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Introduction: learning health systems 

Friedman and colleagues1 outline a vision of the learning health system, founded on the sharing of 

data and achieved through alignment of information technology, advanced analytics and clinical 

expertise. The Institute of Medicine2 recognises the potential of the learning health system to 

generate new information automatically during the delivery of healthcare, offering continual 

opportunities to improve healthcare processes to the benefit of public health. The learning health 

system is promoted as a mechanism to accelerate the adoption of effective treatments into clinical 

practice, shortening the extended delay3 from publication of research findings to implementation.  

Furthermore, it harbours the ambition to deliver personalised medicine to each service user, rather 

than the systematic provision of identical care to groups of patients who share the same 

characteristics. Worldwide escalating costs in healthcare provision due to demographic changes, 

compounded by ongoing use of ineffective tests and treatments, make it critically important to 

harness the efficiency gains of a learning health system. Of its many potential characteristics, one 

distinct attribute of the learning health system is to enable efficient investigation of whether strategies 

promoting implementation of best practice (such as educational initiatives or care bundles) actually 

work. A systematic review identifying a low frequency of reports on the evaluation and impact of 

learning health systems4 prompted us here to reconsider the central requirements for evaluation of 

improvement interventions within the learning health system.   

Here, we reflect on two recent implementation studies, both utilising efficiencies of the learning 

health system (minimising data acquisition and relying heavily on data acquisition from existing 

medical records), to illustrate the key issues arising when incorporating this type of research into the 

learning health system. In this paper we argue that the presence of infrastructure which facilitates 

data sharing, combined with appropriate research design, analysis and reporting, are essential 

elements in the evaluation of healthcare improvement interventions. 

Data, research design and the learning health system 
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Ready access to routine data in the learning health system is a priority for commissioners of 

implementation research investigating system-wide healthcare interventions and researchers 

performing those evaluations. In turn, this becomes an important consideration for those configuring 

new or updated electronic health record systems. Here, using both the AFFIRM trial (Can Promoting 

Awareness of Fetal movements and Focussing Interventions Reduce fetal Mortality - a stepped wedge 

cluster randomised trial)5 and the SPIRE project (Saving Babies' Lives Project Impact and Results 

Evaluation)6 as case studies, we elucidate key challenges in three areas central to the conduct of such 

research at scale:  data access; research design; and analysis and reporting. We conclude with 

recommendations for research commissioners, researchers and managers of healthcare information 

systems to enable the benefits of a learning health system in evaluating improvement interventions 

to be achieved. 

AFFIRM and SPIRE 

The AFFIRM trial 5 evaluated a package of care aimed at reducing stillbirth. The complex intervention 

evaluated in AFFIRM (in over 400,000 women) combined strategies for increasing awareness among 

pregnant women of the need to report decreased fetal movements (DFM) promptly, with a structured 

management plan to identify fetal compromise and achieve timely delivery in suspected and 

confirmed cases of DFM. SPIRE 6 aimed to determine whether the Saving Babies Lives Care Bundle 

reduced the occurrence of stillbirth by applying best practice to four components of maternity care. 

Its evaluation included more than 95,000 deliveries per year in 19 secondary and tertiary maternity 

units covering 9 local authorities in England. Both AFFIRM and SPIRE were pragmatic trials, applying 

“real world” implementation at scale, and evaluating outcomes through the use of routinely collected 

data. 

Data access 

The first challenge for studies such as AFFIRM and SPIRE arises from the use of routinely collected 

data. The research team relies on the required measurements being available and accurately 
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recorded. For AFFIRM, the Scottish Birth Record, Maternal Inpatient and Day Case Records contained 

all the necessary data for sites in Scotland on inpatient care, mother and baby characteristics, and 

pregnancy and baby outcomes. Substantial data management input was then needed to map separate 

data sources from study sites in England, Wales, Northern Ireland and the Republic of Ireland onto a 

common database (409,175 women in total) stored securely in the safe haven at National Health 

Service (NHS) National Services Scotland. Not all desirable information was routinely available; for 

example the frequency with which investigations (such as cardiotocography) were used (to assess 

fidelity of implementation of the intervention) and the results of those examinations had to be 

gathered separately in site audits.  

