

Edinburgh Research Explorer

Connecting Software Build with Maintaining Consistency
between Models

Citation for published version:
Stevens, P 2020, 'Connecting Software Build with Maintaining Consistency between Models: Towards
sound, optimal, and flexible building from megamodels', Software and Systems Modeling.
https://doi.org/10.1007/s10270-020-00788-4

Digital Object Identifier (DOI):
10.1007/s10270-020-00788-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Software and Systems Modeling

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322484509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/perdita-stevens(acfe1cde-a9dd-4f2d-817b-cf17dcb50331).html
https://www.research.ed.ac.uk/portal/en/publications/connecting-software-build-with-maintaining-consistency-between-models(0daba233-b834-4c66-bb50-7a8e1b4a9808).html
https://www.research.ed.ac.uk/portal/en/publications/connecting-software-build-with-maintaining-consistency-between-models(0daba233-b834-4c66-bb50-7a8e1b4a9808).html
https://doi.org/10.1007/s10270-020-00788-4
https://doi.org/10.1007/s10270-020-00788-4
https://www.research.ed.ac.uk/portal/en/publications/connecting-software-build-with-maintaining-consistency-between-models(0daba233-b834-4c66-bb50-7a8e1b4a9808).html

SoSyM manuscript No.
(will be inserted by the editor)

Connecting Software Build with Maintaining Consistency between Models

Towards sound, optimal, and flexible building from megamodels

Perdita Stevens1

Laboratory for Foundations of Computer Science, University of Edinburgh

Received: date / Revised version: date

Abstract Software build systems tackle the problem of build-
ing software from sources in a way which is sound (when a
build completes successfully, the relations between the gener-
ated and source files are as specified) and optimal (only gen-
uinely required rebuilding steps are done). In this paper we
explain and exploit the connection between software build
and the megamodel consistency problem. The model-driven
development of systems involves multiple models, metamod-
els and transformations. Transformations – which may be
bidirectional – specify, and provide means to enforce, desired
“consistency” relationships between models. We can describe
the whole configuration using a megamodel. As development
proceeds, and various models are modified, we need to be
able to restore consistency in the megamodel, so that the con-
sequences of decisions first recorded in one model are appro-
priately reflected in the others. At the same time, we need to
minimise the amount of recomputation needed; in particular,
we would like to avoid reapplying a transformation when no
relevant changes have occurred in the models it relates. The
megamodel consistency problem requires flexibility beyond
what is found in conventional software build, because differ-
ent results are obtained depending on which models are al-
lowed to be modified and on the order and direction of trans-
formation application. In this paper we propose using an ori-
entation model to make important choices explicit. We show
how to extend the formalised build system pluto to provide
a means of restoring consistency in a megamodel that is, in
appropriate senses, flexible, sound and optimal.

Key words megamodel build system model transformation
bidirectionality orientation model

1 Introduction

Model-driven development (MDD) is now well-established
in a number of niches such as automotive software [35]. It

has potential to fundamentally transform software develop-
ment by enabling genuine separation of concerns so that de-
cisions about software behaviour can be taken by those best
placed to make them, where appropriate without the inter-
vention of software specialists. However, it has been slow to
emerge from its niches and become the dominant mode of
software development. There are many reasons for this, some
technical, some organisational.

Among those reasons – with both technical and organisa-
tional aspects – is that we so far lack a good understanding
of how collections of models can be robustly and efficiently
managed. The time taken to apply model transformation tool
chains is already a problem [17], motivating our attention to
optimality, but flexibility is an even greater concern.

The Object Management Group (OMG)’s original ideal
of MDA [12] was basically unidirectional and tree-like: a
highly abstract, platform-independent model would be trans-
formed into a platform-specific model from which code would
be generated. Megamodelling [2] recognises that real large-
scale software development will typically require more flexi-
bility than was envisaged originally: e.g., models will be re-
lated in graphs, not trees, and there are more relationships
than “generates”. A bidirectional transformation (bx) between
adjacent models in the graph captures the appropriate no-
tion of consistency between them. The notion of consistency
maintenance is extremely general. The consistency relation
to be maintained might be project-specific, or it might be a
standard one, e.g. conformance between a model and meta-
model. The bx also specifies how to restore consistency when
it is lost. Unidirectional transformation is then a special case;
for example, in compilation, the object code is considered
consistent with the source precisely when it is the result of
compiling the source; restoring consistency means recompil-
ing. Note that throughout this paper we take an “everything’s
a model” perspective: metamodels, code, etc. included. Thus,
even though in some work on MDD the “conformance” re-
lation is special, it does not need to be for all purposes: a
metamodel is a model, and the relation “conforms to” be-
tween models and metamodels is a fine example of a con-
sistency relation. Tools that check and perhaps even restore

2 Perdita Stevens

conformance fit into our consistency maintenance approach.
This generality is an important aim of the work: we pro-
vide a disciplined approach to combining uni-, bi- and multi-
directional transformations, which may be heterogeneous, in
a network of models. We do not assume that models, or trans-
formations, share a common technological base. This holds
promise to enable the combination of best-of-breed technolo-
gies.

Specifically, we are concerned with settings in which there
may be:

– multiple models, maybe used by different people, record-
ing different concerns,

– several of which are simultaneously “live”, that is, in which
decisions may be recorded,

– and which are not completely orthogonal, so that a deci-
sion recorded in one live model may necessitate a change
to another live model. (Sometimes a distinction is made
between models being related “horizontally” or “verti-
cally”, on the basis of whether they are considered to be
at the same “level of abstraction”. That distinction does
not matter for this paper.)

These three factors are identified as the “essence of bidirec-
tionality” in [31].

The collection of models that are relevant to a system, and
the relationships between them, can itself be seen as a model,
which may require and repay explicit attention as a designed
artefact: this is what we mean by a megamodel.

In [30, 33] we discussed networks of models connected
by model transformations (which might be bidirectional) and
pointed out, for example, that the result of consistency restora-
tion will normally be different, depending on the order (and
direction, for bidirectional transformations) in which the in-
dividual model transformations’ consistency restoration pro-
cesses are used. This presents management problems for con-
sistency maintenance in megamodels: it is these problems
that we address in this paper.

Here is an example which we will consider in more de-
tail in Sec. 5. Fig. 1 informally illustrates a small megamodel
derived from [30]. The circles represent model spaces within
which different teams work, and the lines represent relation-
ships that are supposed to hold between the models. So, at
some point in development, there may be a design model (m
in M) which is supposed to conform to a metamodel (mm in
MM); there may be some code (in Code) which is supposed
to satisfy some round-tripping relationship with the design
model m, such as providing an implementation for all and
only the classes mentioned in its class diagram; there may
also be a test suite (tests in Tests) and a safety model
(safety in Safety), with a more complex ternary relation-
ship between them which we will return to. At a certain point,
a modification has been made to the design model, such that
it no longer conforms with the metamodel, nor satisfies the
round-trip relationship. Perhaps a change has simultaneously
been made to the test-suite. What should be done? There is
no straightforward answer, because the right thing to do de-
pends on the circumstances. For example, if the metamodel to

MMM

Code Tests

Safety

m conforms to mm

roundtripconforms(m,code)

safeconforms(code,tests,safety)

Fig. 1: Megamodel derived from [30]. (Notation: lower-case
model is instance of upper-case Model)

which the model is supposed to conform is the standard UML
metamodel, then it is not sensible to try to restore that con-
formance relationship by modifying the metamodel, which
should rather be considered authoritative; however, if the model
is in an evolving domain-specific modelling language, it may
be. For another example, even if the individual transforma-
tions roundtripconforms and safeconforms each provide
a means of updating the code to bring it into consistency with
the design model, respectively with the tests, the result of ap-
plying these transformations will in general depend on the
order in which they are applied. Worse, quite likely neither
order will produce a desirable result, and some reconcilia-
tion between their actions will be required. Nevertheless, we
would like to do better than giving up and assuming totally
manual control of the application of the transformations and
the reconciliation of their results.

As this example illustrates, any approach for maintaining
consistency in a megamodel faces several challenges. Unlike
the situation in conventional software build, in a megamodel
setting the same artefacts that human experts are working on
must sometimes be changed by the automated system: this is
a consequence of separating concerns into models that nev-
ertheless cannot be perfectly independent. But when? If the
model someone is working on is changed too often, in a way
that is not under their control, this will be frustrating and con-
fusing and may lead to errors. On the other hand if develop-
ment proceeds too far without reconciliation, effort may be
wasted. Moreover, if the amount of work to reconcile models
and generate software is considerable, the time taken to do
it may be unacceptably long, which is already a problem in
MDE [17].

It turns out that the concerns that arise when managing
multiple models in an MDD process are related to, yet not
subsumed by, those that arise when managing multiple pro-
gram units in a conventional development process. In this pa-
per we bring recent advances in formalisation and optimisa-
tion of build processes to bear on megamodelling, to address
these concerns. Our contributions are as follows.

Connecting Software Build with Maintaining Consistency between Models 3

1. We clarify the relationship between building software and
maintaining consistency in a megamodel which may in-
clude bidirectional relationships, not just unidirectional
generation relationships.

2. In particular, we discuss the role, in consistency mainte-
nance, of the properties that build systems may or may
not have, discussed in [24].

3. We propose the use of an orientation model to manage
key decisions about how to restore consistency.

4. We show how to adapt the formalism of the sound and op-
timal incremental build system pluto1 [7] to this setting,
appropriately combining use of the orientation model with
encapsulated decisions about how to update each model.

5. We demonstrate that a soundness result and an incremen-
tality result can then (with care) be derived using those
proved in [7], and we discuss the relevance of these re-
sults in an MDD setting.

Paper organisation The rest of the paper is structured as fol-
lows. First, in Sec. 2 and Sec. 3, we discuss related work and
introduce some background ideas. Sec. 4 discusses how build
system work can be applied in MDD; it discusses some ex-
tra difficulties that arise in the MDD setting, and introduces
terminology from [24] and its application in our setting. In
Sec. 5 we describe examples and scenarios, used through-
out. Sec. 6 summarises the formalisation and relevant results
from [7], and Sec. 7 shows how it is formally adapted to the
megamodel setting. Sec. 8 gives the soundness and optimal-
ity results. Sec. 9 relates the custom stamper idea, key to the
pluto work, with some notions known in MDD. Sec. 10 adds
some further discussion, and Sec. 11 concludes and discusses
future work and open problems.

This paper is an extended version of [32], which was pre-
sented at MODELS’18. It has been restructured in order to al-
low for better explanation of how it uses the underlying pluto
theory and framework: examples, explanation and discussion
have been added throughout. We expand on the role of cus-
tom stampers and how they might be automatically gener-
ated. We newly discuss the relation with Mokhov et al.’s pa-
per [24], which appeared after [32] but seems to have high
potential in this area; in Sec. 11 we discuss future work that
will build further on this.

2 Related work from the MDD community

The topic of consistency maintenance between more than two
models has been gaining attention in the MDD community
[3], especially from theoretically-minded MDD researchers
including Trollmann and Albayrak from a graph transforma-
tion perspective [34] and Diskin and collaborators from a
more purely categorical one [5]. It is conceptually challeng-
ing, and increasingly acknowledged as an essential part of
what must be mastered for MDD to achieve its full potential.
The orientation models we propose here bear a superficial

1 http://pluto-build.github.io/: not to be confused with
Apache Pluto

resemblance to Trollmann and Albayrak’s graph diagrams
[34]. However, all of this previous work has in common that it
makes strong assumptions about the possibility of represent-
ing all the models, and the changes to them, within a com-
mon framework. For example, Diskin’s work, as is natural
in a category-theoretic framework, is predicated on the avail-
ability of updates describing what has changed in a model,
Trollmann and Albayrak’s requires maintaining correspon-
dences between parts of models. Real-world scenarios in-
volving multiple models, however, may be arbitrarily hetero-
geneous. We cannot assume that all models are expressed in
languages based on the same meta-meta-modelling language,
or that we have any control over what tools will be used to edit
the models, or that it even makes sense to describe changes to
different models using the same language. Unlike the bidirec-
tional transformation literature, the software build literature
has always been forced to confront this lack of control, and
has handled it by a strict separation of concerns; that is the
approach we will take here.

Practically-oriented work on the build process within MDD
– that is, on the way in which the application of model trans-
formations and other modelling related technologies is or-
chestrated – has generally been modeled closely on conven-
tional software build, and has used only unidirectional model
transformations. Representative examples are [8,16,19]; note
that [8], though it shares an author with [7], does not build on
pluto and has concerns largely orthogonal to ours.

