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Abstract. 

Background & Aim: Acute liver injury (ALI) can occur if a significant acetaminophen (APAP) 

overdose presents too late for n-acetylcysteine treatment, which risks deterioration into acute 

liver failure, systemic inflammation, and death. Macrophages influence the progression and 

resolution of ALI due to their innate immunological function and paracrine activity. Syngeneic 

primary bone-marrow derived macrophages (BMDMs) were tested as a cell-based therapy in a 

mouse model of APAP-ALI. Methods: Several phenotypically-distinct BMDM populations 

were delivered intravenously to APAP-ALI mice when hepatic necrosis was established, and 

then evaluated based on their effects on injury, inflammation, immunity, and regeneration. In 

vivo phagocytosis assays were used to interrogate the phenotype and function of alternatively-

activated BMDMs (AAMs) post-injection. Finally, primary human AAMs sourced from healthy 

volunteers were evaluated in immunocompetent APAP-ALI mice.  Results: BMDMs rapidly 

localised in liver and spleen within four hours of administration. Injection of AAMs specifically 

reduced hepatocellular necrosis, HMGB1 translocation, and infiltrating neutrophils following 

APAP-ALI. AAM delivery also stimulated proliferation in hepatocytes and endothelium, and 

reduced levels of several circulating proinflammatory cytokines within 24 hours. AAMs 

displayed a high phagocytic activity both in vitro and in injured liver tissue post-injection. 

Crosstalk with the host innate immune system was evidenced by reduced infiltrating host Ly6Chi 

macrophages in AAM-treated mice. Importantly, therapeutic efficacy was partially recapitulated 

using clinical-grade primary human AAMs in immunocompetent APAP-ALI mice underscoring 

translational potential. Conclusion: We identify that AAMs have value as a cell-based therapy in 

an experimental model of APAP-ALI. Human AAMs warrant further evaluation as a potential 

cell-based therapy for APAP overdose patients with established liver injury. 
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Lay summary: After an overdose of acetaminophen (paracetamol), some patients present to 

hospital too late for the current antidote (n-acetylcysteine) to be effective. We tested whether 

macrophages, an injury-responsive leukocyte that can scavenge dead/dying cells, could serve as 

a cell-based therapy in an experimental model of acetaminophen overdose. Injection of 

alternatively-activated macrophages rapidly reduced liver injury and reduced several mediators 

of inflammation. Macrophages show promise to serve as a potential cell-based therapy for acute 

liver injury. 
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Introduction 

Acetaminophen (paracetamol, APAP) overdose is a common cause of acute liver injury (ALI) in 

the clinic and is the leading cause of acute liver failure (ALF) in the United States.[1-3] APAP also 

serves as a paradigm hepatotoxin for pre-clinical studies and the molecular mechanisms that 

underpin APAP hepatotoxicity are relatively well understood. Therapeutic management of 

APAP-ALI is primarily limited to n-acetylcysteine (NAC) therapy, which serves as an effective 

antidote. However, NAC efficacy is substantially diminished in patients who present late after 

APAP ingestion (i.e. longer than 10 hours).[4] Liver transplantation may be required in patients 

who subsequently develop ALF. However, due to the shortages of suitable donor tissue, and 

associated life-long immunosuppression, liver transplantation is not an ideal therapeutic 

intervention. Therefore, novel therapies to prevent liver injury progressing to acute liver failure 

are urgently sought. 

APAP-induced acute liver injury (APAP-ALI) is characterised by fulminant hepatocyte necrosis. 

Without immediate NAC-treatment, substantial liver injury can progress into ALF associated 

with systemic inflammatory response syndrome (SIRS) characterised by immune activation and 

encephalopathy, conferring a high risk of multi-organ failure and death.[5] Recent work has 

shown that liver-resident macrophages (Kupffer Cells, KCs), which provide hepatic innate 

immunity (e.g. against gut-derived pathogens), are substantially reduced during APAP-ALI 

leading to a transient immunological perturbation in the liver.[6-8] Patients with ALF frequently 

develop enteric bacterial and fungal infections (typically Escherichia coli and Candida), which 

are often associated with fatal outcomes.[9,10] The role of macrophages in the pathology of 

APAP-ALI has raised a conflicting literature. Chemical pre-treatment to ablate KCs in rats 

before APAP-ALI showed protective effects suggesting macrophages can exacerbate liver injury 
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through release of proinflammatory mediators.[11-13] However, subsequent studies found that 

macrophages are absolutely required for appropriate tissue repair and angiogenesis following 

APAP-ALI.[14-16] Both KCs and infiltrating macrophages acquire distinct but restorative 

phenotypes that are required for the timely resolution of APAP-ALI.[6] Recent work showed that 

human liver macrophages in ALF patients also acquire hepatoprotective phenotypes 

characterised by high phagocytic function and expression of clearance receptors, e.g. Mertk.[17] 

