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Abstract

This research work focuses on pre-disaster transportation network protection in hedging against ex-
treme events, e.g., earthquakes. Traditional two-stage stochastic programming method has been widely
adopted to obtain solutions in presence of a set of uncertain scenarios, which however represents a risk-
neutral preference due to the use of expectations in the recourse function. Decision makers in reality may
hold different risk preferences. As a result, we develop a mean-risk two-stage stochastic programming
model in this study, which allows for greater flexibility in handling risk preferences when allocating lim-
ited resources. In particular, the first stage minimizes the retrofitting cost by making strategic retrofit
decisions whereas the second stage minimizes the travel cost. The conditional value-at-risk (CVaR)
is included as the risk measure for the total system cost. The model is formulated as a mixed integer
nonlinear programming (MINLP) problem, which is intrinsically difficult to solve using global solvers. A
decomposition method based on Generalized Benders Decomposition (GBD) is developed, to overcome
algorithmic challenges, particularly, embedded in non-convexity, nonlinearity, and non-separability of
first- and second- stage variables. The model is used for developing retrofit strategies for networked
highway bridges, which is one of the research fields that can significantly benefit from mean-risk models.
We first justify the model and evaluate the proposed decomposition algorithm using a nine-node net-
work. The model is then applied on the Sioux Falls network, which is a large-scale benchmark network in
transportation research community. The effects of the risk measure and critical parameters on optimal
solutions are empirically explored.

Keywords: Transportation, Stochastic programming, Mixed integer nonlinear optimization,
Disjunctive programming, Benders decomposition
2010 MSC: 90C15, 90C26, 90C11, 90C90, 90C35

1. Introduction

Many highway bridges in the United States (U.S.), especially old bridges, can be seriously damaged
or collapse even in relatively moderate natural disasters, e.g., earthquakes (Buckle et al., 2006). In
the most recent infrastructure report card issued by the American Society of Civil Engineers (ASCE),
one in nine of the bridges in U.S. are deemed structurally deficient (ASCE, 2013). Since 1960s, major
structural damage has caused millions of dollars of economic losses in a number of states, including
Alaska, California, Washington, and Oregon (Buckle et al., 2006). To improve this situation, at-risk
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bridges must be identified and evaluated and retrofitting programs should be in place to strengthen its
resilience (Buckle et al., 2006).

Highway bridge retrofit is one of the most common approaches undertaken to mitigate negative
effects of extreme events on highway transportation networks by federal and state departments of trans-
portation. Bridge damages due to extreme events may result in direct social and economic losses as a
result of post-disaster bridge repair and restoration as well as indirect impacts on transportation net-
works, due to short-term evacuations and emergency responses (Chang et al., 2012) and even long-term
changes in travel activities (Fan and Liu, 2010; Liu et al., 2009). These adverse impacts can be avoided
or alleviated if proactive bridge retrofit strategies are deployed.

The Federal Highway Administration (FHWA) estimates that to eliminate all deficient bridges back-
log by 2028, an annual investment of $20.5 billion is needed while currently only $12.8 billion is being
spent on (ASCE, 2013). Due to the limited retrofitting resources, it is neither practical nor economical
to retrofit all bridges to their full health conditions and thus a prioritized retrofitting scheme is expected.
In practice, resources are prioritized to bridges based on ranked structural deficiencies (Buckle et al.,
2006), which neglects the effects of networked bridges and the resultant solution may not be optimal
if indirect social losses (e.g., travel delay cost) are considered. This is because traffic flows may be re-
distributed over the transport network and affect other at-risk bridges. It justifies the need to consider
bridge retrofitting strategies at a network level.

1.1. An example of a network based model

Let us consider the benchmark Sioux Falls network (LeBlanc et al., 1975, see Figure 1) to better
understand the importance of a networked model. Assume that there are four bridges, labeled as A, B,
C, and D, which are vulnerable to seismic hazards.

A failure of bridge C (i.e., functional obsolescence) would detour the traffic from node #20 to #18
that originally traverses via link 60 to a longer path that is consisted of links 61, 58, 52 and 50. It may
result in higher travel cost, due to detours and resulted congestion. Additionally, the varied structural
deficiencies of each bridge may require the use of different materials and labors for its rehabilitation. The
main challenge is then formulating strategic allocations of limited resources to the bridges before they
become structurally inadequate and cause undesirable consequences to the network. A strategy solely
based on the ranked structural deficiency status would not guarantee system optimality. For instance,
assuming that bridge D is in a worse condition than bridge C and that resources are insufficient to
support retrofitting both, bridge D will outrank bridge C in retrofit priority, thus possibly exposing
bridge C to a higher chance of reaching the state of functional obsolescence in extreme events. This
solution could be counter-optimal, as the failure of bridge D only affects traffic on links among nodes
#20, #21 and #22 while the failure of bridge C affects traffic on links among nodes #20, #19, #17,
#16, and #18. From a network perspective, bridge C would be better positioned to be retrofitted .

1.2. Relevant literature

A network based bridge retrofitting is a general transportation network protection problem, which
can be grouped into two broad categories, depending on if bridges are treated as links (Chang et al.,
2012; Fan et al., 2010; Liu et al., 2009) or as paths (Mohaymany and Pirnazar, 2007; Viswanath and
Peeta, 2003). The problems based on the links are formulated as maximum capacity or minimum cost
flow network design problems with a focus on long-term economic effect of retrofit whereas the studies
considering bridges as paths are formulated as maximal covering network design problems, which are
more focused on short-term emergency response or maximal coverage of population centers. From a
transportation system analysis viewpoint, the transportation network protection problem is essentially a
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Figure 1: Sioux Falls network

network design problem (NDP), in which the upper-level problem involves optimal retrofit decisions for
best social welfares (e.g., minimum retrofitting cost and travel delay) while lower-level problem accounts
for the behaviors of network users which normally presents demand-performance equilibrium (Nagurney,
2006, 2007; Patriksson, 1994; Peeta and Ziliaskopoulos, 2001; Sheffi, 1985).

Uncertainty is naturally embedded in almost all transportation protection problems. Engineering
methods based on the wait-and-see approach (Birge and Louveaux, 2011) seek optimal solutions upon
the realizations of uncertainty (or scenario), which are deterministic. The resulting scenario dependent
solutions are then aggregated in order to be implemented (Carturan et al., 2013; Chang et al., 2012;
Rokneddin et al., 2013, 2011; Zhou et al., 2010). However, since future events are unknown at the time
of making decisions, scenario-specific solutions (policies) may not even be feasible for other possible
scenarios. Thus, a method that can account for a large number of possible scenarios needs to be
developed. Previous studies use either stochastic programming (SP) (Barbarosoglu and Arda, 2004;
Fan et al., 2010; Liu et al., 2009) or robust optimization (RO) method (Atamtiirk and Zhang, 2007;
Bertsimas and Sim, 2003; Lou et al., 2009; Sun et al., 2011; Yin et al., 2009) to take into account all
scenarios. In general, the SP method takes the expectation of consequences of all scenarios and thus is
risk-neutral and suitable for problems aiming to achieve long-term economic effects; however, it may have
poor performance under extreme events. Though rare, these hazards exert more severe impacts on the
system. RO approach, on the other hand, considers worst-case scenario with low-occurrence probability,
which may lead to too conservative and in most cases costly solutions. Therefore, neither risk-neutral SP
approach nor RO based method is best to capture the variability of risk, which motivates this study to
seek a new method for economic yet robust solutions. As such, risk measures should be incorporated into
decision making process of the stochastic modeling approach. In particular, we consider the conditional



value-at-risk (CVaR) as the risk assessment in this study. Compared to other possible risk assessments
(e.g., semi-deviation), CVaR is more adaptive to decision-makers’ risk preference (i.e., users’ preset
confidence level).