Turning to the special needs of building in megamodels
that might include automatically interrelated sources, two re-
cent papers illustrate, in different ways, how far there is to go.
In [30, 33] I discussed what is lost by limiting bidirectional
model transformations to relate just two models. I suggested
that in many cases this is tolerable, so that MDD projects
could work with networks of binary bidirectional transforma-
tions, instead of requiring explicitly multi-directional syntax.
I pointed out that in such networks many problematic issues
arise. These include the (non-)existence of a globally con-
sistent state, its (un-)reachability by means of the consistency
restoration functions of the bidirectional transformations, and
the fact that different sequences of applications of these may
yield different results. That paper did not attempt to solve
these problems, beyond pointing out some special cases in
which consistency restoration is possible, and it did not ad-
dress incrementality.

More positively, Di Rocco et al. [27] described an at-
tempt at a concrete solution to this problem implemented in
the web-based modelling platform MDEForge [1]. However,
this solution was very limited in scope, because it disallows
the cases identified as problematic by [30]: it requires that a
reachable globally consistent state exists and not only that it
be unique, but more, that it be reachable in only one way. A
related journal paper, [26] has very recently appeared; how-
ever, its focus is orthogonal to ours and it does not seem to
lift the relevant restrictions.

4 Perdita Stevens

3 Background from the software build community

In conventional software build, we start from a collection
of human-authored source artefacts (hereinafter we will say
“files”: see Sec. 10.7) and combine these via a number of in-
termediate stages into runnable software. Intermediate stages
may involve generating files from a subset of the sources
and/or other generated files. Such a generation step is a func-
tion, which takes some sources and produces one or more
generated files.

We need to be slightly more precise: it is a partial func-
tion. This is because it may happen that a given set of sources
is inconsistent in the sense that it does not correspond to any
set of generated files: the build step gives an error. However,
the usual expectation is that this arises in relatively rare and
easy-to-fix cases, thanks partly to technical mechanisms such
as explicit interfaces, and partly to organisational ones such
as the same team being responsible for all the files that are
sources for a given build step. A key insight, explored in [24],
is that partiality is but an example: a build step is an effect-
ful function. Besides partiality, other relevant effects include
non-determinism and dependence on the state of other arte-
facts. It is unusual in the software build setting for one of the
effects of the function to be interactivity, but this may assume
greater importance in an MDD setting.

We may see the build process as being a process of restor-
ing consistency to the whole collection of files: source, inter-
mediate and target. Each generated file is considered consis-
tent with its sources if it has been built from them in the in-
tended way, and the whole collection is consistent if this is
true of the running software and everything it depends on (di-
rectly or indirectly).2 Problems arise if a source is changed
and something that depends on it is not rebuilt, or if the in-
tended relationship between sources and generated file is changed
without changing the generated file (and then everything that
depends on it) accordingly. Typically a clean build, in which
all generated files are deleted and everything is regenerated
from sources, is straightforward to get right, but expensive.
The difficulty is typically to ensure correct incremental build-
ing: when some sources change, we prefer to save time by re-
building only the generated files that are no longer consistent
with their sources, iterating this process appropriately so that
the final software is correctly built. What we mean by cor-
rectly built is, typically, that it is identical with what would
be achieved by a clean build. Because there is a clean sep-
aration between sources (never automatically modified) and
generated files (never manually modified), and because the
generation steps are (partial) functions, so that at each stage
there is at most one automatic way to restore consistency, this
is (informally) equivalent to saying that the whole collection
of files is consistent.

2 We phrase it this way because of a subtlety: if, in the current
configuration, a generated artefact is not used, it may not be re-
quired to satisfy a consistency relation with its sources that would
be needed if it were used. I.e. the set of consistency relations that are
relevant may, in general, change.

Our use of the weasel word “typically” in the previous
paragraph alludes to a complicating factor that we, like other
authors on related topics, shall mostly avoid: cyclicity, where
a file depends indirectly on itself, i.e. there is a cycle in the de-
pendency graph of files. Achieving a correct build in such cir-
cumstances needs special measures, such as repeating build
steps until (hopefully) a fixed point is reached. Although fa-
miliar to users of LATEX, this is generally seen as undesirable.
As we will mention in Sec. 11, pluto does incorporate an
attempt to permit cyclic builds [7]: but we, like Mokhov et
al. in [24], will avoid them (by imposing an appropriate well-
formedness condition on the orientation model).

4 Towards applying build system work in MDD

MDD separates concerns into different models, which may
be worked on by different people.

As mentioned, the Object Management Group (OMG)’s
original view of Model Driven Architecture (MDA) [12] was
basically unidirectional: a highly abstract, platform-independent
model would be transformed into a platform-specific model
from which code would be generated. It was acknowledged
that there would sometimes be a need for bidirectional trans-
formations, such as model-code round-tripping; but language
and tool support for such transformations have been slow to
develop.

Modern MDD, especially what is called megamodelling
[2], recognises that real large-scale software development will
typically be much less regimented than in OMG’s original vi-
sion. The collection of models that are relevant to a system,
and the relationships between them, can itself be seen as a
model which may require and repay explicit attention as a de-
signed artefact. (Note that the term megamodel is used in sev-
eral different senses, which can sometimes lead to confusion:
e.g. sometimes for the model, whose elements are models and
relationships between them, and sometimes for the actual col-
lection of all the models and relationships that are represented
in that model. In Sec. 7 we will formally distinguish meg-
amodel skeletons, megamodels and megamodel instances.)
As real-world examples demonstrate [13], the models in a
megamodel often involve overlapping information. This may
show up as an “overlaps” relationship between models at the
same (“horizontal”) level of abstraction, or conformance, re-
finement or other “vertical” relationships: for our purposes,
the technical concerns are the same. In either case, the mod-
els have a non-trivial consistency relationship which needs to
be maintained as they are changed by developers. Maintain-
ing such a relationship is the job of a model transformation;
the simple case in which one model is generated from another
can be seen as a special case, in which the consistency rela-
tionship that must be maintained between source and target
is just that the target is equal to what is generated from the
source. This simple special case can only pertain, of course,
when the information contained in the target is a subset of
that contained in the sources (and the transformation itself).
We are more generally concerned with situations where each

Connecting Software Build with Maintaining Consistency between Models 5

model contains information that is recorded nowhere else:
e.g. information needed only by the humans who work with
this particular model. The model transformation itself may be
fixed, as when a commercial code generator is used, or may
change over time and need to be managed like any other soft-
ware artefact.

To get full benefit, we must allow more than one model
to be simultaneously “live”, that is, able to have decisions
recorded in it. Otherwise, the humans who are working with
those models, and recording their decisions in them, can-
not work simultaneously. However, typically, these models
are not perfectly independent: a change in one may necessi-
tate a change in another. These factors are identified as the
“essence of bidirectionality” in [31]. Today, restoring such
models to a consistent state is often done manually. However,
this is sometimes inconvenient or impossible. The models
may be under the control of different humans, none of whom
have sufficient familiarity with them all to be able to recon-
cile them manually easily and safely (e.g. the PIM and PSM
in classic MDA [12]). And/or the notion of consistency be-
tween the models may make the reconciliation required very
burdensome (e.g. round-tripping between a UML model and
code). In either case, having to restore consistency manually
may negate the benefit of separating the concerns in the first
place.

A bidirectional transformation is, as mentioned, a means
of maintaining consistency between two or more such mod-
els. Many approaches to defining bx exist, and, as discussed
in Sec. 10.2, this paper places few restrictions: we focus on
how bx, expressed in whatever formalism, can be used in a
disciplined way as ingredients in a broader mechanism to re-
store consistency within a megamodel. We will assume that
the bx, at least, specifies a consistency relation between the
models, so that we know when nothing needs to be done.
Note that this relation will not usually be bijective (if it were,
the models would just be recording the same information in
different forms). The bx’s other job is to restore consistency
when it is lost. Depending on the specific formalism chosen
for the bx, it may do this deterministically (probably using the
current state of more than one model) or non-deterministically,
using search, or even with user interaction; it may or may not
be allowed to fail. One assumption we will make about our
bx: a bx provides a means to restore consistency by modify-
ing just one model (as do bx in all major bx languages, and,
of course, unidirectional transformations). This is less of a re-
striction than might at first appear; we will discuss this point
in Sec. 10.1. Of course, the choice of which model to mod-
ify may be made differently at different times: we say that to
make this choice is to choose the direction in which to apply
the bx.

When, and how often, consistency must be restored is it-
self an interesting question (see Sec. 10) but typically a set
of models will have to be consistent by the time code is gen-
erated from it, and indeed, depending on which artefacts are
represented in the megamodel, the generation of code can be
seen as part of the process of restoring consistency. As “ev-
erything’s a model” (including code, compiled code and ex-

ecutable software) the problem of restoring consistency in a
megamodel subsumes that of conventional software build.

4.1 Extra difficulties in consistency maintenance

Thus, consistency maintenance in a megamodel is a problem
related to, but not identical with, the problem of software
build. What further issues do we have to address in meg-
amodel consistency restoration?

The chief assumption that is usual in software build sys-
tems but that does not hold for consistency maintenance in
megamodels is that any source—file or model—is either a
source or a generated file, never both. The distinction is that
sources are modified by means that the build system must just
take as given (typically, human choices) and must never be
modified by the build system. The build system only modifies
generated files; indeed, these may (if convenient) be assumed
to be under the complete control of the build system. By con-
trast a bidirectional transformation reads several models, and,
using information about the state of all of them, modifies one
of them. The modified file is therefore both source and gen-
erated.

This fact, that some models are both read and written by
both humans and the consistency maintenance process, also
presents new questions about how the process should be ad-
ministered, so as not to interfere over-much with the work
of humans using the models. Some of these questions were
raised in [22] and subsequently discussed in the Dagstuhl
meeting on multi-directional transformations reported in [3].
If two models are both being actively worked on, when, and
under what (or whose) control, should consistency between
them be restored? Moreover, if there is a choice of which of
them to modify in order to restore consistency, how should
that choice be resolved? Since restoring consistency may in-
volve unavoidable inconvenience to the users of some model,
we may argue that making these decisions is part of over-
arching project management: certainly, we cannot allow peo-
ple to cause changes to other people’s models in an undisci-
plined way.

Notice, however, that the gulf between this situation and
that of a collection of files managed using a software build
system is not quite as wide as one might think at first sight.
Even though the build system does not model, check or re-
store consistency between its sources, there are, conceptu-
ally, consistency relations between the sources. For example,
a .h file and a .c file may both be sources to a build system,
but the build will fail unless a certain consistency relation
between the interface described in the .h file and the imple-
mentation in the .c file holds. The build fails, in such a case,
because there is no way to restore this consistency relation
automatically, and hence no way to produce a .o file consis-
tent with both the .h and the .c. Similarly, when we main-
tain consistency between models in a megamodel, we do not
necessarily record and formalise every consistency relation
that must hold. It is normal that some aspects of consistency
are maintained manually. Indeed, this is a strength of the ap-
proach, enabling gradual adoption (see Sec. 10.3).

6 Perdita Stevens

Models which are analogous to sources in software build,
in that they are modified only by humans, never by the build
(rsp. consistency maintenance) system, will be termed always
authoritative. Models which are not to be modified in some
particular application of the consistency maintenance system
will be termed authoritative.

4.2 Problems and progress in build systems

Unfortunately, the engineering of conventional build systems
is itself not a solved problem. It is recognised that build scripts
are often hard to read and maintain (prominent estimates of
the proportion of development effort devoted to the develop-
ment of build scripts are 12% [18] and 27% [21]!) and error-
prone. Developers using complex build scripts often end up
feeling compelled, in an attempt to avoid being affected by
subtle errors, to do clean rather than incremental builds (e.g.
defaulting to make clean; make all). Correspondingly, main-
tainers of build scripts often shy away from incrementality for
fear of introducing subtle problems. The result is often that
builds are unacceptably slow. Heroic efforts (e.g. [23]) have
been made to force make into doing the right thing as well as
to replace it with better systems; yet problems persist.