The quality of routinely collected data is further complicated by variation in nature of recording and 

coding of individual activities e.g. ultrasound scan to measure fetal growth, such that in SPIRE only the 

overall average number of ultrasound scans performed could be calculated rather than just those 

relevant to the area of study. These limitations to the nature and scope of routinely collected data 

disproportionately affect process measures (for instance, the number of women attending with DFM) 

as these are less likely to be recorded than outcomes (for example, stillbirth). As a result, intervention 

fidelity can be measured at an aggregate level (ward or healthcare facility) but not for individual 

patients.7  In some instances, dependent on the nature of the intervention being evaluated, such 

cluster-level assessment of fidelity may be all that is required. Importantly, clinical coding dictionaries 

often do not include items for the presence of significant symptoms such as DFM. The fundamental 

importance of data management issues is reflected in the RECORD8 reporting guidance for research 

using routinely collected data.  

Access permissions are also key: in the European Union, the General Data Protection Regulation9 

incorporates a “legitimate interest” criterion which is currently being applied to support the use, in 

the presence of appropriate information governance safeguards, of routine data for research. Ease of 
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access to relevant and interpretable routine data is a fundamental requirement of any learning health 

system. 

Research design 

The second feature concerns the importance of advance planning of study design in the evaluation of 

improvement interventions. Prospective planning of the implementation and evaluation of the 

intervention enabled AFFIRM to set up a stepped-wedge cluster-randomised trial design10 whereas 

SPIRE took the form of a natural experiment as its evaluation was only planned after the development 

and introduction of the intervention in early adopter sites.  

Stepped-wedge design trials (Figure 1) commence with all of the clusters delivering treatment as 

usual.  At regular pre-specified intervals each cluster (or group of clusters) implements the 

intervention and maintains this for the remainder of the trial.  By the final time interval all clusters 

have adopted the intervention.  Randomisation determines the time point at which each cluster 

commences the intervention.   

Stepped-wedge designs are conceptually useful in enabling an empirical randomised evaluation of an 

intervention which is intended to be rolled out across an entire health system. Non-randomised 

designs, based on real-world evidence alone, provide an alternative evaluation framework. While 

some advocate the use of causal inference in non-randomised designs, consensus is lacking and 

approaches such as propensity scoring to address confounding require sensitivity analyses to provide 

further assurance on their validity.11 The confounding of intervention effects with time in non-

randomised simple before-and-after designs10 is also present in stepped-wedge designs. Time effects 

may be adjusted for in the analysis of stepped-wedge trials to reduce such confounding, although this 

requires the reasonably strong assumption that the underlying time trend is the same for all clusters.  

Interrupted time series analysis may be applied to observational study designs; while this offers 

another candidate approach to evaluating service-level interventions, it is also vulnerable to 

confounding.  Furthermore it assumes a fixed time point at which change happens: as was found in 
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SPIRE,6 this may not reflect the reality of introducing a complex intervention at service level. The key 

advantage of the stepped-wedge randomised design over non-randomised before-and-after designs 

is that it enables a contemporary comparison between clusters which have, and have not, 

implemented the intervention. 

All designs which randomise clusters rather than individual participants incur a penalty which inflates 

the sample size required. It is notable that for a given number of participants per cluster, stepped-

wedge designs require a smaller number of clusters (are more efficient) than parallel group cluster 

trials; however, this greater efficiency is lost where the within-cluster correlation of outcomes (the 

“intra-cluster correlation coefficient”) is low.12      

Depending on the nature and risk profile of the intervention being investigated, such cluster trials may 

not require individual informed consent from participants,13 which potentially enhances study 

efficiency and representativeness of the trial population.  Nevertheless, recommendations on 

informed consent in the Ottawa statement14 emphasise that consent should be sought unless a waiver 

is clearly justified.  Technical understanding of sample size requirements15 and optimal design 

configurations16 has developed for stepped-wedge trials.  

Practical challenges include factors outside the control of the researcher, for example the closure of 

study sites; and, as encountered in AFFIRM, the dropout of sites, post-randomisation, for reasons such 

as the perceived costs of the intervention being studied. Sites must also be willing to agree to the 

intervention at baseline and to defer implementation until the time point allocated in the 

randomisation sequence – mistimed implementation adversely impacts on study integrity.17 Such 

challenges emphasise the need to consider evaluation strategies concurrently with the development 

of interventions so that potential challenges can be identified and addressed. 

It is also important for understanding of the service-level impact of an intervention to study the 

varying degree to which sites implement the intervention. Quantitatively, we can establish the level 

of fidelity to the intervention in individual study sites. Qualitative studies enable further insight using 
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contextual information on the barriers to and facilitators of adoption of a complex intervention at 

scale. 