In the field of transportation network protection problems, our study to the best of our knowledge,
is the first study undertaken that specifies CVaR as the risk measure. CVaR was first introduced by
(Andersson et al., 2001; Rockafellar and Uryasev, 2000, 2002) as a risk assessment technique in port-
folio management to reduce the probability that a strategy incurs large losses (Krokhmal et al., 2002).
Particularly, for a discrete distribution, CVaR at a-level is the conditional expected value exceeding
value-at-risk (VaR) when there is no probability atom at VaR (Rockafellar and Uryasev, 2002). When
the confidence level increases, the VaR increases, leading to a more risk-averse solution. When all sce-
narios are considered, the problem is equivalent to a RO problem. CVaR preserves convexity, which is
a desirable mathematical property among risk measures (Ahmed, 2006). This risk measure has been
broadened up in the past decade and applied to a number of engineering fields, including electricity
operation decision (Yau et al., 2011), water resources allocation (Shao et al., 2011), facility location
planning for reverse logistics (Toso and Alem, 2014), and hazard material routing (Kwon, 2011). On
the other hand, the inherent computational challenges have motivated numerous algorithmic develop-
ments. Schultz and Tiedemann (2006a) developed a solution algorithm based on Lagrangian relaxation
of nonanticipativity to solve a mixed-integer linear program with CVaR. Fébidn (2008) developed de-
composition methods for solving a two-stage SP linear program with CVaR and Noyan (2012) extended
and solved a similar but two-stage SP mixed-integer linear program for disaster management. Compar-
itive computational studies with CVaR and other risk measures can be found in (Cotton and Ntaimo,
2015; Fabian et al., 2015).

1.3. Contributions of this study

In this study, we adopt CVaR as a risk measure in developing a mean-risk two-stage stochastic
programming model, with the goal of minimizing the direct cost of retrofitting bridges in the first
stage and indirect travel cost in the second stage. The first-stage decisions indicate the assignments
of retrofit strategies to different bridges in an optimized manner, which are made simultaneously with
second-stage traffic assignment decisions. CVaR is used to penalize the scenarios with large losses using
a user-specified confidence level and the risk consequence is integrated with the two-stage stochastic
program with a trade-off coefficient. The model is generic and generalizable for different kinds of
natural and man-made disasters.

Our proposed model is closely related to the stochastic transportation protection model by Liu et al.
(2009), in which a central semi-deviation is identified as the risk measure. However, our study is distinct
from this prior study and advances the models in the following aspects. First, the semi-deviation can
only capture the effects of scenarios that are worse than the expectation of second stage costs while
the CVaR is flexible to incorporate a spectrum of scenarios, depending on the pre-defined confidence
level and the weighting factors relative to cost terms in the objective. Second, the prior studies held the
assumptions of the binary damage states (i.e., either no damage or collapse) and binary retrofit strategies
(i.e., retrofit or no retrofit). Although these assumptions help reduce the problem size and consequently
the computational challenges associated with solving large-scale problems, this simplification may result
in less informative solutions and overestimate costs. In this study, we relax the assumption by defining
multiple damage states and available retrofit strategies based on a recent study (Huang et al., 2014)
where a set of binary decision variables are introduced to indicate whether a specific strategy is selected
for a bridge. From the modeling perspective, it is not a trivial extension to the prior efforts, due
to the inherent correlations between retrofit strategies, damage states, and resulting distributions of



traffic flows on the network, which need to be explicitly modeled in the new problem. In addition,
bridge retrofit strategies are subject to a budget limit, which makes the problem essentially a NP-hard
knapsack problem (Kellerer et al., 2004).

The mean-risk two-stage stochastic programming model is formulated as a non-convex mixed integer
nonlinear programming (MINLP) problem, wherein the travel cost for bridge links is a non-convex non-
linear function of retrofit decisions. In general, it is known that non-convex MINLPs can be notoriously
difficult to solve (Burer and Letchford, 2012). Thus another contribution of this study stems from the
algorithmic development. In particular, we develop a novel decomposition that is based on the general-
ized Benders decomposition (GBD) method. Our decomposition resolves the issues of non-separability
of first and second stage variables to enable efficient generations of Benders cuts. In this decomposi-
tion, we present a convex reformulation of the sub-problem. We justify our model and decomposition
method on a hypothetical nine-node network and then apply the model and solution method to solve a
stochastic transportation network protection problem based on a benchmark network - the Sioux Falls
network (see Figure 1) and seismic events as a demonstration to explore the effects of risk measures and
variations in critical parameters on the optimal solutions. The results provide managerial insights for
state stakeholders on bridge retrofit schemes.

The remainder of the paper is organized as follows. The mean-risk two-stage SP model is presented
in section 2, followed by the MINLP formulation presented in section 3. Decomposition method is
described in section 4. The numerical results of the two networks are summarized in section 5. The
paper is concluded in section 6 and the future research is outlined.

2. Mean-risk model

2.1. Parameters and variables

Let G = (N, A) denote a transportation network, where N is the set of nodes and A is the set of
directed arcs (or links) in the network. Denote by R and S, for some () # R, S C N, the set of origins
and destinations in the network, respectively. The set of origin-destination (O-D) pairs is some subset
OD C Rx S. For every (r,s) € OD, d"* € R, is the given travel demand on traffic originating at r and
ending at s. Denote by A, for some ) # A C A, as the set of links that are subject to hazards, which
mainly comprises of the at-risk bridges. The nominal traffic capacity of each link a € A is equal to ¢,.
For a € A\ A, it is assumed that this link capacity remains unchanged after any disastrous event (e.g.,
natural or man-made disasters). However, the link capacities of links in A reduce due to the damage
from the events and the extent of this change depends on how well the at-risk bridges were retrofitted
before the events happened. The finite set H represents a list of applicable retrofit strategies for at-risk
bridges in A in order to mitigate the adverse impacts caused by disastrous events in the future. The
set H includes the do-nothing option and each at-risk bridge can be retrofitted with exactly only one
strategy. The cost of retrofitting a € A with strategy h € H is f". The total budget for retrofitting
bridges is 8.

In this study, two sets of probabilistic estimates — damage to a structure and the probabilities of
various event occurrences, are combined to obtain a damage prediction. Let the finite set K denote the
set of scenarios for possible damages to the network. Each scenario k € K is known to occur with a given
probability pp € (0,1). For every a € A, h € H, and scenario k € K, we use the parameter §%* € (0,1)
to describe the ratio of post-event link capacity to the full link capacity, which can be determined
externally by using bridge structural assessment, such as the study (Mackie and Stojadinovic, 2004) for
seismic damages. When disaster happens, the post-event capacity of link a € A that was retrofitted
with strategy h € H is equal to c,0MF.



We now describe the decision variables used to construct our mathematical formulation. For every
a € A h € H, the binary variable u” is equal to 1 if and only if link a is retrofitted by strategy h € H.
For (r,s) € OD, a € A and k € K, 27%F is the flow on link a corresponding to the traffic originating
at r and terminating at s for scenario k. The total flow on link @ € A due to all O-D pairs is v*,
and vF = Z(m)eoD 2"%% Va € A. In this model, we allow unsatisfied post-disaster travel demand for
various reasons, such as shutdown of certain roadways, acute increased traffic congestion in the network,
etc. The unsatisfied travel demand for any O-D pair (r, s) is captured by the decision variable ¢"* and

we use a big M to impose a penalty cost for the unsatisfied demand in the objective function.

Remark 1. In the transportation network literature, traffic is often assumed to be in a user-equilibrium
condition, where no traveler can further reduce their travel cost by simply changing their own routing
decision (Yang and H. Bell, 1998). This assumption holds for a normal situation, where travelers have
learned and adapted to daily traffic condition. However, modeling travelers’ routing behavior in an
environment following extreme events, such as earthquake, is still arguable (Fan and Liu, 2010). In this
paper, it is assumed that traffic flow can be controlled to achieve system-optimization and the resulting
estimated travel cost can be considered as a lower bound of actual travel cost.