The clearance of apoptotic and necrotic cells are orchestrated primarily by macrophages, which 

are fundamentally required to resolve inflammation and injury effectively.[18,19] Therefore, we 

hypothesised that injection of primary macrophages may serve as a cell therapy for APAP-ALI 

in order to facilitate clearance of necrotic material, reduce local and systemic inflammation, and 

promote liver regeneration. Primary macrophages can be differentiated from bone-marrow 

precursors in vitro to yield a highly-enriched population of functional bone-marrow derived 

macrophages (BMDMs). Injection of BMDMs has previously been shown to ameliorate liver 

fibrosis in chronic liver injury models.[20] Clinical-grade autologous human monocyte-derived 

macrophages (hMDMs) have recently been found safe in cirrhotic patients, with phase 2 efficacy 

trials in progress (ISRCTN 10368050).[21-23] 

Here, we have tested phenotypically-distinct BMDM populations in a murine model of APAP-

ALI. We report that administration of alternatively-activated macrophages (AAMs) reduces 

necrotic area, reduces several proinflammatory cytokines in tissue and serum, and stimulates 

hepatocellular proliferation. Importantly from a translational aspect, clinical-grade human AAMs 

(hAAMs) recapitulated some efficacy readouts in immunocompetent APAP-ALI mice. Our 

study identifies a potential cell therapy for established APAP-ALI with clinical applicability for 

a patient group with limited therapeutic options. 
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Materials and Methods 

BMDM production 

BMDMs were prepared as previous, with minor modifications.[20] Mouse bone marrow (BM) 

was flushed from femurs and tibias of healthy C57BL/6JOlaHsd male mice (8-10 weeks old, 

Envigo). BM suspensions were filtered (70 µm) into DMEM:F12 (1:1) cell culture media 

(Gibco) supplemented with fetal bovine serum (FBS, 10 %), L-glutamine (2 mM), 

penicillin/streptomycin (100 U/mL, 100 µg/mL), and murine recombinant CSF1 (40 ng/mL; 

Peprotech). BM preps were incubated in ultra-low attachment flasks (Corning Inc.) for 7 days 

(37 °C, 5 % CO2), with additional feeds on days 3 and 5 (20 ng/mL CSF1, in a 50 % media 

change) to produce BMDMs. BMDMs were polarised with recombinant factors overnight to 

generate classically-activated macrophages (CAMs; with LPS, Sigma-Aldrich, 50 ng/mL; and 

IFNγ, 20 ng/mL, Peprotech), AAMs (with IL-4 and IL-13; 20 ng/mL each, Peprotech), or 

deactivated macrophages (DAMs; with IL-10, 10 ng/mL, Peprotech). In some experiments, 

BMDMs were labelled with CellTrace CFSE (ThermoFisher) in vitro, following the 

manufacturer’s instructions. 

 

hMDM production 

For phagocytosis assays, non-GMP hMDMs were differentiated from cryopreserved primary 

CD14+ monocytes using serum-containing Iscove’s Modified Eagle’s Medium essentially as 

described using human recombinant CSF-1 (100 ng/mL, Peprotech).[21] hCAMs and hAAMs 

were polarised from hMDMs by overnight stimulation with LPS/hIFNγ (50/20 ng/mL), and hIL-

4/IL-13 (20 ng/mL each) respectively. For clinical-grade hMDMs, we utilised a serum-free 
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GMP-compliant process as described.[22] Peripheral blood mononuclear cells (PBMCs) were 

centrifuged and collected from healthy volunteer buffy coats using Ficoll-paque 1.077 (GE 

Healthcare). CD14+ cells were isolated from PBMCs using CliniMACS CD14 MicroBeads 

(Miltenyi-Biotec) on LS separation columns (Miltenyi Biotec). CD14+ cells were cultured (37 

°C, 5 % CO2) for 7 days in TexMACS GMP media (Miltenyi Biotec), supplemented with GMP-

grade human recombinant CSF-1 (100 ng/mL, R&D Bio-Techne) with an additional feed at day 

3 to generate hMDMs. Clinical-grade hAAMs were generated from hMDMs using human 

recombinant cytokines (R&D Bio-Techne) as above. Successful hMDM differentiation was 

confirmed using flow cytometry to demonstrate a minimum five-fold MFI increase on 25F9 and 

CD206 compared to initial CD14+ cells. 

 

APAP-ALI and macrophage administration.  

Eight week old male C57BL6/JOlaHsd mice housed in open top cages were fasted for 14 hours. 

All mice received a single APAP injection (350 - 500 mg/kg, i.p., Sigma Aldrich) in warm sterile 

saline (PanReac Applichem). Standard chow and wet mash was returned to mice 20 min post-

APAP administration. Macrophages were resuspended in PBS (Sigma) and administered (1-

5x106 cells, i.v., 100-200 µL) to APAP-ALI mice at 16 hours. PBS alone (100-200 µL, i.v.) 

served as vehicle control for macrophage treatment. After macrophage/vehicle treatment, all 

mice were transferred to a warming cabinet (28  ◌֯C). One hour before cull, mice were pulsed 

with 5-bromo-2′-deoxyuridine (BrdU, 1 mg in sterile saline, i.p., Sigma Aldrich) to label 

proliferating cells.  Mice were humanely culled and whole blood was collected via cardiac 

puncture. For immunocompromised mice, the same methodology was used except fasted 12-
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week old male NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ (NSGs), housed in individually-ventilated 

cages, received 250 mg/kg APAP (i.p.). Substances were administered to NSGs aseptically. 

