as its
scientific name only in 1966 (20) and has been in use ever since
(Figure 1). This specific name was created from the Greek words
“erysipelas” (rose, red skin), “trix” (hair), “rhusius” (reddening),
and “pathus” (disease). During a swine erysipelas outbreak in
southern France from 1882-1883 Louis Thuillier successfully
isolated the bacterium from pigs with “rouget” as erysipelas is
called in France (21). At approximately the same time Friedrich
Löffler also isolated the bacterium but only published his findings
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FIGURE 2 | Current knowledge on global Erysipelothrix spp. serovar distribution in pigs and poultry.

after completing the first accurate description of E. rhusiopathiae
and reproducing erysipelas in experimentally infected pigs in
1886 (22) (Figure 1).

Historically, Erysipelothrix isolates have been divided into at
least 28 serovars based on specific polysaccharide complexes that
can be demonstrated by double agar-gel precipitation testing
using type specific rabbit antiserum (23, 24). Initially there
were several serotyping systems, and the most commonly used
recognized two serovars, A and B, with a third group (N) for all
isolates that did not react with A or B antiserum (25). Because
this typing scheme quickly became unpractical with more and
more isolates falling in the N group, a new system was created
which is used to this day (23, 24). In this system, the serovars are
indicated by consecutive Arabic numbers in order of discovery
(i.e., 1–26), serovar 1 and sometimes 2 may be further subdivided
and indicated by small letters (i.e., 1a, 1b, 2a, 2b). The old A and
B serovars correspond to 1 and 2 in the new system. Serovar N,
which lacks serovar-specific antigens and is still used in the new
serotyping system, has been shown to arise from various other
serovars following genetic mutation (26, 27). Certain serovars
have historically been associated with particular Erysipelothrix
species including serovars 1a, 1b, 2, 4–6, 8, 9, 11, 12, 15–17, 19, 21,
23, and N with E. rhusiopathiae, serovars 3, 7, 10, 14, 20, 22, and
24–26 with E. tonsillarum, serovar 13 with E. species 1 and serovar
18 with E. species 2 (28). However, this is not absolute and certain
serovars can be associated with more than one species (5, 29).
Serotyping studies have indicated that, with some geographic
differences, serovars 1a, 1b, and 2 are most widely distributed
in pigs and likely of greatest importance overall (24, 29–36)
(Figure 2). Serotyping is not performed routinely, and serovars

are not species specific or phylogenetically informative (37). It
has been shown that the chromosomal locus responsible for
determining antigenicity of serovars 1a and 2 is involved in the
virulence (26); however, the overall importance of serovar in
pathogenesis and immune protection is largely unknown.

Erysipelas vaccines are commonly used in pigs (38). In this
species, most breeding herds in almost all pork producing
regions are regularly vaccinated (Source: https://www.nadis.
org.uk/disease-a-z/pigs/erysipelas/). In contrast, growing pigs
are not commonly vaccinated against erysipelas as they are
expected to have passively acquired antibodies when leaving the
breeding farm. However, if there is a perceived high erysipelas
pressure in grow-finish farms, growing pigs are also vaccinated
(Source: https://www.nadis.org.uk/disease-a-z/pigs/erysipelas/).
Erysipelas vaccines are less commonly used in poultry (e.g.,
turkeys or laying hens) (39) or sheep (40). Turkeys used for meat
production can be vaccinated but this may be labor intensive
(39). Breeder turkeys are vaccinated four weeks before onset
of egg production (39). Chickens (almost exclusively layers)
are vaccinated at least twice (or more often) 2–4 weeks apart
(35). Ewes are not regularly vaccinated outside the large sheep
production regions of Australia/New Zealand due to a low
cost-benefit ratio of vaccination. However, to prevent erysipelas
arthritis in lambs, vaccinating ewes prior to lambing will provide
immunity in lambs for up to 8 weeks (Source: https://www.zoetis.
com.au/_locale-assets/faq/erysipelas.pdf).

While for many decades Erysipelothrix spp. infections had
minimal impacts on livestock production, erysipelas appears
to be re-emerging today due to changing environmental
conditions, changes in welfare regulations, an increase in
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outdoor organic farming (41), and changes in antimicrobial
usage, with global reductions and eventual bans anticipated
in the very near future (42). Sporadic outbreaks are being
reported in various settings such as in farmed animals
(31, 35, 43–46) and more specifically organic farms (47, 48),
in fish (16, 49) as well as globally in wild animal species
(50, 51). Climate change could favor increased bacterial loads
and persistent environmental contamination. Alternatively,
erysipelas outbreaks may be associated with changes in
host resistance. Further explanations for re-emergence of E.
rhusiopathiae in livestock could include decreasing vaccine
efficacies, adaptations in the Erysipelothrix spp. populations
allowing certain isolates to better survive in vaccinated
populations or both. With the ever-expanding knowledge
on erysipelas in different animal species and the perceived
increase of clinical cases in livestock and wild animal
species in recent years, it appears important to revisit the
accumulated background information on protection and
vaccination against Erysipelothrix spp. and gain perspectives for
the future.

DISEASE MANIFESTATION

Erysipelas is known to cause three main clinical manifestations
in animals: acute, subacute, and a chronic disease (38). In
addition, there is also subclinical disease. For pigs, acute disease is
characterized by a sudden onset of clinical signs and can include
acute death, fever, withdrawal from the herd, squealing, stiff
stilted gait, weight shifting, depression, inappetence, diamond
skin lesions which may appear 2–3 days after infection and
disappear 4–7 days after first appearance, and necrotic lesions on
tail, ears, and posterior aspect of the thighs. As a milder variation
of the acute form, the subacute disease manifestation has similar
but less severe clinical signs with fewer skin lesions; overall the
subacute form may remain unnoticed, i.e., subclinical (38). The
chronic manifestation of erysipelas, which may follow acute or
subacute disease in pigs, is most commonly characterized by signs
of arthritis (stiffness, enlargement) as early as three weeks after
initial infection, and/or signs of cardiac insufficiency, sometimes
with sudden death (38). In breeding sows, abortions or increased
pre- and postpartal vulval discharge may be observed, as well as
smaller litter sizes and reduced numbers of live born piglets (52).
The chronic form of erysipelas may also affect growth rate and
increase losses of cuts in meat packing plants (53).