Fortunately, in recent years this has been recognised as a
major problem in software build. Hence, it is an area of active
research, and progress is being made. In [7] Erdweg, Lichter
and Weiel succeeded in proving soundness and optimal in-
crementality in pluto, which is a formalised build system:
that is, pluto comprises both a formalism and a correspond-
ing (open-source) software framework. In pluto each gener-
ated file is the responsibility of just one builder, which is ca-
pable of rebuilding the file from its dependencies when the
pluto algorithm detects that it is necessary to do so. The op-
timality result is that (subject to certain assumptions) as few
builders (hence, e.g., compilations) will be run as possible,
and within that, as few checks will be carried out as possi-
ble. A key contribution of that work is that they formalise the
idea of custom stamps. Improving on the traditionally-used
timestamps, these give a more general, customisable notion
of what it means for one file to be up-to-date with respect
to others. Although such custom stamps have not been very
widely used in practice, and (as far as I know) never in the full
generality envisaged in the pluto framework, one related ex-
ample is the way the Avaloq DSL Developer toolkit3 uses ob-
ject fingerprints for fine-grained dependency analysis, within
the specific context of the building required in xtext-based
language engineering.

Most recently, Mokhov et al. [24] have begun to investi-
gate the commonalities and differences between a collection
of advanced build systems in order to build a common for-
malisation, enabling them to be compared and their advan-
tages combined. In the process they make precise and explicit
several properties that build systems may, or may not, have.
Since they also have relevance for the consistency mainte-

3 https://ddk.tools.avaloq.com/overview.html

nance problem we briefly review them here. The build system
on which we shall build, pluto, has each of these properties.

Dynamic dependencies. Traditionally most dependencies –
cases where a change to one file necessitates a change to an-
other – are known statically; for example, they are written ex-
plicitly into each rule of a Makefile. If, by contrast, a depen-
dency may be discovered only when a build step is executed,
it is dynamic. A build system that is able to handle dynamic
dependencies can be more efficient, because there is no need
to specify dependencies so pessimistically; we avoid rerun-
ning a build step just in case it is necessary to do so, when in
fact the change that prompted the rerunning is currently not
relevant.

In the present work, for comprehension and ease of pre-
sentation, we assume that the megamodel itself is fixed: thus,
for each model, we know statically the (maximal) set of mod-
els on which it may depend. However, we make use of pluto’s
dynamic dependency support to support restoring consistency
differently in different circumstances. As we shall see, the
orientation model will record key project management de-
cisions about, for example, in which direction a bx shall be
applied, and which models may be modified. Thus, it will be
the current content of the orientation model which determines
the build work to be done, including the dependencies.

Self-tracking. A build system may or may not be able to
detect the logical implications of a change to the build task
itself (e.g. the addition of a dependency or a change to a build
rule) and do the necessary rebuilding, even if no source has
changed. Crudely this can be achieved in almost any build
system by adding the build file itself as a dependency, but
greater granularity is desirable. Three aspects of self-tracking
are relevant to us. Our orientation model, which records de-
pendencies, is itself a model and, as we shall see, custom
stamping enables the consistency restoration process to re-
act to changes in it in an efficient, fine-grained way. Second,
pluto automatically adds dependencies on the Java classes
comprising the builders of each model, which means that a
change to how we want consistency restoration to be done
will cause (only) the necessary rebuilding (up to the hot-swapping
capabilities of the underlying JVM). Third, transformations
can themselves be taken as (always-authoritative) models in
the megamodel, and stamped like any other model, so that a
relevant change to an individual transformation can be acted
on appropriately.

Early cut-off. It may happen that a file is rebuilt because it
appeared to be out-of-date, but, in fact, the result of rebuilding
it is that it does not change. If the build system supports early
cut-off, then this lack of change means that tasks that depend
on this task are not caused to rerun. Building on pluto means
that we get this benefit: in fact, the use of custom stamps ac-
tually gives us a stronger version of early cut-off, in which
a change to a file that is not relevant to something that de-
pends on the file is also prevented from causing later rebuild-
ing steps to run. We will see an example of this in Sec. 8.1.

Connecting Software Build with Maintaining Consistency between Models 7

MM

M1

Delta

M2

m1 conforms to mm m2 conforms to mm

compare (m1,m2) = delta

patch (m1,delta) = m2

Fig. 2: Megamodel derived from [27]. (Notation: lower-case
model is instance of upper-case Model)

In future work we hope to complete fitting the consis-
tency maintenance work into Mokhov et al.’s ongoing work
(see Sec. 11). However, the key idea of custom stamps is not
yet incorporated in Mokhov et al.’s formalism: although they
make allowance for different means of detecting whether a
source is outdated, they do not allow for the same source to be
used in different ways, with different notions of outdatedness.
Because in our setting it is common that different aspects of
the same model will be relevant to different consistency rela-
tions, this is important to us.

To summarize, build systems are an active and promising
area for consistency maintenance to draw on. In the present
work, we choose to build on pluto because, as well as being
both a formalism and an open-source software framework,
it incorporates two unusual capabilities that are useful in an
MDD setting: the aforementioned custom stamps, and dy-
namic dependencies, such as the possibility that the content
of one model determines whether or not a change to a second
model necessitates a change to a third.

5 Examples

In this section we introduce two examples. The first, drawn
from [27], uses only unidirectional transformations, but en-
ables us to motivate different scenarios of consistency restora-
tion in which models may be authoritative or always author-
itative. The second, drawn from [30], involves bidirectional
transformations and enables us to discuss matters including
the use of consistency restoration procedures that do more
than simply apply bidirectional transformations.

5.1 Unidirectional example

Fig. 2 illustrates a megamodel, derived from [27], with a meta-
model (mm), two models (m1 and m2), and a delta (delta). The

collection is consistent if: the models conform to the meta-
model, the delta is the result of applying the compare opera-
tion to the models, and m2 is the result of applying patch to
m1 and delta. Now, as a specification, this is redundant: as
explained in [27], compare and patch have the usual joint
specification, where

compare(m1,m2) = delta

iff
patch(m1,delta) = m2.
The main purpose of the compare and patch functions

is that they provide means of restoring consistency when it is
lost.

In [27] the idea is that consistency is restored after every
change, and so the scenarios considered are those that start
from a consistent set of models, just one of which is then
changed. Even then, we must note that there may be a choice
of how to restore consistency. If m1 is changed, we may either
apply the compare function to the new m1 and the old m2 to
get a new delta, leaving m2 unchanged, or we may apply the
patch function to the new m1 and the old delta to get a new
m2, leaving delta unchanged. There is no a priori reason to
prefer one of these solutions over the other: it depends on
which of m2 and delta should be taken to be authoritative.

Fig. 3 represents those two situations using what we will
shortly formalise as an orientation model. Solid blobs rep-
resent authoritative models; e.g., we suppose that the meta-
model will always be authoritative (though as noted in Sec. 1,
this is a fact about this example: not every metamodel will
be always-authoritative). Di Rocco et al.’s assumption [27] is
that the changed model, in this case m1, should always be au-
thoritative; this makes sense in this setting, because we have
no consistency restoration functions available that can take
an old version of a model into account and produce a new
version of that same model, so the only alternative would be
to overwrite the changes just made entirely, which is presum-
ably undesirable.

The megamodel in [27] specifies that the models should
conform to the metamodel, but it provides no operations to
ensure this. The fact that there are no “conforms to” edges
between M1, M2 and MM in the orientation models in Fig. 3
corresponds to this fact: it shows that this aspect of consis-
tency will have to be ensured and checked externally.

5.2 Bidirectional example

Recall from Sec. 1 that Fig. 1 illustrates a megamodel adapted
from [30]. Here we see a design model m that needs to con-
form to a metamodel mm; some code that must be consistent
with the model m via a standard round-tripping relation; and
a more interesting ternary relation between the code, a test
suite tests and a safety model. The idea is that, at least,
the code should pass the tests (otherwise no triple involv-
ing that code and those tests will be considered consistent)
but also that the safety model records (among much other
information not relevant here) whether or not the system is
considered safety-critical. If it is, then the tests are also re-
quired to satisfy a coverage criterion.

8 Perdita Stevens

MM

M1

Delta

M2

compare (m1,m2) = delta

(a)

MM

M1

Delta

M2

patch (m1,delta) = m2

(b)

Fig. 3: Orientation models (grey=authoritative,
black=always-authoritative)

Soundness. Even if we are provided with a bidirectional
transformation that can restore each individual relation in the
megamodel, we still need a disciplined way to roll changes
through the network. For example, in Fig. 4(b), if we want up-
to-date tests, we must restore roundtripconforms first,
then safeconforms.

Fig. 4(a) represents the situation discussed in Sec. 1. Our
framework allows us to encapsulate the reconciliation of dif-
ferent consistency relations impacting the same model in the
builder of each model (here code). The orientation model
records the contracts of the builders. To restore consistency
respecting the orientation model in Fig. 4(a) is to modify only
non-authoritative models (here, only code) in such a way as
to make all the consistency relations on the edges hold. In
this simple case, the arrows are redundant; but as Fig. 4(b)
shows, an arrow might connect two non-authoritative mod-
els, in which case it indicates the priority of changes in the
models, in a way which we will make precise by describing
how consistency restoration is done. Note that such builders
must in general be allowed to fail, as there may be no way to
satisfy all the required relations.

Incrementality. We may suppose that checking the relation-
ship between code and tests is expensive (it involves run-
ning tests and computing a coverage metric): we do not want
to redo it more often than necessary. In particular, since the
only change to the safety model that is relevant to this rela-
tionship is the one bit record of whether the system is safety
critical or not, we do not want to recheck the relationship be-
tween code and m every time safety changes in any respect:

MMM

Code Tests

Safety

roundtripconforms(m,code)

safeconforms(code,tests,safety)

(a)

MMM

Code Tests

Safety

roundtripconforms(m,code)

safeconforms(code,tests,safety)

(b)

Fig. 4: Orientation models (grey=authoritative,
black=always-authoritative)

changes to anything in safety that leave that one bit alone
do not require us to do any rechecking. Similarly, if the use
case diagram part of m changes, but this is not relevant to the
consistency relation between m and code, we would like our
system to be able to detect that there is no need to recheck
that consistency. We can achieve this using a custom stamp:
see Sec. 9 below.

Flexibility. Conventionally, e.g. in [30], we think about restor-
ing consistency to the whole network. In practice, however,
that may not be the right thing to do. For example, in the case
that an operation changes in the model m, thereby breaking
consistency with code (and tests), it may not be sensible
to update code and tests immediately (especially if, say,
three more changes will follow in quick succession). What
we should be able to ensure is that someone who is relying on
tests is able to ensure, when they wish to do so, that they are
indeed using an up-to-date version of tests. We will there-
fore use a demand-driven approach. Rather than pushing the
changes from model m to tests, as the approach in [27] does,
we will say: the person who wants to use tests will submit
a build request for tests. This will in turn submit a build
request for any model on which tests depends, before using
those updated models to recheck the consistency relation on
tests. The pluto algorithm determines which builders actu-
ally need to be run in order to satisfy the build request. In this

Connecting Software Build with Maintaining Consistency between Models 9

case, requests that tests be brought up to date will require
that code is first brought up to date, and this will automati-
cally be done when the build request is processed by the pluto
algorithm.

6 About Pluto

We need to introduce some background on pluto, but, of course,
will avoid reproducing the technicalities [7] in full detail. We
explain the parts we need, omitting features we do not make
use of: for example, the reader familiar with pluto should con-
sider that we take the input type to be unit. Fig. 5 adapts Fig. 5
of [7] accordingly, and introduces standard concepts and no-
tation which we will refer to throughout. We refer the reader
to [7]4 for more detail and, of course, for proofs of the cor-
rectness and optimality theorems on which we rely.

We assume given notions of path (the type of operating
system paths to files), file (the type of contents of files), and
value (the type of whatever stamps we like to compute). Then
a filesystem (an element of type Ω) assigns to each path its
current file contents, or ⊥ if there is currently no file at that
path.

pluto incorporates a build algorithm that accepts a build
request (a request to (re)build a particular generated file) and
determines when to invoke the build method (the build field)
of a builder (of type B). These builders, including their build
methods, are provided by a user of the framework. They must
satisfy certain requirements, which we shall shortly list. Pro-
vided that they do so, the algorithm guarantees that the be-
haviour of the framework overall provides certain soundness
and optimality properties.