 

Statistics.  

Statistical analysis was performed in Prism 8.2 (GraphPad Software). All data are presented as 

individual scatter plots to show each experimental unit (e.g. individual mice) unless otherwise 

stated. To test two groups, an unpaired two-way t-test or Mann-Whitney U-test was performed 

on parametric and non-parametric datasets respectively. To test more than two parametric 

groups, a one-way ANOVA, two-way ANOVA (with Dunnett’s multiple comparison test), or 

mixed-effects model (with Sidak’s multiple comparison’s test) was performed. To test more than 

two non-parametric groups, a Kruskal-Wallis test (with Dunn’s multiple comparison test) was 

performed. Shapiro-Wilk test determined normality. Sample size was determined based on 

power calculation (α = 0.05, desired power = 0.8) or from investigator experience. P < 0.05 was 

considered statistically significant. 

 

Study Approval.  

All animal experiments undertaken in accordance with criteria outlined in a license granted 

under the Animals (Scientific Procedures) Act 1986 and approved by the University of 

Edinburgh Animal Ethics Committee. Use of human material was granted by the South East 

Scotland Research Ethics Committee 02, and use of buffy coats was covered by Scottish 

National Blood Transfusion Service (SNBTS). Buffy coats from informed consenting healthy 

volunteers were obtained in collaboration with SNBTS Blood Donor Centre, Edinburgh, United 

Kingdom, under SNBTS Sample Governance 16-09. 
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For further information on flow cytometry, imaging, and other materials and methods, including 

CTAT table, please refer to the supplementary information. 

 

Results 

AAM-administration reduces hepatic necrosis and stimulates hepatocellular proliferation 

following APAP-ALI 

 

First, an appropriate delivery route for injecting BMDMs was identified. We tested whether 

BMDMs could be injected intravenously (i.v.) to rapidly deliver BMDMs to the liver, since this 

route is fast, non-invasive, and clinically-applicable in the setting of APAP-ALI. In vivo and ex 

vivo imaging techniques demonstrated a linear accumulation of BMDMs in the liver and spleen 

over the first four hours post-injection (Fig. S1). Next, we tested the efficacy of four different 

macrophage populations (Naïve BMDMs, CAMs, AAMs, or DAMs) as a cell-based therapy for 

APAP-ALI (Fig. 1A; expanded schematic in Fig. S2A).  All macrophage populations showed 

high enrichment for CD11b and F4/80 or CSF1R, and expressed typical markers associated with 

their activation status (Fig. S2D-G).  Each macrophage population (or PBS alone) was 

administered (1x106 cells, 100 µL, i.v.) to mice with APAP-ALI at 16 hours when ALI is 

established (Fig. 1B). Macrophage administration was well tolerated showing no serum 

chemistry changes in healthy mice (Fig. S3), and no impact on hematology parameters in APAP-

ALI mice (Fig. S4). Serum transaminase activity was moderately lower in all BMDM-treated 

groups compared to PBS-treated controls in APAP-ALI mice, but was not significantly different 

(Fig. 1C). Serum transaminases have a circulating half-life of several hours,[24] therefore necrotic 

area was quantified from haematoxylin and eosin stained liver sections for a direct histological 
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measure. AAM-treated mice showed a specific 60 % reduction in necrotic area compared to 

PBS-treated controls in APAP-ALI mice (Fig. 1D). In parallel experiments, AAM-treatment 

reduced necrotic area when injected at 6 hours post-APAP at 400 mg/kg (Fig. S5).  Neutrophils 

provide a major source of reactive oxygen species (ROS) that contribute to early injury, although 

this has been disputed.[25-28] Macrophages have been implicated in the removal of neutrophils 

during inflammation.[29] Neutrophils (detected by Ly6G immunostaining) were 52 % lower in 

necrotic areas specifically in AAM-treated mice compared to PBS-treated controls (Fig. 1E). 

Next, HMGB1, a damage associated molecular pattern (DAMP), was immunostained in liver 

sections. Translocation of nuclear HMGB1 into the cytoplasm is an early critical step for its 

extracellular release.[30] Peri-necrotic hepatocytes in APAP-ALI showed HMGB1 cytosolic 

localisation, but the frequency was 66 % lower in AAM-treated mice (Fig. 1F). To measure liver 

regeneration, all mice received BrdU (1 mg, i.p.) one hour before cull to label proliferating cells 

at sacrifice. BrdU-incorporation in liver tissue was higher in mice treated with CAMs (8.5-fold) 

and AAMs (8.4-fold) compared to PBS-treated controls (Fig. 1G). These data indicated that 

AAMs provided the greatest therapeutic response. Therefore further experiments focused on 

AAM-treatment, with naïve BMDMs serving as a cell-treatment reference group, and PBS-

treatment serving as the vehicle-control group. Dual immunofluorescence (IF) staining revealed 

proliferating cells after AAM-treatment included both hepatocytes and endothelial cells 

evidenced by BrdU co-localisation with HNF4α and ERG respectively (Fig. 2H, I). 