2.2. Two-stage stochastic models

2.2.1. Risk-neutral model
We first present a basic two-stage stochastic programming model for our problem. The first stage

considers the retrofit resource allocation problem and decides the retrofitting strategy for each of the
links in A. Define the set U as

U= {ue {0, 14X Sk =1 Vae 4, BT 360} (1)

heH

to include all first-stage decisions — each link in A can be retrofitted with exactly one strategy and the
total budget is By. The problem is then to minimize 8" u+E Q(u), which is the sum of total retrofitting
cost and the expected travel cost incurred. Equivalently, the first-stage objective is to minimize E f(u),
where f(u) := 8T u+ Q(u) is the total cost function. The assumption of finitely many scenarios indexed
by the set K allows us to discretize the expectation of expected travel cost function and state our
two-stage stochastic program as

(2-stage SP) : min Z pefF(u) =min BTu + Z peQF(u) st. wel, (2)
Y rex “ kek

where f¥(u) = B8Tu + Q¥(u) is the total cost function for the k" scenario, in which Q*(u) is the travel
cost function based on an explicit traffic assignment model for the k" scenario, defined as
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st vE= Y a*f VacA (3h)
(r,s)eOD
k. 4
B toa |14 6 [ —o VYa e A (3¢)
o G )
(z*,¢") € X* (3d)

In the second stage, v¥ is the aggregation of link flow 275* over all O-D pairs (r, s), ¢"** is the unsatisfied
demand between an O-D pairs (7, s), and t¥ is the link travel time per unit flow. The objective function
(3a) is to minimize the total cost of traffic flow on the network and consists of two terms. Each product
v¥t¥ is equal to the travel time for the entire flow on link a € A and upon scaling this with the parameter
~ that converts travel time to a monetary value!. The second term represents the penalty cost for
unsatisfied demand. In our problem, all travel demand is satisfied (or penalized for economic concerns)
in the second stage. The link travel time per unit flow is usually a non-decreasing link performance
function of the aggregated link flow and a non-increasing function of the post-event link capacity in
each scenario. Equation (3c) expresses the dependence of ¥ on v* using the Bureau of Public Records
(BPR) function (of Public Roads, 1964), in which ¢y, is a parameter for the free-flow-speed travel time
of link a, d is an empirical data (e.g., 0.15), and the denominator ¢¥(u), which is a function of the first
stage decision u, denotes the remaining link capacity on link a in scenario k:

o CaYopep O0Ful ac A

Cq(u) = _ (4)

Ca a€ A\ A

The recourse function Q¥ (u) seeks to optimize flows over the set X*, defined as:

Xk = {(x,q) >0,0) | Y am- Y aitgt=d" V(rs) eOD (5a)
J:(rj)eA J: (Jr)eA

Z T — Z ris— ¢ =-d"” V(r,s)€OD (5b)
J: (s,5)€A J: (J,s)€A

Sooap— Y ali=0 Y(r,s)eODie N\{rs},. (5¢)

J:(i,5)€A j: (Gi)eA

For each O-D pair (r,s), equations (5a) and (5b) allow a slack of ¢"* in the flow balance at r and s,
respectively, to account for unsatisfied travel demand, whereas equation (5¢) balances flow exactly at
all other nodes in the network.

As the post-earthquake link capacity (4) is a linear function of retrofit decisions for links in A, the

n practice, determining the value of v requires approximation of value of travel time savings, which is assumed to be
equal to a nationwide median gross compensation for business travel (U.S. Department of Transportation, 2014).



decision variable u appears on the denominator of the travel time cost function in (3c). This imparts
non-convexity and nonlinearity to our two-stage stochastic problem and also leads to the following

property.
Observation 1. Problem (2-stage SP) has complete recourse, i.e., subproblem (3) is feasible for every
ueU.

Proof. The only reliance of subproblem (3) on the first stage decision u is through the time variable t*
defined in equation (3c). Since t* otherwise appears only in the objective function (3a), it follows that
the subproblem is feasible regardless of the retrofit decisions made in the first stage. O

2.2.2. Mean-risk model
We now turn to introducing our mean-risk stochastic program, which combines the two-stage risk-
neutral SP model and the CVaR function for risk assessment. Recall that the a-level CVaR is

1
CVaR, Z :=inf [n+ ——Emax{0,Z —n}|.
n l1-«o

Since f(u) = BTu+ Q(u) is the total cost function, the mean-risk objective is E f(u) + A CVaR,, f(u),
where the coefficient A\ € [0, 00) represents a trade-off between the risk measure (CVaR in our case)
and the expected first stage cost. The risk-neutral problem (2-stage SP) corresponds to A = 0. Upon
discretizing with finitely many scenarios as before, performing simple manipulations arising out of trans-
lation invariance of CVaR (cf. Schultz and Tiedemann, 2006b), and linearizing the max{0, -} function
in CVaR, the mean-risk SP program becomes

(Mean-risk SP) :  min (14 \)8"u + Z pr@F(u) + A (T] + L Z pk§k> (6a)

um keK l—o /=

st. welU (6b)
&> Qu)—n Vke K (6¢)
>0 Vk €K, (6d)

where Q¥ (u) is defined by equations (3)-(4). The objective is to minimize the total cost of retrofitting
bridges, expected travel cost, unsatisfied demand penalty and the risk term (CVaR). Here A is a pre-
defined weighting factor. A larger A value leans towards CVaR and thus results in a more conservative
solution. On the other hand, a smaller A value yields a solution that weighs more on the expected cost,
and thus the solution is more risk-neutral. The variable 1 denotes the value-at-risk.

Formulation (6) may be thought of as a disaggregated stochastic program for mean-risk problems
with CVaR because we introduce an auxiliary variable £* for each k € K. An alternative is to consider
an aggregated formulation given as follows.

Proposition 1. Let z* be the optimal value of (Mean-risk SP). Then z* is equal to

iny}lé A4+N8"u + & + A <T]+ 1C—2a) (7a)
st. uelU, (>0 (7b)
> Q¥ (w), G > pe(QF(u)—n) VSCK, (7c)

keK kes



Proof. For u € U and n € R, define
T(u,n) = {k € K: Q"(u) > n}.

Since p > 0 Vk € K, observe that for fixed u € U and n € R, we have

> pe(@ () —m) = max > pe(Q(w) — ),
keT (u,m) - keS

with the maximum being zero if and only if T'(u,n) = (). Denote Z to be the optimal value of (7). First
let (@,7,&) be a optimal solution to (6). Since A/(1 — ) > 0, we have £¥ = max{0, Q*(u) — i} for all
k € K. Setting (1 = Y, cx peQ"(u) and (o = > keT(a) pe(QF(4) — 1) produces a feasible solution
(a,7,¢) to (7) with objective value z*, implying that Z < z*. Now let (1,7, ) be optimal to (7). Clearly

Gl =Y e PRQF(@). Since /(1 — a) > 0, we have

& = maX{O,gnga;((l; pr(@ @) -} = > p(QF(a) — 7).

keT (a,n)

Thus (2 = > 4c x P max{0, Q% (a) — 77}. Set &¥ = max{0, Q" () — 7} Vk € K to get a feasible solution
(@, 7,£) to (6) with value Z, thereby implying z* < Z. Combining this with the first part yields z* = 2. O

Formulation (7) uses ¢; and (> to replace >, pr@Q*(u) and Y, pr max{0, Q*(u) — n}, respectively.
However, due to the presence of the max{0,-} function in CVaR,(-), we need exponentially many
constraints to reformulate (2 > >, ;e pr max{0, Q" (u) — n} without adding any extra variables. The
disaggregated stochastic program helps to restrict the formulation size and only adds a modestly many
|K| extra variables. Note that this tradeoff between a few extra variables and exponentially many
constraints does not occur in a risk-neutral stochastic program. In terms of solving a two-stage stochastic
program with a decomposition algorithm, disaggregated formulations are known to sometimes yield much
stronger cuts than a aggregated formulation, thus accelerating convergence to the optimum. For these
two reasons we henceforth work with formulation (6) and remark that it may be possible to handle the
inequalities in (7¢) via a cutting plane procedure.

3. Recourse function

For each scenario k, the recourse function Q*(u) is a nonlinear optimization problem in (3). This
problem is non-conver due to presence of the bilinear terms v¥#¥ in the objective and nonlinear equality
constraints defining t*. More importantly, since the fractional function % in (3¢) has u appearing
linearly in the denominator, the second stage variables are non-separable from the first stage variable in
this formulation. Problem convexity and separability of the variables are both desirable properties of
Benders-type decomposition methods for solving a two-stage stochastic program with a nonlinear second
stage since they guarantee generation of valid supporting hyperplanes of the recourse function (see
Floudas, 1995; Geoffrion, 1972). Our decomposition algorithm for solving (Mean-risk SP) is presented
in §4. In this section, we derive a reformulation of Q¥ (u) that is not only a convex program for every
u € U but also also achieves separability between first and second stage variables. This reformulation
leads to a convex MINLP formulation for solving (Mean-risk SP) as a single optimization problem.