Each generated file is a responsibility of just one builder,
whose build method describes how its file(s) shall be gen-
erated, including what other builders must be up-to-date to
do this properly. As part of the requirements imposed on it
by the framework, it uses framework-provided methods to
record what files it reads and writes. Before it reads a file
which is itself a generated file – that is, which has its own
builder – this builder must use a framework-provided method
to ask that file’s builder to check that it is up-to-date; this
prevents stale versions of files from being used in the build.
Formally a build method operates on a file system, and (un-
less it fails) produces a record called a build unit (an element
of type U) which it saves for later inspection. The build unit
records: which builder built it (its builder field); a list (its
reqs field) of its dependencies, i.e. what other builders were
required (e.g. breq b indicating that this builder requested that
builder b be rerun if necessary) and what files were read (e.g.
freq f indicating that the file at path f was read); and a list (its
gens field, which in our application will always have length
1) of the files written (e.g. gen g indicating that this builder
wrote the file at path g). As well as the path to the file con-
cerned, each freq and gen entry records a stamp to enable
relevant later changes in the files to be detected (see below).

4 and/or to a video of the corresponding talk, at https://youtu.
be/QsgLSDMLLTo

All this information is later used by the pluto algorithm to
decide whether it is necessary to invoke the builder’s build
method again, or whether it is unnecessary, because nothing
it used has changed in a way that the build unit declares that
this builder cares about.

Fig. 6 illustrates the gen, freq and breq dependencies be-
tween build units and the files (models) they refer to, in the
context of an orientation model corresponding to Fig. 4(b).
Note that this abstracted figure does not show the order in
which the dependencies are recorded in a build unit, which is
important for the operation of the algorithm, nor the stamps
that have been used. We will walk through this in Sec. 8.1.

It is important to understand that requiring (breqing) a
builder does not invoke the build method of that builder di-
rectly: rather, it sends another build request to the pluto build
algorithm, so that it can check whether or not a rebuild is re-
quired. That is done using stamps.

Stamps Each file said to have been read (“freqed”) in the
build unit is identified by giving a path (from P), and, cru-
cially, a stamp (from S). This is a value determined by the
builder for this use of this file.

Each stamp is associated with a stamper (from FS); the
idea is that the builder chooses a stamper, which produces
the stamp (there are framework-provided stampers that pro-
duce, for example, the last modification time of a file, a hash
of its contents, or a boolean for whether it exists). Formally
what the stamper has to be able to do is to take a path (in
P) and a file system (in Ω) and compute a stamp for the file
(if any) which is currently found at that path. A key part of
the algorithm’s checking whether a build unit is up to date,
i.e. whether its builder needs to be re-run, is: look at the
path and stamp of each file that it records having read; get
the stamper from that stamp; ask the stamper to compute the
stamp associated with the path in the current file system; com-
pare this stamp with the one recorded. The file is considered
up to date iff the recorded stamp is the same as the current
stamp (e.g. the last modification time has not changed). The
generality of the stamper set-up means, however, that a stamp
could be anything convenient.

Thus, the choice of stamp(er) is made by the developer
of the builder, and it is the key element in defining what it
means for the system to be “built correctly”: the choice must
ensure that if two versions of the file at a given path have the
same stamp then they are interchangeable to this builder, in
the sense that a change from one to the other does not neces-
sitate rerunning it. So the easiest, safest choice for the devel-
oper of a builder is to use the finest possible stamper, in which
any change at all to a file will change the stamp; last-modified
time, supported by the operating system, is traditional. As in
conventional build, this can already avoid a lot of unnecessary
work. In practice, though, it can happen that a file changes in
a way which definitely does not cause a rebuild to be neces-
sary. For example, if only comments in a source file change, it
is (barring strange compiler bugs!) unnecessary to recompile

10 Perdita Stevens

P ::= 〈path〉 path to a file
Ω ::= P→ 〈file〉⊥ file system

FS ::= P×Ω → S file stamper
S ::= stamp 〈value〉 FS file stamp

R ::= freq P S | breq B file or build requirement
G ::= gen P S provided file with stamp
B ::= {build : Ω 7→U×Ω , path : P} builder
U ::= {builder : B, reqs : R, gens : G} build unit

Fig. 5: pluto concepts and syntax of build units, adapted (to remove variable input) from [7]

M

Code Tests

orientation

tests

m

code

safety

Key:

B build unit with builder B

f file (model) f

requires file (freq)

provides file (gen)

requires build (breq)

Fig. 6: Dependencies of a build in the context of decisions
recorded in Fig. 4(b) (cf Fig. 3 of [7])

it. 5 Therefore, we might be able to save rebuild effort by de-
ciding that a stamp on a file should be computed ignoring the
comments, so that changes to comments alone do not change
the stamp. In our megamodel setting, this kind of thing hap-
pens more than in conventional system build, because it is
normal that only part – perhaps only a small part – of the
information contained in a model is relevant to a particular
bidirectional transformation involving it. For example, if the
roundtripconforms relationship in Fig. 1 only depends on
a class diagram part of the model m, but m also includes other
diagrams, the developer of the builder that builds code might
choose to stamp its use of m with a stamp computed from the
class diagram part alone.

We have been talking about the builder’s choice of stamps
to place on freq-ed files, i.e. files read. In fact in pluto the
builder also chooses a stamp for each generated (gen-ed) file.
However, in our setting we always stamp gen entries with

5 Note that “only comments change” rules out (un)commenting
code since that adds or removes code too!

a stamp fine enough to detect any consistency violation (in
practice, last-modified time will do). We discuss this in Sec. 10.4.

Correctness, soundness and optimality When a builder com-
pletes, a file it generates (gens) is considered correctly built,
provided every file the builder read (freqed) was stamped
with the same stamp as is computed from the current ver-
sion of the file. The gened file is up-to-date for as long as this
remains true.

A build unit is internally consistent, at a given moment
when the builder returns, if all required and generated files
are up-to-date (that is, their recorded stamps are indeed equal
to what their stampers produce on the files at this moment),
and build units exist for all required builders.

We elide the details of what it means for a build system
to be sound, but informally, it means that a non-failing build
produces an internally consistent build unit for each build re-
quest, and for any build requests generated in the process of
carrying these out, and that they are all properly linked with
no stomping on one another’s files. Crucially, only one build
unit is allowed to have generated the file at any given path. In
our setting, this means that each model is the responsibility
of at most one builder.

Requirements that builders must satisfy Conditions that the
developer of a builder must arrange to satisfy are formally
given as requirements on the build unit that the builder pro-
duces; these are then assumed in the proofs of soundness and
optimality. In practice, the software framework provides con-
siderable support for meeting these requirements. Our meg-
amodel extension will help even more: we will give a skeleton
form of a build method which ensures all these conditions are
met.

C1 breq before freq: If any file is required that is a generated
file of another builder, then that builder must be required
earlier in the build unit’s list of requirements (reqs) than
the file. This ensures that an out-of-date generated file is
not used.

C2 The builder must either fail, or produce a build unit
which is internally consistent. This is Assumption 4.1 in
[7], and enables the soundness result.

C3 Enabling the optimality result, [7] has a further assump-
tion (4.2), essentially that the list of requirements cap-
tures enough information to describe differences in the

Connecting Software Build with Maintaining Consistency between Models 11

dynamic behaviour of the builder. It states that if a build
unit’s reqs list contains a build requirement breq b, and
the only requirements coming before this in reqs are ei-
ther build requirements, or file requirements that are up to
date in the current file system, then rebuilding this builder
in the current file system will give a build unit whose reqs
list still includes breq b.
The effect of this requirement is that any information that
a build method relies on to determine whether or not to
invoke a builder must itself be recorded as a dependency
earlier in the list: so, if nothing recorded has relevantly
changed, then neither has the need for the builder changed.

7 Adapting Pluto for MDD

This section is the heart of the paper (although the reader
should not be tempted to start here: it relies crucially on ma-
terial presented earlier). In it, we will

– give a simple formalisation of a megamodel, suitable for
interpreting in the pluto framework (Sec. 7.1);

– formalise the concept of orientation model for capturing
(and varying) decisions about which models may be mod-
ified, and in which direction bx will be applied (Sec. 7.2);

– formalise the concept of a Megamodelbuild system based
on a megamodel and an orientation model, including

– specifying how the build method of each builder in such a
system must be constrained, in order that the system as a
whole will be able to do its job of restoring consistency in
the megamodel instance soundly and optimally. We first
give a definition in terms of the pluto framework, and then
show how such build methods are implemented using a
template method (Sec. 7.3).

– We illustrate this in the context of the example from Fig. 4(a)
(Sec. 7.4).

– Finally we add some remarks (Sec. 7.5).

This sets us up to go on in Sec. 8 to prove soundness and
optimality of a consistency restoration system built up in this
way, satisfying these constraints.

7.1 Megamodels

Recall that a megamodel is a way of specifying a collection
of modelling artefacts and relationships between them. These
relationships may include that one model conforms to an-
other, that one is generated from another, etc. Formally, let
us give a very general description, in which we do not, for
example, assume there are consistency restoration functions,
nor make any distinction between models and metamodels,
nor between different kinds of relationships between models.

Definition 1 A megamodel-skeleton H comprises:

– a finite set Node, called nodes
– a possibly empty AAuth⊆Node, the nodes that are always-

authoritative

– a finite set Edge of (directed) (hyper)edges, together with
a function

nodes : Edge→ Node∗

such that for every E ∈ Edge,
– |nodes(E)| ≥ 2, and
– the elements of nodes(E) are all distinct.

This function need not be injective, i.e. we do not forbid
multiple edges between the same list of nodes.

Definition 2 A megamodel M over a megamodel-skeleton H =
(Node,AAuth,Edge) comprises:

– a valuation vNode of nodes, giving for each N ∈ Node a
set vNode(N) of models.

– a valuation vEdge of edges, giving for each E ∈ Edge with
nodes(E) = (N1, . . .Nk), a relation on the model sets the
edge connects, i.e. a subset vEdge(E)⊆ vNode(N1)×·· ·×
vNode(Nk).

Remark 1 In [32] I combined the concepts of megamodel-
skeleton and megamodel into one (there only ever is one meg-
amodel per megamodel-skeleton in that paper), and this led to
a little confusion. Here let us be more pedantic.

Definition 3 An instance of a megamodel M = (vNode,vEdge)
over a megamodel-skeleton H = (Node,AAuth,Edge) is a
collection of one model n in each vNode(N).

The instance is consistent if all the relations are satisfied,
i.e. whenever ni1 ∈ vNode(Ni1), . . . ,nik ∈ vNode(Nik) are models
in this instance and vEdge(E)⊆ vNode(Ni1)×·· ·× vNode(Nik)
is an edge in the megamodel, we have (ni1 , . . .nik)∈ vEdge(E).

Remark 2 The reader may be wondering about models which
may be absent from an instance, either

– because they need to be generated from other models in
order to restore consistency to the instance; or

– because they are genuinely optional according to the meg-
amodel.

Given the generality of the set-up, this can easily be modeled
using a special “no information” model, say ΩN ∈ vNode(N),
to represent the absence of the model. The consistency rela-
tions, recording whether ΩN is consistent or not with the pos-
sible values of other models, can capture both of the above
situations.

This is nothing but a slight generalisation of the way the
early bx literature [28] uses a special model ΩN ∈ N in order
to allow a consistency restoration function

−→
R : M×N → N

to model a situation in which a model in N must be generated
afresh: given a model m ∈M, the newly generated model in
N is
−→
R (m,ΩN). (The alternative approach, used in the early

lens literature [9], requires a lens to provide a special create
function, taking just a view to a source, in addition to the put
function which takes a view and a source to a new source.
The “no information model” approach we use is more nota-
tionally convenient, given that we wish to talk explictly about
consistency relations.)

12 Perdita Stevens

Remark 3 Notice that this setup encompasses two MDD situ-
ations:

1. all the nodes are models, and the transformations between
them are encoded as edges;

2. some of the nodes themselves represent transformations.
(“Transformations are models!”)

E.g. if bidirectional transformation R (the currently programmed
transformation from a set R of transformations) between model
sets M and N specifies a consistency relation, we may choose
whether or not to encode the transformation itself as a node.
If we do not, we will simply have an edge R between nodes M
and N, specifying that m and n are consistent precisely when
R(m,n) holds. If we do, we will have nodes M, N, and R,
with a hyperedge between them specifying that m, n and R
are consistent precisely when R(m,n) holds. The latter gives
us the flexibility to react automatically (without needing to
modify builders) to changes in the definition of the transfor-
mation. Our framework permits both variants without further
ado.