Immunostains for isotype antibody controls are provided in Fig. S6. In separate studies, AAMs 

were tested for efficacy at 500 mg/kg APAP where mortality is expected. Survival experiments 

are not in compliance with Home Office regulations in the United Kingdom, therefore we 

established a phenotypic clinical scoring system (see Table S1). Pre-defined thresholds triggered 
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a humane cull in order to prevent mice exceeding severity limits. It was necessary to deliver 

AAMs at four hours post-APAP to test efficacy because deaths can occur within 8 hours at high 

APAP doses in mice. We observed no benefit in mice receiving AAMs (1x106 cells, i.v.) in this 

experiment (Fig. S7) suggesting these cells are more efficacious when injected at 16 hours. 

 

AAM-administration reduces several inflammatory cytokines in serum and liver tissue following 

APAP-ALI 

 

To test the effect on inflammation after AAM-treatment, a panel of cytokines were quantified in 

serum and liver homogenates obtained from APAP-ALI mice. Consistently, AAM-treatment 

specifically reduced several serum pro-inflammatory cytokines including IFN-γ (82 %), IL-

12p70 (73 %), and IL-6 (75 %) versus PBS-treated controls (Fig. 2A). Treatment with both 

AAMs and naïve BMDMs reduced serum CXCL1 levels. Serum TNFα was 39 % lower after 

BMDM-treatment suggesting that naïve BMDMs may exert subtle effects on circulating 

cytokines. Importantly, hepatic IL-6 levels were 34 % lower specifically in AAM-treated liver 

homogenates compared to PBS-treated controls (Fig. 2B). Further, we measured the expression 

of a panel of genes associated with inflammation in whole liver tissue. We observed 3.3-fold 

higher expression of Csf1 specifically in AAM-treated mice versus PBS-treated controls, whilst 

higher Tgfb and lower Il6 expression levels were observed in both AAM- and naïve BMDM- 

treated mice (Fig. 2C). Expression of other inflammatory-associated genes such as Cxcl1 and 

Ccl5 were lower on average in AAM-treated liver but did not reach statistical significance. To 

better understand the trajectory of recovery following AAM-treatment, a longitudinal experiment 

was performed in APAP-ALI mice by performing serial blood microsampling up to 84 hours 
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(study design: Fig. 2D). Plasma levels of ALT, AST, and the hepatocyte-specific microRNA, 

miR-122, showed significantly bigger reductions after AAM-treatment compared to PBS-treated 

controls suggesting improved recovery (Fig. 2E-G). 

 

Murine AAMs are primarily Ly6Clo and highly phagocytic in APAP-ALI liver tissue post-

injection 

 

A series of experiments was performed to assess the phenotype and function of AAMs in vitro 

and in vivo. Gene expression analysis confirmed polarisation occurred in vitro for all BMDM 

populations, e.g. Nos2 was 775-fold higher in CAMs, Retnla was 4850-fold higher in AAMs, 

whilst Il10 and Ly6C expression was higher in DAMs and CAMs respectively (Fig. 3A; further 

data in Fig. S2B). Flow cytometry revealed that all BMDM subsets were approximately 80 % 

Ly6Clo in vitro (Fig. 3B). To investigate AAM phagocytosis in vivo, CFSE-labelled AAMs were 

administered (5x106, i.v.) at 16 hours, three hours before administration of PKH26PCL (PKH, 

i.v.), a fluorescent probe that specifically labels cells performing phagocytosis (Fig. 3C). A 

higher number of AAMs were injected in this experiment to improve assay sensitivity. Serum 

ALT activity was significantly lower in AAM-treated mice compared to PBS-treated controls 

(Fig. 3D). A flow cytometry gating strategy was used to analyse myeloid cells in liver digests 

(Fig. S8). CFSE+ AAMs represented 0.9 % and 0.5 % of the CD11b+ population in liver digests 

and whole blood respectively in APAP-ALI mice (Fig. 3E). Low expression of Ly6C, a cell 

surface myeloid marker, has been associated with a restorative macrophage phenotype during 

liver disease.[31] Injected AAMs remained approximately 80 % Ly6Clo at 36 hours in APAP-ALI 

mice (Fig. 3F). Furthermore, AAMs were highly phagocytic showing high PKH-uptake in 
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Ly6Chi (69 % positive) and Ly6Clo (99 % positive) AAMs (Fig. 3G). We observed a 5 % 

reduction in infiltrating endogenous Ly6Chi macrophages in AAM-treated mice (Fig. 3H). 

Furthermore, PKH-uptake in Ly6Chi infiltrating endogenous macrophages increased from 8.3 % 

in PBS-treated controls to 12 % in AAM-treated mice, whilst PKH-uptake was equivalent in 

Ly6Clo infiltrating macrophages (Fig. 3I) suggesting crosstalk exists between AAMs and the host 

innate immune response. Finally, to test if AAMs alter their phenotype post-injection, we 

performed a low-density PCR array on FACS-sorted AAMs from healthy and APAP-ALI liver 

digests. We found only four genes (Il10, 15.3-fold; C4b, 8.8-fold, Tlr4 6.1-fold; and B2m, 6.2-

fold) from 84 tested genes were downregulated in AAMs after injection into APAP-ALI mice 

compared to injection into healthy mice (Fig. S9A-D and Table S2). These data suggest that 

injected AAMs are highly phagocytic in situ, and largely retain their phenotype post-injection. 