Erysipelas can occur in a wide range of farmed poultry
including turkeys, broiler chickens, laying hens, geese, pheasants
and quails. Layers may simply suffer from sudden death due
to acute septicaemia. Normally few birds may be depressed
initially with mortality starting within 24 h. There may also be
dramatic decrease of egg production (35) and conjunctival edema
(46). Unsteady locomotion and lack of coordinated movement
have also been reported (13). The disease can be fatal in young
adult turkeys and ducks, with affected birds developing severe
hemorrhages in breast and leg muscles (54). Turkeys with
vegetative endocarditis usually do not have clinical signs andmay
die suddenly (13). Outbreaks have been reported in 2–3 day old

poults (55) or commercial breeder flocks of quails (56). In sheep,
the most common clinical manifestation is polyarthritis, typically
presenting in 2- to 6-month-old lambs (57). Chronic ovine
erysipelas is often restricted to joints with subchondral bone
involvement (57). While slaughter condemnations in farmed
animals other than pigs rarely occur, chronic cases that reach the
slaughterhouse may pose a zoonotic risk to workers and infection
of slaughterhouse employees has been reported (56).

ECONOMIC IMPACT

Erysipelothrix rhusiopathiae is of economic importance in pigs,
poultry and lambs where outbreaks can cause high losses.
Today the majority of pig breeding herds in Europe, North
America, and South America are routinely vaccinated (every
4–6 months) against erysipelas, and erysipelas vaccine usage is
increasing in poultry. From October 2018 to September 2019,
∼10,683,595 doses of autogenous E. rhusiopathiae vaccines,
72,440,500 doses of attenuated vaccines and 33,257,460 doses
of bacterins were released in the USA across species (Source:
USDA, Dr. Paul Hauer, 2019). In the UK, during 2018,
∼1,359,120 doses of inactivated vaccines including bivalent
and trivalent products were sold (Source: Kynetec, UK data,
2019). In pigs, large scale outbreaks are an ongoing problem
in some areas including the USA, where documented outbreaks
occurred in 1989–1990 (58) and again in 2000–2001 (32). An
outbreak is often devastating for affected producers, and for
organic chicken productions in particular, where it may lead
to permanent closure of the farm. Additionally, subclinical
disease in pigs can be of great importance when it leads
to abattoir condemnations, as at this point the producers
have already incurred the maximal possible cost on the
individual pigs. In modern food animal production, the precise
economic impact of Erysipelothrix spp. is often multifaceted and
likely underestimated.

Economic losses can be directly associated with high
morbidity and mortality rates during an acute outbreak
(Figure 3) resulting in a reduction of animals on a given farm
(43, 45), including significant egg drop in layers (47). In addition,
as a result of joint pain and lameness due to the chronic form
of the disease, there may be substantial decreased weigh gain,
subsequently resulting in an increased time to slaughter (57).
Finally, there may be increased numbers of condemned carcasses
at slaughter due to lesions that may only become visible during
scaling and dehairing processes or at the splitting floor (53, 59). In
such cases, producers may be completely unaware of any ongoing
erysipelas infection on the farm (Figure 3). When 153 arthritic
joints from Canadian slaughter pigs were examined for bacteria,
E. rhusiopathiae was found most frequently and identified in 45%
of the samples (60). However, based on meat inspection rules
in the European Union enforced in January 2006, if cutaneous
erysipelas is detected prior to slaughter on farm, slaughtering
of affected pigs must be deferred for at least 15 days from
disappearance of typical lesions to guarantee meat safety (61).

Overall, it is often difficult to get estimates of the direct impact
of erysipelas on a population, as E. rhusiopathiae infections
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FIGURE 3 | Impact of erysipelas on different production stages in pigs (A) and poultry (B).

are not reportable to health authorities in most countries. In
Japan, where swine erysipelas is a reportable disease, ∼2,000
pigs are affected annually, which is equivalent to 0.0125%
of finishing pigs produced in the country. PCR assays have
been developed for improved detection of contaminated pigs
at Japanese slaughterhouse (62). Once the infection occurs in
farms, pigs often become carriers of the organism and disperse
the organism in their feces, resulting in contamination of their
environment. Since the disease may also cause abortions in
breeding herds, the total economic losses may become intolerable
for affected farms. Analysis of erysipelas case trends are rarely
published from other countries. However, a recent analysis of
epizootic swine erysipelas cases from 2006 to 2017 in the Ukraine
found a total of 39,952 cases during this time period, mainly in
the Southeast region of the country (63).

Economic losses can be assessed via two routes: (I) by using
production and economic models to value the production losses
due to disease (presently not available for erysipelas) and (II) by
partial budgeting approaches with “rules-of-thumb.” An example
of the latter has been published at https://thepigsite.com/articles/
erysipelas-why-is-it-still-a-problem-after-100-years (64). Based
on the provided example calculations for the United Kingdom,

a 400 sow breeding herd with an acute outbreak could lose 388
pigs due to abortions and sow mortality. For 2008, this would
have cost GBP 14000. A late/chronic erysipelas outbreak in a
600 head finisher herd could result in∼58 pigs being euthanized
and 31 condemned for a total loss of GBP 17451 over a six-
month period (64). In a recent study focusing on global trends
in infectious diseases in pigs, pathogens were ranked based on
overall publication counts from 1966 to 2016 (65). The top
40 pathogens included 16 viruses, 15 bacteria, eight helminth
parasites and one protozoan, with E. rhusiopathiae ranking 30th.
This relatively low representation in the scientific literature may
reflect an overall neglect of investigating long-standing endemic
bacterial pathogens.

HISTORY OF ERYSIPELAS
PREVENTION METHODS

Attenuated Vaccines
The development of bacterial vaccines for pigs began at the
end of the nineteenth century (Figure 4) when the very first
erysipelas vaccine became available (66). This initial attempt to
produce an attenuated erysipelas vaccine was in direct response
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FIGURE 4 | Timeline and milestones of E. rhusiopathiae vaccine development in pigs.

to a major swine erysipelas outbreak in southern France (67).
After successful isolation of E. rhusiopathiae from affected
pigs, the virulence of the bacterium was enhanced by passage
through pigeons. This was followed by passages through rabbits
which are only weakly susceptible to E. rhusiopathiae infection.
Interestingly, this resulted in an increase of virulence of the
isolate for rabbits and a decrease of virulence for swine (67).
The so derived attenuated vaccine was used in pigs by injecting
the attenuated culture, followed by another injection 12 days
later using the virulent culture (Figure 4). This method was used
from 1886 to 1892 in more than 100,000 pigs in France (68),
and was subsequently adapted in other European countries (but
never inNorth America), and used for pig vaccinations until 1930
(69). As this method is hazardous, it has since been abandoned.
Subsequently, live-culture erysipelas vaccines for parenteral use
in pigs have been available since 1955. The first vaccine of this
type was named erysipelas vaccine avirulent or EVA (70). For this
particular product, large volumes of the bacteria were injected
into mice, pigeons, and pigs without resulting in any clinical
signs, hence the vaccine was considered avirulent (70). Oral live
erysipelas pig vaccines were developed during the 1960s (71, 72).
The idea of orally vaccinating pigs originated by observations
made from mass vaccination against human polio, and initial
studies using experimentally vaccinated and challenged pigs
indicated efficacies of 85–90% (71). Methods for attenuation
included air-drying (73), passage in media containing acridine
dyes (74), or passage through rabbits or chicken embryos (75).