Substituting the variable t* in formulation (3) with the nonlinear function in (3c) eliminates the
bilinear terms v*¢* and leads to

, (v)° rs
QF(u) = Ukm}lcn LY Z toa {vs + §ék(u)4 + M Z g (8a)
e acA a (r,s)€eOD
st of = Z 'k Yae A, (2F ¢F) e X. (8b)
(r,s)eOD

Thus for a fixed u € U, the recourse value Q*(u) can be obtained by solving the convex optimization
problem (8). However this does not tell us anything about the convexity of Q*(-). We exploit properties
of the discrete set U to show that the recourse function is indeed convex. Our main approach is to
eliminate u from the denominator in (8a) and make the subproblem separable in first and second stage
variables. In particular, we obtain subproblem constraints that are linear in u, convex in v and do not
contain product terms between u and any of v, q,z. There are different ways of achieving this and we
present these next.

Let us introduce a auxiliary second stage non-negative continuous variable y* for each a € A and
add the inequality
(v8)°

a
(Ca EheH uget’ll’k)él

The right hand side of the above inequality appears in the objective (8a) with a positive coefficient
~vdto,. Hence we have

yh > Va € A. 9)

Qk(u) = Uk’gili’yk ¥ z;qtoa [’UéC + 5315] + M ( )z:@ qrs,k (103,)
ac r,s)EOD
st (8b),(9). (10b)

The following lemma guides our convex reformulation for Q* (u).
Lemma 1. Forac A andue U, (X, cpn GQkuZ)p = heH (03’“)%’; for all p € R.

Proof. Since Y, oy ul =1 Va and ul! € {0,1} Va, h, it must be that for every a € A we have u? =1 for
some h € H and u? =0 for all b’ € H \ h. Hence both (3, 07% ul)? and 3, _,; (07%)7 ul' are equal
to (67%)P. O

After clearing the denominator in (9) and applying Lemma 1 with p = 4, we obtain

oy < f [z <esk>4ui:] Ji Vac A (1)

heH

Remark 2. For u € U, since >, u* =1 and v € {0,1}, the term Y, (92’“)4 u” can be interpreted

as the unary expansion of a discrete variable that takes values in Uy, (92’“)4. The right hand side of
inequality (11) is then the product of a discrete variable and a non-negative continuous variable and
is therefore a bilinear term. Another formulation for this bilinear term can be obtained using the
binary expansion of the discrete variable, where only log, |H| many {0,1} variables (as opposed to
|H| {0,1} «’s in the unary case) are required. Gupte et al. (2013) theoretically compared unary and
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binary expansion reformulations for bilinear optimization problems, obtained new valid inequalities to
strengthen the continuous relaxation of the binary reformulation and showed that these convexifications
work well on hard test instances. This encourages the use of binary expansion formulations for general
bilinear problems. However, in our case since the cardinality of H is quite small (e.g., 5), the discrete
variable takes only up to 5 different values and there is no significant benefit of adopting the logarithmic

formulation for Uy (92’“)4. Therefore we choose to not modify the term ), (92’“)4 ul in (11).

In mixed integer nonlinear optimization literature, it is common practice to replace each nonlinear
constraint of <-type with the convex envelope of the corresponding nonlinear function; see Tawarmalani
and Sahinidis (2004). Such a replacement usually relaxes the nonlinear constraint, although if some of
the variables are discrete, one may sometimes also obtain an exact reformulation of the constraint. The
<-inequality in (11) has different sets of variables on the left and right hand sides. Therefore, if we
write the constraint as the difference of the left and right hand sides, taking the convex envelope of this
difference is equivalent to separately taking the convex envelope of the left hand side and the concave
envelope of the right hand side. The left hand side in (11) is a univariate convex function of v, over
R, and hence does not require any convexification. For the right hand side, we have a bilinear term
between a discrete variable ), - (92’“)4 ul € U (93’“)4 (cf. Remark 2) and a continuous variable y*.
The concave envelope of this bilinear term is given by its McCormick inequalities (McCormick, 1976),
which depend on lower and upper bounds on the variables appearing in the bilinear term. The bounds

for > ey (6‘2’“)4 u” and y* can be obtained as follows. It is clear that for u € U,

4 4

k hk\Y . b~ gk k._ i) phk ok . hk

0, < th(ﬂa ) u, <0,, where 0,:= (hmelg 0, > , 05 = <I}¥1€a§ 0, > .
€

From equations (8b) and (9) we get the lower bound on y} to be zero. For every a € A, let ¢, > 0 be
a large enough positive constant such that every optimal solution to (10) satisfies v, < cu¢, Va € A.
Then by inequality (9) and Lemma 1, every optimal solution to (10) satisfies

yk < _CaSa (12a)
“ T YOkl
which leads to
k Cagc?
Yo < gk (12b)

since u € U. Using these lower and upper bounds, the McCormick concave envelope of the bilinear term
on the right hand side of (11) is

5

. = CqaS, 4

ck mm{@fy(’f, oFyk 4 Lka g (Hgk) ul — caq;’}. (13)
Y% nhem

and hence we have two inequalities for (11):

5
() < ik, () <+ C S @R (e)® Yac A (14)
=a heH

Gupte et al. (2013, Proposition 2.1) tells us that modeling a bilinear term between a general integer and
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a continuous variable with the McCormick inequalities allows for more integer solutions. The same holds
true when the bilinear term is between a general discrete and a continuous variable. Therefore (14) yields
a relaxation but not a reformulation of (11). Although this relaxation can be used to under-estimate
the recourse function Q¥ (u), doing so will only yield weaker cuts in the decomposition algorithm.

In order to derive an exact reformulation of (11), first note that (v, (u?)n, y¥) is feasible to (11) if
and only if there exists some w” such that

(vg)® < cquy, (15a)

casS, wh < lz (92’“)41/;] Y. (15Db)

heH

(an)
A
g
o
INA

This equivalence is correct because 0 < v, < c¢4G, implies that the left hand side of (11) is upper-
bounded by (cas,)%. Since ¢4s? < 46265 /0% and the right hand side is the product of the upper bounds
k

" is nontrivial. We will

on .oy (02]“)4 u” and y*, respectively, it is clear that the upper bound on w
convexify (15b) to obtain a strong reformulation of (11).

Remark 3. Inequalities (14) are precisely the projection of the McCormick relaxation of

< ctub, 0<ul < [Z <ezzk)4us] o (16)
heH

where the bilinear term is relaxed using (13). Observe that (15) and (16) are each equivalent to (11)
but (16) is a relaxation of (15) in the (v¥, (u?)s,y*, w¥)-space. Therefore convexifying (15b) produces a
stronger reformulation in the (v¥, (u);,y*, w¥)-space than convexifying 0 < w* < [ZhGH (92"')4 u(ﬂ yk
in (16) and hence could lead to stronger cuts in the decomposition algorithm.

Equation (15b) represents a bounded product term between a discrete and a continuous variable and

for such bilinear terms, we note that the McCormick envelopes are neither a reformulation nor do they
yield the convex hull.

Observation 2. Denote T := {by, ba,...,bn} X [0,d] x [0,n] withm > 3,0 < b < by < -+ < by, and
N < bpd. Let R :={(x,y,v) €T |v<ay}, M:={(x,y9,v) €T | v < by, v < by+ dx — dby} be the
McCormick relaxzation of R, and M’ := {(x, y,v) € [b1, bm] X [0, d] x [0,7] | v < by, v < biy+dx — dby }
be the continuous relaxation of M. Then R C M and conv R C M’.

Proof. M being the McCormick relaxation of R leads to R € M and conv R C M’. Denote

d .
Xo = ————, X1 :=nmin{l, (6 — b1)xo}-
n(l—5-)
Then (62, 3+, x1) € M\ R. Note that (6 + %, 7-,1) is an extreme point of M’. Suppose this point

can be written as a nontrivial convex combination of finitely many (xf,y*,v") € R. Then v* = n Vt.
Since v* < x'y' and x! < by, it follows that y* > n/6,, and hence y* = n/b,, and x' = b, for all t.
Consequently, 6 + % = by, which is a contradiction because 1 < f,,4 by assumption. O

An extended formulation for the convex hull of R can be obtained using unary expansion of discrete
variables. Let v =), biz; with >, z; = 1,z € {0,1} Vi. Then disjunctive programming (Balas, 1979)

12



implies that conv R is equal to the projection onto the (x, y, v)-space of the polyhedron

{({,y,u,z) | ;(:ZEizi, V= Zui, y:Zyi
i=1 i=1 i=1

0<y <dz, 0<V' <6z, V' < by’ Vi (17)

5=1, z zow}.