 

Murine AAMs are highly phagocytic in vitro 

 

To further understand the phenotype and function of AAMs, we performed a series of in vitro 

phagocytosis experiments. The propensity of BMDM populations to phagocytose apoptotic 

material was assessed by flow cytometry after incubating BMDMs with (5-(and-6)-(((4-

chloromethyl)benzoyl)amino)tetramethylrhodamine)- (CMTMR-) labelled apoptotic thymocytes 

using a gating strategy (Fig. S10). The mean fluorescence intensity (MFI) was higher in AAMs 

at 30 min versus other groups (21 % increase vs naïve, 75 % increase vs CAMs) and at 60 mins 

versus CAMs  (64 % increase; Fig. 4A). Furthermore, AAMs had a significantly lower 

percentage of Ly6Chi cells at 30 min (22 % lower vs naïve, 34 % vs CAMs), 60 min (44 % lower 

vs naïve, 52 % vs CAMs), and 120 min (61 % lower vs naïve, 72 % vs CAMs) suggesting AAMs 
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possess a sustained phenotype throughout phagocytosis (Fig. 4B). In parallel, real-time live 

imaging assays showed AAMs could phagocytose pHrodo-bioparticles faster and to a greater 

extent than other BMDM populations (Fig. 4C, D, and video S1). Similarly, hAAMs produced 

from cryopreserved human CD14+ cells also showed similar enhanced phagocytic performance 

in vitro (Fig. S11). To test if AAMs could phagocytose necrotic hepatocytes in vivo, CFSE+ 

AAMs (5x106, i.v.) were injected into APAP-treated R26RLSL tdTomato mice two weeks after 

viral-Cre delivery to induce tdTomato in hepatocytes (Fig. 4E). Injected AAMs localised 

throughout the liver parenchyma, with many surrounding necrotic areas (Fig. S12A). Labelled 

mice developed APAP-ALI characterised by a loss of tdTomato hepatocytes around the central 

vein and raised serum ALT activity (Fig. S12A, B). Confocal microscopy revealed that peri-

necrotic AAMs contained multiple intracellular vesicles containing faint fluorescent punctate 

tdTomato-positive material consistent with surrounding hepatocellular debris (Fig. 4F). In 

contrast, no tdTomato material was visible in sinusoidal AAMs located distal to necrotic areas in 

the same tissue. 

 

Administration of human AAMs reduces necrosis and stimulates hepatocyte proliferation 

following APAP-ALI in immunocompetent mice 

 

A fully-defined serum-free protocol to generate clinical-grade human monocyte-derived 

macrophages (hMDMs) has recently been described.[22] Here, we modified this protocol to 

generate clinical-grade hAAMs for evaluation in the APAP-ALI model (Fig. 5A; expanded 

schematic Fig. S13A). Isolation of CD14+ cells using CliniMACS microbeads from human 

PBMCs provided significant CD14+ CD45+ enrichment (Fig. 5B). CD14+ cells were cultured 
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with GMP-grade recombinant hCSF-1 to generate hMDMs. Flow cytometry revealed hMDMs 

upregulated human macrophage maturity markers 25F9 and CD206 after 7 days (Fig. 5C). 

hMDMs were stimulated with hIL-4/-13 in vitro for 24 hours to generate hAAMs, exhibiting 

higher CD206, CD163 and CD169 surface levels (Fig. 5D). hAAMs had higher MRC1, DC-

SIGN, SCARB1 gene expression, and lower NOS2 compared to volunteer-matched hMDMs (Fig. 

S13B). Firstly, hAAMs were tested in an immunocompromised APAP-ALI model (1x106, i.v., 

NSG mice, 250 mg/kg). NSG mice could only tolerate mild centrilobular necrosis, therefore a 

lower APAP dose was used (250 mg/kg). However, hAAMs were not efficacious in the NSG 

model showing no change in necrosis or liver injury markers (Fig. S14). Therefore, we re-tested 

hAAMs (5x106, i.v.) in an immunocompetent strain (C57BL/6J) with APAP-ALI. Firstly, 

healthy C57BL/6J mice tolerated hMDM-injection well showing no changes in body weight, 

blood circulating monocytes or blood neutrophils at 24 hours or 7 days post-injection with no 

phenotypic evidence of severe acute rejection (Fig. S15).  Human cells were expected to be 

rapidly cleared in immunocompetent mice. Nevertheless, some FITC-positive cells were detected 

in liver and spleen of APAP-ALI mice treated with CFSE-labelled AAMs suggesting transient 

hepatic localisation is possible (Fig. 5E). Histological evaluation showed 32 % reduced necrosis 

specifically in hAAMs-treated mice (Fig. 5F). Both hMDM- and hAAM-treatment led to reduced 

weight loss, which was not related to any changes in liver mass indicated by consistent 