Specifically, oral vaccines were found to be safe in pigs without
generating carriers or shedders (76) and vaccines were found to
be stable both in the dried and liquid stage (72). Subsequently,
swine oral vaccines were also examined for use in turkeys and
were considered potentially useful (77). Attenuated vaccines are
still in use today, administered via drinking water, intramuscular
injection or even air exposure and are useful for vaccinating
larger animal populations housed indoors including poultry and
pigs. It is recommended to discontinue antibiotic treatment 8–
10 days before vaccination (75). A single dose of an attenuated
vaccine is sufficient to provide protection which varies across
products but in general is guaranteed for up to 6 months. Usage
of any attenuated vaccine strain is always associated with certain
risks. While reversion to virulence of attenuated vaccines has
not been reported in Western countries until now, in Japan
attenuated erysipelas vaccines have been associated with chronic
outbreaks of erysipelas (78).

Serum-Culture Co-immunization
In 1891, Emmerich and Mastbaum discovered that when rabbits
where hyperimmunized against swine erysipelas, their serum had
curative properties (79). In 1893 a simultaneous serum-culture
intervention was introduced for immunization, which consisted
of concurrently injecting viable culture and a hyperimmune
serum (79). This principle evolved into two methods. In
the “Leclainche method,” a virulent culture was mixed with
antiserum just before inoculation. In contrast, in the “Lorenz
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method,” named after a German veterinarian and widely used in
Germany for more than 50 years (80, 81), antiserum and virulent
culture were given at the same time but at different inoculation
sites (Figure 4). The Lorenz method was introduced to Nebraska,
USA in 1938 and by 1953, 26U.S states were using this method.
Similar to the Pasteur vaccine, ultimately these methods were
considered to be hazardous; after other active immunization
protocols became available, the usage of thesemethods eventually
ceased (79).

Inactivated Vaccines
The first large-scale swine erysipelas outbreaks in the USA
occurred in South Dakota, USA between 1928 and 1930 (82,
83). As a direct consequence, during the late 1940s, shortly
after World War II, the first inactivated erysipelas vaccines for
usage in pigs were developed (84, 85). Specifically, usage of a
bacterin, consisting of formalin-killed whole E. rhusiopathiae
culture adsorbed on an aluminum hydroxide gel was first
reported in 1947 in East Germany (85) and licensed in the
US in 1953 (Figure 4). Bacterins often use selected serovar 2
isolates that produce a soluble immunogenic product when
grown in a complex liquid medium containing serum (75). This
substance has been described as a glyco-lipoprotein (86) and
most of it is released into the medium and is considered the
necessary immunogenic ingredient for bacterins (75). Further
characterization of the glyco-lipoprotein fraction during the
1990s revealed a 64–66 kDa protein fraction (87, 88) later
described as surface protective antigen (Spa) A (89, 90). Themain
downside of the original bacterin was a protective immunity
which only lasted 2-4 months. In an attempt to improve the
formalin-killed Traub adsorbate bacterin, an emulsion bacterin
was prepared using a water-in-oil emulsion (manidemono-oleate
and a light mineral oil; bayol F) (91, 92). Pigs vaccinated with
this emulsion bacterin developed immunity lasting at least 7–8
months or 237 days (91, 92). Bacterins developed at this time
were also shown to be effective in turkeys (69, 93). A modified
bacterin version, the lysate bacterin was developed in the Institut
Merieux, Lyon, France in 1953 (94), licensed in the USA in
1955 (Rhusigen, Allied Laboratories, Inc., Indianapolis), and is
similar to a regular bacterin with the exception of lysis of bacterial
cells. Anecdotal evidence suggested that the bacterin could also
be used with anti-swine serum to achieve immediate protection
(94). Bacterins are given by subcutaneous or intramuscular
routes and a booster vaccination may be required for some
products, which typically needs to be administered 2–3 weeks
after first vaccination. Manufactured inactivated vaccines have to
follow strict quality controls and each batch needs to be tested
for relative strength. Early on, this required extensive animal
experiments in laboratory mice and pigs for the determination
of efficacy (80). The discovery of skin scarification, allowing
testing of more than one culture in production on a single
animal, was considered a major improvement (95). The World
Health Organization (WHO) established International Standards
for erysipelas vaccines and antisera concerning potency testing
in mice (80). Today, potency testing in Europe is generally
performed with enzyme-linked immunosorbent assays (ELISAs),

which have largely replaced animal experiments (96, 97). This
change has reduced animal usage by over 80% (98, 99).

Passive Immunization
Passive immunity is a way to immediately but temporarily
protect an animal for∼2 weeks by administering a commercially
available antiserum. This treatment utilizing hyperimmune
serum, usually obtained from horses, was introduced in 1899,
several years after it had been developed for the serum-culture
co-immunization (75). Studies in mice receiving antiserum
prepared in rabbits or horses indicated protection even against
serologically different isolates (100). Until introduction of
antibiotics in pig production in 1949 (101), hyperimmune serum
was the only means by which to treat affected pigs (82), but
ultimately its usage decreased in later years. In general, the
preventive dose is half the therapeutic dose (75). While passive
immunization may be useful in protecting pigs during an acute
outbreak, it is not very practical as antisera are not readily
available and protection is not long-lasting, and therefore this
method is not widely used today.

CURRENTLY AVAILABLE COMMERCIAL
VACCINES

Today several commercial vaccines to protect pigs, lambs and
poultry from the negative impacts of Erysipelothrix spp. are
available (Table 1). Although they are not very effective in
preventing chronic arthritis, its frequency and severity are
usually lower in vaccinated pigs compared to non-vaccinated
pigs (105). Essentially all commercial vaccines available to date
are based on serovar 1a or serovar 2 isolates, where serovar 1a
is more commonly used in attenuated vaccines and serovar 2 is
more commonly used in bacterins. Since the first introduction of
attenuated erysipelas vaccines and bacterins, little has changed
in terms of which isolates are being utilized (Table 1). For
attenuated vaccines in modern husbandry, care needs to be taken
with routine waterline disinfection, anything that may prevent
the animals from drinking water (Source: http://www.pig-world.
co.uk/features/water-medicating-pigs-what-you-need-to-know.
html) and antibiotic administration at vaccination (106), as these
may negatively impact vaccine efficacy. For bacterins various
adjuvants are added to provide longer immunity. There are
notable differences in the geographic distribution of the type of
erysipelas vaccines, as live bacterial vaccines are rarely used in
Europe (29) while they are common in other swine producing
regions including North and South America (32) and Asia
(78, 107) (Table 1).