7.2 Orientation model

Typically, there will be some nodes in a megamodel which
it is helpful to include, but never appropriate to change auto-
matically. (For example, we never want our automated con-
sistency restoration procedure to modify the UML metamodel.)
These are the always-authoritative nodes. For others, whether
we permit them to change, or take them as authoritative, de-
pends on the situation. We use a special model to capture such
variations in the situation.

Definition 4 An orientation model O over a megamodel-skeleton
H = (Node,AAuth,Edge) comprises:

– all the nodes of the megamodel-skeleton Node
– a possibly-empty set of nodes Auth designated authorita-

tive, satisfying

AAuth⊆ Auth⊆ Node

– a possibly-empty set of edges OEdge⊆ Edge
– an orientation for each edge, i.e. a function

target : OEdge→ Node

satisfying target(E) ∈ nodes(E) for each E ∈ OEdge.

It is well-formed if

– it is acyclic, that is, there is no sequence E1 . . .En (n > 1,
each Ei ∈OEdge) such that target(Ei) ∈ nodes(Ei+1) for
each i and target(En) ∈ nodes(E1), and

– no target node is authoritative, that is,

target(OEdge)∩Auth= /0.

7.3 Specifying a Megamodelbuild system

Given this setting we can equip our megamodel with pluto
builders (constrained as we shall see) and use the pluto algo-
rithm (unmodified) to restore consistency.

We are about to define builders for our models. As ex-
plained above, a build unit is a record of a successful run of a
builder, which the pluto algorithm consults to see whether a
builder needs to be rerun. In more detail, we have to define:

– a build (partial) function (implemented as a method of the
builder: the implementation might fail, raising an excep-
tion), taking a file system to a build unit and a new (i.e.
possibly modified) file system;

– a path which, in a file system, will either lead to a file
where the latest build unit is stored, or will be undefined
(⊥) in case the last build of this builder failed. That is,
the builder only produces a path to an actual file where
a build unit is stored, if the build succeeded. Hence the
build unit, if it exists at all, may be relied upon.

The path is only interesting in that pluto’s soundness de-
pends, naturally, on builders not overwriting one another’s
build units (“stomping on one another’s files”); we will say
no more of it, as no new considerations arise in the MDD
context.

The interesting part of defining a builder B is the build
function, i.e. determining, based on the initial state of the file
system, what the build unit and the final file system must be.
To recapitulate:

– The first element, labeled builder, of the build unit is al-
ways the builder that wrote this build unit: there is no
choice for the builder-writer to make.

– The second element, reqs, is a list of build and file re-
quirements: this is the interesting part. Def. 6 explains
how this is determined, and the restrictions on the stamps
that must be used on file requirements.

– The third element, gens is a list of stamped provided files.
In our setting, however, there is no choice for the builder-
writer to make here. Each builder only generates one file,
viz. the model it is responsible for, and we will always
stamp this unique gen entry with a stamp fine enough that
it changes when the file is modified in any way that might
violate any consistency relation (in practice, last modified
time will do fine). See Sec. 10.4 for discussion of this
choice.

The modified file system that is returned is just the result
of carrying out the build method and saving each generated
file at the appropriate path. Since in the implementation the
file system may, of course, be modified in ways beyond the
simple saving of a generated file (e.g., running a model trans-
formation engine may produce a log file, which plays no role
in the formalisation), some latitude is needed to match up the
formalisation with reality so that the soundness and optimal-
ity results pertain. Here the “no stomping on one another’s
files” assumption is again used to match up the actual imple-
mentation behaviour to its simplified formalisation. That is,

Connecting Software Build with Maintaining Consistency between Models 13

Formalisation Framework
breq requireBuild

freq require

gen provide

Table 1

it does not matter if the implementation makes unformalised
modifications to the file system, provided that these do not do
any harm to things that are relevant to the formalisation.

In the implementation, the build unit is built up by the
pluto framework, based on the builder’s calls to framework-
provided methods. We shall look at an extract in a moment.
E.g. if the builder calls the framework-provided requireBuild
method, this (as well as guiding the pluto algorithm) writes
a breq entry to the build unit. Table 1 summarizes the corre-
spondence between build unit entries and framework meth-
ods.

Definition 5 A Megamodelbuild system for a megamodel M
over skeleton H comprises a well-formed orientation model
O for H , together with, for each node M in Node \ AAuth,
a pluto builder whose build method behaves according to the
constraints in Def. 6. Such a builder is called an M-builder.

Recall that a build method formally reads and writes a
file system and (unless it fails) returns a build unit in which
the builder field simply specifies that this is the builder which
wrote it. Specifically, in a Megamodelbuild system for meg-
amodel M , the build method of the M-builder will read the
current instance of megamodel M , and the orientation model,
from the file system. It may write a modified version of the
model it is responsible for, M, into the instance. Via the oper-
ation of the pluto algorithm, its build requests may indirectly
invoke other builders, causing other models to be modified
too. On successful completion, it returns a build unit (and
saves it to the filesystem).

The contentful work, besides calculating the new model,
is to specify the entries in the reqs and gens field.

Definition 6 Given a file system containing a megamodel in-
stance and an orientation model O, the build method of the
M-builder must construct a build unit by carrying out the fol-
lowing steps in this order.

1. freq the orientation model O. (That is, enter an freq entry
for the path of the orientation model and the appropriate
stamp (see below) as the first entry on the reqs list of the
build unit being constructed.)

2. Determine, from O, the set E of directed (hyper)edges
having M as target; let N be the set of nodes that are
sources of these edges.

3. breq the N-builder for each N ∈N (such that N is not
always-authoritative). (That is, append these breq entries
to the reqs list.)

4. freq all the models which are the values of nodes in N in
the current instance. (That is, append these freq entries,
for the paths of these models, with appropriate stamps
(see below), to the reqs list.)

5. Calculate a new version of model m ∈ M that makes all
the relationships in E hold (and save it).

6. gen m, i.e. record that m has been (re)generated. (That is,
make this the sole entry of the gens list in the build unit
being constructed – recall that we always use a fine stamp
on gen entries.)

7. Return (and save) a build unit recording this sequence of
requirements and generation.

The builder must use stamps fine enough to ensure that if a
file changes without changing the stamp, consistency will not
be lost. It may stamp O just with a record of its own authority
status and which edges target it (i.e. E).

Implementation in Megamodelbuild In the prototype Meg-
amodelbuild system6 a base class MegaBuilder for builders,
providing a template method for the build method, is pro-
vided. Recall that each builder is responsible for a single
model. The build method will be invoked if, and only if, the
pluto algorithm has determined that this model may need to
be changed. It must then meet the requirements laid out in
Def. 6 above. Fig. 7 summarises the template method’s code.

Here require is the framework-provided method corre-
sponding to freq-ing a file. Thus, the template method be-
gins by requiring the file containing the orientation model,
om, as required by Step 1 of Def. 6. It must specify which
stamper to use against this file requirement, so that later the
pluto algorithm can check whether a change to the file does
or does not require the build method to be rerun. In this case
the appropriate stamper is the one returned by Megamod-
elbuild’s getOrientationStamper method, i.e. a stamper
written specifically for stamping orientation models: it cap-
tures, as specified in Def. 6, its own authority status and which
edges target it. From the orientation model, the build method
extracts the information that is relevant to the model for which
this builder is responsible: this is Step 2 of Def. 6.

– If the model is marked as authoritative in the orientation
model, then, since the orientation model is assumed to
be well-formed, the sets N and E are empty: this model
must not be modified, so there is nothing to be done. Steps
3-5 of Def. 6 become vacuous.

– Otherwise, some specific action must be taken, and this
is encoded in the restoreConsistency method which
is invoked by the template build method, and will be im-
plemented in a model-specific subclass of MegaBuilder.
This method must carry out steps 3-5 of Def. 6. It is passed
the orientationInfo which tells it with which mod-
els it must restore consistency (that is, sets N and E).
It must use framework methods requireBuilder and
require to record those dependencies in the eventual
build unit, and then restore consistency by modifying this
model accordingly. How this is done is encapsulated: it is
up to the implementer of the specific builder. If there is a
unique edge incident on this model, and that edge is as-
sociated with an external transformation, then the builder

6 https://github.com/PerditaStevens/megamodelbuild

14 Perdita Stevens

@Override // of the Pluto framework build method

protected Out<File> build(Input input) throws IOException, MegaException {

// set file to be the model this builder is responsible for

// set om to be the orientation model

require(om, getOrientationStamper()); // step 1

// step 2:

String orientationInfo = orientationModel.getInfoFor(getName(), getOrientationStamper());

boolean isAuthoritative = OrientationModel.authoritative(orientationInfo);

if (isAuthoritative) {

// do nothing - steps 3-5 become trivial

report(getName()+" is authoritative, so no resolution to be done");

} else {

// do the actual work - steps 3-5:

restoreConsistency(input, file, orientationInfo);

}

provide(file); // step 6

return OutputPersisted.of(file); // step 7

}

Fig. 7: Abstract of template build method

may simply run that transformation, by invoking an ex-
ternal transformation tool. However, the situation may be
more complicated, such as in Fig. 4(a), where there are
several separate consistency relations that must simulta-
neously be restored. The restoreConsistency method
might invoke several consistency restoration procedures,
perhaps from different external tools, and might also do
arbitrary “fixing up” before determining that the model
has had consistency fully restored, or else failing. We will
see an example in a moment.

After the model has been brought into consistency with its
neighbours, the template method uses the framework-provided
provide method (with a fine, default stamp) to record that
this model has been gen-ed (step 6 of Def. 6). It saves and
returns a build unit (step 7).

7.4 Example in the context of Fig. 4(a)

Let us fill in a few more details in the specific context of the
orientation model shown in Fig. 4(a), as follows. Consider
the task faced by the writer of the Code-builder, who must
implement a restoreConsistency method. Sometimes, a
builder-writer’s job will be very easy: the builder will have
to do nothing more than invoke a pre-existing model trans-
formation. On other occasions, restoring consistency may re-
quire more intelligence: perhaps there is an available model
transformation but it does not completely do the job, or there
are several that must be combined in the right order, per-
haps with some pre- or post-processing. Or perhaps there is
no model transformation available to help, and the builder-
writer must implement the restoreConsistency method
from first principles, manipulating the model explicitly. What
is fixed is the notions of consistency specified by the edges
of the megamodel: in accordance with Step 5 of Def. 6, the
restoreConsistencymethod of the Code-builder must pro-
duce a version of the Code that is consistent with the models

identified from the orientation model, in this case m, tests
and safety. If it cannot do so, it fails, raising an exception:
the whole build fails.

In this case, we suppose that the ingredients available
to the writer of the Code-builder’s restoreConsistency

method—whom we will call Sam from now on, for brevity—
include pre-existing bx roundtripconforms and safeconforms.
These incorporate the required consistency relations on the
corresponding edges of the megamodel, and also provide con-
sistency restoration behaviour, which Sam may use in com-
bination to restore consistency to code on demand. We next
give some more details about these hypothetical bx, in order
to discuss how Sam might decide to use them.

– Suppose the roundtripconforms edge requires that ev-
ery class in m’s class diagram should have a corresponding
(in some sense we need not go into) Java class in code.
When the bx’s consistency restoration is invoked in the
direction of code, then if there is a class in m with no
corresponding class in code, one will be generated. No
comments will ever be inserted in the Java.

– The safeconforms edge requires (among other things,
as previously discussed) that every Java class in code cor-
responds to a test class in tests, unless the Java class
is marked with a special comment (// Not Yet To Be

Tested or similar). When this bx is invoked in the direc-
tion of code, any Java class that has neither that special
comment nor a corresponding test class will be deleted. If
there is a test class that lacks a corresponding Java class,
then a Java class will be generated.

Now, the two consistency restoration procedures are not non-
interfering [33]: that is, applying them in different orders can
yield different results. Sam’s code gets to make the choice
of order; the choice can be made statically, or it might even
depend on the current states of the models.

Note, for example, that each of the two bx will generate
a missing Java class if necessary. Consider the case that the

Connecting Software Build with Maintaining Consistency between Models 15

“same” class exists in m and in tests, but there is currently
no corresponding class in code. Then applying the two bx in
either order may7 restore consistency: the first one will gen-
erate Java code for the missing class, after which the second
one will find a corresponding class and succeed. However, it
may be that one of the bx is better at generating useful Java
code than the other. Sam might choose to invoke this bx first,
so that the most useful code gets generated in such a case;
then the other bx, invoked second, will find a corresponding
class in code and its less good code generation capabilities
will not be used.