liver/body weight ratios (Fig. 5G). Similar to murine AAM-treatment, serum ALT activity 

showed a strong reduced trend in hAAM-treated mice compared to PBS-treated controls, but did 

not reach statistical significance (Serum ALT, P = 0.056; Fig. 5H). We observed no changes in 

serum cytokines, including murine IL-6, in hAAM-treated mice versus PBS-controls, although 

murine IL-10/IL-12 ratio displayed a higher trend in hAAM-treated mice (P=0.07, Fig. 5H). 
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Importantly, an increase in BrdU-incorporation was observed in HNF4α-positive nuclei 

specifically in hAAM-treated liver tissues (Fig. 5I) suggesting improved hepatocyte 

proliferation. These data suggest that hAAMs can recapitulate some efficacy readouts of murine 

AAMs in experimental APAP-ALI. 

 

 

Discussion 

NAC is the primary treatment option for APAP overdoses and acts through boosting the 

antioxidant capacity of the liver to prevent liver injury occurring.  NAC efficacy is diminished in 

patients who present to hospital late (i.e. 10-12 hours after APAP ingestion) when liver injury 

may already be established. Therefore, novel therapeutic strategies are required to treat late-

presenting APAP-ALI patients with established liver injury. Here, we demonstrate a novel cell-

based immunotherapeutic approach to promote necrosis resolution, reduce systemic 

inflammation, and expedite liver repair in experimental APAP-ALI. Recent work has shown that 

KCs, highly phagocytic liver-resident macrophages, are depleted during APAP-ALI impairing 

hepatic innate immunity.[6] Large numbers of monocytes rapidly infiltrate the liver thereafter and 

differentiate into monocyte-derived macrophages in situ, but they are inflammatory (e.g. Ly6Chi) 

and poorly phagocytic, at least initially.[6,32,33] Therefore, we hypothesised that timely 

intervention with polarised macrophages may hold therapeutic value as a cell-based therapy for 

ALI to facilitate necrosis resolution and promote liver regeneration. Macrophages have 

previously been evaluated as an experimental cell-based therapy for other diseases,[34,35] 

including liver fibrosis,[20] but have not yet been tested in the setting of ALI. 
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Hepatocyte necrosis during APAP-ALI is the priming event to activate the innate immune 

system, through release of proinflammatory cytokines and danger associated molecular patterns 

(DAMPs), e.g. HMGB1.[36] We observed that AAM-treatment specifically reduced necrotic area 

in APAP-ALI mice within 24 hours. AAMs also led to reductions in infiltrating neutrophils, 

cytosolic HMGB1 translocation (in peri-necrotic hepatocytes), and attenuated several serum 

proinflammatory cytokines suggesting AAMs exert an anti-inflammatory effect. This has 

potential clinical importance because systemic inflammation (via uncontrolled activation of the 

innate immune system) is a feature of systemic inflammatory response syndrome (SIRS) - a key 

determinant of clinical outcome in APAP-ALF.[5] Furthermore, AAM-treatment also led to 

improved hepatic proliferation, particularly in hepatocytes and endothelium. Hepatic 

proliferation and revascularisation are recognised as important features of liver regeneration 

following injury.[37-39]  

AAM efficacy was associated with a highly phagocytic phenotype, therefore we posited that 

AAM delivery may augment clearance of necrotic material in APAP-ALI since host KCs are 

depleted.  AAMs accounted for 0.9 % of the liver myeloid population 20 hours post-transfer in 

APAP-ALI mice. AAMs were highly phagocytic both in culture and in liver tissue (80 % Ly6Clo, 

> 99 % PKH-uptake). Furthermore, phagocytosis was poor (8.2 % PKH-uptake) in endogenous 

Ly6Chi infiltrating macrophages in APAP-ALI mice but improved with AAM-treatment (12 % 

PKH uptake). This suggests that AAM-treatment can modulate the dynamics of the host immune 

response amplifying the therapeutic effect. Consistent with this, AAMs were ineffective when 

delivered at four hours post-APAP in the high-dose APAP (500 mg/kg) experiment, i.e. before 

CCR2+ monocytes infiltrate the liver.[32]  Indeed, hAAMs were ineffective in 

immunocompromised mice, suggesting an immunocompetent system is required to achieve 
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efficacy. In immunocompetent mice, hAAMs improved necrosis resolution and hepatocyte 

proliferation (albeit requiring higher number of transferred cells). However, hAAMs had no 

effect on serum proinflammatory cytokine levels, possibly due to rapid clearance of human cells 

by host NK cells, or the lack of host response from any hAAM-derived factors due to species 

differences in immune signalling pathways. AAM efficacy is therefore likely to be attributed to 

both the phagocytosis of necrotic tissue and paracrine effects upon the host immune system. 