In breeding herds, vaccination has been shown to increase the
numbers of liveborn pigs per litter and to decrease farrowing
intervals (52). Breeding herd vaccination has also been shown
to decrease the incidence of periparturient vulval discharge
(52). Consequently, vaccination against E. rhusiopathiae at every
breeding cycle is standard in most pig breeding herds.

Protective immunity after vaccination is generally thought to
range between 4 and 6 months. Thus, pig breeding herds are
typically re-vaccinated in every cycle or at least twice a year. It has
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TABLE 1 | Basic information on selected commercial Erysipelothrix rhusiopathiae vaccines.

Vaccinea Manufacterer Isolate ID Serovar Year of initial

strain description

Type Availability Species

ERY VAC FD ARKO Laboratories, Ltd. Not disclosed 1a Attenuated USA Turkeys

ERY VAC 100 ARKO Laboratories, Ltd. Not disclosed 1a Attenuated USA Pigs

Ingelvac® ERY ALC Boehringer-Ingelheim

Vetmedica

R-9 1a 1944 (102) Attenuated USA Pigs

Suvaxyn® E-Oral Zoetis 31 1a 1963 Attenuated USA, Canada Pigs

Swine erysipelas live

(seed lot vaccine)

National Veterinary

Assay Laboratory,

Ministry of Agriculture,

Forestry and Fisheries

Koganei

65-0.15

1a 1971 (103) Attenuated Japan Pigs

Ruvax® Boehringer-Ingelheim

Vetmedica

Unknown 2 Unknown Lysate

bacterin

EU Pigs

Parvoruvax® Ceva Animal Health, Ltd Lysate

bacterin

EU (not Malta), Brazil,

Caucasus, Mexico,

Moldova,

Switzerland, Russia,

Middle East

Pigs

Coopers®

ERYGUARD®

Coopers Animal Health

(Intervet Australia Pty

Ltd/MSD Animal Health

Australia)

Unknown 2 Unknown Bacterin Australia Pigs, sheep/lambs

ERYSENG® Hipra R32/E11 2 1968 (104) Bacterin EU, UK, Brazil,

Argentina, Mexico,

Taiwan, Thailand,

Republic of Belarus,

Ukraine, Russia,

Georgia, Peru

Pigs

MaGESTic® 7 Merck Animal Health SE-9 2 1948 (84) Bacterin USA Pigs

Nobilis® Erysipelas MSD Animal Health M2 2 1946 Bacterin EU, UK Turkeys

Porcilis®Ery EU, UK, South Africa Pigs

ER Bac®Plus Zoetis CN3342 2 1963 Bacterin USA Pigs

Farrowsure Gold USA, Canada, South

Africa

Eryvac® Zoetis Unknown 1963 (Seed Source:

Medical Research

Council, National

Institute for Medical

Research, London)

Bacterin Australia, New

Zealand

Pigs, sheep/lambs

Suvaxyn® Parvo/E Zoetis B-7 2 1989 (Spain) Bacterin USA, Canada, EU Pigs

Swivac ERA Kyoritsu Seiyaku Corp. SpaA only 1a 2011 Subunit Japan Pigs

SUIMMUGEN®rART2/ER KM Biologics Co., Ltd. SpaA only 2 Subunit Japan Pigs

aErysipelas vaccines for usage in pig breeding herds are often available monovalent, or bi- or trivalent in combination with porcine parvovirus and/or Leptospira spp. As monovalent,

bivalent or trivalent products from the same company often contain the same Erysipelothrix rhusiopathiae isolate, only one product per isolate is listed.

been suggested that in-feed antibiotics could negatively impact
vaccine responses, especially when using attenuated erysipelas
vaccines (108). However, a study using selected antibiotics
could not find major differences between treatment groups,
and vaccinated pigs were protected from pathogenic challenge
(108). In a similar study by a different group, using 105 8-
week old pigs, it was found that vaccination of pigs against
erysipelas in the presence of antibiotics may result in a decrease
(ceftiofur, doxycycline, tiamulin) or enhancement (amoxillin,
tulathromycin) in the production of specific antibodies against
Erysipelothrix spp. (106). In contrast, the use of ginseng as a co-
adjuvant has been shown to improve the antibody response of

vaccination (109). Ginseng contains immunomodulators named
ginsenosides, which in pigs enhance the antibody response to
viral and bacterial antigens found in vaccines. Two different
erysipelas bacterins were tested and the addition of ginseng
improved the less immunogenic vaccine so that it became
more immunogenic compared to the vaccine without ginseng.
The authors concluded that the use of ginseng as a co-
adjuvant provides a simple, safe and inexpensive alternative
for improving the potency of aluminum hydroxide adjuvanted
vaccines (109). Vaccination against other pathogens has not been
shown to affect the efficacy of erysipelas vaccines. When pigs
were vaccinated with an attenuated porcine reproductive and
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respiratory syndrome virus (PRRSV) vaccine and later with an
attenuated erysipelas vaccine followed by erysipelas challenge, a
negative impact of PRRSV vaccine on the erysipelas vaccination
was ruled out (110). Besides their usage in farmed animals,
Erysipelothrix spp. vaccines are occasionally used off-label in
other species, including marine mammals, with encouraging
results (111, 112). Marine mammals are highly susceptible
to Erysipelothrix spp. infections, the disease course is almost
always acute and is commonly fatal (113). Protection against
Erysipelothrix spp. isolates recovered from dolphins has been
demonstrated in mice vaccinated with a commercial pig bacterin
(114). The off-label use of an attenuated swine vaccine in laying
hens (35) or turkeys (77) has also been reported.