More interestingly, consider a case where a class is present
in m, but not in either code or tests. Here neither order
of application of the available bx, without adjustment, will
succeed in restoring both the consistency relations. For if
roundtripconforms is applied first, it will create a Java
class – but because it does not insert the special comment, ap-
plication of safeconforms will then delete it again, breaking
consistency according to roundtripconforms. On the other
hand, if safeconforms is applied first, and then
roundtripconforms, the result will be that a Java class is
present in code, without the special comment, but is not present
in tests, so the safeconforms consistency relation does
not hold. However, the flexibility to invoke the bx from a
build method makes it easy to solve this problem. Most obvi-
ously, restoreConsistency might be written to:
1. apply the roundtripconforms consistency restoration

first, possibly creating new classes in code, then
2. automatically add the special comment to any such new

classes, before
3. invoking the safeconforms consistency restoration.

In this way, a fully consistent state may be reached even though
this would not be possible with any combination of the bx un-
aided.

7.5 Remarks

1. Generally the M-builder’s newly calculated m will depend
on the old value of m, as well as on any linked mod-
els. This is unusual in conventional build systems, but es-
sential for bidirectional transformations. A careful read
of [7]’s proofs shows that it is unproblematic and does
not require breqing this builder (which would result in a
build cycle) nor freqing this model (m itself).

2. Because an authoritative model is never the target of a
(hyper)edge, the builder of a model that is authoritative
in the current orientation model will, as expected, neither
freq any model nor breq any builder, but just restamp this
model. (E.g. Test-Builder according to Fig. 4(a).) We are
using pluto’s dynamic dependency capabilities here: the
builder’s requirements depend on the current contents of
the orientation model.

3. As we saw in the example, the real work is done in Step
5. If there is a single incoming edge, and if the meg-
amodel is associated with a way to restore consistency

7 elided details prevent us saying definitely “will”

along this edge – e.g. the compare or patch function in
Example 5.1, or the consistency restoration function of
an individual bidirectional transformation – then all the
builder has to do is apply it. In practice this may be done
by invoking a separate transformation engine. In this way,
this approach supports the principled heterogeneous com-
bination of different bx technologies.

4. If there is more than one incoming edge (e.g. Code-Builder
according to Fig. 4(a)), or if the megamodel is not as-
sociated with the means to restore consistency along its
edges, then, as we saw in the example, more interest-
ing work is required. This might involve adjustment of
the result of applying transformations, search, or even
user interaction. The choice is encapsulated inside this
builder: the requirement is just somehow to deliver a con-
sistent m. The attempt must be allowed to fail, however,
because as discussed in [30] there might simply be no so-
lution. Soundness in this setting, as in conventional soft-
ware build, does not mean that consistency will always be
restored, but rather that if the algorithm succeeds then the
result really is consistent.

8 Soundness and optimality

The builders in a Megamodelbuild system, defined following
Def. 5, will automatically obey requirements C1, C2 and C3;
in particular, the sequence of requirements changes only if
the orientation model changes, ensuring C3. These builders
are now used with the standard pluto build algorithm, and we
get:

Theorem 1 (Soundness) Invoking the pluto build algorithm
with a build request for the builder of any model M in the
megamodel will either fail, or produce a new megamodel in-
stance which is correct, in the sense that consistency holds in
the subgraph of the orientation model from which M is reach-
able.

Proof (Sketch) Theorem 5.3 of [7] tells us that the build re-
quest will, unless it fails, result in a totally consistent build
unit for the M-builder: that is, one in which all the stamps
are up-to-date, and the same is true of all the build units to
which this one is transitively linked via breq entries. (Total
consistency also guarantees appropriate book-keeping prop-
erties such as that the build units exist and have the expected
attributes and links. We refer to [7] for full details.)

What we have to show is that this ensures the correctness
we want in the megamodel. We proceed by induction on the
length of the longest directed path in the orientation model,
which is finite since the megamodel skeleton has finitely many
nodes and the well-formed orientation model is acyclic. The
induction hypothesis is that, if there is a totally consistent
build unit for a model N to which the longest directed path
in the orientation model has length at most k ∈ N, then con-
sistency holds in the subgraph of the orientation model from
which N is reachable. For k = 0 this is vacuously true. Sup-
pose it is true for k, and that the longest directed path in the

16 Perdita Stevens

orientation model to M has length k+ 1. Consider any edge
in the orientation model targetting M. Total consistency of the
build unit tells that the gen and freq stamps on the involved
models are up-to-date. By Def. 5, together with the fact that
the gen stamp we always use is fine enough to detect any con-
sistency violation, this ensures that consistency holds along
this edge. Total consistency tells us that all linked build units,
i.e. the build units for any source models of edges targetting
M, are also totally consistent; since the orientation model is
acylic, each directed path in the orientation model to one of
these build units has length at most k, so the induction hy-
pothesis applies and we are done.

Note that this is a stronger result than Theorem 5.3 of [7] be-
cause of the additional requirement we put on the megamodel
builders, that they restore consistency along certain relation-
ships (or fail). We cannot get a guarantee that all relationships
in the megamodel hold, because this may be impossible.

Optimality Theorem 5.7 of [7], which says:

Theorem 2 (Optimality) The number of builders executed
by the build algorithm (in response to any build request) is
minimal.

transfers directly. Informally, this holds because the algorithm
caches previous build results, repeating builds only when they
are invalidated because a file changes in a way that the stamps
indicate is significant, and then only when the file is gen-
uinely required to build the requested artefact. In our setting,
we see in particular that the only builders invoked in response
to a build request for a model M are those of models from
which there is a path to M in the orientation model; each of
these is invoked at most once (by acyclicity), and only if re-
quired. For example, with the orientation model of Fig. 4(b),
if from a consistent state just Safety is altered, and then Test-
builder is invoked, the Code-builder will not be invoked.

Note, however, that minimality means a builder is never
rerun if it should have been apparent from the stamps that this
was unnecessary: in pluto the stamps specify what it means
for the build to be correct. Of course, we cannot exclude that
the model was, as it happened, still consistent with its neigh-
bours – manual changes could have “by chance” maintained
consistency in a way that is invisible to the build system until
the builder is run.

8.1 Example in the context of Fig. 4(b)

Fully explaining and reproving the soundness and optimal-
ity result here would involve importing essentially all of the
content of [7]; especially, fully reproducing the pluto algo-
rithm. Instead, we will explain how the algorithm operates in
an example: the interested reader is invited to read this ex-
planation alongside Fig. 6 of [7], but the explanation should
stand alone. Fig. 6 may be helpful again.

We suppose we are in the context of Fig. 4(b), and that a
build request for the Tests-builder has been submitted: that

is, we are restoring consistency to the tests. Suppose that,
since this builder was last successfully run, only model m has
changed. Potentially, this might have caused code to be out-
of-date, and tests in turn may need modification. What will
the algorithm do?

Starting with a build request to build tests, the pluto
algorithm will consult the build unit recording the last opera-
tion of the Tests-builder. We suppose that the build unit ex-
ists, and its reqs field records an freq on the orientation model,
then a breq on the Code-builder, then an freq on the safety

model (recall that, because Safety is always-authoritative, it
does not have a builder, so there is no corresponding breq)
and finally an freq on the code file. The algorithm checks the
status of the gens field of the build unit; in our system this
list always contains simply the one file gened by the Tests-
builder, viz. tests, the model for which this builder is re-
sponsible. Since we always use a fine stamp on generated
files, any change to tests that could invalidate any of the
consistency relations incident on it will cause the consistency
restoration procedure to be run. In our scenario there is no
change to tests, so next, each of the requirements in the
Test-builder’s build unit’s reqs list is checked in turn. In our
scenario the orientation model has not changed so its freqing
does not necessitate any work.

The next requirement to be checked is the breq of the
Code-builder. The algorithm now looks for its build unit, which
it finds. The gens field just records that the builder is responsi-
ble for the code model, which has not changed. The reqs field
records an freq on the orientation model, then a breq on the M-
builder and finally an freq on the m file. Once again the check
of the orientation model succeeds as it has not changed. The
algorithm next checks the breq requirement on the M-builder
which means finding its build unit. This time, when the sta-
tus of the single generated file m in the build unit’s gen field
is examined, we find that indeed m has changed. Therefore
the M-builder’s consistency restoration procedure is run. Be-
cause m is authoritative, this does not make any change to m:
the result is a new build unit which records an freq on the
orientation model, no other entries in the reqs list, and a new
stamp on the single entry for m in the gens list. (The algo-
rithm records that this build unit is known to be consistent,
so that it would not have to be rechecked if something else
breqed the M-builder later, but that will not happen in our sce-
nario anyway.) Returning to the checking of the reqs in the
Code build unit, we meet the freq on the m file. At this point
the stamp recorded in this freq is compared with the stamp
produced by the same stamper on the current version of the m
file, to see whether any relevant change to it has occurred. Let
us suppose that, even though we posited that m had changed,
it has not done so in such a way as to change the stamp – per-
haps the changes to m were only in the use case diagram, and
the stamp that the Code-builder placed on it was computed
only from the class diagram. Then, even though we just reran
the M-builder, this use of the stamp lets the algorithm know
that the check on the freq of m succeeds: no relevant change
has occurred. That concludes the checking of the reqs list in
the Code build unit, so there is no need to rerun the consis-

Connecting Software Build with Maintaining Consistency between Models 17

tency restoration procedure of the Code-builder: its build unit
is recorded as known consistent.

Returning to the checking of the reqs list in the Tests

build unit: the checking of the freq on the safety model suc-
ceeds because we are supposing that had not changed and,
more interestingly, so does the check on the freq of the code.
(Note that the same would have been true if the Code-builder
had needed to run its consistency restoration procedure, but
the result had not produced a change to the code that caused
it to have a different stamp from the one recorded in the freq
of code in the Tests build unit’s reqs.) Therefore there is
no need to run the consistency restoration procedure of the
Tests builder either. Here we see how the use of custom
stamps enables early cut-off : even though there was the po-
tential for the change to m to necessitate running of both con-
sistency restoration procedures of Code and Tests, in this
case neither had to be done.

(Note that in this example we have elided mention of
some book-keeping aspects of the pluto algorithm (shown
in Fig. 6 of [7]), especially the validate procedure (Fig. 7
of [7]), which do not give rise to any new considerations in
our setting.)

9 Custom stampers and bidirectionality

In this section we discuss the relationship between custom
stampers as used in pluto and related ideas in MDD. In build
system work a traditional rule is “if the target is already up to
date with respect to the sources, do not run the builder”. As
explored by [7], the naive version of this, using time stamps,
can lead to inefficiencies: a target may be out of date only
because a source has changed in a respect that is irrelevant to
the relationship between source and target. In effect pluto’s
stamps impose a builder-specific equivalence relation on the
set of possible instances of a file depended on by the builder:
instances are equivalent iff they have the same stamp, and this
indicates that the instances are interchangeable as far as this
particular builder is concerned.

A related idea in MDD is hippocraticness: “if the target
model is already consistent with the source(s), do not apply
a consistency restorer”. This helps avoid disruptive and un-
necessary changes to models, but it does not necessarily save
computational effort, because checking consistency may it-
self be arbitrarily expensive. For example, checking whether
a given triple of code, tests and safety model are consis-
tent will involve re-running the tests and computing a cover-
age metric. On the other hand, if we know that the only aspect
of the safety model that is relevant to this consistency is the
one bit that says the system is safety-critical, we may safely
say that a change to the safety model that does not flip that
bit does not necessitate rechecking the consistency relation,
because the two versions of the safety model are equivalent
as far as this consistency relation is concerned.

In the safety case, there will be just two equivalence classes
of the safety model, determined by the safety-critical bit.
Or if m is a Java source file and R is maintaining consistency

between the Java source file and an HTML documentation
page, we may identify an equivalence class of Java sources
files with the file comprising a particular set of extracted doc-
strings, discarding all the code.8

The idea of models being equivalent if they differ only in
ways that never affect their consistency with another model
via a given bidirectional transformation has been explored in
[29], in the setting of simple relational state-base bx. Such
a bx, relating model sets M and N, is formally defined by a
triple:

1. the consistency relation that the bx checks and enforces,
R⊆M×N

2. a forward consistency restoration function
−→
R : M×N→

N
3. a backward consistency restoration function

−→
R : M×N→

M.