Mouse and human AAMs took eight days to generate using current protocols - a timeframe that 

is clinically incompatible with the emergency settings of an APAP overdose. A potential clinical 

therapeutic product would therefore likely be allogenic, immunocompatible, scalable, and permit 

cryopreservation so that cells could be rapidly administration in an emergency scenario. In 

summary, AAM therapy for ALI reduces necrosis and inflammation and increases liver 

regeneration and is a potential novel therapy for late presenting APAP-ALI. 
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FIGURE LEGENDS 

 
 
Fig. 1. Injection of AAMs reduces necrosis and stimulates liver regeneration following 
APAP-ALI. (A) Four macrophage populations, derived from mouse BM, were generated for 
testing: 1. unstimulated BMDMs (Naïve), 2. CAMs, 3. AAMs, and 4. DAMs. (B) Study design: 
injection of macrophages (1x106, i.v.) or PBS alone into APAP-ALI mice at 16 hours, before cull 
at 36 hours. (C) Serum ALT activity (left panel) and AST activity (right panel) in APAP-ALI 
mice receiving indicated treatments (D) Representative liver histological stains from APAP-ALI 
mice receiving indicated treatments, necrosis quantification in right panel (E) Representative 
Ly6G IHC stains in liver from APAP-ALI mice with indicated treatments. Black arrows indicate 
Ly6G-positive cells, quantification in right panel. (F) Representative images of HMGB1 IHC 
stains of liver tissue from APAP-ALI mice with indicated treatments. Black arrows indicate 
HMGB1-negative nuclei, quantification in right panel. (G) Representative IF stains of BrdU 
incorporation (yellow nuclei, indicated by white arrows) in liver with DAPI counterstain (cyan) 
from APAP-ALI mice with indicated treatments. Quantification in right panel. (H/I) Dual IF 
stains of BrdU (yellow), and either HNF4α (H) or ERG (I) (magenta), with DAPI counterstain 
(cyan) in AAM-treated liver tissue. White arrows indicate dual-positive cells, quantification in 
right panel. All data shown are n = 6-12 mice per group (black circles – individual vehicle 
controls; grey circles - cell-transfer reference group; open circles - polarised-BMDM treated 
mice). Scale bars - 100 µm. p-values indicated in panels, n.s. – not significant. Kruskal-Wallis 
test for (C/D/E/F/G/H). One-way ANOVA for I. 
 
Fig. 2. Injection of AAMs reduces several serum proinflammatory cytokines following 
APAP-ALI. (A) Serum concentrations of proinflammatory cytokines measured in APAP-ALI 
mice receiving indicated treatments (n = 10-12 per group; some sera had undetectable IL-12p70). 
(B) IL-6 levels in liver homogenates from APAP-ALI mice receiving indicated treatments (n = 
5-11 per group) (C) Relative expression of indicated genes (using 2−∆∆CT method; standardised to 
PBS-treated controls, after GAPDH normalisation) in liver tissue of APAP-ALI mice receiving 
indicated treatments (n = 6-10 per group). In A-C, black circles – individual vehicle controls; 
grey circles - cell-transfer reference group; open circles – AAM-treated mice. (D) Study design: 
Plasma biomarkers were measured daily in APAP-ALI mice following PBS/AAM-treatment. 
(E/F/G) Plasma biomarkers (left panels) and change in plasma biomarkers from poinf-of-
treatment (right panels) for plasma ALT activity (E), AST activity (F), and miR-122 levels (G). 
Amber area represents treatment phase. Grouped values represents mean ± SD for AAM-
treatment (green) and PBS-treatment (black). Plasma miR-122 levels are presented as relative 
quantitation (using 2-∆∆CT method; standardized to pre-APAP-ALI levels (-96 hours), after let-7d 
normalization). p-values provided in panels; n.s., not significant, *p<0.05, **p<0.01. Kruskal-
Wallis tests for A/B/C (Csf1/Ccl5), one-way ANOVA for C (Tgfb, Il6, Cxcl1), mixed-effects 
model for (E/F/G). 
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Fig. 3. Injected AAMs are primarily Ly6Clo and highly phagocytic in situ. (A) Relative gene 
expression in BMDM populations (determined by 2−∆∆CT method; standardised to Naive 
BMDMs, after 18S normalisation): Nos2 - CAM-associated gene, Retnla -AAM-associated gene, 
Il10 - DAM-associated gene, Ly6C - proinflammatory-associated gene (n = 3/4 biological 
replicates per group). (B) Ly6C status in BMDM populations (flow cytometry quantification, left 
panel; cytometry histograms, right panel) (C) Study design: CFSE-labelled AAMs injected 
(5x106

,
 i.v.) at 16 hours in APAP-ALI mice, three hours before PKH26 (fluorescent phagocytic 

tracer). Cull at 36 hours. (D) Serum ALT activity (left) and AST (right) in APAP-ALI mice 
treated with PBS or AAMs (n=4 per group). (E) Gating shows CFSE+ AAMs in liver digests 
(top panels) and whole blood (bottom panels) in AAM-treated APAP-ALI mice. (F). 
Representative flow plot of Ly6C status in retrieved CFSE+ AAMs (gating: left panel; 
quantification: right panel, circles represent digests from individual mice). (G) Representative 
flow plots showing PKH-uptake in Ly6Chi (left panel) and Ly6Clo (middle panel) AAMs, 
quantification in right panel. (H) Representative flow plots show Ly6C status in infiltrating 
endogenous macrophages in liver digests from APAP-ALI mice treated with PBS (left panel) or 
AAMs (middle panel), quantification in right panel. (I) Quantification of PKH-uptake in Ly6Chi 
(left panel) and Ly6Clo (right panel) infiltrating endogenous macrophages. p-values provided in 
panels, n.s. not significant. One-way ANOVA (A), unpaired t-test (D, I), or Mann-Whitney U-
test (H) were performed. 
 