Evaluation designs which appropriately address the above considerations of precision (sample size), 

bias (time confounding) and the influence of mediating and moderating factors on intervention 

effectiveness are essential to facilitate learning in a health system.   

Analysis and reporting 

Finally, issues arise relating to statistical analysis and reporting. In AFFIRM, the stillbirth primary 

outcome was a rare event, with an expected frequency of about 0.44%.  This, together with the multi-

level models used to analyse data from a stepped-wedge design, required a sample size of several 

hundred thousand. Indeed, for some research questions several million participants will be needed.18 

Another statistical challenge when using routine data, which cannot be subjected to conventional 

clinical trial data querying, is missing data.  The missing data handling techniques being used should 

be pre-specified and the further assumptions they make will need to be justified and tested in 

sensitivity analyses. 

Two further statistical issues arise due to features of the stepped-wedge design. First, the confounding 

between time and intervention effect requires adjustment for secular trends, using assumptions such 

as similarity of time effects across clusters which may be difficult to verify empirically. Secondly, the 

intra-cluster correlation coefficient may vary over time or differ between treatment as usual and 

intervention.  While all of these statistical issues can be accommodated in the analysis, each in turn 

adds complexity to the model and requires a further layer of assumptions to be made and verified.    

Final reporting also requires careful consideration for trial designs where informed consent has not 

been sought.  For analyses of routine data performed within a secure safe haven environment, 

disclosure checking must be applied19, to ensure none of the resulting statistical outputs (tables, 

graphics or regression modelling) would potentially identify an individual. 
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The final requirements for evaluation of improvement interventions in the learning health system are 

therefore the tailoring of statistical analysis to be fit for purpose; and a reporting process which 

protects privacy in order to maintain trust in the use of routine healthcare data to inform service 

improvements.  

Recommendations 

Notwithstanding the challenges outlined above, the benefits of using routine data for evaluation of 

improvement as part of a learning healthcare system vastly outweigh the drawbacks. Healthcare 

technologies and needs are continually evolving, and the cost of healthcare ever spiralling upwards: 

to fail to innovate or to innovate without proper evaluation is at best lazy and at worst unethical. A 

learning healthcare approach allows evaluation at scale, for modest costs. Based on our experience 

with AFFIRM and SPIRE, we suggest some recommendations for clinical data champions, for 

researchers and commissioners of research, and for policy makers. Our recommendations cover 

routine data access, study design, and statistical analysis and reporting:  

Accessing routinely collected data   Those configuring or updating healthcare information 

systems should strive to establish unified electronic health records where such a facility is currently 

absent, since clinical audit is time consuming and resource intensive compared to directly accessing 

data via electronic health records. For example, in SPIRE 1,658 case notes were audited, 2,230 women 

responded to a questionnaire and 1,064 health professionals completed a survey.  It is also vital that 

information governance of electronic health records systems should facilitate secure access to data 

for research and incorporate a process for timely disclosure checking of research outputs to protect 

the anonymity of patients.  

Research study design  Commissioners of improvement research should endorse the use of 

randomised designs such as the stepped-wedge trial to enable empirical evaluation of healthcare 

system-wide interventions.  Given the likely variations in implementation of an intervention across 
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different sites, the randomised trial should be supported by a quantitative and qualitative process 

evaluation.  

Statistical analysis and reporting Researchers conducting trials using routinely collected data 

should incorporate a pre-specified and fully justified plan of the missing data handling methods to be 

used, which will require appraisal of the methods of data collection and development of an 

understanding of possible reasons why each data item might be missing.  Robustness of the statistical 

model being fitted should be verified by testing its assumptions in sensitivity analyses.  Researchers 

should also structure their data management and reporting to take account of the RECORD guidance8 

in order to support research transparency and optimise the interpretability and reproducibility of the 

findings.  

Conclusions 

As shown in AFFIRM and other studies using remote follow-up via electronic health records, the 

conduct of efficient randomised evaluations of interventions at scale generates robust evidence to 

support improvement in a learning health system. Such trials depend on appropriate infrastructure 

(safe haven access to routine data), study design (stepped-wedge trial) and analysis and reporting 

methods. Together, these have the potential to enable society to realise the benefits of a learning 

health system. 
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Figure 1 The stepped-wedge trial design 

Example stepped-wedge trial design. Initially (month 1) no clusters have implemented the 

intervention.  In month 2 a cluster (number 4) is randomly selected to implement the intervention. 

This process continues, one randomly selected cluster implementing the intervention each month, 

until by the end of the trial all eight clusters have adopted the intervention.    