The bx is termed correct if the consistency restorers do re-
store consistency, i.e. R(m,

−→
R (m,n)) always holds (and du-

ally for
←−
R). The formalisation of hippocraticness is that if

R(m,n) holds then
−→
R (m,n) = n and

←−
R (m,n) = m. In that

setting, as explained by [29], we may define equivalence re-
lations ∼=R

F and ∼=R
B on M (and mutatis mutandis on N) by:

– m∼=R
F m′ iff ∀n ∈ N.

−→
R (m,n) =

−→
R (m′,n) – that is, for ev-

ery model n, the result of using
−→
R to modify n so as to be

consistent with m is the same as the result of using R to
modifying n to be consistent with m′

– m ∼=R
B m′ iff ∀n ∈ N.

←−
R (m,n) =

←−
R (m′,n) – that is, any

differences between m and m′ are such as to be obliterated
by synchronisation with any element of N.

It turns out that any model m ∈M is determined by its equiv-
alence classes under these two equivalence relations [29]. In
many (but not all) natural cases, the equivalence class of m
modulo ∼=R

F is easily reified as the information from m that
−→
R looks at. If this equivalence class could easily be com-
puted from m, it would serve as a suitable stamp for the N-
builder to use on model m, because a change to m that does
not change its equivalence class does not necessitate a change
to n ∈ N. An interesting challenge in the context of a partic-
ular transformation language (related to slicing) would be:
given a transformation, automatically generate a stamper that
generates stamps corresponding to these equivalence classes.
Indeed the discussion in Sec. 7.1 of [33] suggests a way to do
this, by statically analysing the text of a model transforma-
tion to determine which model elements – instances of which
metaclasses – may be relevant: the automatic generation of
an abstraction, or part, of a model that is potentially affected
by a bx would give a (pessimistic) candidate for a section of
the model to inspect for changes in order to decide whether
any change has taken place that might be relevant to the bx.
I am endebted to a reviewer for the suggestion that perhaps
the intents of transformations, in the sense of [20], might also

8 For a concrete example, see the orientation stampers at https:
//github.com/PerditaStevens/megamodelbuild.

18 Perdita Stevens

provide useful information from which stampers could be de-
rived.

There is, of course, a pragmatic question about the trade-
off between the expense of computing the stamp on a file, and
the expense of re-running a transformation. We might expect
that in the case where a stamp is derived by looking in a safety
model for a single bit, and seeing that it has not changed may
save substantial effort, this is worthwhile; however, using a
custom stamper in the Java/HTML case is less likely to be
useful, because computing the stamp may be almost as ex-
pensive as regenerating the documentation.

10 Discussion

10.1 Bx modifying just one model

A major aim of this work is to support consistency restora-
tion in networks of models that involve heterogeneous tech-
nologies, e.g. various models and transformations whose lan-
guages need not even share a common meta-meta-modelling
language. Yet we have worked on the assumption that restor-
ing consistency along any (hyper)edge in the megamodel in-
stance involves modifying just one of the models involved. Is
there a contradiction here?

The reason for the restriction is that it is essential to our
adaptation of pluto that any model is the responsibility of just
one builder in the system. We cannot, without completely re-
working the framework, allow the same model to be modified
by two different builders under different circumstances. So if
two models must be modified by the same transformation,
they must be the responsibility of the same builder. In such a
case we will then, for practical purposes, regard them as one
combined model.9 Thanks to custom stamps, it is still possi-
ble to react efficiently to changes. Say, for example, that we
wish to make use of an existing transformation which modi-
fies both a state diagram and a class diagram; and suppose we
also wish to use a different transformation which reads only
the class diagram. In our framework there will be one builder
which is responsible for both the class diagram and the state
diagram, but the transformation that only reads the class di-
agram may freq the combined model with a custom stamper
which ignores changes to the state diagram, so that it will not
need to be reapplied if only the state diagram changes.

10.2 State-based vs delta-based approach

Another aspect of this work that might be perceived as a lim-
itation, but which is in fact a deliberate choice, is that there

9 A draft of this paper used the word “merged”, but this caused
anxiety in a reader familiar with the problems involved in “model
merge”. Here there is no need for any actual merging – no need for
the models to be given a common metamodel, for example – so this
anxiety is unnecessary. It is just that the framework, agnostic about
how models are constructed, is a fortiori agnostic about whether
someone might consider this model to be the combination of several
smaller models.

is no requirement within the Megamodelbuild framework for
information to be provided about deltas (“what has changed
in a model since last synchronisation?”), edits (“what com-
mand(s) did the person editing this model issue?”) or trace-
ability links (a.k.a corrs, or correspondence graphs: “which
part(s) of that model are relevant to this part of this one?”).
When such information is available, it is often possible to
use it to make more intelligent decisions about how to restore
consistency than are possible without it [5, 6, 14]. However,
as mentioned in Sec. 2, real-world scenarios that involve mul-
tiple models may be arbitrarily heterogeneous. Some of the
files in our megamodel instance might be UML models, some
Python programs, some models in a previously unknown and
ad hoc DSL, some text files. We often cannot assume that all
models are expressed as graphs, or in languages based on the
same (meta)∗-modelling language; or that we have any con-
trol over what tools will be used to edit the models; or that
it even makes sense to describe changes to different models
using the same language. In Megamodelbuild the decisions
about what needs to be done to bring a model into consis-
tency with its neighbours are entirely encapsulated inside that
model’s builder. If information about deltas, edits or corre-
spondences is available (stored in the same file as the model,
or in a different one) it is open to the builder to use it, whether
directly or by passing it to a transformation engine that needs
it. But this is not – and does not need to be – treated spe-
cially in the framework: a file containing such information, if
present, would just be another file used by the builder, to be
stamped appropriately. As far as the framework is concerned
it does not matter whether a builder achieves its task of bring-
ing its model into consistency with its neighbours using one
or more external transformation engines, using its own inter-
nal programming, or even with the help of user interaction.

10.3 Humans in the loop and gradual adoption

Given the separation of concerns between the builders, which
restore consistency by any means, and the Megamodelbuild
framework which invokes builders as necessary, it is even
possible for a builder’s consistency restoration to involve hu-
man interaction (or search, or any other approach). Provided
that before the restoreConsistency method returns suc-
cessfully, it verifies that the relevant consistency relations have
indeed been restored, the guarantees provided by the frame-
work still hold. In practice, however, it is more likely that
situations where human action is required will be captured
as they are in conventional software build: that is, by the
build failing, so that humans have to take action before rerun-
ning the build. The approach of this paper allows for widely
varying degrees of automation. At one extreme, it is possi-
ble to use it with no automated consistency restoration at all!
That is, every builder’s restoreConsistency method could
merely check whether consistency along the relevant edges
holds already; if so, it returns successfully, while if not, it
fails, i.e. raises an exception that terminates the build. This
already brings benefits: the automated consistency checking

Connecting Software Build with Maintaining Consistency between Models 19

is proved sound, and when it fails, it provides an indication
of where in the megamodel instance there is an inconsis-
tency (which builder failed and what error message did it
emit?). One could envisage gradual adoption of the Meg-
amodelbuild framework proceeding on this basis: initially,
builders would be given that minimal check-only behaviour,
and then over time, as a cost-benefit calculation permitted, the
restoreConsistency methods could be improved to auto-
mate more of the consistency restoration and fail less often.

10.4 Fine stamps on generated files

A design decision in the Megamodelbuild framework is that
the template build method (Fig. 7) does the provide frame-
work call, and hence, chooses the stamp that is applied to the
gen entry in the build unit. In fact, as can be seen from the ab-
sence of a stamp argument to this call, the current framework
implementation always uses the default last-modified stamp
on gen entries. This is more pessimistic than strictly neces-
sary: the interesting content of the decision is that the stamp
should be fine enough to ensure that, if the stamp on the file
does not change, then neither does the file’s consistency with
any other adjacent model in the megamodel. What we have
to ensure is this: if the model is modified by something other
than its builder—e.g. by a human working on it—and then a
build request for it is submitted, the pluto algorithm needs to
be able to detect that the builder’s build method does need to
be called, in order to check that the modifications have not
broken consistency.

To see why this is necessary, consider again the scenario
presented in Sec. 8.1, but in a modified version where the
tests had been changed by a human in such a way as to in-
validate the safeconforms consistency relation. If the gen
stamp used by Test-builder on tests were so coarse that
it could not detect these human modifications, then the sce-
nario would play out exactly as presented: in particular, the
restoreConsistency method of the Test-builder would
never be called. Hence the consistency restoration would not
be correct, because the build would complete “successfully”
but leave a megamodel instance in which safeconformswould
not hold. (Note that this would not be a problem for sound-
ness in pluto’s sense: for pluto the stamps determine what it
means for the build to be correct. The issue is that in our set-
ting, we want to use the stamps to ensure the kind of correct-
ness we actually care about, viz., restoration of consistency
relations in the megamodel instance.)

Our choice to use a pessimistically fine gen stamp, within
the template method, frees the builder-writer from the (per-
haps error-prone) obligation to choose a stamp which is fine
enough to catch all potentially consistency-violating external
changes to the model that this builder controls. It could re-
sult in a build method being called when, in fact, no work
needs to be done (note that this does not violate the Op-
timality Theorem, which only rules out work which is un-
necessary according to the stamps). An avoidable call to a
restoreConsistencymethod will only result, however, when

a builder-controlled, non-authoritative model suffers an exter-
nal modification which does not in fact impact consistency.
Since such modifications normally will require a consistency
check to be done, our choice seems pragmatically reasonable;
nevertheless, it might be interesting to experiment with more
flexibility in future.

Notice that this issue only applies to gen stamps, not to
freq ones: a stamp used on an freq entry is specific to one use
of the file, i.e. to one consistency relation.

10.5 Management of the orientation model

Because the orientation model is just a model (though always-
authoritative, i.e., only manually changed!) it will be man-
aged in a configuration management system as usual, and
edited, probably by a project manager, to reflect current cir-
cumstances of the project, such as which models should be
permitted to be modified by the build system. A typical project
might have several versions of an orientation model over its
lifetime; for example, a model may become authoritative after
it is signed off by a customer. We may even have several vari-
ants that are interchanged as appropriate, e.g. one that labels
a model as authoritative, for use while its own developers are
working on it (so that their work is not interrupted), another
that does not. As we have seen, the system automatically
maintains soundness even if the orientation model changes.

10.6 Changes to the megamodel itself

For simplicity, we have assumed here that the megamodel
does not change, although the orientation model may. That
is, we use pluto’s dynamic dependency capability only to re-
act to changes in the orientation model. It would be possible,
however, to use it more; it is unclear whether this would be
useful, or rather would diminish the value of the megamodel.

10.7 Files

In order to make use of the existing pluto software, which is
based around the notion of file, we have adopted here the as-
sumption that models are realised in files, and we have not
considered serialisation and deserialisation explicitly. In [16]
the authors make the point that for practical purposes it is
highly advantageous for a model management workflow to
avoid parsing the same model more than once, and they dis-
cuss how to use features of Ant to make this work. The con-
cerns are orthogonal to those discussed here, however, and
the use of the file system is not essential to anything we have
proposed.

10.8 Demand-driven versus global consistency restoration

Following pluto we have adopted here a demand-driven ap-
proach to consistency restoration: we provide a mechanism

20 Perdita Stevens

that will not necessarily restore all of the consistency rela-
tions in the megamodel, but only those that must be restored
in order to produce an up-to-date version of the requested
model. This approach is a contrast to earlier work on meg-
amodel consistency, e.g. [27, 30]. We think that, for MDD, it
is an advance, but note that it is still possible that a rebuild of
one model forces an update to another (e.g. Test-Builder in
Fig. 4(b) may cause the code to be rebuilt, if it is currently
inconsistent with the model m). This relates to:

10.9 Always-consistent versus stable

In modern software engineering there is an interesting ten-
sion between (a) the desire to avoid duplicating information,
and (b) the perceived need to tolerate inconsistency to permit
creative flow [11] that may lead to step improvements. Pri-
oritising (a) leads to a preference for having a “golden copy”
of any piece of data; in an MDD context it suggests that any
inconsistency should be repaired immediately [10, 27]. Nu-
seibeh et al., in [25], argue for (b); in an MDD context, Kuhn
et al. [17] make the point that engineers want to work inde-
pendently on copies of the same model and then need good
tool support for reintegration of their modified copies. At is-
sue is the length of time for which it is appropriate for some
expert (group) to proceed with changing an artefact indepen-
dently, before bringing it into consistency with all other arte-
facts. Too short a time, and nobody achieves flow: everyone
is constantly interrupted by their artefacts changing under-
neath them to take account of other people’s decisions. Too
long a time, and development returns to the bad old days of
months-long integration phases. This work does not offer a
silver bullet, but it does help to ease the management of such
decisions, by embodying them in a concrete artefact (the ori-
entation model), giving explicit constraints on how builders
must be written, and providing, in return for the builder-writer
abiding by these constraints, guarantees of sound and optimal
behaviour. Making the pragmatically best choice in a given
setting will inevitably, though, require skill and experience.