Il
-

%

Since Y, (6%)%u, is the unary expansion of a discrete variable as mentioned in Remark 2, we may
apply (17) directly to (15b). However, we will first strengthen the bounds on the y* variables in each
disjunction. Of the two upper bounds on y* in (12a) and (12b), the former is stronger but is a function
of u whereas the latter is weaker but is a constant. The constant bound in (12b) is necessary for deriving
McCormick relaxations of bilinear terms as in Observation 2. The bound in (12a) can be incorporated

.5
into the disjunctive programming approach of equation (17). Since y* < WM by equation (12a)
h\7Va a

and >, ul =1 and u” € {0,1} Vh for every u € U, it is clear that convexifying (15b) is equivalent to
convexifying the following finite union of polytopes:

5
U {(ua,y§7w§) |u, = ey, 0 < yk < cZi"4, 0 <wh < el wk <o)ty k}. (18)
et (05%)

where e;, is the ht" coordinate unit vector. A straightforward application of disjunctive programming
(Balas, 1979) gives us the convex hull of (15b), which results in a strong reformulation of the recourse
function.

Proposition 2. The recourse function of the k" scenario can be formulated as:

Q*(u) = min Z toa | vF + 6ya} + M Z q" (19a)
vy qwx a€A (r,5)€OD

st oh= Z F vae A, (2F,¢¥) e X (19b)

(r,s)eOD
o Z whk Yk = Z Yyt Yo e A (19¢)

heH heH

wh < A0yt Yhe Hiac A (19d)
0<yh* < (92%4 ul, 0 <wht < e, ul Yhe Hac A (19e)

where for every a € A, <, is a large enough positive constant such that c,s, is the upper-bound on the
traffic volume of link a.

Notice that Proposition 2 linearly separates the first stage variable u from the second stage variables,
i.e., each subproblem constraint containing both first and second stage variables can be represented as
hi(u) + g1(w) < 0 or he(u) + g2(y) < 0 where hq, ha, g1, g2 are all linear functions. This structure fits
in with the so-called P-property of Geoffrion (1972) and allows for an immediate application of the
generalized Benders decomposition in the next section. It also implies that the recourse function Q*(u)
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can be approximated by supporting hyperplanes and hence is convex in wu.
Proposition 2 also implies an exact convex MINLP formulation for the mean risk problem (6).

(Convex MINLP) :  min  (1+A)BTu + Y pi [y Y toa [0h +0ys] + M Y ¢™**

045 keK acA (r,5)€OD
1
a{n+ —— k
(15 S
keK

st. welU, €&>0Vkek

&>y Zt[)a [vF +oyF] + M Z ¢~ Vke K
acA (r,s)€OD

(19b) — (19¢) Vk € K

This convex MINLP can be solved to e-optimality using state-of-the-art MINLP solvers. However we
demonstrate in §5 that even on a simple nine-node network, these generic global optimization solvers take
a long time to converge, thereby making this approach intractable for larger-sized practical instances.
This motivates our algorithmic development in the next section.

4. Decomposition method

Extensive algorithmic efforts have been made to improve the efficiency of solution algorithm for
MINLPs, including the widely used branch and bound (Gupta and Ravindran, 1985) with its variants
- LP/NLP based branch and bound method (Quesada and Grossmann, 1992) and spatial branch and
bound (Smith and Pantelides, 1999), as well as Generalized Benders Decomposition (GBD) method
(Geoffrion, 1972). The branch and bound method is essentially an implicit enumeration procedure,
which can be computationally expensive when the number of integer variables is large. The GBD
on the other hand is effective in handling large-scale problem by decomposing intractable MINLP to
tractable sub-problems. In this study, we develop a decomposition method based on GBD. Also note
that there are other plausible solution methods, including Extended Cutting Plane method (Westerlund
and Pettersson, 1995), and outer approximation (Fletcher and Leyffer, 1994). Though beyond the scope
of this study, comparisons between these different methods in terms of solution quality and performance
are worth investigations in future works.

The mean-risk SP model (6) will be decomposed into a master problem and several subproblems.
The master problem is a 0\1 mixed integer linear program (MILP) and contains first-stage integer
variables v and the value-at-risk 7. The sub-problems are evaluated for the second-stage cost, given the
first-stage variable u. Combined with the first-stage cost, we can compute CVaR for the overall cost
at the optimum of the master problem. We will discuss the details on decomposition method in this
section.

The background on GBD can be found, for example, in Floudas (1995). In this method, when
the first stage variables are temporally held fixed, the remaining optimization problem is considerably
more tractable than the original one. As for this study, if bridge retrofit decision variable v and the
value-at-risk 7, are temporarily fixed, the remaining problem (3) becomes a traffic assignment problem
based on system-optimization condition, which may be effectively solved by using commercial nonlinear
program solvers. The CVaR value can be obtained once we have travel cost function values from the
traffic assignment problems corresponding to different scenarios.

14



We decompose our mean-risk SP model in (6) into a master problem and one subproblem for each
scenario k. In the objective function of the master problem, the recourse function travel cost and CVaR
are not known explicitly in advance. Thus, two optimality cuts are added iteratively to approximate
them. At iteration i, let 7%y > 7% be a cut that lower approximates Q*(u). Then the master problem
at any iteration [ reads as

1
M : i T kek
(Master) oo 1+ X8 u+¢1+)\<77+1_a E pf)
keK
s.t. wel, & >0Vkek

Optimality cut 1 ¢1>Zpk7r u—wo) 1=1,2,...,1

Optimality cut 2 szwk’u—wo —-n VkeK,i=1,2,...,1

The exact forms of these optimality cuts are presented in Proposition 3. According to Observation 1, the
general problem has relatively complete recourse and the feasibility cut constraint can thus be omitted.
Let (@,7,¢, ¢1) be a optimal solution to the master problem. If ¢; < Z prQ" (@), then optimality
keK
cut 1 will be added to the master problem. Similarly, if Zkerkfk < D kek Pk max{0, Q*(a) — 7},
then optimality cut 2 will be added to the master problem. These optimality cuts are generated using
Lagrange multipliers for each subproblem, which is a convex nonlinear problem, with u fixed to 4.

(Subproblem k) : Q%(@) = min  (19a)
v,q ,T

k .k
y,w

s.t.  constraints (19b) — (19d)

g _ —
0<yhk < (02"?‘34 al, 0 <wht <c,a Vhe Hae A

The convex reformulation of Q*(u) in Proposition 2 and the arguments thereafter imply that it is
straightforward to apply the GBD method for generating optimality cuts in the master problem.

Proposition 3. Let @' be a optimum solution of the master problem at I** iteration. For each scenario
k, let pF' and NF' be wectors of optimum Lagrange multipliers for the last two sets of constraints in
subproblem QF(u'). Denote

CaS? _
ghk = 4 heHoae A

@
Then the optimality cuts for the I'" iteration are:
> 3 prlQH@) — g — ) — Wegs(u — @) (20)
keK
e > QMa) — pMpE(u— a) — NeuP(w— ) ke K (20b)

Multiple optimality cuts may help improve algorithm efficiency. Readers may refer to (Birge &
Louveaux, 1988) for details. The multi-cut version of optimality cut for (20a) is

o1 > Q@) — p'y (u—u') = Aeo®(u — ) (21)
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Accordingly, we should use the aggregation of cuts ), pF@¥ to replace ¢; in the objective function
of (Master). Note that due to the CVaR function definition, optimality cut (20b) is already in multi-cut
version. In each iteration, there are |K| + 1 constraints added to the master problem, consisting of | K|
constraint (20b) and one constraint (20a).

The decomposition algorithm procedure:

1. Initialization [ = 0.
2. Solve (Master). Let (1,7, £, ¢1, =) be optimal solution and set ¢ = ¢1 + (7 + ﬁ ok PrEF).
3. Fix u = 2 and solve (Subproblem k) for all k € K. Set I =1+ 1 and calculate

¢* = > p"QF(u) + ACVaR, Q(u).

keK

4. The procedure terminates if the optimality gap |1 — £| < € (e is a predefined small value) is met.

Optimal solution is found. Otherwise, add optimality cuts (20a) (or the multi-cut version (21))
and (20b) to the master problem, and go back to step 2.