AUTOGENOUS VACCINES

For veterinary purposes, autogenous vaccines refer to “any
immunological veterinary medicinal products manufactured (by
a qualified person) for the purpose of producing active immunity
from pathogenic organisms obtained from an animal or animals
from the same herd that have been inactivated and used for the
treatment of this animal or of animals from this herd” (Article
L 5141-2 of the Public Health code; https://www.biovac.ceva.
com/en/Autogenous-vaccines/Autogenous-Vaccines accessed
09-Mar-2020). Autogenous vaccines are popular in the veterinary
field, especially in pigs and poultry. They are commonly used
in pig or poultry erysipelas outbreaks, usually when there is a
perceived lack of commercial vaccine efficacy or when there
are no suitable products on the local market. Such vaccines,
as outlined above, are limited in their usage to the farm
the microorganism originated from. Advantages include the
availability of farm-specific isolates to protect the affected herd,
while the main disadvantage is the absence of vaccine validation
work including dose determination, adjuvant selection and
antigen load, which are instead based on estimates from other
vaccines or experience. In addition, autogenous vaccines may
be accidentally contaminated with other pathogens. In 2004,
autogenous vaccines accounted for 15–20% of the US pig
market (115). Specifically for erysipelas, of all licensed erysipelas
vaccines in the USA during 2019 62.2% were attenuated, 28.6%
were inactivated and 9.2% were autogenous (Source: USDA, Dr
Paul Hauer).

CROSS-PROTECTION AMONG
Erysipelothrix Spp. ISOLATES

Research trials investigating cross-protection among
Erysipelothrix spp. isolates are still limited due to the large
number of strains corresponding to most serovars and a lack
of in vitro models that could be used. Vaccine trials have been
conducted in pigs, mice and turkeys. For each trial appropriate
positive and negative controls need to be included, and with 3R
(replacement, reduction, refinement) regulations it is not always
feasible to test more than one isolate per serovar and more than
the most commonly occurring serovars. A summary of published
trials (77, 105, 116–123) is provided in Table 2.

PROTECTIVE ANTIGENS

Already in 1970 a protective antigen was described from an E.
rhusiopathiae culture (86). In 1990, a 64 to 66-kDa protein in
cell wall extracts was shown to be protective (125). However, the
genetic fragment, which was cloned in a lambda phage vector
and encoded the protein, had not been sequenced at the time. In
1998, the major protective antigen of E. rhusiopathiae, designated
as SpaA, was identified and cloned in Escherichia coli and SpaA
has since been fully characterized (89, 90). The SpaA protein,
whose presence is thought to be highly conserved across E.
rhusiopathiae isolates, is not present in E. tonsillarum (30, 31,
37, 120, 126). In 2007, the Erysipelothrix spp. Spa protein was
classified into three types, designated as SpaA, SpaB, and SpaC
(120). The amino acid sequence similarity within each Spa type
was found to be high (96–99%) but among different Spa types
it was rather low (∼60%). The greatest diversity in Spa proteins
was found in the N-terminal half of the molecule (50–57%
similarity) (120). Most identified Erysipelothrix spp. isolates from
farmed animals contain SpaA. The protective domain of SpaA,
cloned from isolate Fujisawa (serovar 1a), was demonstrated to
be between amino acid residues 12 to 195 of the protein based
on a mouse challenge study (90). In recent years Erysipelothrix
spp. isolates containing SpaC have been associated with increased
fish mortality (16) in the USA and very recently SpaC has also
been identified in Erysipelothrix sp. 2 isolates from turkeys with
increased mortality in Brazil (127).

With additional molecular tools becoming available and
also affordable, several research groups have investigated
Erysipelothrix spp. for the presence of different protective
antigens and many of those have also been further characterized.
Protection against Erysipelothrix spp. is generally mediated by
antibodies against antigens located at its surface and certain
antigens present in the culture supernatant (66). The first
genomic sequence of E. rhusiopathiae became available in 2011
and indicated presence of a complete set of peptidoglycan
biosynthesis genes, two-component regulatory systems, and
various cell wall-associated virulence factors, including a capsule
and adhesins (1). The capsule above all plays an important role
in immune evasion; however, the capsule of E. rhusiopathiae

is poorly immunogenic and the antibodies against the capsular
antigen are not protective (128, 129).

Other E. rhusiopathiae protective antigens reported so
far include RspA (rhusiopathiae surface protein A) (130),
CbpB (choline-binding protein) (131, 132), and GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) (133). These
protective antigens play important roles in biofilm formation
(RspA) (130) and adhesion to porcine endothelial cells (SpaA
and GAPDH) (133, 134), and to extracellular matrix proteins,
including fibronectin (RspA and GAPDH) (130, 133), collagens
(RspA) (130), and plasminogen (GAPDH) (133). All of these
protective antigens are surface exposed and the protective roles
of these proteins are conferred by opsonophagocytic killing by
macrophages. While all the protective antigens that have been
proposed appear widespread within E. rhusiopathiae (135), it is
unknown whether differences in these antigens result in varying
degrees of cross-protection.
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TABLE 2 | Cross-protection trials for Erysipelothrix spp., including host species the trial was conducted in (mouse, pig, or turkey), and serovars and Spa details in the vaccines and challenge isolates.

Vaccine Type Isolate Serovar Spa type Routea Dose Species Number of animals

per serovar (Total)

Number of isolates

within a serovar

Serovar used for the challengeb References

Protected Not protected (%

mortality)

Inactivated AN-4, SE-9, CN3342,

CN3461

2 A SC 1× Mouse 30-60 (180) 1,2,4,11 9,10 (57–77%) (117)

2× Pig 3-6 (33) 1,2,4,11 9,10 (70–83%)

Inactivated AN-4, SE-9, CN3342,

CN3461

2 A SC 1× Mouse 10 (1200) 10 serovar 1, 2, 4, 9,

10 and 11 isolates

1,2 4,9,10,11 (9–51%) (105)

2× Pig 8 (64) 1,2 9,10 (37.5–100%)

Inactivated Kyoto 2 A IM 2× Pig 2 (6) 1a,2 (124)

Attenuated Koganei 65-0.15 1a A SC 1× Pig 1 (1) 1a

Attenuated Koganei 65-0.15 2b A SC 1× Mouse 10 (790) 1a,1b,2,3,5,6,7,8,11,

12,15,16,18,19,21,N

10,14,20,22 (20–30%) (116)

ID 1× Pig 2 (78) 1a,1b,2,5,8,11,12,18,

19,21

9,10 (100%)

Attenuated Koganei 65-0.15 2b A SC 1× Mouse 10 (200) 4,6,7,8,9,10,15,16,N 20 (30%) (121)

Pig 2 (40) 4,6,7,9,15,16,N 8,10,20 (50%)

Attenuated Koganei 65-0.15 2b A SC 1× Mouse 10 (400) Two serovar 8 isolates 1b,2,8,N 1a,4,5,6,7,8,11,12,

15,16,21 (20–50%)

9,10,18,19,20 (60–100%)

(123)