11 Conclusions and future work

We have proposed an approach to sound, optimal and flexible
megamodel-based building, extending the work of Erdweg et
al. [7] to tackle the problem of Di Rocco et al. [27], and to
address some of the challenges raised by Stevens [30]. The
soundness and optimality are precise results, based on [7]’s
work. Flexibility is, naturally, more subjective. Here we have
externalised the decisions about which models are authorita-
tive etc. into the orientation model, which, being a model like
any other, can be changed, such that affected models can be
automatically rebuilt in response to the change while unaf-
fected ones need not be. We have shown how decisions about
consistency restoration can be encapsulated inside relevant
builders. We think this will be more dependable than using
a complex build script, especially where developers need to
automatically reconcile the effects of several transformations,

or use transformations provided by vendors or others and then
systematically “tweak” their results.

Since the publication of [32], the appearance of the im-
portant work by Mokhov et al. [24] has changed the present
author’s future plans. By clarifying key concepts relating to
software build and how they are related in various advanced
build systems, it helps to situate the pluto work and clari-
fies what is important about it. A new project (of the au-
thor and James McKinna) aims to mechanise the formalisa-
tion of [24], extending it with a mechanised formalisation of
custom stamps, and produce machine-verified versions of the
soundness and optimality results we have used here. This is a
very ambitious goal, made feasible only by the foundational
work of [24], and it will take some years. In the short term,
this will support an investigation of whether each restriction
placed on the framework is required for soundness or opti-
mality, or might usefully be relaxed. In the long term, this
could then form the basis for an exploration of even more
flexible, yet still sound, means of restoring consistency in
megamodels, as follows.

We have shown how certain decisions about the restora-
tion of consistency can be encapsulated in individual builders.
In our early experimentation with pluto and its formal model,
we explored a more radical proposal than is presented here.
Here we have presented the use of an orientation model that
specifies, for example, in which direction each relevant bidi-
rectional transformation should be applied, so these decisions
are centralised. We could imagine a megamodel build system
in which these decisions, too, were encapsulated in individual
builders, leading to a radically different and even more flexi-
ble approach to the provably correct building of software. In
future work we would like to investigate the extent to which
this is (a) technically feasible and (b) pragmatically helpful
(vs confusing): both are at present uncertain.

For example, an M-builder would have the responsibility
to restore consistency between m and its neighbours in the
megamodel, and would be able to choose to do so by what-
ever means were appropriate, e.g. at one time to do so by
modifying m, at another to do so by leaving m alone and in-
stead asking the builder of a neighbouring model to modify
itself. Such decisions might be based on anything the builder
programmer chose, even, for example, local time of day, if
we judge that a change to an expert’s model in the middle
of the night is likely to be less disruptive than one that takes
place during the working day. However, pursuing this idea
turned out to involve heavy use of pluto’s cycle-handling ca-
pabilities, which (unlike the cycle-free case) are described
only informally in [7]. Thus, since the correctness of pluto’s
cycle-handling is delicate and would be crucial, we would
prefer to have a detailed and preferably mechanised proof of
correctness before relying on it to this extent. Assuming that
appropriate soundness results could be proved, understand-
ing whether there are settings and assumptions under which
this would be useful and usable is an intriguing direction for
future work.

Connecting Software Build with Maintaining Consistency between Models 21

More prosaically, a specialised open-source framework
for building from megamodels, on top of pluto, is available10,
although currently primitive. (Given the retargetting of future
work described above, it is not yet clear whether future devel-
opment should be undertaken on the current pluto basis, how-
ever, or whether formal and theoretical work based on [24]
will show a better way to proceed.) Manually implementing
appropriate builders, as described, is routine, but we would
further like to incorporate: wrappers to let builders invoke ex-
isting model transformation engines; automatic generation of
builders from a megamodel expressed in an appropriate lan-
guage such as MegaL/Forge [27]; connections with further
megamodelling work such as [4, 15]; generation of custom
stamps from transformations; validation of orientation mod-
els; exploration of scalability; etc. By permitting, for low ef-
fort, trustworthy and fully incremental build of model-driven
systems, this is a step towards continuous model-driven en-
gineering, as requested for example in [10]. Completing the
path towards that goal will, of course, require further work,
both practical and theoretical.

Acknowledgement

I thank the reviewers of this paper and of [32] for their con-
structive suggestions. I also thank the Bx’18 audience11, es-
pecially Sebastian Erdweg, Jeremy Gibbons, and James McK-
inna, for helpful discussion. Further, discussions at Dagstuhl
no. 18491 on Multidirectional Transformations and Synchro-
nisations [3] were also very helpful. I am grateful for support
from the UK NCSC/RIVeTSS grant RFA20601-4214171, Mech-
anising the theory of build systems.

References

1. Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Am-
leto Di Salle, Ludovico Iovino, and Alfonso Pierantonio. Mde-
forge: an extensible web-based modeling platform. In Cloud-
MDE, volume 1242. CEUR Workshop Proceedings, 2014.

2. Jean Bézivin, Frédéric Jouault, and Pierre Valduriez. On the
need for megamodels. In Proc. OOPLSA/GPCE workshop:
Best Practices for Model-Driven Software Development, 2004.

3. Anthony Cleve, Ekkart Kindler, Perdita Stevens, and Vadim
Zaytsev. Report from Dagstuhl Seminar 18491, Multidirec-
tional Transformations and Synchronisations. Dagstuhl Re-
ports, 8(12), 2019.

4. Zinovy Diskin, Sahar Kokaly, and Tom Maibaum. Mapping-
aware megamodeling: Design patterns and laws. In SLE, vol-
ume 8225 of Lecture Notes in Computer Science, pages 322–
343. Springer, 2013.

5. Zinovy Diskin, Harald König, and Mark Lawford. Multiple
model synchronization with multiary delta lenses with amend-
ment and k-putput. Formal Asp. Comput., 31(5):611–640, 2019.

10 https://github.com/PerditaStevens/megamodelbuild
11 for a related talk https://youtu.be/Pp1BsQyHoMs with no

accompanying paper

6. Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From
state- to delta-based bidirectional model transformations: the
asymmetric case. Journal of Object Technology, 10:6: 1–25,
2011.

7. Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound
and optimal incremental build system with dynamic dependen-
cies. In OOPSLA, pages 89–106. ACM, 2015.

8. Sebastian Erdweg and Klaus Ostermann. A module-system dis-
cipline for model-driven software development. Programming
Journal, 1(2):9, 2017.

9. J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bidi-
rectional tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang. Syst.,
29(3):17, 2007.

10. Jokin Garcia. Continuous model-driven engineering.
https://modeling-languages.com/continuous-model-driven-
engineering/, 2018.

11. Jeff Gray and Bernhard Rumpe. The importance of flow in soft-
ware development. Software and System Modeling, 16(4):927–
928, 2017.

12. Object Management Group. Model driven architecture (MDA)
MDA guide rev. 2.0, 2014.

13. Regina Hebig, Holger Giese, Kimon Batoulis, Philipp Langer,
Armin Zamani Farahani, Gary Yao, and Mychajlo Wolowyk.
Development of AUTOSAR standard documents at Carmeq
GmbH: a case study. Universitätsverlag Potsdam, 2015.

14. Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Edit
lenses. In John Field and Michael Hicks, editors, Proceedings of
the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsyl-
vania, USA, January 22-28, 2012, pages 495–508. ACM, 2012.

15. Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar, Marco
Brambilla, and Jordi Cabot. Moscript: A DSL for querying
and manipulating model repositories. In SLE, volume 6940 of
Lecture Notes in Computer Science, pages 180–200. Springer,
2011.

16. Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.
A framework for composing modular and interoperable model
management tasks. In In Model-Driven Tool and Process Inte-
gration Workshop, pages 79–90, 2008.

17. Adrian Kuhn, Gail C. Murphy, and C. Albert Thompson. An
exploratory study of forces and frictions affecting large-scale
model-driven development. In MoDELS, volume 7590 of Lec-
ture Notes in Computer Science, pages 352–367. Springer,
2012.

18. Epperly T Kumfert G. Software in the DOE: The hidden
overhead of “the build”. Technical Report UCRL-ID-147343,
Lawrence Livermore National Laboratory, CA, USA, 2002.

19. Ralf Lämmel. Relationship maintenance in software language
repositories. The Art, Science, and Engineering of Program-
ming Journal, 1, 2017.

20. Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers,
Rick Salay, Gehan M. K. Selim, Eugene Syriani, and Manuel
Wimmer. Model transformation intents and their properties.
Software and Systems Modeling, 15(3):647–684, 2016.

21. Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka
Kamei, and Ahmed E. Hassan. An empirical study of build
maintenance effort. In ICSE, pages 141–150. ACM, 2011.

22. James McKinna and Perdita Stevens. How to regain equilibrium
without losing your balance? scenarios for bx deployment (dis-
cussion paper). In Anthony Anjorin and Jeremy Gibbons, edi-

22 Perdita Stevens

tors, Proceedings of the 5th International Workshop on Bidirec-
tional Transformations, Bx 2016, co-located with The European
Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 8, 2016., volume 1571
of CEUR Workshop Proceedings, pages 32–34. CEUR-WS.org,
2016.

23. Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Si-
mon Marlow. Non-recursive make considered harmful: build
systems at scale. In Haskell, pages 170–181. ACM, 2016.

24. Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. Build
systems à la carte. PACMPL, 2(ICFP):79:1–79:29, 2018.

25. Bashar Nuseibeh, Steve M. Easterbrook, and Alessandra Russo.
Making inconsistency respectable in software development.
Journal of Systems and Software, 58(2):171–180, 2001.

26. Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico
Iovino, Ralf Lämmel, and Alfonso Pierantonio. Understanding
mde projects: megamodels to the rescue for architecture recov-
ery. Software and Systems Modeling, 2019. First Online: 18
July 2019.

27. Juri Di Rocco, Davide Di Ruscio, Marcel Heinz, Ludovico
Iovino, Ralf Lämmel, and Alfonso Pierantonio. Consistency
recovery in interactive modeling. In EXE at MODELS, 2017.

28. Perdita Stevens. Bidirectional model transformations in QVT:
Semantic issues and open questions. Journal of Software and
Systems Modeling (SoSyM), 9(1):7–20, 2010.

29. Perdita Stevens. Observations relating to the equivalences in-
duced on model sets by bidirectional transformations. EC-
EASST, 049, 2012.

30. Perdita Stevens. Bidirectional transformations in the large. In
MODELS, pages 1–17. IEEE, 2017.

31. Perdita Stevens. Is bidirectionality important? In Alfonso
Pierantonio and Salvador Trujillo, editors, Modelling Founda-
tions and Applications - 14th European Conference, ECMFA
2018, Held as Part of STAF 2018, Toulouse, France, June 26-
28, 2018, Proceedings, volume 10890 of Lecture Notes in Com-
puter Science, pages 1–11. Springer, 2018.

32. Perdita Stevens. Towards sound, optimal, and flexible build-
ing from megamodels. In ACM/IEEE 21th International Con-
ference on Model Driven Engineering Languages and Systems
(MODELS’18). ACM, 2018.

33. Perdita Stevens. Maintaining consistency in networks of mod-
els: Bidirectional transformations in the large. Software and
System Modeling, 2019. Online first, May 2019.

34. Frank Trollmann and Sahin Albayrak. Extending model syn-
chronization results from triple graph grammars to multiple
models. In Pieter Van Gorp and Gregor Engels, editors, The-
ory and Practice of Model Transformations - 9th International
Conference, ICMT 2016, Held as Part of STAF 2016, Vienna,
Austria, July 4-5, 2016, Proceedings, volume 9765 of Lecture
Notes in Computer Science, pages 91–106. Springer, 2016.

35. Jon Whittle, John Edward Hutchinson, and Mark Rouncefield.
The state of practice in model-driven engineering. IEEE Soft-
ware, 31(3):79–85, 2014.