5. Numerical examples

The proposed mean-risk model and decomposition methods are first justified using a small nine-
node hypothetical network. The Sioux-Falls network is then used to explore the impacts of uncertainty,
network topology, and critical parameters on the strategic decisions on highway bridge retrofits.

5.1. Nine-node network

The nine-node network is shown in Figure 2, which consists of nine nodes, 24 directional links, and
72 (=8x9) O-D pairs. Assume that three bridges on both directions on the network, labeled as A, B,
and C, are vulnerable to seismic disasters and their post-disaster capacities may be reduced while other
road links are assumed intact. The nine-node instances were programmed in AMPL and conducted on
a desktop with 8 GB RAM and Intel Core i5-2500@3.40GHz processor under Windows 7 environment.

The parameter %% is the ratio of bridge remaining capacity to the full capacity, which depends on
the specific scenario, location of the bridge, and the retrofit strategies applied (Mackie and Stojadinovic,

Table 1: Sample values of 02”“ for a fixed scenario k.

Link Strategy
ho hy ha hs hy

link5 005 05 05 05 1
link6 005 05 05 05 1
link13 05 05 05 075 0.75
link14 05 05 05 075 0.75
link21 0.17 033 0.33 0.67 0.67
link22 0.17 033 0.33 0.67 0.67
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Figure 2: Nine-node network

Table 2: Comparisons between GBD and exact solutions

Number of scenarios Obj. Value (10°) CPU seconds GBD iterations
BONMIN FiIMINT GBD* BONMIN FiMINT GBD*

6 466.416 466.416 466.416 1280 466 7 15

12 466.144 466.144 466.144 3754 2487 21 29

18 462.063 462.063 462.063 6340 4673 21 21

24 460.483 460.483 460.484 4315 11377 22 18

2004). There are five strategies considered, as shown in Table 1, including “do nothing” strategy hg
strategy (Huang et al., 2014). A higher numbered strategy indicates a more robust yet more costly
strategy, and vice versa. In this numerical experiment, we randomly generate §* in (0,1] and assumed
that a higher numbered strategy results in a higher §"*. As a demonstration, Table 1 only reports the
ratios for one scenario. The initial points for all second-stage variables are set to be zero. The initial
solution for the first-stage decision variable u is set as follows: u” = 1, for h = hg, and u! = 0, for
h # hg, Ya € A. Other critical parameters are: a = 0.7, 5 = 0.15,7 = 1000, A = 1, and 3 = 1000.

Two recently published papers (Klansek, 2014; Lastusilta et al., 2009) demonstrate that commercial
MINLP solvers, like BARON, AlphaECP, LindoGlobal and DICOPT, can successfully solve nonlinear,
discrete transportation problems. We obtained benchmark solutions by using two commercial solvers
- BONMIN (Bonami et al., 2008) and FiIMINT (Abhishek et al., 2010), to justify our decomposition
method by using the small-scale network. We tested the model using four different sizes of scenario sets.
In each set, scenarios are randomly generated to create variations in uncertainty realizations in order to
justify the effects of CVaR. The objectives and computational performances by the solvers are reported
in Table 2, compared with the counterparts of the decomposition method (GBD).

We found that the optimal objective values obtained from BONMIN and FiIMINT are most iden-
tical to the counterparts by GBD for all scenarios while the solution times by using GBD have been
substantially reduced than using the BONMIN and FilMINT for all scenarios. This well justifies the
use of our proposed solution method for larger scale of problems, such as Sioux Falls network. Also
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one may notice that the solution times rise quickly with the increase of number of scenarios, although
it does not necessarily translate to a higher number of GBD iterations. This is because sub-problems
become more difficult with larger number of scenarios, which takes longer time to finish each iteration.
This explains why GBD results in almost identical solution time when solving 24 scenarios as solving 18
scenarios even if GBD involves with fewer iterations in the case of 24 scenarios. Based on the numerical
results and solution performances, we apply our model and solution method to Sioux Falls network.
The results are presented in the next subsection.

5.2. Siouzx Fualls network

The Sioux Falls network in Figure 1 is consisted of 24 nodes, 76 links, and 552 O-D pairs. The
trip demands between all O-D demands are adopted from (LeBlanc et al., 1975). We adopted critical
parameters from (Fan et al., 2010), including 8 = 0.15, and the peak 2-hour conversion value v = 2400
to convert peak 2-hour delay to a monthly monetary value loss, which is set as 8 x 30 x 10 = 2400, where
8 is daily adjust factor with 30 days duration and 10 is the value of travel time savings for drivers. The
Sioux Falls instances were programmed in AMPL and conducted on a Linux cluster node with 16 Intel
Cores and a total 64 GB RAM.

Traditional engineering method estimates earthquake damage of structures using discrete damage
states (Choi et al., 2004); that is, the residual post-earthquake capacity ratio 8% have discrete values.
Note that there are possible noises in estimating the post-earthquake traffic capacity for each structure.
We also need to keep in mind that the post-disaster traffic capacity can be highly varied with different
location, retrofit strategies, and structural mechanisms. Thus, as accurate assessment of the capacity
6™k could be extremely complex and beyond the scope of this study. Without any existing data from
the structural assessment, we randomly generated 6/ such that there are substantial variations among
different scenarios to justify the use of stochastic programming method in our study.

That being said, we develop a simply mechanism to generate 6% in two steps. First, we consider
three levels of damages, which are low, median, and high damages and assume that the damages to
the bridges at risk are independent. The 6% with a low-damage scenario (k) and a retrofit strategy
(h), is randomly selected from a set of finite numbers, which are generated as {n/N,n = 1,...,N},
where the N is user defined (e.g., 6 is used in this study as an example). We then randomly pick five
numbers out of the set for the five retrofit strategies (i.e., ho - hy). Similarly, we pick five random
numbers each for the §”* with median- and high- damage scenarios, from the randomly generated
sets {n/N,n = 1,..,N — 1} and {n/N,n = 1,..., N — 2}, respectively. Note that the §"* under a
low-damage scenario has larger range of numbers to choose from than the §%* under median- and high-
damage scenarios. Statistically, bridge residual capacity under high-damage scenarios is lower than the
counterpart under low-damage scenarios for the same bridge. However, due to the involving complexity
in the estimation, such as locations and structures of different bridges, there are inevitable fluctuations
in the residual capacities, which are captured in our developed mechanism. Second, for a given bridge a
under scenario k, the §%* value should be non-decreasing with an enhanced strategy h (higher numbered
strategy), e.g., 074* > 973k Based on this, we will assign the selected five numbers to "¥ according to
the different retrofit strategies. We also assume that the occurrences of the three categories of scenarios
follow a predefined ratio. For example, if a ratio of 5:3:2 is assumed for low-, median- and high-damage
scenarios, respectively, for a total of 20 scenarios, the occurrences of each category of scenarios will be
10, 6, 4, respectively. The probabilities associated with scenarios are randomly generated following a
uniform distribution.

We adopted the same five-strategy scheme (i.e., hg-h4) and initial point settings from the nine-node
network example. The results of the Sioux Falls network are thus obtained by using decomposition
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method. In this section, we aim to explore the impacts of uncertainty, network topology, and critical
parameters on the retrofit strategies from numerical experiments.

The effects of risk parameters (i.e., a and \) on model results and computational performances. We
ran 36 combinations of four a (i.e., = 0.7, 0.8, 0.9 and 0.95) and nine A (i.e., A = 0.01, 0.05, 0.1,
0.5, 1, 5, 10, 50, and 100) with § = 1500 for 10, 20, 50, and 100 scenarios. The confidence level
parameter « controls the set of scenarios to be considered while the coefficient A weighs the CVaR in
the integrated mean-risk stochastic model. A higher « results in higher VaR value and a higher A will
increase the weight of the CVaR. Therefore, increased parameters o and A both imply more risk-averse
solutions. Through the numerical experiments, we intend to (i) understand the effects of risk parameters
on systems costs; (ii) identify a best possible combination of the risk parameters; and (iii) highlight the
modeling insights of a risk (i.e., CVaR) integrated stochastic program compared to a typical two-stage
stochastic model.