Pig 2 (40) Two serovar 8 isolates 1a,1b,2,4,5,6,7,8,9,10,

11,12,15,16,18,19,21,N

20 (50%)

Attenuated EW-2 1a A Oral 1×

2×

Turkey 10–13 (82)

10–13 (82)

1a (15–54%)

1a (10–70%)

(77)

Inactivated Ersipelin, Fort Dodge

Lab

Unknown SC 1× 4-8 (64) 1a

Subunit Not applicable A SC 2× Mouse

Pig

Not indicated 2(10) 1a

1a,2

(122)

Subunit A SC 2× Mouse 40 1a, 2 6,18 (30–50%) (120)

Not applicable B 2× 40 6 1a,2,18 (40–50%)

C 2× 40 6,18 1a,2 (10%)

Inactivated SE-9 2 A SC 1× Mouse 10–12 (10) 1a,2,N 2/15e,N,5,6 (30–100%) (118)

Subunit Cc SC 2× Mouse 10 (200) 1a,18,19 (119)

Cd IM 2× Pig 3–6 (9) 1a

aAdministration route: SC, subcutaneous; IM, intramuscular; ID, intradermal.
bThis strain is indicated as serovar 2 in these publications.
cFull length or N terminal-half region.
dN terminal-half region.
e Isolate cross-reacted with antisera against serovars 2 and 15.
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IMMUNOLOGICAL BASIS OR
CORRELATES OF PROTECTION FOR
EXISTING AND NOVEL VACCINE
CANDIDATES

By far the best way to assess vaccine efficacy is to do a live
pathogen challenge. However, this is not always possible due
to cost, animal species assessed (pathogen challenges would be
impossible in cetaceans), the high numbers of Erysipelothrix spp.
isolates circulating in animals, animal welfare reasons, and lack of
availability of appropriate research facilities or relevant permits
or both. Therefore, when assessing vaccines and vaccine efficacy
one of the first correlates of immunitymeasured is antibody levels
in vaccinated animals, most commonly IgG but also IgM, to
confirm that a B-cell response took place. Several assays including
agglutination assays, indirect immunofluorescence assays (IFA),
ELISAs, and fluorescent microbead immunoassays (FMIAs) have
been developed for E. rhusiopathiae (38). In experimentally
vaccinated pigs, IgM and IgG responses can be demonstrated
between 7 and 21 days post vaccination (136–140). A study
using conventional pigs found that vaccination of pigs with a
commercial inactivated vaccine in the presence of antibiotics
may result in a decrease (ceftiofur, doxycycline, tiamulin) or
enhancement (amoxicillin, tulathromycin) in the production
of specific antibodies as measured by a commercially available
E. rhusiopathiae ELISA (106). During assessment of a large
vaccination program in various marine mammals by a modified
FMIA, a mean 311-fold increase in the IgG antibody index was
detected 14 days after the first booster vaccination (112). In
that study serum IgG antibody titers were influenced by the
number of vaccinations received but not by age, sex, history of
natural infection, adverse vaccine reaction, vaccination interval
or time since last vaccination (112). When investigating vaccine
responses in endangered species, it may be necessary to develop a
novel assay. An ELISA was developed to assess IgY antibodies in
kakapos before and after vaccination (141). The results indicated
a possible transfer of maternal IgY molecules to fledglings via the
yolk. Evidence that vaccination increased the kakapo population’s
mean anti-E. rhusiopathiae IgY levels was lacking. The authors
concluded that vaccination may only raise the IgY levels of
birds with relatively low pre-vaccination IgY levels (141). In
New Zealand, an existing swine erysipelas ELISA was modified
to assess swine erysipelas vaccination in layer birds (142). The
domestic poultry were vaccinated twice with an inactivated pig
vaccine at low (2ml) or high (4ml) dose on days 0 and 21. Optical
density readings were higher on days 21, 42, and 63 than day
0 in both groups suggesting that vaccination using either dose
induced detectable levels of antibody. The authors concluded that
the ELISA will be useful for monitoring responses to vaccination
in future (142).

Another possibility to assess whether an animal has been
vaccinated and responded appropriately to the vaccination is
to measure cell mediated immunity (CMI). This is typically
done by enzyme-linked immune absorbent spot (ELIspot) assays,
lymphocyte proliferation assays (140, 143), or by assessing
presence and amount of cytokines by molecular methods (144).

These assays are labor intensive, rely on fresh blood samples
that are processed within hours of collection, and are currently
only used in selected research laboratories. A study in cetaceans
vaccinated off-label with a commercial swine erysipelas vaccine
found a vaccine-induced interferon γ response consistent with
a T helper 1 (TH1) response which was correlated with lack of
clinical erysipelas in that group (144). Furthermore, the same
study also compared 6 and 12 month booster vaccinations.
While a superior memory response was found in the group
re-vaccinated 6 months later, anamnestic responses were only
identified in the group re-vaccinated every 12 months (144).

Some studies compared or correlated both humoral immunity
and CMI. Under field conditions, most growing pigs will
have maternally derived antibodies (MDAs) due to regular
breeding herd vaccination, and vaccine efficacy may be difficult
to assess using serological assays unless paired serum samples
(pre-vaccination and post-vaccination) are available. Previously
it was determined that presence of MDAs may interfere
with vaccination and subsequent protection (138, 139). The
effect of MDAs on the immune response to an oral live E.
rhusiopathiae vaccine given at 6, 8, or 10 weeks of age was
investigated in conventional pigs (140). A clear seroconversion
was only detected in pigs vaccinated at 8 or 10 weeks
of age. The CMI response was assessed by a lymphocyte
proliferation assay and the investigators found a response in
25% of piglets vaccinated at 6 weeks of age and in 100%
of piglets vaccinated at 8 or 10 weeks of age (140). In an
Australian study, isolates derived from six herds affected by
erysipelas vaccine breakdowns were utilized and responses to
commercial and experimental bacterins were assessed (143).
The investigators found significantly different humoral and CMI
responses (determined by a lymphoproliferation assay) among
treatments. While a similar antibody response against a serovar
2 lysate was induced by all vaccines, only those providing
significant protection against serovar 1 produced significantly
elevated antibodies against the serovar 1 lysate. Vaccination in
general significantly reduced CMI responses to the mitogens
concanavalin A and phytohaemagglutinin. The results were
confirmed in an experimental pig challenge system. The most
effective vaccine response was associated with the highest mean
serovar 1 antibody response and the highest CMI response to
serovar 2 (143).