Fig. 4. Murine AAMs are highly phagocytic. (A) Phagocytosis quantification in naive 
BMDMs (black), AAMs (green), or CAMs (blue) during incubation with CMTMR-labelled 
apoptotic thymocytes. MFI of CMTMR-positive macrophage populations (left), and 
representative histograms (right). (B) Ly6C status in BMDM populations during incubation with 
CMTMR-labelled apoptotic thymocytes at indicated times (left panel); representative histograms 
(right panel). Coloured circles represent individual preparations connected by lines (mean value, 
n=3). (C) Representative images of real-time phagocytosis at indicated times. Naïve BMDMs 
(top row), CAMs (middle row) and AAMs (bottom row) are shown (Deep Red CellMask, red; 
NucBlue, blue). Phagocytosis determined by intracellular fluorescence (green). (D) Phagocytosis 
quantification: pHrodo-positive cell fraction (left) and total cell MFI (right). (E) Study design: 
Hepatocytes were Tdtomato-labelled by delivery of hepatotropic AAV8 virus delivering Cre-
recombinase to R26RLSLtdTomato mice. Tdtomato-positive APAP-ALI mice received CFSE-
labelled AAMs (5x106, i.v.) at 16 hours, before cull (36 hours). (F) Panels show representative 
confocal immunofluorescence of liver tissue (max intensity projection from 7 slices; 2.4 µm) in 
each channel: DAPI (cyan), TdTom (TdTomato+ hepatocytes, magenta), FITC (CFSE+ AAMs, 
yellow), and merged images. Faint punctate TdTomato+ debris were visible inside vesicles in 
peri-necrotic macrophages (top row, white arrow heads). *p < 0.05, **p < 0.01, ***p < 0.001, 
scale bars 20 µm. Two-way ANOVA (A/B). 
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Fig. 5. Injection of hAAMs reduces necrosis in APAP-ALI immunocompetent mice. (A) 
hMDMs were differentiated from CD14+ cells isolated from healthy volunteer buffy coats, 
before incubation with hCSF-1 for seven days. hAAMs were generated by stimulating hMDMs 
overnight with hCSF1, hIL-4, and hIL-13. (B) Representative flow cytometry plots 
demonstrating CD14-enrichment using CliniMACS® beads (C) Representative flow cytometry 
plots showing macrophage maturity markers (25F9, left panels; CD206, right panels) in CD14+ 
cells (top) and hMDMs (bottom) (D) Flow cytometry quantification of hMDMs (black), hMDMs 
stimulated with CSF-1 alone (grey), and fully-stimulated hAAMs (green), spots represent 
individual donors. (E) Panels show representative anti-FITC IHC stains in liver (left), spleen 
(centre), and lung (right) from APAP-ALI mice treated with PBS (top row) or hAAMs (bottom 
row). (F) Representative histological staining (left) and necrosis segmentation map (centre) in 
APAP-ALI mice with indicated treatments. Necrosis quantification in right panel (n ≥ 7 mice per 
group). (G) Percentage weight loss (left panel) and liver/body weight ratio (right panel) of 
APAP-ALI mice with indicated treatments (n ≥ 8 per group) (H). Serum injury/inflammatory 
markers in APAP-ALI mice receiving indicated treatments (n ≥ 6 per group; serum ALT activity, 
left panel; serum IL-6, centre panel; serum IL-10/-12p70 ratio, right panel, some sera has 
undetectable IL-12p70 levels). (I) Representative dual IF images of HNF4α (yellow) and BrdU 
(magenta) against DAPI (counterstain, blue) in liver tissue from APAP-ALI mice treated with 
PBS (top row) or hAAMs (bottom row). White arrowheads indicate BrdU-positive cells, red 
arrowheads indicate dual-positive BrdU-positive HNF4α-positive cells (quantification right 
panel; n ≥ 8). Scale bars 100 µm, unless otherwise indicated. p-values indicated in panels, n.s. 
not significant. One-way ANOVA test in F, G (weight loss %), H (ALT), or Kruskal-wallis test 
in G (liver/body ratio), H (IL-6, IL-10/-12 ratio), and I. 















Highlights: 

• Primary BMDMs localised in liver and spleen within hours following intravenous 

injection in mice 

• AAMs were highly phagocytic and, after injection, were most effective at reducing 

necrotic area, HMGB1 translocation, and hepatic neutrophil infiltration following 

APAP-induced liver injury 

• AAM injection reduced several inflammatory mediators in both serum and tissue, and 

stimulated hepatocyte and endothelium proliferation in injured liver 

• Injection of clinical-grade human AAMs could partially recapitulate the efficacy of 

murine AAMs in immunocompetent mice 


	Binder1.pdf
	gr1
	gr2
	gr3
	gr4
	gr5