Let us first investigate the breakdown of the total cost plotted in Figure 3 based on the result of 20
scenarios. The total mean-risk cost or objective value is a combined total expected costs and weighted
CVaR. The total expected cost can be further decomposed into the retrofit cost and the expected travel
cost. The impacts of the risk parameters on the cost effectiveness and CVaR will be discussed separately.
Note that the specified « level represents the risk preference, which quantifies the mean value of the worst
(1 —a)% of the total costs. In Figure 3a, CVaR increases as « increases according to the definition, i.e.,
a larger value of « accounts for larger realizations of the total cost while decreasing as A increases. The
total expected cost shown in Figure 3b is comprised of the retrofit cost in Figure 3¢ and the expected
travel cost in Figure 3d. The results show that increasing both A and « generally increases retrofit
cost, because it results in more risk-averse policy with enhanced yet more costly retrofit strategies. As
a result, we expect a reduced expected travel cost, which implies a lower post-disaster capacity loss.
However, the total expected cost, which is a combined retrofit and expected travel cost, is generally
higher with a higher a.. The retrofit cost roughly contributes 14.6%- 20% to the total expected cost.

Second, we plot the total expected cost against CVaR (see Figure 4) for both 20 and 100 scenarios to
explore the trade-off between the two objectives as a result of different combinations of risk parameters.
In both figures, each line represents the results of all nine A values under a particular . As some
combinations of A and « result in identical CVaR and the total expected cost, especially when fewer
scenarios (e.g., 20 scenarios) are used, there are nodes overlapped. From the results, there is no single
best combination of @ and A and the cost of retrofit and transport is comprised with CVaR. For a given
confidence level «, a more risk-averse solution (a higher A resulting in a higher CVaR) can generally
help to reduce the total cost. We also note that a higher confidence level does not necessarily lead to
a solution with lower total expected cost. For example, when K=20, the lowest total expected cost is
occurred at @ = 0.9. In fact, in many cases, a lower confidence level (e.g., @ = 0.7) can just do as well
as a higher confidence level (e.g., @« = 0.95). This could be attributed to many other involving factors,
such as variations between scenarios and traffic flow distributions on the network.

Third, we are also interested in understanding the managerial insights on the integration of risk
assessment in a traditional risk-neutral two-stage SP method. We compare the results of our mean-
risk model results with the counterparts of the two-stage SP model in Table 3, in which the first row
contains the results of the two-stage SP model and other rows report the results of mean-risk model
under different risk parameters. The results in the table provides some interesting insights. First, the
lowest total expected cost is $365.533M (when o = 0.9 and A = 0.1), which is only trivially better the
result of two-stage SP model at $365.798M. This triggered a worthy research question for the future
on how to identify the bounds at early stage that better inform an appropriate formulation without
having to completely solve the entire problem. Second, the lowest travel cost of $291.106M, which is
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Table 3: Comparisons between Two-Stage SP and Mean-Risk SP for 20 scenarios

Total Exp. Cost (10°) Retrofit Cost (10°) Exp. Travel Cost (10°) Bridge A Strategy Bridge B Strategy ~Bridge C Strategy Bridge D Strategy

Two Stage SP (=0) 365.798 53.5 312.298 3 3 2 1
A=0.01 a=0.7  365.798 53.5 312.298 3 3 2 1
a=0.8  365.798 53.5 312.298 3 3 2 1
a=0.9  365.798 53.5 312.298 3 3 2 1
a=0.95 365.798 53.5 312.298 3 3 2 1
A=0.05 a=0.7  365.798 53.5 312.298 3 3 2 1
a=0.8  365.798 53.5 312.298 3 3 2 1
a=0.9  365.798 53.5 312.298 3 3 2 1
a=0.95 365.798 53.5 312.298 3 3 2 1
A=0.1 a=0.7  365.798 53.5 312.298 3 3 2 1
a=0.8  365.798 312.298 3 3 2 1
a=0.9  365.533 307.533 3 3 2 2
a=0.95 365.798 312.298 3 3 2 1
A=0.5 a=0.7  365.798 312.298 3 3 2 1
a=0.8  365.798 312.298 3 3 2 1
a=0.9  370.116 305.616 3 3 3 1
a=0.95 370.116 305.616 3 3 3 1
A=1 a=0.7  365.798 312.298 3 3 2 1
a=0.8  369.721 300.721 3 3 3 2
a=0.9  369.721 300.721 3 3 3 2
a=0.95 370.116 305.616 3 3 3 1
A=5 a=0.7  370.116 305.616 3 3 3 1
a=0.8  369.721 300.721 3 3 3 2
a=0.9  375.106 297.106 3 3 3 3
a=0.95 375.106 297.106 3 3 3 3
A=10 a=0.7  370.116 305.616 3 3 3 1
a=0.8  369.721 300.721 3 3 3 2
a=0.9  375.106 297.106 3 3 3 3
a=0.95 375.106 297.106 3 3 3 3
A=50 a=0.7  370.116 305.616 3 3 3 1
a=0.8  369.721 300.721 3 3 3 2
=09  375.106 297.106 3 3 3 3
a=0.95 375.106 297.106 3 3 3 3
A=100 a=0.7  370.116 64.5 305.616 3 3 3 1
a=0.8  369.721 69 300.721 3 3 3 2
a=0.9  375.106 78 297.106 3 3 3 3
a=0.95 375.106 78 297.106 3 3 3 3

$15.192M(=312.298-297.106) or 5% lower than the two-stage SP model, while it costs $24.5 (=78-53.5)
or 46% more in retrofit. It implies that reducing travel cost is costly. From a system-cost perspective,
achieving the lowest network-wide travel cost it may not be the most economical solution.

We also investigate if increased availability of information would be helpful for a lower total system
cost and also how significantly the increased problem size would impact solution performances. We
conducted cross-comparisons between three sized scenario sets (i.e., | K| = 20,50, 100) for the same four
bridges. The model results and solution performances are represented in Tables 4 and 5. From results
in Table 4, for a fixed pair of o and A, the total expected cost does not vary much across different
scenario sets, which implies that the increased availability of information may not necessarily help to
improve the solution quality. In general, CVaR increases in a small extent as a result of the increasing
number of high-damage scenarios in a larger scenario set. On the other hand, solution times experience
more noticeable increase as a result of increased problem size. This is apparent that the running time
for each iteration is generally proportional to the number of scenarios involved in the problem. With a
larger scenario set, it thus takes longer finish the entire solution process.

6. Conclusions and future work

We develop a mean-risk MINLP for transportation network protection (e.g., retrofitting highway
bridges) hedging against extreme disasters (e.g., earthquakes) on a system level, where CVaR is con-
sidered as the risk measurement and integrated into the single optimization framework. This is the
first study that explicitly considers CVaR as the risk measure in the field of transportation network
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Table 4: Costs under different sized scenario sets

K=20 K=50 K=100
CVaR (10%) Total Exp. Cost (105) CVaR (10°) Total Exp. Cost (10%) CVaR (106) Total Exp. Cost (10%)

Two Stage SP (A=0) 399.143 365.798 410.502 368.437 417.665 370.661
A=0.01 a=0.7 399.143 365.798 410.502 368.437 417.665 370.661
a=0.8 408.018 365.798 419.683 368.437 430.958 370.661

a=0.9 426.197 365.798 435.398 368.437 453.774 370.661

a=0.95 438.264 365.798 447.975 368.437 482.858 370.661

A=0.05 «a=0.7 399.143 365.798 410.502 368.437 417.665 370.661
a=0.8 408.018 365.798 419.683 368.437 430.958 370.661

a=0.9 426.197 365.798 435.398 368.437 430.395 371.612

a=0.95 438.264 365.798 447.975 368.437 439.092 371.612

A=0.1 a=0.7 399.143 365.798 410.502 368.437 417.665 370.661
a=0.8 408.018 365.798 419.683 368.437 418.16 371.612

a=0.9 427.025 365.533 435.398 368.437 430.395 371.612

a=0.95 438.264 365.798 447.975 368.437 439.092 371.612

A=0.5  a=0.7 399.143 365.798 407.472 369.646 409.375 371.612
a=0.8 408.018 365.798 413.893 369.646 418.16 371.612

a=0.9 409.962 370.116 424.954 369.646 425.02 373.346

a=0.95 412.771 370.116 426.484 372.338 431.136 373.346

A=1 a=0.7 399.143 365.798 409.03 370.828 408.011 373.346
a=0.8 401.749 369.721 413.893 369.646 416.344 373.346