EVIDENCE OF VACCINE FAILURES,
VACCINE MISMATCHES, AND INABILITY
TO PROVIDE CROSS-PROTECTION

Erysipelas vaccine failures are not always reported and case
reports are rare. Over the last few decades, E. rhusiopathiae
outbreaks were commonly observed whenever established
erysipelas vaccination programs were discontinued in an effort
to reduce production costs. Failure to properly vaccinated pigs
has been documented (145). This was likely also the case for
the last large erysipelas outbreak in the USA during 2000–2001
(32). However, in recent years evidence has grown to support that
current vaccines may not always be effective.
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In Australia between 1995 and 1998, vaccine failures
were reported in four different states (30). The majority of
the outbreaks were due to serovar 2 isolates but further
characterization with available methods at that time could
not identify any single clonal population responsible for the
outbreaks (30). As stated in the previous section, challenge
studies including CMI and antibody analysis indicated a lack of
protection against serovar 1 isolates (143).

More recently, during 2015-2016, a continuous grow-finish
farm located in the UK experienced recurring outbreaks of
erysipelas in 18–22 week-old pigs (43). Clinically, there was
delayed average daily gain, a high incidence of lameness and
ear discolorations, with an average morbidity rate of 8–12%.
E. rhusiopathiae serovar 15 was isolated from lesions on three
different occasions. The source breeding herd was routinely
vaccinated with a commercial serovar 2 bacterin which was
switched to another bacterin during the investigation without
much improvement. Cross-sectional serological assessment of
the outbreak farm revealed a lack of anti-Erysipelothrix SpaA
antibodies up to ∼14 weeks of age. As treatments were not
effective, the herd was eventually depopulated (43).

The first documented outbreak of erysipelas in chickens
dates back to 1958 (146). Outbreaks of erysipelas in layers
have been reported since (35). Commonly the layers are
not being vaccinated at the time of the erysipelas outbreak,
and subsequent introduction of vaccination programs resolves
these situations (35). In Europe, where poultry-dominant
countries have relied on erysipelas vaccines for many years,
increasing outbreaks in chickens are being observed in
various countries including Denmark (48), Germany (46),
Sweden (147), the United Kingdom, and the Netherlands
(TO, unpublished observations). Erysipelas outbreaks were
also described in commercial geese in Poland (44). Affected
flocks are often outdoor and organic operations and they are
almost always layers. A Swedish study previously confirmed
an association of erysipelas in laying hens with housing
system (148). Specifically, the risk for an outbreak was
higher in free-range systems than in indoor litter-based
systems, and lowest for flocks housed in cages (148). Vaccines
currently used in European poultry are inactivated and
based on serovar 2. Interestingly, the dominant serovars
from chicken flocks with outbreaks include 1b and 5 (TO,
unpublished observation).

In a more molecular approach to assessing the relationship
between field and vaccine strains, the genomic and immunogenic
protein diversity of E. rhusiopathiae isolates from pigs obtained
between 1987 and 2014 was analyzed and compared to the
currently predominant vaccine strain in the UK, an inactivated
serovar 2 vaccine (149). While all British pig isolates had one
amino acid difference in the 385-amino acid immunoprotective
domain of the SpaA protein compared to the vaccine strain, in
silico structural protein analyses suggested that this difference
is unlikely to compromise vaccine protection. The authors
hypothesized that the observed sequence variants in surface
proteins could be responsible for differences in the efficacy of the
immune response (149). This work was solely based on serovars
1a, 1b and 2 from pigs and should perhaps be expanded to

other commonly found serovars and species affected including
chickens and serovar 5.

FUTURE DIRECTIONS IN VACCINE
DEVELOPMENT

Today, commercial erysipelas vaccines, either attenuated or
inactivated, are based on a small number of E. rhusiopathiae
strains isolated several decades ago. Regardless of the vaccine
type, E. rhusiopathiae vaccines are generally considered effective
in preventing erysipelas. However, if vaccines are not fully
effective or retain residual virulence, chronic forms of the disease,
which tend to follow the acute form, may develop. In Australia,
outbreaks due to vaccine breakdowns of multivalent and bivalent
vaccines have been reported (30). Recently, it was reported that
the acriflavine-resistant E. rhusiopathiae vaccine (Koganei 65-
0.15 strain), developed from serial passage in the presence of
acriflavine mutagen, may have reverted to a virulent strain in
vivo and is now associated with clinical disease in Japan (150).
Thus, erysipelas vaccines developed using empirical approaches
may not represent the best vaccines and require improvement.

Many vaccine platforms have become available over the
last decades, including purified microbial components, subunit
vaccines based on polysaccharide-carrier protein conjugates or
recombinant proteins, DNA vaccines, nanovaccines, and others.
New approaches and strategies for vaccine development against
swine erysipelas have been achieved and have reached the pre-
clinical stage. These include subunit vaccine candidates (Table 3)
and attenuated vaccine candidates (Table 4). Microcrystalline
cellulose (Avicel PH-101) as a delivery carrier of recombinant
protein-based antigen has been assessed by fusing SpaA to
a cellulose-binding domain from the fungus Trichoderma
harzianum endoglucanase II through a S3N10 peptide (153). The
fusion protein was expressed in E. coli and subsequently bound
to Avicel PH-101. The vaccine was tested in the mouse model
and provided 100% protection in mice against challenge with a
serovar 15 isolate (153). While this particular vaccine candidate
appears promising it needs to be verified using pigs.

In the swine industry, where cost effective vaccines are
strongly required, one of the most challenging strategies is the
development of vectored vaccines which can prevent different
diseases simultaneously and are inexpensive to produce. Due
to the ability of E. rhusiopathiae to effectively induce both
humoral and cell-mediated immune responses, attenuated E.
rhusiopathiae isolates have been used for this purpose. It was
shown that attenuated E. rhusiopathiae vaccines expressing
the recombinant protein of the P97 adhesin of Mycoplasma
hyopneumoniae could induce protective immunity against a
lethal E. rhusiopathiae challenge and also reduce mycoplasmal
lesions following experimental infection with a virulent M.
hyopneumoniae when administered intranasally (154) and orally
(155). It was also found that a single intradermal injection with
a needle-free injector of a vectored vaccine was effective against
the mycoplasmal infection (YS, unpublished observation). Thus,
attenuated E. rhusiopathiae isolates may be used as platform
vectors for live delivery of heterologous antigens through the

Frontiers in Veterinary Science | www.frontiersin.org 12 April 2020 | Volume 7 | Article 174

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Opriessnig et al. Erysipelothrix Spp. Vaccination

TABLE 3 | Novel approaches and strategies for subunit erysipelas vaccines.

Vaccine type Antigena Expression

vector

Adjuvant Challenge

serovar

Species Number

(route)b
Survival References

Subunit SpaA E. coli Whole E. coli cells 2 (Tama-96) Mice 10 (IP) 100% (89)

Subunit SpaA E. coli 1a (Fujisawa) Mice 5 (SC) 100% (90)

5 (IP) 100%

Subunit SpaA E. coli Freund’s adjuvant 1a (Fujisawa) Pigs 4 (IM) 100% (122)

2b (82–875) 2 (IM) 100%

Subunit SpaA Bacillus brevis E. coli heat-labile

enterotoxin

1a (Fujisawa) Pigs 6 (IN) 100% (151)

Subunit CbpB E. coli Freund’s adjuvant 1a (Fujisawa) Mice 10 (IM) 80% (131)

Pigs 7 (IM) 86%

Subunit GAPDH E. coli Freund’s adjuvant 1a (SE38) Mice

(C57BL/6)

10 (IP) 100% (152)

HP0728 10 (IP) 0%

HP1472 10 (IP) 0%

CbpB-N 10 (IP) 50%

SpaA 10 (IP) 100%

None (PBS) 10 (IP) 0%

GAPDH E. coli Montanide ISA

206

1a (SE38) Pigs 5 (SC) 80%

SpaA 5 (SC) 100%

None (PBS) 5 (SC) 0%

Subunit Soluble

CBD-SpaA

E. coli None 15 Mice 8 (SC) 75% (153)

Coated

CBD-SpaA

Avicelc 8 (SC) 100%

ERT2T-A

containing whole

bacterin

None 8 (SC) 62.5%

None (PBS) None 8 (SC) 0%

aSpaA, surface protective antigen A; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CbpB, choline-binding protein B; PBS, Phosphate-buffered saline; CBD, cellulose-

binding domain.
bAdministration route: IP, intraperitoneal; SC, subcutaneous; IM, intramuscular; IN, intranasal.
cMicro-crystalline cellulose.

TABLE 4 | Novel approaches and strategies for attenuated erysipelas vaccines.

Vaccine type E. rhusiopathiae

strain

Specifics Dose

(route)a
Challenge

serovar

Species No. of animals

used

Survival References

Attenuated

(vectored)

YS-1 R1b and R2 regions of the P97 adhesin of M.

hyopneumoniae strain E-1 fused with SpaA

2 (IN)

1 (IN)

1a Pigs 3

3

100%

0%

(154)

Koganei 65-0.15 7 (oral) 1a Pigs 8 100% (155)

Attenuated 1432 651 mutants were screened in mice to determine

attenuation and protective immunity

2 (oral)

1 (oral)

1a Pigs 10

10

100%

90%

(150)

aAdministration route: IN, intranasal.
bR1 and R2 are repeat regions.

oral and parenteral routes. Very recently, based on genome-
wide screening for E. rhusiopathiae virulence-related genes,
an E. rhusiopathiae mutant deficient in a tagF homolog
(encoding a putative CDP-glycerol glycerophosphotransferase)
proved to be a safe and effective vaccine candidate that can be
administered via the oral and subcutaneous routes (150). The

tagF mutant may be the best choice for the development of
vectored vaccines.

Another innovative strategy to protect against Erysipelothrix
spp. is utilization of the protective epitope of SpaA protein. It
has been shown that SpaA protein is a major protective antigen
and the antibodies against the N-terminal one third of the protein
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play an important role in protection (90). If the protective epitope
within this region is identified, the epitope sequences can be
included into subunit or DNA vaccines against other pathogens.
With the expansion of next generation sequencing, several draft
genome sequences of Erysipelothrix spp. isolates have become
publicly available (37). Capitalizing on this genome sequence
data, bioinformatics approaches may enable identification of
novel protective epitopes and/or antigens for possible future
vaccine candidates (156).

Changes in vaccine administration may also need to be
considered. With more and more outdoor poultry affected by
erysipelas, parenteral vaccination may be less suitable, as outdoor
poultry can be difficult to catch and vaccinate, especially in larger
flocks. Alternatives include in ovo vaccination, nasal vaccination
via dust or drop, oral vaccination via the feed, or vaccination via
the drinking water similar to pigs or via spray using atomizers.
While the ease of vaccination is important, cost is even more
important in poultry and needs to be addressed with any new
vaccine administration route.

A final necessary consideration into the vaccine efficacy of
Erysipelothrix spp. is the compatibility between vaccine and field
isolates. Current vaccines are mostly based on E. rhusiopathiae
strains isolated several decades ago. Whether these remain
effective in providing protection against globally circulating
isolates is an important area for investigation. With increasing
whole genome sequences of E. rhusiopathiae from various sources
available within the public domain, comparative genomic studies
are expected to provide valuable insights into these questions.

Thus, exciting studies have been published on novel E.
rhusiopathiae vaccine concepts and more research will likely
become available in the near future. The importance of testing
novel vaccine candidates on a regular basis, side-by-side with
trials performed by independent and unbiased institutions to
confirm promising candidates and discard the others at a very
early stage, should be underscored.

SUMMARY AND CONCLUSIONS

The history of erysipelas is probably as old as pig domestication,
and, for many centuries, this devastating disease resulted in
high morbidity and mortality in livestock species. Since the first
isolation of Erysipelothrix spp. in 1876 and its link to swine
erysipelas in 1882, several important milestones have led to the
development of safe and effective vaccines. These are nowadays

widely used in farmed pigs, poultry and lambs, as well as in highly
susceptible individuals such as marine mammals in commercial
aquarium settings. However, a major persistent knowledge gap
is the limited to non-existent understanding of the factor(s)
that confer protective immunity (i.e., whether a similar serovar,
genotype, Spa type or other protective antigen is needed to confer
cross-protection, or any combination of these). For example, if
an erysipelas outbreak in a vaccinated population occurs, it is
currently unknown if serovar is of any importance for cross-
protection. Yet, in the field, serotyping of erysipelas isolates in
outbreak scenarios is commonly requested by practitioners and
results are used to make vaccine decisions, i.e., whether to switch
from a serovar 1 vaccine to a serovar 2 or vice versa or to
have an autogenous vaccine produced. As outlined, Spa type
could also be of importance. However, most erysipelas isolates
from farmed animals contain SpaA so excellent cross-protection
should be expected. This is based on the assumption that spaA
genes are similar across Erysipelothrix spp., which is presently
poorly characterized. With vaccine failures increasingly reported
in pigs and poultry, and erysipelas also emerging in various
wild animal reservoirs, investigations into factors associated
with protective immunity are warranted, ultimately leading
to novel, updated vaccine candidates for improved protection
against erysipelas.
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