a=0.9 410.505 369.721 424.954 369.646 425.461 374.152

a=0.95 412.771 370.116 426.484 372.338 428.039 374.875

A=5 a=0.7 396.316 370.116 407.472 369.646 408.011 373.346
a=0.8 401.749 369.721 413.893 369.646 416.55 374.152

a=0.9 407.975 375.106 420.096 373.841 423.003 374.875

a=0.95 410.876 375.106 424.233 373.494 428.039 374.875

A=10 a=0.7 396.316 370.116 407.472 369.646 408.011 373.346
a=0.8 401.749 369.721 413.893 369.646 416.55 374.152

a=0.9 407.975 375.106 420.096 373.841 423.003 374.875

a=0.95 410.876 375.106 424.233 373.494 428.039 374.875

A=50 a=0.7 396.316 370.116 407.472 369.646 408.011 373.346
a=0.8 401.749 369.721 413.893 369.646 416.55 374.152

a=0.9 407.975 375.106 420.096 373.841 423.003 374.875

a=0.95 410.876 375.106 424.233 373.494 428.039 374.875

A=100 a=0.7 396.316 370.116 407.472 369.646 408.011 373.346
a=0.8 401.749 369.721 413.893 369.646 416.55 374.152

a=0.9 407.975 375.106 420.096 373.841 423.003 374.875

a=0.95 410.876 375.106 424.233 373.494 428.039 374.875
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Table 5: Solution performances under different sized scenario sets

K=20 K=50 K=100
Optimality Gap CPU Time (min) # of Iterations Optimality Gap CPU Time (min) # of Iterations Optimality Gap CPU Time (min) # of Iterations

Two Stage SP (A=0) 0.10% 147.68 31 0.00% 342.17 30 0.00% 687.05 28
A=0.01 a=0.7 0.10% 167.57 31 0.00% 370.37 30 0.00% 648.33 28
a=0.8 0.10% 166.23 31 0.00% 358.22 30 0.00% 691.42 28

a=0.9 0.10% 167.9 32 0.00% 379.32 30 0.00% 689.07 28

a=0.95 0.10% 159.62 31 0.00% 369.83 30 0.00% 685.17 28

A=0.05 a=0.7 0.09% 120.4 30 0.00% 358.6 30 0.00% 689.87 28
a=0.8 0.36% 155.72 28 0.00% 372.5 30 0.00% 649.68 28

a=0.9 0.36% 159.23 29 0.26% 308.32 28 0.60% 1372.85 26

a=0.95 0.28% 148.58 27 0.26% 308.4 29 0.00% 613.88 26

A=0.1 a=0.7 0.34% 142.62 27 0.00% 291.35 31 0.00% 757.93 31
a=0.8 0.34% 148.43 28 0.00% 377.1 31 0.00% 738.95 30

a=0.9 0.00% 170.25 31 0.00% 284.38 29 0.17% 580.88 28

a=0.95 0.00% 164.37 30 0.00% 350.08 30 0.00% 604.62 26

A=0.5  a=0.7 0.09% 160.82 29 0.01% 309.52 26 0.38% 1336.77 26
a=0.8 0.33% 152.93 29 0.33% 303.3 24 0.37% 579.1 26

a=0.9 0.06% 141.15 25 0.01% 641.13 25 0.05% 632.5 27

a=0.95 0.00% 110.53 22 0.43% 225.92 24 0.07% 553.78 23

A=1 a=0.7 0.32% 126.02 29 0.47% 246.38 27 0.07% 494.85 27
a=0.8 0.01% 153.35 28 0.16% 236.6 26 0.13% 489.22 26

a=0.9 0.32% 84 21 0.44% 295.07 23 0.46% 530.88 23

a=0.95 0.22% 102.82 20 0.24% 210.3 22 0.37% 464.2 19

A=5 a=0.7 0.14% 131.42 24 0.08% 295.73 25 0.12% 536.78 27
a=0.8 0.01% 81.6 20 0.05% 265.28 23 0.31% 453.12 23

a=0.9 0.45% 20 0.03% 218.25 20 0.01% 459.77 19

a=0.95 0.63% 21 0.03% 172.48 19 0.03% 374.17 18

A=10 a=0.7 0.10% 24 0.31% 288.15 24 0.01% 675.3 27
a=0.8 0.01% 22 0.14% 303.63 24 0.25% 427.93 22

a=0.9 0.01% 21 0.03% 178.4 19 0.14% 367.65 16

a=0.95 0.71% 20 0.05% 164.68 16 1.03% 379.42 17

A=50 a=0.7 0.09% 23 0.02% 285.63 25 0.03% 596.13 26
a=0.8 0.01% 22 0.00% 312.92 25 0.20% 445.3 22

a=0.9 0.01% 20 0.03% 219.97 18 0.03% 409.72 18

a=0.95 0.67% 20 0.20% 198.83 16 0.04% 349.57 17

A=100  a=0.7 0.09% 23 0.02% 301.83 25 0.03% 488.6 26
a=0.8 0.01% 21 0.01% 301.25 25 0.19% 494.52 22

a=0.9 0.01% 20 0.03% 170.68 18 0.03% 412.75 18

a=0.95 0.66% 20 0.19% 155.65 16 0.04% 401.73 17

protection. The mean-risk formulation is not obviously a convex optimization problem. By reformula-
tion of the problem, we show that the recourse function is convex in the bridge retrofit variables. Thus
another major contribution lies in the development of decomposition algorithm based on GBD to solve
the large-scale MINLP.

We demonstrates the mean-risk model and decomposition method using two numerical examples,
a small nine-node network and the benchmark Sioux Falls network. The nine-node network is used to
justify the proposed decomposition method by comparing the solution quality and performances with
the exact solutions that are obtained from using the global solvers BONMIN and FiIMINT. We then
use the Sioux Falls network to explore the correlations between risk parameters and retrofit decisions
and their impacts on the system costs. We also investigated the capacity of the solution method in
handling different sized scenario sets. We found that the increase of @ and A will generally be leading
to a more risk-averse solution, with lower CVaRs. The resulting retrofit strategies are enhanced yet
more costly and the expected travel cost is reduced. From the results, there is a clear trade-off between
the total expected cost and CVaR and there is no single best combination of risk parameters. The
choice of the o and A\ depends on the risk preferences and budget. We also compared the results of
our mean-risk model with the risk-neutral two-stage SP model to understand the cost and effects to
be more risk-averse in modeling. From the results, there are several worthy notes. First, the best
mean-risk model result (i.e., the minimum total expected cost (retrofit cost plus travel cost)) is only
trivially better than the two-stage SP model, although the there is a discernible increase in retrofit
cost and decrease in travel cost. It raise an interesting research question on how to possibly identify the
bounds at early stage that could better inform an appropriate formulation without having to completely
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solve the entire problem. Second, there are quite few duplicated solutions with different combinations
of risk parameters. Also, by running different sized scenario sets, note that the increased availability of
information (e.g., larger scenario set) does not necessarily improve solution quality, but results in more
computationally expensive problems.

Several future directions would be worth research efforts, which involve both the modeling and al-
gorithmic development. From modeling perspective, the traffic equilibrium may be a more realistic
assumption to model route choices of network users. The integration of equilibrium will make the model
a Mathematical Program with Equilibrium Constraints (MPEC). One of the challenges would be con-
verting this MPEC to a MINLP through regularization or penalization. Once it is in the form of MINLP,
we may apply the developed decomposition method for obtaining solutions. In addition, more realistic
assumptions on post-disaster traffic capacity (i.e., %) may be included by integrating the network model
with structural analysis. It concerns the nonlinear bridge traffic capacity-cost relationship of retrofitting
each individual bridge in which the desired bridge performance varies with retrofit strategies that cost
differently. Instead of assuming a constant or linear relationship in most optimization based transporta-
tion network protection problems, by using finite element analysis a structural performance-retrofit level
relationship between the structural strength and allocated budget for each bridge can be constructed.
From the algorithmic perspective, MINLP is difficult to solve. In addition to solving the model by using
other solvers, such as AlphaECP, BARON, DICOPT, etc., more algorithmic development (including
heuristics) may be worth further exploration to prepare the model for real-world scale networks. These
method could be based on Outer Approximation, Branch-and-Bound, etc.
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